EP2877476A1 - Procédé de préparation d'halosilanes d'alcényle et réacteur à cet effet - Google Patents

Procédé de préparation d'halosilanes d'alcényle et réacteur à cet effet

Info

Publication number
EP2877476A1
EP2877476A1 EP13726168.1A EP13726168A EP2877476A1 EP 2877476 A1 EP2877476 A1 EP 2877476A1 EP 13726168 A EP13726168 A EP 13726168A EP 2877476 A1 EP2877476 A1 EP 2877476A1
Authority
EP
European Patent Office
Prior art keywords
reactor
reaction tube
reaction
outlet
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13726168.1A
Other languages
German (de)
English (en)
Inventor
Stefan Bade
Norbert Schladerbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Industries AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Industries AG filed Critical Evonik Industries AG
Publication of EP2877476A1 publication Critical patent/EP2877476A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • C07F7/14Preparation thereof from optionally substituted halogenated silanes and hydrocarbons hydrosilylation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • C07F7/121Preparation or treatment not provided for in C07F7/14, C07F7/16 or C07F7/20
    • C07F7/122Preparation or treatment not provided for in C07F7/14, C07F7/16 or C07F7/20 by reactions involving the formation of Si-C linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/0011Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00123Controlling the temperature by direct heating or cooling adding a temperature modifying medium to the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • B01J2219/00166Controlling or regulating processes controlling the flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside

Definitions

  • the present invention relates to a process for the preparation of alkenylhalogeno-silanes, in particular of vinyltrichlorosilane from vinyl chloride and trichlorosilane, as well as a particularly suitable reactor.
  • the industrial production of alkenylhalosilanes is well known.
  • Alkenylhalosilanes such as vinyltrichlorosilane (III), in particular the group consisting of
  • Compound (III) vinyltrialkoxysilanes prepared via esterification reactions are important intermediate or intermediate technical products in organosilane chemistry. They are used, for example, as crosslinkers in plastics such as PVC, PP and PE.
  • Trichlorosilane is typically carried out in a high-temperature reactor in the temperature range between 400 and 700 ° C and a pressure between 1 and 2 bar abs.
  • the common methods are characterized in that either a tubular reactor or a reactor with a
  • rotating displacer is used. Examples of this can be found in EP 0 438 666 A2, DE 199 18 1 14 A1 and DE 199 18 1 15 A1.
  • EP 0 438 666 A2 describes an annular gap reactor with a gap of 20 mm.
  • the annular gap is formed via a rotating displacement body within the reactor shell.
  • the documents DE 199 18 1 14 A1 and DE 199 18 1 15 A1 describe an annular gap reactor for the production of vinyltrichlorosilane, in which, after flowing through the annular gap, an adiabatic reaction zone is passed through and subsequently the
  • Silicon tetrachloride 38.1 kg / h of high boiler / more
  • Silicon tetrachloride 20.8 kg / h high boiler / more
  • the production output of the described ring-gap reactor is 100 t of vinyltrichlorosilane per month or specifically as space-time yield 648 kg / (m 3 * h).
  • Object of the present invention is to provide a method and a suitable reactor for the production of Alkenylhalogensilanen with over known Processes and reactors increased yield and selectivity and with a reduced tendency to side reactions.
  • the present invention relates to a process for the preparation of alkenylhalogenosilanes by reacting alkenyl halide selected from the group of vinyl halide,
  • Vinylidene halide or halide-halide allyl halide selected from the group consisting of mono- and di-o-trihalosilane in the gaseous phase in a reactor comprising a reaction tube (1) equipped with one inlet (2) at one end of the tube and one outlet (3) at the other end of the tube; an annular gap nozzle (4) having a central feed (5) for one reactant (7) and a feed (6) surrounding the central feed (5) for the other reactant (8) and attached to the inlet (2) and in that
  • Reaction tube (1) opens, wherein alkenyl halide are injected through the central feed (5) and halosilane through the surrounding feed (6) in the reaction tube (1) and in the direction of outlet (3) through the reaction tube (1).
  • halogen is to be understood as meaning fluorine, chlorine, bromine or iodine, preferably chlorine and bromine, in particular chlorine.
  • the vinyl halides used according to the invention are vinyl fluoride, vinyl chloride, vinyl bromide and vinyl iodide or mixtures of two or more thereof. Preference is given to using vinyl chloride and / or vinyl bromide, very particularly preferably vinyl chloride.
  • the vinylidene halides used according to the invention are:
  • Vinylidene chloride and / or vinylidene bromide is preferably used, very particularly preferably vinylidene chloride.
  • allyl halides used according to the invention are allyl fluoride, allyl chloride, allyl bromide and allyl iodide or mixtures of two or more thereof.
  • the monohalosilanes used according to the invention are monofluorosilane, monochlorosilane, monobromosilane and monoiodosilane or mixtures of two or more thereof. Preference is given to using monochlorosilane and / or monobromosilane, very particular preference to monochlorosilane.
  • dihalosilanes are compounds of formula (Hal 1) (Hal 2) SiH 2, wherein Hall and Hal2 independently represent fluorine, chlorine, bromine or iodine.
  • Examples of dihalosilanes are difluorosilane, dichlorosilane, dibromosilane, diiodosilane or mixed types such as chlorobromosilane, fluorochlorosilane or chloro-iodosilane. They may also be mixtures of two or more of them. Preference is given to using dihalosilanes in which Hall and Hal 2 have the same meaning. Very particular preference is given to using dichlorosilane and / or dibromosilane, and in particular dichlorosilane.
  • the trihalosilanes used according to the invention are compounds of the formula (Hal1) (Hal2) (Hal3) SiH, where Hall, Hal2 and Hal3, independently of one another, denote fluorine, chlorine, bromine or iodine.
  • Examples of trihalosilanes are trifluorosilane, trichlorosilane, tribromosilane, triiodosilane or mixed types such as fluorochlorobromosilane, dichlorobromosilane or chloro-dibromosilane. They may also be mixtures of two or more of them.
  • Trihalosilanes are preferably used in which Hall, Hal2 and Hal3 have the same meaning. Very particular preference is given to using trichlorosilane and / or tribromosilane, and in particular trichlorosilane.
  • the alkenyl halide is centralized, i. at the location of the longitudinal axis of the reaction tube (1), injected together with the halosilane.
  • the latter is injected as the flow of Alkenylhalogenids flanking gas stream in the reaction tube (1).
  • the reactor is backmixing and the reactions are kept away from the reactor wall, resulting in a reduced formation of by-products.
  • the mono-, di- or trihalosilane is fed in the process according to the invention by the central feed (5) of the annular gap nozzle (4) completely in the vicinity of the inlet (2) in the reaction tube (1).
  • a gas feed point for the alkenyl halide in the reaction tube (1) is provided.
  • the mass flow of the reactants (7, 8) in the annular die (4) By varying the mass flow of the reactants (7, 8) in the annular die (4), the course of the reaction can be controlled. Preference is therefore given to the annular gap nozzle (4) means are provided, with which the flow rate of the alkenyl halide and / or the halosilane can be varied.
  • the use ratio of mono-, di- or trihalosilane to alkenyl halide, the reaction can also be controlled.
  • the ratio of mono-, di- or trihalosilane to alkenyl halide is between 1, 0 and 10 mol: mol, preferably between 2.0 and 4.0 mol: mol.
  • the reaction of mono-, di- or trihalosilane with alkenyl halide is largely completed.
  • the product-containing reaction mixture can be discharged via the outlet (3) from the reaction tube (1) and supplied to further operations, for example, a separation of the product alkenylhalosilane from the
  • the hot reaction mixture at the product end of the reaction tube (1) is quenched by quenching.
  • This can preferably be done with liquid crude product, which preferably at the product end of the reaction tube (1) in the hot
  • the reaction temperature can be selected within wide ranges.
  • Reaction temperature between 400 and 700 ° C, more preferably between 500 and 650 ° C.
  • reaction pressure can also be selected within wide ranges.
  • the pressure in the interior of the reaction tube (1) ( 0
  • Reaction pressure between 1, 0 and 2.0 bar abs, more preferably between 1, 0 and 1, 5 bar abs.
  • the course of the reaction can be controlled by the amount of added reactants.
  • the flow rate of alkenyl halide in the central feed (5) is controlled.
  • the controller can be controlled by a temperature control loop on the
  • the residence time of the reaction mixture in the reactor can also be varied over wide ranges.
  • the residence time of the reaction mixture in the reactor from the mouth of the annular gap nozzle (4) to the outlet (3) is in the range between 0.5 and 10 seconds, preferably between 1.5 and 4 seconds.
  • the present invention also relates to a tubular reactor which is suitable for carrying out gas-phase reactions and in particular for carrying out the above-described process for preparing alkenylhalosilane.
  • the reactor for the preparation of alkenylhalosilanes by reacting alkenyl halide with mono-, di- or trihalosilanes can be arranged both horizontally, vertically and obliquely. The nature of the attachment of the reactor has no effect on the
  • the heating of the reactor i. the outer reaction tube (1) can be done in various ways.
  • the most commonly used type is the direct electrical heating of the outer surface of the reaction tube (1).
  • Another form of heating is to heat the outer tube via an intermediate medium, for example liquid lead.
  • the heating of the outer tube by gas flames or by infrared radiation is possible.
  • the nature of the reactor heating influences only insignificantly the sales achievable per reactor cross-sectional area.
  • a reactor in which means are provided at the central feed (5) and / or at the enclosing feed (6) with which the mass flow of the reactant (s) in the annular die (4) can be varied.
  • a further preferred reactor is located after the inlet (2) has a preheating zone (6), in which the reactants (7, 8) are heated to the required reaction temperature.
  • the outlet (3) opens into a reservoir (10) for the cooled product (1 1).
  • a line (12) provided by which a portion of the product (1 1) is returned to the vicinity of the outlet (3) and injected into the reaction mixture located there, whereby a shock-like cooling of the reaction mixture and forming the cooled
  • FIG. 1 describes the process according to the invention or the reactor according to the invention. Shown is the reaction tube (1), which is equipped on the left with an inlet (2) for the reactants (7, 8), for example, vinyl chloride and trichlorosilane. Following the inlet (2) is a preheating zone (9), in which the reactants (7, 8), for example, vinyl chloride and trichlorosilane. Following the inlet (2) is a preheating zone (9), in which the
  • Reactants (7, 8) are heated to the required reaction temperature.
  • Reaction tube (1) opens an annular gap nozzle (4), which has a central feed (5) for
  • Alkenylhalogenid (7) and a surrounding this supply (6) for halosilane The annular gap nozzle (4) opens into the reaction tube (1), so that alkenyl halide and a surrounding halo-silane veil can be injected into the reaction tube.
  • the reaction tube (1) ends on the right with an outlet (3) for the
  • This outlet (3) opens into a reservoir (10) for the cooled product (1 1).
  • a portion of the product (1 1) is returned via line (12) under the action of the pump (13) in the vicinity of the outlet (3) and injected into the reaction mixture located there. This results in a shock-like cooling of the reaction mixture and a formation of the cooled product (9) result. This is then via outlet (3) in the
  • Vinyl chloride was reacted with trichlorosilane in a nozzle reactor (diameter 200 mm, length 6000 mm) to vinyltrichlorosilane.
  • the educts trichlorosilane and vinyl chloride were preheated in this case to 400 ° C in a preheating.
  • At the head of the reactor was one
  • the reaction takes place continuously in the tube reactor adjoining the annular gap nozzle (4). At the end of the reactor was a quenching of the hot reaction gas with liquid crude product, whereby the subsequent reaction was largely suppressed to silicon tetrachloride.
  • the reactor used has a diameter of 200 mm and a length of 6000 mm.
  • the following mass flows of the reaction mixture were obtained at the outlet of the reactor:
  • Silicon tetrachloride 20.6 kg / h of high boiler / more
  • this reactor had a monthly production capacity of 142 t vinyltrichlorosilane and a space-time yield of 1 .046 kg / (m3 * h).
  • a higher space-time yield was achieved than in the above-described comparative examples with reactors of the prior art and the vinyltrichlorosilane selectivity of the nozzle reactor used was also higher at 92% than in the comparative examples.
  • the higher vinyltrichlorosilane selectivity was due to a smaller amount of by-product silicon tetrachloride and high boilers or
  • the nozzle was constructed in such a way that vinyl chloride was introduced in the center of the pipe via an outlet opening of 25 mm.
  • Advantages of the process according to the invention and of the reactor of the "nozzle reactor” type according to the invention are the increased selectivity and the increased space-time yield with respect to the target product vinyltrichlorosilane, because targeted wall reactions are prevented by the enclosure with a trichlorosilane stream , whereby in the considered reaction system fewer by-products, eg silicon tetrachloride, carbon black and 1, 2-bis (trichlorosilyl) ethane are formed.
  • the nozzle reactor used in the invention can be at a significantly increased
  • Vinyl chloride sales are operated because he works backmixing. This increases the space-time yield of vinyltrichlorosilane over the conventionally used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)

Abstract

L'invention porte sur un procédé pour préparer des halosilanes d'alcényle par réaction d'halogénure d'alcényle choisis dans le groupe comprenant halogénure de vinyle, halogénure de vinylidène et halogénure d'allyle, avec de l'halosilane choisi dans le groupe comprenant le mono-, le di- et le trihalosilane, en phase gazeuse dans un réacteur qui comprend un tube réactionnel (1) présentant une entrée (2) à l'une de ses extrémité et une sortie (3) à son autre extrémité, ainsi qu'une buse à fente annulaire (4) présentant une amenée centrale (5) destinée à des réactifs (7) et une amenée (6) qui entoure l'amenée centrale (5) et est destinée à d'autres réactifs (8), étant mise en place contre l'entrée (2) et débouchant dans le tube réactionnel (1). Pour permettre la mise en œuvre du procédé, de l'halogénure d'alcényle est introduit dans le tube réactionnel (1) par l'amenée centrale (5) de la buse et de l'halosilane est introduit par l'amenée(6) périphérique de la buse, et ceux-ci circulent à travers le tube réactionnel (1) en direction de la sortie (3). Le procédé permet la préparation d'halosilanes d'alcényle avec des rendements élevés et une sélectivité élevée. La formation de noir de carbone est significativement réduire par rapport aux réacteurs de l'état de la technique. L'invention concerne également un réacteur pour mettre en œuvre des réactions en phase gazeuse, qui se caractérise par la présence d'au moins les éléments suivants : A) tube réactionnel (1) comprenant B) une entrée (2) sur un côté du tube, C) une sortie (3) sur l'autre côté du tube ; et D) une buse à fente annulaire (4) qui présente une amenée centrale (5) destinée à des réactifs (7) et une amenée (6) qui entoure l'amenée centrale (5) et est destinée à d'autres réactifs (8), est mise en place contre l'entrée (2) et débouche dans le tube réactionnel (1).
EP13726168.1A 2012-07-24 2013-05-28 Procédé de préparation d'halosilanes d'alcényle et réacteur à cet effet Withdrawn EP2877476A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012212913.8A DE102012212913A1 (de) 2012-07-24 2012-07-24 Verfahren zur Herstellung von Alkenylhalogensilanen und dafür geeigneter Reaktor
PCT/EP2013/060906 WO2014016013A1 (fr) 2012-07-24 2013-05-28 Procédé de préparation d'halosilanes d'alcényle et réacteur à cet effet

Publications (1)

Publication Number Publication Date
EP2877476A1 true EP2877476A1 (fr) 2015-06-03

Family

ID=48539133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13726168.1A Withdrawn EP2877476A1 (fr) 2012-07-24 2013-05-28 Procédé de préparation d'halosilanes d'alcényle et réacteur à cet effet

Country Status (9)

Country Link
US (1) US9718844B2 (fr)
EP (1) EP2877476A1 (fr)
JP (1) JP6042539B2 (fr)
KR (1) KR101792924B1 (fr)
CN (1) CN104520305B (fr)
BR (1) BR112015001440A2 (fr)
DE (1) DE102012212913A1 (fr)
RU (1) RU2605203C2 (fr)
WO (1) WO2014016013A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012212915A1 (de) 2012-07-24 2014-05-15 Evonik Industries Ag Verfahren zur Herstellung von Alkenylhalogensilanen und dafür geeigneter Reaktor
WO2017216768A1 (fr) 2016-06-16 2017-12-21 Association For The Advancement Of Tissue Engineering And Cell Based Technologies And Therapies - A4Tec Antigène artificiel dérivé d'un dendrimère, procédés associés et utilisations

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE530407A (fr) * 1953-07-17
SU123959A1 (ru) * 1959-04-02 1959-11-30 Г.В. Одабашян Способ получени винил- и фенилдихлорсиланов
DK137460B (da) 1971-03-18 1978-03-06 Union Carbide Corp Fremgangsmåde til polymerisation af ethylen alene eller i blanding med en eller flere andre alfa-olefiner og katalysator til brug herved.
JPS531243B2 (fr) * 1973-07-23 1978-01-17
JPS6097045A (ja) * 1983-10-31 1985-05-30 Sumitomo Electric Ind Ltd 気相合成装置
FR2608455B1 (fr) 1986-12-23 1989-04-28 Inst Francais Du Petrole Dispositif d'introduction de gaz comprenant des tubes comportant des zones retreintes
DE3724344A1 (de) * 1987-07-23 1989-02-02 Huels Chemische Werke Ag Mischduese zum vermischen zweier gasstroeme
DE4001820A1 (de) * 1990-01-23 1991-07-25 Huels Chemische Werke Ag Reaktor zur herstellung von vinylchlorsilanen durch umsetzung von vinylchlorid mit chlorsilanen bei erhoehter temperatur
DE4016021A1 (de) 1990-05-18 1991-11-21 Huels Chemische Werke Ag Verfahren zur herstellung von vinyltrichlorsilan
US5798137A (en) * 1995-06-07 1998-08-25 Advanced Silicon Materials, Inc. Method for silicon deposition
US5599964A (en) * 1996-04-19 1997-02-04 Albemarle Corporation Continuous process for preparing hydrocarbylaluminoxanes
EP0841342B1 (fr) 1996-11-06 2001-11-28 Degussa AG Procédé de préparation de vinyl-trichlorosilane
DE19727576A1 (de) 1996-11-06 1998-05-07 Huels Chemische Werke Ag Verfahren zur Herstellung von Vinyltrichlorsilan
DE19918114C2 (de) 1999-04-22 2002-01-03 Degussa Verfahren und Vorrichtung zur Herstellung von Vinylchlorsilanen
DE19918115C2 (de) * 1999-04-22 2002-01-03 Degussa Verfahren zur Herstellung von Vinylchlorsilanen
DE102007021003A1 (de) 2007-05-04 2008-11-06 Wacker Chemie Ag Verfahren zur kontinuierlichen Herstellung von polykristallinem hochreinen Siliciumgranulat
RU123959U1 (ru) 2012-06-22 2013-01-10 Государственное научное учреждение Северо-Кавказский зональный научно-исследовательский институт садоводства и виноградарства Россельхозакадемии Устройство для проведения твердофазной микроэкстракции
DE102012212915A1 (de) 2012-07-24 2014-05-15 Evonik Industries Ag Verfahren zur Herstellung von Alkenylhalogensilanen und dafür geeigneter Reaktor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014016013A1 *

Also Published As

Publication number Publication date
RU2605203C2 (ru) 2016-12-20
WO2014016013A1 (fr) 2014-01-30
CN104520305A (zh) 2015-04-15
JP6042539B2 (ja) 2016-12-14
RU2015105914A (ru) 2016-09-10
KR20150038084A (ko) 2015-04-08
JP2015529648A (ja) 2015-10-08
BR112015001440A2 (pt) 2017-07-04
CN104520305B (zh) 2017-05-24
DE102012212913A1 (de) 2014-05-15
US9718844B2 (en) 2017-08-01
KR101792924B1 (ko) 2017-11-02
US20150274758A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
DE69835078T2 (de) Verfahren zur herstellung von polysilizium unter verwendung von exothermer reaktionswärme
EP2877475B1 (fr) Procédé de préparation d'halosilanes d'alcényle et réacteur à cet effet
DE19918114C2 (de) Verfahren und Vorrichtung zur Herstellung von Vinylchlorsilanen
DE2365273C3 (de) Verfahren zur Hydrochlorierung von elementaren Silicium
DE19918115C2 (de) Verfahren zur Herstellung von Vinylchlorsilanen
WO2002048024A2 (fr) Procede de fabrication de trichlorosilane
DE2630542C3 (de) Verfahren zur Herstellung von Trichlorsilan und Siliciumtetrahlorid
WO2014016013A1 (fr) Procédé de préparation d'halosilanes d'alcényle et réacteur à cet effet
JP2015530365A5 (fr)
DE4016021A1 (de) Verfahren zur herstellung von vinyltrichlorsilan
DE10358080A1 (de) Verfahren zur Herstellung von Bortrichlorid
CN104520306B (zh) 制备烯基卤代硅烷的方法和对其合适的反应器
DE102011082662A1 (de) Verwertung niedrigsiedender Verbindungen in Chlorsilan-Prozessen
DE2024292A1 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK DEGUSSA GMBH

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 20180406

18W Application withdrawn

Effective date: 20180424