EP2923360B1 - Verfahren zur oberflächen-dekontamination von bauteilen des kühlmittelkreislaufs eines kernreaktors - Google Patents

Verfahren zur oberflächen-dekontamination von bauteilen des kühlmittelkreislaufs eines kernreaktors Download PDF

Info

Publication number
EP2923360B1
EP2923360B1 EP13815419.0A EP13815419A EP2923360B1 EP 2923360 B1 EP2923360 B1 EP 2923360B1 EP 13815419 A EP13815419 A EP 13815419A EP 2923360 B1 EP2923360 B1 EP 2923360B1
Authority
EP
European Patent Office
Prior art keywords
decontamination
acid
aqueous solution
metal ions
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13815419.0A
Other languages
English (en)
French (fr)
Other versions
EP2923360A1 (de
Inventor
Luis Sempere Belda
Jose Pedro MOREIRA DO AMARAL
Christian Topf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva GmbH
Original Assignee
Areva GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva GmbH filed Critical Areva GmbH
Publication of EP2923360A1 publication Critical patent/EP2923360A1/de
Application granted granted Critical
Publication of EP2923360B1 publication Critical patent/EP2923360B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing

Definitions

  • the invention relates to a method for surface decontamination of components of the coolant circuit of a nuclear reactor, that is, a pressurized water or boiling water reactor.
  • the core of the coolant circuit is a reactor pressure vessel in which nuclear fuel-containing fuel elements are arranged.
  • At the reactor pressure vessel several cooling loops are usually connected, each with a coolant pump.
  • a pressurized water reactor with temperatures in the range of 300 ° C show even stainless austenitic FeCrNi steels, which, for example, the tube system of the cooling loops, Ni alloys, of which, for example, the exchanger tubes of steam generators and others about used for coolant pumps, eg cobalt-containing components, a certain solubility in water.
  • Metal ions liberated from the abovementioned alloys pass with the coolant flow to the reactor pressure vessel, where they are partially converted into radioactive nuclides by the neutron radiation prevailing there.
  • the nuclides are dispersed by the coolant flow throughout the coolant system and are stored in oxide layers that form on the surfaces of coolant system components during operation.
  • the oxide layers contain iron oxide with di- and tri-valent iron and oxides of other metals, especially chromium and nickel, which are present as alloying constituents in the steels mentioned above, depending on the type of alloy used for a component.
  • Nickel is always present in divalent form (Ni 2+ ), chromium in trivalent (Cr 3+ ) form.
  • the oxide layer is first treated oxidatively in the case of components containing chromium (oxidation step) and then the oxide layer is dissolved under acidic conditions in a so-called decontamination step with the aid of an acid, which is referred to below as decontamination or deconic acid.
  • decontamination or deconic acid The metal ions passing into the solution in the course of treatment with a deconic acid are removed from the solution by passing them through an ion exchanger.
  • An excess of oxidizing agent optionally present after the oxidation step is neutralized or reduced in a reduction step by addition of a reducing agent.
  • the dissolution of the oxide layer or the dissolution of metal ions in the decontamination step thus takes place in the absence of an oxidizing agent.
  • the reduction of the excess oxidant may be an independent treatment step, wherein the cleaning solution is metered into a reduction agent serving for the purpose of reduction, for example ascorbic acid, citric acid or oxalic acid for the reduction of permanganate ions and manganese dioxide.
  • a reduction agent serving for the purpose of reduction
  • the reduction of excess oxidizing agent can also take place in the context of the decontamination step, wherein an amount of organic decontamination acid is added which is sufficient to neutralize or reduce excess oxidant on the one hand and to cause oxide dissolution on the other hand.
  • a treatment or decontamination cycle comprising the treatment sequence "Oxidation Step Reduction Step Decontamination Step” or “Oxidation Step Decontamination Step with Simultaneous Reduction” is performed several times to achieve sufficient decontamination or reduction of the radioactivity of the component surfaces.
  • Decontamination methods of the type described above are known, for example, under the name CORD (chemical oxidation, reduction and decontamination).
  • the oxidative treatment of the oxide layer is necessary because chromium-III oxides and trivalent chromium-containing mixed oxides, especially of the spinel type, are difficult to dissolve in the decontaminates in question for decontamination.
  • an oxidizing agent such as Ce 4+ , HMnO 4 , H 2 S 2 O 8 , KMnO 4 , KMnO 4 with acid or alkali or ozone.
  • the result of this treatment is that Cr-III is oxidized to Cr-VI, which goes into solution as CrO 4 2- .
  • the cleaning solution contains essentially Cr-III, Fe-II, Fe-III, Ni-II and, in addition, radioactive isotopes, e.g. Co-60th These metal ions can be removed from the cleaning solution with an ion exchanger.
  • Deconic acid which is commonly used in the decontamination step, is oxalic acid because it effectively dissolves the oxide layers to be removed from component surfaces.
  • deconic acids especially oxalic acid
  • oxalate precipitates with bivalent metal ions such as Ni 2+ , Fe 2+ , and Co 2+ sparingly soluble precipitates, in the case of oxalic acid, to which reference is made below.
  • the said precipitates can be distributed throughout the coolant system, depositing on the inner surfaces of pipelines and components, such as steam generators.
  • the rainfall complicates the entire process implementation.
  • a further disadvantage is that in the course of the formation of, in particular, oxalate precipitates for coprecipitation of radionuclides contained in the aqueous solution and thus to a Re-contamination of the component surfaces comes.
  • the risk of recontamination is particularly high for components with a large surface to volume ratio. This is especially the case with steam generators which have a very large number of small diameter exchanger tubes.
  • recontamination preferably occurs in zones with low flow.
  • a further disadvantage of the formation of oxalate and other precipitates is that they can clog filter devices, such as the filter upstream of an ion exchanger and sieve trays or the protection filters of circulating pumps.
  • a further disadvantage arises when a treatment cycle comprising an oxidation step and a decontamination step described above is repeated, that is to say when a renewed oxidation step follows a deconstruction step. If precipitation has occurred in the previous decontamination step, the corresponding metal ions, such as Ni in the case of a nickel oxalate precipitate, can not be removed from the cleaning solution by means of ion exchangers.
  • the oxalate residue of the precipitates is oxidized to carbon dioxide and water, thereby consuming oxidizing agent uselessly.
  • the oxalate in solution, that is not bound in the form of a precipitate, the oxalate in a simple manner, such as before the cleaning solution is passed into an ion exchanger, destroyed in a simple and cost-effective manner, for example by means of UV light, ie converted to carbon dioxide and water.
  • This object is achieved in a decontamination process of the type mentioned above by metal ions that have passed into the aqueous solution during the oxidation step, be removed before performing the decontamination step, ie before the addition of an organic deconic acid, using a cation exchanger from the solution.
  • the procedure is advantageously such that the aqueous solution is passed through a cation exchanger.
  • the removal of nickel is particularly advantageous since it forms salts or precipitates which are particularly sparingly soluble with organic acids.
  • the oxide layer is treated with a deconic acid and solid metal ions from the oxide layer can be solved, the resulting metal ion concentrations are lower than in conventional decontamination, since at least a portion of the gone in the oxidation step in the metal ions have been removed before, so is no longer in the solution.
  • the risk of the solubility product of a metal salt of a deconic acid (the product of the activities of the metal cation and the acid anion) being exceeded and a sparingly soluble precipitate forming is thus reduced.
  • the formation of sparingly soluble nickel oxalate precipitates is critical because nickel oxalate has a relatively low solubility product.
  • ion exchangers are generally organic in nature, they are sensitive to oxidizing agents, in particular to the preferred used in a process according to the invention permanganic acid or their alkali metal salts, which are very strong oxidizing agent. Therefore, in the case of organic ion exchangers in particular, it is expedient to neutralize an oxidant still present in the aqueous solution with the aid of a reducing agent before the solution is passed over the cation exchanger to remove metal ions.
  • the reducing agent used is the deconic acid used in the subsequent decontamination step. It is advantageous that this acid is already on site, so that an additional effort for example for procurement and warehousing and for an additional authorization, which would be when using a different of the deconic acid reducing agent, such as glyoxylic required.
  • An inventive method can be used, for example, for decontamination of all or part of the coolant system of a nuclear reactor, such as a boiling water reactor.
  • Fig. 1 schematically the coolant system and the primary circuit of a pressurized water reactor is shown. It comprises, in addition to the pressure vessel 1, in which at least in operation a plurality of fuel elements 2 are present, a conduit system 3 which is connected to the pressure vessel 1, and various installations such as a steam generator 4 and a coolant pump 5.
  • the aim of the cleaning in question or the decontamination is to dissolve an existing on the inner surfaces 7 of the components of the primary circuit oxide layer and to remove their gone into solution components from the aqueous solution.
  • the entire coolant system is filled with an aqueous solution containing, for example, a complex-forming organic acid such as oxalic acid, to which reference will be made hereinafter by way of example.
  • a filling this is also to be understood as a procedure in which the coolant present after switching off the power operation, ie after the shutdown of the system in the coolant system forms the aqueous solution in question, this being used to carry out the oxidation step an oxidizing agent, preferably permanganic acid or potassium permanganate, is added.
  • an oxidizing agent preferably permanganic acid or potassium permanganate
  • the oxidation was carried out in acidic solution with permanganic acid as the oxidizing agent with a concentration of about 200 ppm at a temperature of about 90 ° C.
  • permanganic acid as the oxidizing agent with a concentration of about 200 ppm at a temperature of about 90 ° C.
  • the concentration or amount of nickel ions increased to about 6,000 g in about 10 hours and then remained substantially the same.
  • oxalic acid as reducing agent was metered into the aqueous solution in a slightly more than stoichiometric amount to neutralize unconsumed permanganic acid.
  • nickel is retained by the cation exchanger, so that its present in the total system amount or its concentration decreases accordingly.
  • the decontamination step (III) was initiated by the addition of oxalic acid.
  • the metered addition was carried out in such a way that an oxalic acid concentration of 2000 ppm was not exceeded in the solution. It can be seen in the diagram that the amount of nickel first increased greatly due to the dissolution of the oxide layer, but then decreased due to the switched cation exchanger 8. If the amount of nickel accumulated in Phase I had not been removed in accordance with the present invention, Phase III, rather than a 7,000 gram nickel, would have resulted in a substantially greater total nickel in the solution of approximately 13,000 grams, resulting in solubility problems and the risk of precipitation ,

Landscapes

  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Catalysts (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Oberflächen-Dekontamination von Bauteilen des Kühlmittelkreislaufs eines Kernreaktors, also eines Druckwasser- oder Siedewasserreaktors. Kernstück des Kühlmittelkreislaufs ist ein Reaktordruckbehälter, in dem Kernbrennstoff enthaltende Brennelemente angeordnet sind. Am Reaktordruckbehälter sind meist mehrere Kühlschleifen mit jeweils einer Kühlmittelpumpe angeschlossen.
  • Unter den Bedingungen des Leistungsbetriebes beispielsweise eines Druckwasserreaktors mit Temperaturen im Bereich von 300°C zeigen selbst rostfreie austenitische FeCrNi-Stähle, aus denen beispielsweise das Röhrensystem der Kühlschleifen besteht, Ni-Legierungen, aus denen beispielsweise die Austauscher-Rohre von Dampferzeugern bestehen und sonstige etwa für Kühlmittelpumpen verwendete, z.B. Cobalt enthaltende Bauteile, eine gewisse Löslichkeit in Wasser. Aus den genannten Legierungen herausgelöste Metallionen gelangen mit dem Kühlmittelstrom zum Reaktordruckbehälter, wo sie durch die dort herrschende Neutronenstrahlung teilweise in radioaktive Nuklide umgewandelt werden. Die Nuklide werden wiederum vom Kühlmittelstrom im gesamten Kühlmittelsystem verteilt und werden in Oxidschichten, die sich während des Betriebs auf den Oberflächen von Bauteilen des Kühlmittelsystems bilden, eingelagert. Mit zunehmender Betriebsdauer reichern sich die aktivierten Nuklide in und/oder auf der Oxidschicht an, so dass die Radioaktivität bzw. die Dosisleistung an den Bauteilen des Kühlmittelsystems zunimmt. Die Oxidschichten enthalten je nach Art der für ein Bauteil verwendeten Legierung als Hauptbestandteil Eisenoxid mit zwei- und dreiwertigem Eisen und Oxide anderer Metalle, vor allem Chrom und Nickel, die als Legierungsbestandteile in den oben erwähnten Stählen vorhanden sind. Dabei liegt Nickel stets in zweiwertiger Form (Ni2+), Chrom in dreiwertiger (Cr3+) Form vor.
  • Bevor Kontroll-, Wartungs-, Reparatur- und Rückbaumaßnahmen am Kühlmittelsystem vorgenommen werden können ist eine Reduzierung der radioaktiven Strahlung der jeweiligen Bauteile bzw. Komponenten erforderlich, um die Strahlungsbelastung des Personals zu verringern. Dies geschieht dadurch, dass die auf den Oberflächen der Bauteile vorhandene Oxidschicht mittels eines Dekontaminationsverfahrens möglichst vollständig entfernt wird. Bei einer derartigen Dekontamination wird entweder das gesamte Kühlmittelsystem bzw. ein davon etwa durch Ventile abgetrennter Teil mit einer wässrigen Reinigungslösung befüllt oder es werden einzelne Bauteile des Systems in einem separaten, die Reinigungslösung enthaltenden Behälter behandelt.
  • Die Oxidschicht wird bei Chrom enthaltenden Bauteilen zunächst oxidativ behandelt (Oxidationsschritt) und anschließend die Oxidschicht unter sauren Bedingungen in einem sog. Dekontaminationsschritt mit Hilfe einer Säure, die im Folgenden mit Dekontaminations- oder Dekontsäure bezeichnet wird, aufgelöst. Die im Zuge der Behandlung mit einer Dekontsäure in die Lösung übertretenden Metallionen werden aus der Lösung entfernt, indem diese über einen Ionentauscher geleitet wird. Ein gegebenenfalls nach dem Oxidationsschritt vorhandener Überschuss an Oxidationsmittel wird in einem Reduktionsschritt durch Zugabe eines Reduktionsmittels neutralisiert bzw. reduziert. Die Auflösung der Oxidschicht bzw. das Herauslösen von Metallionen im Dekontaminationsschritt erfolgt somit bei Abwesenheit eines Oxidationsmittels. Die Reduktion des überschüssigen Oxidationsmittels kann ein eigenständiger Behandlungsschritt sein, wobei der Reinigungslösung ein nur dem Zwecke der Reduktion dienendes Reduktionsmittel, beispielsweise Ascorbinsäure, Zitronensäure oder Oxalsäure zur Reduktion von Permanganat-Ionen und Braunstein zudosiert wird. Die Reduktion überschüssigen Oxidationsmittel kann aber auch im Rahmen des Dekontaminationsschritts erfolgen, wobei eine Menge an organischer Dekontaminationssäure zugesetzt wird, die ausreicht um einerseits überschüssiges Oxidationsmittel zu neutralisieren bzw. zu reduzieren und andererseits eine Oxidauflösung zu bewirken. In der Regel wird ein die Behandlungsfolge "Oxidationsschritt-Reduktionsschritt-Dekontaminationsschritt" oder "Oxidationsschritt-Dekontaminationsschritt mit gleichzeitiger Reduktion" umfassender Behandlungs- oder Dekontaminationszyklus mehrmals durchgeführt, um eine ausreichende Dekontamination bzw. Verringerung der Radioaktivität der Bauteiloberflächen zu erzielen. Dekontaminationsverfahren der oben beschriebenen Art sind z.B. unter der Bezeichnung CORD (chemische Oxidation, Reduktion und Dekontamination) bekannt.
  • Die oxidative Behandlung der Oxidschicht ist erforderlich, weil sich Chrom-III-Oxide und dreiwertiges Chrom enthaltende Mischoxide vor allem des Spinelltyps in den für eine Dekontamination in Frage kommenden Dekontsäuren nur schwer lösen. Um die Löslichkeit zu erhöhen, wird daher zunächst die Oxidschicht mit einer wässerigen Lösung eines Oxidationsmittels wie Ce4+, HMnO4, H2S2O8, KMnO4, KMnO4 mit Säure oder Lauge oder Ozon behandelt. Ergebnis dieser Behandlung ist, dass Cr-III zu Cr-VI oxidiert wird, welches als CrO4 2- in Lösung geht.
  • Aufgrund der Anwesenheit eines Reduktionsmittels im Dekontschritt, was stets der Fall ist, wenn eine organische Dekontaminationssäure verwendet wird, wird das im Oxidationsschritt entstandene Cr-VI, das als Chromat in der wässrigen Lösung vorliegt, wieder zu Cr-III reduziert. Am Ende eines Dekontschrittes befinden sich in der Reinigungslösung im Wesentlichen Cr-III, Fe-II, Fe-III, Ni-II und daneben radioaktive Isotope wie z.B. Co-60. Diese Metallionen können aus der Reinigungslösung mit einem Ionentauscher entfernt werden. Eine im Dekontschritt häufig verwendete Dekontsäure ist Oxalsäure, weil sich mit ihr die von Bauteiloberflächen zu entfernenden Oxidschichten effektiv auflösen lassen.
  • Nachteilig ist jedoch, dass manche Dekontsäuren, insbesondere auch Oxalsäure, mit zweiwertigen Metallionen wie Ni2+, Fe2+, und Co2+ schwerlösliche Niederschläge, im Falle von Oxalsäure, auf die im Folgenden exemplarisch Bezug genommen wird, Oxalat-Niederschläge bildet. Die genannten Niederschläge können im gesamten Kühlmittelsystem verteilt werden, wobei sie sich auf den Innenflächen von Rohrleitungen und von Komponenten, beispielsweise von Dampferzeugern, ablagern. Hinzu kommt, dass die Niederschläge die gesamte Verfahrensdurchführung erschweren.
  • Nachteilig ist weiterhin, dass es im Zuge der Bildung insbesondere von Oxalatniederschlägen zur Mitfällung von in der wässrigen Lösung enthaltenen Radionukliden und somit zu einer Rekontamination der Bauteiloberflächen kommt. Die Gefahr einer Rekontamination ist besonders groß bei Komponenten mit einem großen Verhältnis von Oberfläche zu Volumen. Dies ist vor allem bei Dampferzeugern der Fall, die eine sehr große Anzahl von Austauscherrohren mit geringem Durchmesser aufweisen. Weiterhin treten Rekontaminationen bevorzugt in Zonen mit geringem Durchfluss auf.
  • Ein weiterer Nachteil der Bildung von Oxalat- und sonstigen Niederschlägen besteht darin, dass sie Filtereinrichtungen, etwa die einem Ionentauscher vorgeschalteten Filter und Siebböden oder die Schutzfilter von Umwälzpumpen verstopfen können. Ein weiterer Nachteil ergibt sich schließlich, wenn ein oben beschriebener, einen Oxidationsschritt und einen Dekontschritt umfassender Behandlungszyklus wiederholt wird, wenn sich also an einen Dekontschritt ein erneuter Oxidationsschritt anschließt. Wenn in dem vorausgegangenen Dekontschritt Niederschläge entstanden sind, so können die entsprechenden Metallionen, etwa Ni im Falle eines Nickeloxalat-Niederschlags, nicht mit Hilfe von Ionentauschern aus der Reinigungslösung entfernt werden. Die Folge ist, dass im anschließenden Oxidationsschritt der Oxalatrest der Niederschläge zu Kohlendioxid und Wasser oxidiert wird und dadurch Oxidationsmittel nutzlos verbraucht wird. Wenn dagegen das Oxalat sich in Lösung befindet, also nicht in Form eines Niederschlags gebunden ist, kann das Oxalat auf einfache Weise, etwa bevor die Reinigungslösung in einen Ionentauscher geleitet wird, auf einfache und kostengünstige Weise beispielsweise mit Hilfe von UV-Licht zerstört, d.h. zu Kohlendioxid und Wasser umgesetzt werden.
  • Wenn also Niederschläge der oben beschriebenen Art während eines Dekontaminationsverfahrens aufgetreten sind, ist ein großer Zeit- und Kostenaufwand erforderlich, um diese zumindest teilweise aus einer wässrigen Lösung bzw. einem zu dekontaminierenden Kühlmittelsystem wieder zu entfernen und das Dekontaminationsverfahren fortsetzen zu können. Bisher wurde dazu versucht, die Geschwindigkeit der Entfernung von Nickel aus der wässrigen Lösung während des Dekontschritts durch eine entsprechend große Austauscherkapazität zu erhöhen. Bei der Reinigung bzw. Dekontamination größerer Systeme, etwa des kompletten Kühlmittelkreislaufs steht diese Möglichkeit aus technischen Gründen nur eingeschränkt zur Verfügung.
  • Davon ausgehend ist es die Aufgabe der Erfindung, ein Dekontaminationsverfahren vorzuschlagen, das hinsichtlich der geschilderten Nachteile verbessert ist.
  • Diese Aufgabe wird bei einem Dekontaminationsverfahren der eingangs genannten Art gelöst, indem Metallionen, die während des Oxidationsschrittes in die wässrige Lösung übergetreten sind, vor der Durchführung des Dekontaminationsschritts, also vor der Zugabe einer organischen Dekontsäure, mit Hilfe eines Kationentauschers aus der Lösung entfernt werden. Dazu wird in verfahrenstechnisch vorteilhafter Weise so vorgegangen, dass die wässrige Lösung über einen Kationentauscher geführt wird. Besonders vorteilhaft ist dabei die Entfernung von Nickel, da dieses mit organischen Säuren besonders schwerlösliche Salze bzw. Niederschläge bildet.
  • Wenn dann in einem nachfolgenden Dekontschritt, wie oben bereits ausgeführt, die Oxidschicht mit einer Dekontsäure behandelt wird und dabei massiv Metallionen aus der Oxidschicht heraus gelöst werden, sind die sich einstellenden Metallionenkonzentrationen geringer als bei herkömmlichen Dekontaminationsverfahren, da zumindest ein Teil der beim Oxidationsschritt in Lösung gegangenen Metallionen schon vorher entfernt wurden, sich also nicht mehr in der Lösung befindet. Die Gefahr, dass das Löslichkeitsprodukt eines Metallsalzes einer Dekontsäure (das Produkt aus den Aktivitäten des Metallkations und des Säureanions) überschritten wird und sich ein schwerlöslicher Niederschlag bildet, ist somit verringert. Besonders im Falle von Nickel und Oxalsäure ist die Bildung von schwerlöslichen Nickeloxalat-Niederschlägen kritisch, da Nickeloxalat ein relativ geringes Löslichkeitsprodukt aufweist.
  • Da Ionentauscher in aller Regel organischer Natur sind, sind sie empfindlich gegenüber Oxidationsmitteln, insbesondere gegenüber der bei einem erfindungsgemäßen Verfahren bevorzugt eingesetzten Permangansäure oder deren Alkali-Salze, die sehr starke Oxidationsmittel sind. Daher ist es insbesondere im Falle organischer Ionenaustauscher zweckmäßig, ein in der wässrigen Lösung noch vorhandenes Oxidationsmittel mit Hilfe eines Reduktionsmittels zu neutralisieren, bevor die Lösung zur Entfernung von Metallionen über den Kationentauscher geführt wird.
  • Vorzugsweise wird als Reduktionsmittel die im nachfolgenden Dekontschritt eingesetzte Dekontsäure verwendet. Dabei ist vorteilhaft, dass diese Säure ohnehin vor Ort ist, so dass ein zusätzlicher Aufwand etwa für Beschaffung und Lagerhaltung und für eine zusätzliche Zulassung, welche bei Einsatz eines von der Dekontsäure unterschiedlichen Reduktionsmittel, etwa Glyoxylsäure, erforderlich wäre, entfällt.
  • Ein erfindungsgemäßes Verfahren kann beispielsweise zur Dekontamination des gesamten oder eines Teils des Kühlmittelsystems eines Kernreaktors, etwa eines Siedewasserreaktors benutzt werden.
  • In der beigefügten Abbildung Fig. 1 ist schematisch das Kühlmittelsystem bzw. den Primärkreislauf eines Druckwasserreaktors dargestellt. Es umfasst neben dem Druckbehälter 1, in dem zumindest im Betrieb eine Vielzahl von Brennelementen 2 vorhanden sind, ein Leitungssystem 3, das an den Druckbehälter 1 angeschlossen ist, sowie diverse Einbauten wie z.B. einen Dampferzeuger 4 und eine Kühlmittelpumpe 5. Der Sekundärkreislauf 11, der unter anderem einen Generator 12 antreibende Dampfturbinen 13 umfasst, ist in Fig. 1 ebenfalls dargestellt. Ziel der in Rede stehenden Reinigung bzw. der Dekontamination ist es, eine auf den inneren Oberflächen 7 der Bauteile des Primärkreislaufs vorhandene Oxidschicht aufzulösen und deren in Lösung gegangene Bestandteile aus der wässrigen Lösung zu entfernen. Das gesamte Kühlmittelsystem wird mit einer wässrigen Lösung gefüllt, die beispielsweise eine komplexbildende organische Säure wie Oxalsäure enthält, auf die im Folgenden exemplarisch Bezug genommen wird. Wenn hier von einer Befüllung gesprochen wird, so ist darunter auch ein Vorgehen zu verstehen, bei dem das nach dem Abschalten es Leistungsbetriebs, also nach dem Herunterfahren der Anlage im Kühlmittelsystem vorhandende Kühlmittel die in Rede stehende wässrige Lösung bildet, wobei dieser zur Durchführung des Oxidationsschritts ein Oxidationsmittel, vorzugsweise Permangansäure oder Kaliumpermanganat, zugesetzt wird. Im Falle einer Komplettdekontamination wird das gesamte Kühlsystem gefüllt, ansonsten können auch nur Teile, beispielsweise nur ein Abschnitt des Leitungssystems, behandelt werden.
  • Im Folgenden wird nun die Anwendung des erfindungsgemäßen Verfahrens bei der Dekontamination des kompletten Kühlmittelsystems eines Druckwasserreaktors beschrieben, wobei nur der erste Reinigungszyklus betrachtet wird.
  • Die Oxidation erfolgte in saurer Lösung mit Permangansäure als Oxidationsmittel mit einer Konzentration von etwa 200 ppm bei einer Temperatur von etwa 90 °C. Wie dem beigefügten Diagramm zu entnehmen ist, stieg während des Oxidationsschritts (I) die Konzentration bzw. die Menge von Nickelionen innerhalb von etwa 10 Stunden auf Wert im Bereich von 6000 g an und blieb dann im wesentlichen gleich. Nach etwa 17 Stunden seit Beginn des Oxidationsschritts wurde zur Neutralisation nicht verbrauchter Permangansäure Oxalsäure als Reduktionsmittel in die wässrige Lösung in einer leicht überstöchiometrischen Menge zudosiert. Nach einer Einwirkdauer von etwa 3 Stunden wurde zum Zeitpunkt 20h mit der Entfernung der Nickelionen (II) und natürlich auch sonstiger Metallionen durch Zuschalten des Kationentauschers 8 begonnen, d.h. es wurde das Ventil 10 des Bypasses 9 geöffnet, so dass eine Teilstrom der im Kühlmittelsystem zirkulierenden wässrigen Lösung über den Kationentauscher 8 geführt wurde, was in technisch stark schematisierter und technisch vereinfacht dargestellter in Fig. 1 angedeutet ist.
  • Wie in dem Diagramm erkennbar ist, wird Nickel vom Kationentauscher zurückgehalten, so dass dessen im Gesamtsystem vorhanden Menge bzw. dessen Konzentration entsprechend sinkt. Im vorliegenden Beispiel näherte sich die in der wässrigen Lösung gelöste Nickelmenge während der Nickelentfernung (II) asymptotisch einem unteren Wert von etwa 500 g.
  • Etwa ab diesem Zeitpunkt, d.h. nach etwa 35 Stunden seit dem Beginn des Reinigungszyklus wurde der Dekontschritt (III) durch Zudosierung von Oxalsäure eingeleitet. Die Zudosierung erfolgte so, dass in der Lösung eine Oxalsäurekonzentration von 2000 ppm nicht überschritten wurde. In dem Diagramm ist erkennbar, dass die Nickelmenge durch die Auflösung der Oxidschicht zunächst stark anstieg, sich dann aber aufgrund des zugeschalteten Kationentauschers 8 verringert. Wäre die in Phase I angefallene Nickelmenge nicht auf erfindungsgemäße Weise entfernt worden, hätte sich in Phase III statt einer Nickelmange von etwa 7000g eine wesentlich höhere Gesamt-Nickelmenge in der Lösung von etwa 13000 g ergeben, was zu Löslichkeitsproblemen und der Gefahr von Niederschlägen geführt hätte.

Claims (6)

  1. Verfahren zur chemischen Dekontamination einer eine Oxidschicht aufweisenden Oberfläche eines metallischen Bauteils des Kühlmittelsystems eines Kernkraftwerks umfassend wenigstens einen Oxidationsschritt, bei dem die Oxidschicht mit einer ein Oxidationsmittel enthaltenden wässrigen Lösung behandelt wird, und einen sich anschließenden Dekontaminationsschritt, bei dem die Oxidschicht mit einer wässrigen Lösung einer Dekontsäure behandelt wird, welche die Eigenschaft hat, mit Metallionen, insbesondere mit Nickelionen einen schwerlöslichen Niederschlag zu bilden,
    dadurch gekennzeichnet,
    das vor der Durchführung des Dekontaminationsschritts Metallionen, die während des Oxidationsschrittes in Lösung gegangen sind, mit Hilfe eines Kationentauschers aus der wässrigen Lösung entfernt werden.
  2. Verfahren nach Anspruch 1, dass vor der Entfernung der Metallionen ein Reduktionsschritt durchgeführt wird, in dem ein in der wässrigen Lösung vorhandenes Oxidationsmittel mit Hilfe eines Reduktionsmittels neutralisiert wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als Reduktionsmittel die im nachfolgenden Dekontschritt eingesetzte Dekontsäure verwendet wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil der wässrigen Lösung über einen Kationenionentauscher geführt wird und dabei in der wässrigen Lösung enthaltene Metallionen entfernt werden.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Oxidationsschritt Permangansäure oder ein Salz der Permangansäure verwendet wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch die Verwendung von Oxalsäure als Dekontsäure.
EP13815419.0A 2013-01-30 2013-12-11 Verfahren zur oberflächen-dekontamination von bauteilen des kühlmittelkreislaufs eines kernreaktors Active EP2923360B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013100933.6A DE102013100933B3 (de) 2013-01-30 2013-01-30 Verfahren zur Oberflächen-Dekontamination von Bauteilen des Kühlmittelkreislaufs eines Kernreaktors
PCT/EP2013/076155 WO2014117894A1 (de) 2013-01-30 2013-12-11 Verfahren zur oberflächen-dekontamination von bauteilen des kühlmittelkreislaufs eines kernreaktors

Publications (2)

Publication Number Publication Date
EP2923360A1 EP2923360A1 (de) 2015-09-30
EP2923360B1 true EP2923360B1 (de) 2016-04-13

Family

ID=49911478

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13815419.0A Active EP2923360B1 (de) 2013-01-30 2013-12-11 Verfahren zur oberflächen-dekontamination von bauteilen des kühlmittelkreislaufs eines kernreaktors

Country Status (9)

Country Link
US (1) US20150364226A1 (de)
EP (1) EP2923360B1 (de)
JP (1) JP6339104B2 (de)
CN (1) CN104903969B (de)
AR (1) AR094610A1 (de)
DE (1) DE102013100933B3 (de)
ES (1) ES2582377T3 (de)
TW (1) TWI534833B (de)
WO (1) WO2014117894A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018134067A1 (en) 2017-01-19 2018-07-26 Framatome Gmbh Method for decontaminating metal surfaces of a nuclear facility

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6796587B2 (ja) * 2015-02-05 2020-12-09 フラマトム ゲゼルシャフト ミット ベシュレンクテル ハフツング 原子炉の冷却システムで金属表面を除染する方法
DE102016104846B3 (de) * 2016-03-16 2017-08-24 Areva Gmbh Verfahren zur Behandlung von Abwasser aus der Dekontamination einer Metalloberfläche, Abwasserbehandlungsvorrichtung und Verwendung der Abwasserbehandlungsvorrichtung
JP6408053B2 (ja) * 2017-03-21 2018-10-17 株式会社東芝 ニッケル基合金除染方法
CN107170503B (zh) * 2017-06-02 2019-04-02 苏州热工研究院有限公司 一种降低在役压水堆核电厂集体剂量的化学清洗方法
DE102017115122B4 (de) * 2017-07-06 2019-03-07 Framatome Gmbh Verfahren zum Dekontaminieren einer Metalloberfläche in einem Kernkraftwerk

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287002A (en) * 1979-04-09 1981-09-01 Atomic Energy Of Canada Ltd. Nuclear reactor decontamination
US4587043A (en) * 1983-06-07 1986-05-06 Westinghouse Electric Corp. Decontamination of metal surfaces in nuclear power reactors
DE4110128A1 (de) * 1990-04-09 1991-11-07 Westinghouse Electric Corp Dekontamination von radioaktiv verseuchten metallen
FR2699936B1 (fr) * 1992-12-24 1995-01-27 Electricite De France Procédé de dissolution d'oxydes déposés sur un substrat métallique.
US6147274A (en) * 1996-11-05 2000-11-14 Electric Power Research Insitute Method for decontamination of nuclear plant components
JP3866402B2 (ja) * 1998-02-17 2007-01-10 株式会社東芝 化学除染方法
US6635232B1 (en) * 1999-05-13 2003-10-21 Kabushiki Kaisha Toshiba Method of chemically decontaminating components of radioactive material handling facility and system for carrying out the same
JP3977963B2 (ja) * 1999-09-09 2007-09-19 株式会社日立製作所 化学除染方法
JP2003098294A (ja) * 2001-09-27 2003-04-03 Hitachi Ltd オゾンを用いた除染方法及びその装置
KR100724710B1 (ko) * 2002-11-21 2007-06-04 가부시끼가이샤 도시바 방사화 부품의 화학적 오염제거 시스템 및 방법
CA2633626C (en) * 2005-11-29 2010-05-04 Areva Np Gmbh Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility
DE102009002681A1 (de) * 2009-02-18 2010-09-09 Areva Np Gmbh Verfahren zur Dekontamination radioaktiv kontaminierter Oberflächen
DE102009047524A1 (de) * 2009-12-04 2011-06-09 Areva Np Gmbh Verfahren zur Oberflächen-Dekontamination

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018134067A1 (en) 2017-01-19 2018-07-26 Framatome Gmbh Method for decontaminating metal surfaces of a nuclear facility
US11443863B2 (en) 2017-01-19 2022-09-13 Framatome Gmbh Method for decontaminating metal surfaces of a nuclear facility

Also Published As

Publication number Publication date
TWI534833B (zh) 2016-05-21
TW201442040A (zh) 2014-11-01
US20150364226A1 (en) 2015-12-17
AR094610A1 (es) 2015-08-12
CN104903969B (zh) 2017-11-24
WO2014117894A1 (de) 2014-08-07
JP2016504601A (ja) 2016-02-12
EP2923360A1 (de) 2015-09-30
CN104903969A (zh) 2015-09-09
JP6339104B2 (ja) 2018-06-06
ES2582377T3 (es) 2016-09-12
DE102013100933B3 (de) 2014-03-27

Similar Documents

Publication Publication Date Title
EP2417606B1 (de) Verfahren zur oberflächen-dekontamination
EP2923360B1 (de) Verfahren zur oberflächen-dekontamination von bauteilen des kühlmittelkreislaufs eines kernreaktors
EP2564394B1 (de) Verfahren zur oberflächen-dekontamination
EP1968075B1 (de) Verfahren zur Dekontamination einer eine Oxidschicht aufweisenden Oberfläche einer Komponente oder eines Systems einer kerntechnischen Anlage
DE102017115122B4 (de) Verfahren zum Dekontaminieren einer Metalloberfläche in einem Kernkraftwerk
EP0160831B1 (de) Verfahren zur chemischen Dekontamination von metallischen Bauteilen von Kenreaktoranlagen
DE2107479B2 (de) Verfahren zur dekontaminierung der oberflaechen von kernreaktorbauteilen
EP2787509B1 (de) Verfahren zum Abbau einer Oxidschicht
EP3494579B1 (de) Verfahren zum abbau einer radionuklidhaltigen oxidschicht
EP1012850B1 (de) Verfahren zum einbringen von zink in ein wasser enthaltendes bauteil des primärsystems eines kernkraftwerkes
EP2758966A1 (de) Verfahren zum abbau einer oxidschicht
DE69302290T2 (de) Verfahren und Einrichtung zur Dekontaminierung eines gebrauchten nuklearen Dampferzeugers
DE2910034C2 (de) Verfahren zur Aufbereitung radioaktiver Lösungen
EP3430628B1 (de) Verfahren zur behandlung von abwasser aus der dekontamination einer metalloberfläche in einem primärkühlmittelkreislauf eines kernreaktors, kernreaktor-abwasserbehandlungsvorrichtung und verwendung der kernreaktor-abwasserbehandlungsvorrichtung
EP3607562B1 (de) Zinkdosierung zur dekontamination von leichtwasserreaktoren
EP3033751A1 (de) Verfahren zur verringerung der radioaktiven kontamination der oberfläche einer in einem kernreaktor eingesetzten komponente
DE2136185C3 (de) Verfahren zum Reinigen von Abschlämmwasser in Dampfkraftanlagen mit Kernreaktoren
DE102013108802A1 (de) Verfahren zur Verringerung der radioaktiven Kontamination eines wasserführenden Kreislaufs eines Kernkraftwerks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20151111

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TOPF, CHRISTIAN

Inventor name: SEMPERE BELDA, LUIS

Inventor name: MOREIRA DO AMARAL, JOSE PEDRO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 790907

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013002609

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2582377

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160912

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160714

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160816

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013002609

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

26N No opposition filed

Effective date: 20170116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013002609

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013002609

Country of ref document: DE

Owner name: FRAMATOME GMBH, DE

Free format text: FORMER OWNER: AREVA GMBH, 91052 ERLANGEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171211

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: FRAMATOME GMBH, DE

Free format text: FORMER OWNER: AREVA GMBH, DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: FRAMATOME GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: AREVA GMBH

Effective date: 20190107

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: FRAMATOME GMBH

Effective date: 20190516

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 790907

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013002609

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231218

Year of fee payment: 11

Ref country code: FR

Payment date: 20231220

Year of fee payment: 11

Ref country code: DE

Payment date: 20231208

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231212

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240108

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 11