EP2873307B1 - Oberflächenwellenapplikator und verfahren zur plasmaerzeugung - Google Patents

Oberflächenwellenapplikator und verfahren zur plasmaerzeugung Download PDF

Info

Publication number
EP2873307B1
EP2873307B1 EP13735272.0A EP13735272A EP2873307B1 EP 2873307 B1 EP2873307 B1 EP 2873307B1 EP 13735272 A EP13735272 A EP 13735272A EP 2873307 B1 EP2873307 B1 EP 2873307B1
Authority
EP
European Patent Office
Prior art keywords
tube
applicator
dielectric
plasma
coaxial assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13735272.0A
Other languages
English (en)
French (fr)
Other versions
EP2873307A1 (de
Inventor
Ana Lacoste
Jacques Pelletier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pelletier Jacques
Universite Grenoble Alpes
Original Assignee
Universite Grenoble Alpes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Grenoble Alpes filed Critical Universite Grenoble Alpes
Publication of EP2873307A1 publication Critical patent/EP2873307A1/de
Application granted granted Critical
Publication of EP2873307B1 publication Critical patent/EP2873307B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/4615Microwave discharges using surface waves

Definitions

  • the present invention relates to a surface wave applicator for plasma production, and to a device and method for producing surface wave plasma.
  • Surface wave plasmas are a type of high frequency plasma (HF), that is, at a frequency of 1 MHz or less to more than 10 GHz [1] in which the plasma is maintained by a electromagnetic wave (in particular radiofrequency or microwave) propagating along a dielectric tube in contact with the plasma.
  • HF high frequency plasma
  • the plasma can be generated outside the dielectric tube or inside thereof, or both inside and outside the tube.
  • the plasma and the dielectric tube constitute the propagation medium of the microwaves that generate the plasma along the propagation zone.
  • the microwave electromagnetic field is called surface because the intensity of the electric field is maximum at the interface between the dielectric tube and the plasma.
  • surface wave plasmas are produced in the absence of a static magnetic field, except at low pressure where an axial magnetic field (i.e. in the tube direction) can be applied to improve the radial confinement of the plasma and / or produce plasma excitation at the electron cyclotron resonance.
  • the surface wave plasmas are produced in a dielectric tube by a surface electromagnetic wave generated from a gap gap field applicator (or "gap" according to the English terminology), as schematized on the figure 1 .
  • the figure 1 illustrates a sectional view of half of a dielectric tube 3 containing a plasma 4.
  • the X axis is the axis of revolution of the tube 3.
  • electrically conductive elements 2a, 2b which have, in this configuration, main surfaces respectively parallel and perpendicular to the dielectric tube 3.
  • the elements 2a and 2b are spaced apart from a gap G, whose width is typically of the order of a few mm.
  • An electromagnetic surface wave W is generated from the gap G.
  • the electric field has only a radial component, that is to say in the case illustrated in FIG. figure 1 perpendicular to the surface of the conductive element 2a and the thickness of the conductive element 2b.
  • the electromagnetic wave W thus propagates in a direction perpendicular to the gap, and substantially symmetrically (waves W1 and W2) on either side of the axis of the gap G (which is perpendicular to the X axis dielectric tube 1).
  • the dielectric tube passes through a box (the applicator is then called “surfatron”) or a waveguide (the applicator is then called “surfaguide”) which allows to apply to the tube, over a short length , the microwave electric field that will produce the plasma along which it can propagate.
  • a box the applicator is then called “surfatron”
  • a waveguide the applicator is then called “surfaguide”
  • the Figure 2A illustrates an example of a surfatron; the Figure 2B illustrates an example of a surfaguide. These two figures are extracted from [3].
  • the surfatron of the Figure 2A is a cylindrical box closed by a conductive partition 2b.
  • the dielectric tube 3 which is perpendicular to the partition 2b, has an axial conductive strip 2a along its entire length.
  • the tube 3 is arranged inside the cylindrical box, a gap G being formed between the end of the tube 3 and the conductive partition 2a.
  • the surfaguide of the Figure 2B comprises a waveguide GO, which is traversed perpendicularly by the dielectric tube 3, the launch gap G being formed between the wall of the waveguide and the tube.
  • the surface wave is symmetrical with respect to the gap.
  • the figure 3 illustrates the evolution of the radial and axial components of the electric field of the plasma 4 towards the outside of the dielectric tube 3 (medium A consisting for example of air or of a dielectric), as a function of the distance r in the radial direction to from the Z axis of the tube 3.
  • the ordinate axis indicates the intensity of the electrical component of the electromagnetic wave expressed in relative units.
  • the impedance matching systems of these devices are also expensive and bulky.
  • the plasma is produced on either side of the wave launch gap (by the upstream wave and the downstream wave).
  • the range of frequencies accessible to surface wave plasmas is much wider since it starts at less than 1 MHz (the beginning of the radio frequency domain (RF)) and covers the microwave domain up to more than 10 GHz.
  • RF radio frequency domain
  • An object of the invention is to provide a surface wave applicator that overcomes the aforementioned drawbacks.
  • the document WO03 / 103003 discloses a microwave energy applicator in an enclosure whose end is disposed in the wall of the enclosure.
  • the ends of the central core and the outer conductor of the coaxial assembly are coplanar.
  • the outer conductor at least partially surrounds the dielectric tube beyond the plane of the end of the central core.
  • the central core occupies at least partially the interior volume of the dielectric tube beyond the plane of the end of the outer conductor.
  • the coaxial assembly further comprises an impedance matching device.
  • the length of the dielectric tube inserted in the coaxial assembly is chosen to ensure impedance matching between the impedance of the plasma and the characteristic impedance of the coaxial assembly.
  • the coaxial assembly may comprise a circulation circuit of a cooling fluid arranged in the central core and / or in the outer conductor.
  • the dielectric tube may comprise a circulation circuit of a cooling dielectric fluid arranged in the interior volume and / or in the thickness of said tube.
  • the applicator further comprises a cylindrical permanent magnet whose direction of magnetization is parallel to the axis of the applicator, arranged at the end of the central core.
  • the magnetization of said magnets being chosen so as to form a magnetic field capable of providing, in a zone distant from the end of the applicator, an electron cyclotron resonance coupling with the microwave electric field generated by said applicator,
  • the outer radius and the magnetization of the annular magnet being further selected so that the magnetic field lines generated by said magnets pass through the electron cyclotron resonance coupling zone in a direction substantially parallel to the axis of the applicator .
  • the applicator comprises a confinement tube made of a dielectric material extending concentrically around the dielectric tube, said confinement tube being embedded in the external electrical conductor of the coaxial assembly.
  • Another object relates to a device for producing surface wave plasma, comprising an enclosure containing a plasmagenic gas and at least one applicator as described above, in which a part of the inner wall and / or the outer wall of the tube dielectric extending beyond the exit plane of the applicator is in contact with the plasma gas.
  • the dielectric tube is sealed and constitutes said chamber containing the plasma gas.
  • the dielectric tube is located inside the enclosure.
  • the enclosure comprises a confinement tube made of a dielectric material extending concentrically around the dielectric tube, said confinement tube being embedded in the external electrical conductor of the coaxial assembly of the applicator.
  • the dielectric tube may be open at its end opposite the coaxial assembly, the plasmagenic gas being in contact with the inner wall and the outer wall of the tube.
  • the dielectric tube may be closed at its end opposite the coaxial assembly, the plasmagenic gas being in contact only with the outer wall of the tube.
  • the dielectric tube may be closed at its end opposite the coaxial assembly, the inside of said tube being evacuated or filled with a material (solid or fluid) dielectric.
  • the chamber may comprise a device for introducing the plasma gas into the chamber and a device for pumping the plasma gas from inside to outside the chamber.
  • the central core comprises a conduit for introducing the plasma gas into the chamber.
  • the plasma gas pressure inside the chamber is preferably less than 133 Pa when a suitable magnetic field providing electronic cyclotron resonance is applied.
  • the electromagnetic wave is a microwave wave.
  • the plasma gas pressure is less than 133 Pa and the plasma is produced by electron cyclotron resonance.
  • the electromagnetic wave is a radiofrequency wave.
  • the coaxial assembly is cooled by a circulation of a cooling fluid inside said assembly.
  • the dielectric tube is cooled by circulating a dielectric cooling fluid inside said dielectric tube.
  • the figure 4 is a block diagram of a surface wave applicator 1 for plasma production according to the invention.
  • Said applicator comprises a coaxial assembly 2 electrically conductive, formed of a central core 20 and an outer tubular conductor 21 surrounding the central core 20 and separated therefrom by an annular volume 22 for propagating an electromagnetic wave W .
  • Such a coaxial assembly 2 is known in itself and its design is within the reach of the skilled person.
  • a dielectric tube 3 is inserted at the end of the coaxial assembly 2 in the annular volume 22 of propagation of the electromagnetic wave while extending beyond the exit plane of the applicator.
  • the applicator output plane is the interface between the coaxial assembly 2 and a volume containing a plasma gas, said output plane constituting a boundary between the applicator and the plasma generated by the electromagnetic wave from said gas plasma.
  • the dielectric tube thus comprises a first portion inserted into the annular volume 22 and a second portion protruding from the exit plane of the applicator, whose inner wall and / or the outer wall is likely to be in contact with a plasma gas.
  • a plasmagene gas is brought into contact with the tube 3, the plasmagenic gas being able to be located inside and / or outside said tube or on either side of the tube, according to the applications, some examples of which will be described in detail below.
  • the tube 3 may be of any dielectric material, which is a medium adapted to the propagation of an electromagnetic wave without significant losses.
  • the tube 3 may be silica (SiO 2 ), alumina (Al 2 O 3 ) or aluminum nitride (AlN), without the invention being limited to these materials.
  • the tube 3 generally has a circular section and extends in a longitudinal direction X.
  • the radius of the tube 3 is typically of the order of one centimeter, that is to say between a few millimeters and a few centimeters depending on the application and the operating conditions.
  • the dielectric tube 3 may have a gradual change in its diameter as is the case with some devices using surface wave plasmas.
  • the thickness of the tube 3 is generally of the order of one millimeter.
  • the thickness of the portion of the tube 3 inserted in the coaxial assembly is chosen so that the tube 3 occupies substantially the entire width of the annular volume 22.
  • sealing of the junction between the tube and the annular volume vis-à-vis the plasma gas by any suitable means.
  • the length of the tube depends on the intended application.
  • the length of the tube 3 is large in front of the diameter of the coaxial applicator (which is of the order of 1 cm) and may, depending on the application, have a length that may range from about 5 cm to 1 cm. meter order.
  • the length of the portion of the tube 3 extending beyond the exit plane of the applicator advantageously corresponds to the length on which it is desired to generate the plasma.
  • the length of the portion of the extension extending beyond the outlet plane of the applicator greater than or equal to twice the outside diameter of the tube 3 is chosen, so as to produce the plasma essentially along said portion of the tube. tube.
  • the tube extends beyond the outlet plane of the applicator over a short length, that is to say typically smaller than the outside diameter of the tube, the plasma is generated directly at the outlet the applicator without creating a surface wave, which corresponds to a situation not covered by the present invention, wherein a plasma sheet is formed in the exit plane of the applicator.
  • the tube 3 can be open at its end 33 opposite to the coaxial assembly 2; alternatively, the tube 3 can be closed at this end 33.
  • An electromagnetic wave W propagating in the annular volume 22 of the coaxial assembly 2 is introduced into the section of the dielectric tube 3 in the longitudinal direction X of said tube and propagates longitudinally in the thickness of said tube.
  • the electromagnetic wave propagates in an electromagnetic transverse mode (TEM), that is to say a mode where the electric field is purely radial.
  • TEM electromagnetic transverse mode
  • the normal to the metal surface of the central core and the external conductor changes direction, passing from a radial direction to the axial direction, parallel to the X axis.
  • the exit plane may consist of the plane defining the end of the central core 20 and / or of the outer conductor 21, the central core and / or the outer conductor 21 being in contact with the plasma gas.
  • the ends of the central core 20 and the outer conductor 21 are not necessarily coplanar.
  • the exit plane of the applicator is defined as the plane defining the end of the portion of the coaxial assembly which is in contact with the plasma gas, depending on whether the plasma gas is located inside and / or outside the dielectric tube 3.
  • the plasma gas is confined inside the dielectric tube 3 and the outer conductor 21 protrudes from the central core 20.
  • outlet plane Y of the applicator corresponds to the plane of the end of the central core 20, whatever the position of the end of the outer conductor 21.
  • the plasma gas is confined in an enclosure outside the dielectric tube 3, the outer conductor flush with the wall of said enclosure and the central core 20 protruding from the outer conductor 21.
  • the output plane Y of the applicator corresponds to the plane of the end of the outer conductor 21 and the wall of the enclosure, whatever the position of the end of the central core 20.
  • the invention proposes to launch an electromagnetic wave in the longitudinal direction of said tube from an electromagnetic wave introduced in the section. dielectric tube.
  • the efficiency of the system is thus substantially improved since, assuming a perfect impedance matching, all the incident electromagnetic power is introduced and then propagates in the dielectric tube.
  • the impedance matching device - which is in itself a device known to those skilled in the art - in the coaxial assembly, as close as possible to the plasma.
  • the dielectric tube 3 must be introduced into the coaxial assembly over a length corresponding to a quarter wavelength ( ⁇ / 4) in the dielectric.
  • those skilled in the art are able to determine the impedance matching means between a given coaxial structure and a given load impedance.
  • an electromagnetic wave in a frequency range covering the radiofrequency (RF) and microwave domains.
  • ISM frequencies (acronym for "industrial, scientific and medical) such as 13.56 MHz, 27.12 MHz or 40.68 MHz for the RF domain, and 433 MHz, 2.45 GHz or 5.80 GHz for the microwave field.
  • the power applied may be between 1 or a few watts (for example lighting) and a few hundred watts, or more (eg treatment of gaseous effluents).
  • said plasmagenic gas may be located inside and / or outside the dielectric tube 3.
  • the plasma gas may be any gas whose components make it possible to generate a plasma under the effect of the electromagnetic wave propagating in the dielectric tube 3.
  • the plasma gas may thus be conventionally constituted by one or more rare gases (in particular argon) and mercury.
  • gases such as nitrogen, oxygen, halogenated gases, or any other gas having physicochemical properties of interest for targeted application can also be envisaged.
  • the plasmagenic gas is confined inside the dielectric tube 3, which is sealed at its end 33 opposite to the coaxial assembly 2.
  • the figure 5 illustrates an example of such an embodiment.
  • the plasma gas 4 is enclosed in the dielectric tube 3 which is sealed at one of its ends around the central core 20 and at its other end 33 by a sealed wall.
  • the outer conductor 21 may at least partially surround the dielectric tube 3, beyond the exit plane of the applicator which, in this embodiment, corresponds to the end of the central core 20.
  • This configuration makes it possible, for example, to form a shield at the level of the exit plane of the applicator and thus to prevent the transmission of the electromagnetic radiation to the outside.
  • the plasma gas 4 is confined in an enclosure (not shown) and the dielectric tube 3 is itself inserted into said enclosure.
  • This embodiment is particularly advantageous insofar as the plasma generated outside the dielectric tube, the plasma absorbs the electromagnetic radiation.
  • a particular example is that of lighting, where the bulb constitutes said enclosure containing the plasma gas, the dielectric tube being arranged inside the bulb.
  • the tube 3 is open at its end 33 and thus communicates with the volume of the chamber, plasma can also be formed inside said tube 3.
  • the central core 20 can occupy at least partly the inside of the dielectric tube 3, beyond the exit plane of the applicator which, in this embodiment, corresponds to the end of the outer conductor 21.
  • This embodiment is particularly advantageous for cooling the central core 20 by means of an internal circulation of water or any heat transfer fluid in the case of a heat pipe)
  • the sealing of the plasma volume can be achieved by known techniques.
  • the sealing of the plasma volume vis-à-vis the applicator can be ensured by the establishment of O-rings between the dielectric tube and the central core and the outer conductor of the coaxial assembly.
  • the dielectric tube may be brazed to the central core and the outer conductor of the coaxial assembly.
  • the dielectric tube may be sealed, near its end inserted into the annular volume of the coaxial assembly, by a plug of dielectric material.
  • the dielectric tube 3 can be inserted inside a sealed enclosure, the outer conductor of the coaxial assembly preferably flush with the inner wall of the said enclosure (as shown in figure 8 for example).
  • the applicator operates in static mode, that is to say without plasma gas flow.
  • the applicator can be implemented in dynamic mode, that is to say in an enclosure containing a device for pumping plasma gas from outside to inside the chamber.
  • FIG 8 This particular embodiment is illustrated in figure 8 , where a pumping device 5 has been schematized in the enclosure.
  • the core may comprise a conduit 23 for introducing plasma gas into the chamber.
  • This embodiment of the invention is advantageous when a chemical reaction is carried out in the plasma (for example for the treatment of effluents), since a renewal of the plasma gas and the evacuation of the products of the reaction are then necessary.
  • This cooling can be effected by circulating a suitable fluid (for example, water) inside the central core and / or the outer conductor of the coaxial assembly.
  • a suitable fluid for example, water
  • surface wave plasmas are produced in the absence of a static magnetic field, except at low pressure where an axial magnetic field (in the tube direction) can be applied to improve the radial confinement of the plasma (decrease in plasma losses on the walls of the tube) and / or produce a plasma excitation at the electron cyclotron resonance.
  • a first simplified embodiment, illustrated at figure 9 can be obtained by inserting at the end of the central core 20 of the coaxial structure a cylindrical magnet 200 of axial magnetization.
  • Another embodiment makes it possible to benefit from the electronic cyclotron resonance (ECR) mode.
  • ECR electronic cyclotron resonance
  • ECR electron cyclotron resonance
  • said annular magnet has an inner radius substantially equal to that of the outer conductor 21, which corresponds to the outer radius of the annular volume 22 of propagation of microwaves, noted R.
  • the annular magnet may have an inner radius slightly greater than that of the outer conductor and outer radius less than that of the outer conductor and be housed in an annular housing provided at the end of the outer conductor.
  • the magnets can be made integral with the coaxial assembly by any appropriate means.
  • the magnetization of the cylindrical magnet 200 and the annular magnet 201 is chosen so as to form a magnetic field suitable for providing, in a zone distant from the plane Y output of the applicator, an electron cyclotron resonance coupling with the microwave electric field generated by the applicator.
  • the cylindrical magnet 200 and the annular magnet 201 make it possible to generate magnetic field lines that pass through the electron cyclotron resonance coupling zone in a direction substantially parallel to the X axis of the applicator.
  • This effect can be obtained by a judicious choice of the outer radius and the magnetization of the annular magnet 201.
  • the electron cyclotron resonance zone is delimited, in the radial direction, by the zone in which the microwave electric field is the strongest, the use of an annular magnet whose outside radius is much greater than the radius of this zone makes it possible to obtain a zone of ECR substantially parallel to the output plane Y of the applicator.
  • This zone of strong electric field is considered to extend over a radius of the order of twice the radius of the applicator.
  • the annular magnet 201 has an outer radius greater than the radius of the strong electric field area, the ECR region is substantially parallel to the exit plane of the applicator over its entire radius 2R range.
  • the field lines that start from the pole located at the exit plane of the applicator to reach the opposite pole remain substantially parallel to the axis X of the applicator during their crossing of the zone Z RCE of radius 2R, including the periphery of this zone.
  • the annular magnet has the effect of "straightening" the field lines at the periphery of the ECR area.
  • the electromagnetic field which is maximum at the interface between the plasma and the dielectric tube along which said plasma is generated, can thus be absorbed by the annular volume of gas extending around said tube.
  • This embodiment is illustrated on the figure 11A .
  • the dielectric tube for confining the plasma is designated by the reference 6.
  • the end of the tube 6 opposite to the coaxial assembly is closed, so that the tube 6 constitutes an enclosure capable of enclosing plasma gas.
  • the dielectric confinement tube may constitute the envelope of a light bulb.
  • the dielectric tube 3 along which the plasma is generated can be open or closed at its opposite end to the coaxial assembly.
  • the tube 3 is open so that the inside of the tube 3 communicates with the outside of said tube, which makes it possible to generate plasma both inside and outside the tube 3, said plasma being confined externally by the tube 6.
  • the tube 3 is closed and evacuated or filled with a dielectric material, for example in liquid form, the plasmagenic gas being contained in the confinement tube 6, outside the tube 3. thus plasma in an annular volume between the tubes 3 and 6.
  • a dielectric material for example in liquid form
  • the tube 3 is closed and contains the plasma gas, the tube 6 not containing plasma gas.
  • plasma is formed in the tube 3 only.
  • the dielectric confinement tube 6 is advantageously embedded in the outer tubular conductor 21 of the coaxial assembly, to a depth p.
  • This embedding has the effect of promoting the formation of the two axial and radial components of the electric field HF in the exit plane of said confinement tube, as occurs for the dielectric tube 3 along which the plasma is generated.
  • the depth p is advantageously substantially equal to (2k + 1) ⁇ / 4, where k is an integer and ⁇ is the wavelength of the electromagnetic wave propagating within the dielectric tube 3 inserted into the coaxial set.
  • k 0 is chosen, ie a embedment depth of the confinement tube of the order of ⁇ / 4.
  • the external electrical conductor may have a shoulder 21a protruding from the outlet plane Y of the applicator.
  • This shoulder makes it possible to prevent the electromagnetic wave from propagating radially outside the dielectric confinement tube 6 in the exit plane.
  • the figure 11 B presents for comparison a situation in which the confinement tube 6 is simply in contact with the exit surface of the external electrical conductor 21.
  • Applicators according to the various embodiments of the invention can be advantageously used, unitarily or in combination to form extended sources, in multiple applications.
  • the invention makes it possible to remedy the disadvantages of the existing devices described above.
  • the applicator has a design and manufacture substantially simpler than existing devices, and adapted to a wide range of frequencies (RF and microwave).
  • the radial size of the applicator is determined by the overall size of the coaxial assembly (typically the external diameter of the outer tubular conductor), which is generally substantially smaller than that of tangential wave launch devices. such as surfatron and surfaguide illustrated in Figures 2A and 2B .
  • the diameter of a coaxial applicator is of the order of 1 to 2 cm while the dimensions of a surfaguide are of the order of the wavelength of the electromagnetic wave.
  • the applicator works with conventional impedance matching devices, depending on the frequency of the electromagnetic wave employed, and therefore does not require the implementation of bulky and expensive devices.
  • the surface wave being launched in a single direction (that is, the direction of the end 33 of the dielectric tube 3 opposite the coaxial assembly 2), there is no loss of energy.
  • the energy efficiency of the applicator is therefore optimal.
  • the applicator can be readily adapted to cyclotron electron resonance (ECR) coupling to form and maintain the plasma at low pressure.
  • ECR cyclotron electron resonance

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Claims (19)

  1. Oberflächenwellenapplikator (1) zur Erzeugung von Plasma, umfassend:
    - eine elektrisch leitende koaxiale Einheit (2), die aus einem zentralen Kern (20) und einem externen röhrenförmigen Leiter (21), der den zentralen Kern (20) umgibt und davon durch ein Ringvolumen (22) zur Verbreitung einer elektromagnetischen Welle (W) getrennt ist, besteht, und
    - eine dielektrische Röhre (3), die am Ende der koaxialen Einheit (2) in dem Ringvolumen (22) zur Verbreitung der elektromagnetischen Welle eingefügt ist,
    dadurch gekennzeichnet, dass sich die dielektrische Röhre über die Ausgangsebene (Y) des Applikators hinaus über eine Länge, die mindestens gleich dem Zweifachen des Außendurchmessers der Röhre (3) ist, erstreckt, so dass eine elektromagnetische Welle (W), die sich in der koaxialen Einheit (2) verbreitet, in den Abschnitt der dielektrischen Röhre (3) in der Längsrichtung (X) der Röhre (3) eingeführt wird, um entlang des Teils der dielektrischen Röhre, dessen Innenwand (30) und/oder Außenwand (31) in Kontakt mit einem Plasmagas (4) steht, ein Oberflächenwellenplasma zu erzeugen.
  2. Applikator nach Anspruch 1, dadurch gekennzeichnet, dass die Enden des zentralen Kerns (20) und des externen Leiters (21) der koaxialen Einheit (2) koplanar sind.
  3. Applikator nach Anspruch 1, dadurch gekennzeichnet, dass der externe Leiter (21) die dielektrische Röhre (3) über die Ebene des Endes des zentralen Kerns (20) hinaus mindestens teilweise umgibt.
  4. Applikator nach Anspruch 1, dadurch gekennzeichnet, dass der zentrale Kern (20) das Innenvolumen der dielektrischen Röhre (3) über die Ebene des Endes des externen Leiters (21) hinaus mindestens teilweise einnimmt.
  5. Applikator nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die koaxiale Einheit eine Impedanzanpassungsvorrichtung umfasst, wobei die Länge der dielektrischen Röhre (3), die in die koaxiale Einheit (2) eingefügt ist, gewählt wird, um die Impedanzanpassung zwischen der Impedanz des Plasmas (Zp) und der charakteristischen Impedanz (Zc) der koaxialen Einheit (2) sicherzustellen.
  6. Applikator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die koaxiale Einheit (2) einen Kreislauf eines Kühlmittels umfasst, der in dem zentralen Kern (20) und/oder in dem externen Leiter (21) angeordnet ist, und/oder die dielektrische Röhre (3) einen Kreislauf eines dielektrischen Kühlmittels umfasst, der im Innern oder in der Dicke der Röhre angeordnet ist.
  7. Applikator nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass er ferner einen zylindrischen Dauermagneten umfasst, dessen Magnetisierungsrichtung zur Achse des Applikators, der am Ende des zentralen Kerns angeordnet ist, parallel ist.
  8. Applikator nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass er ferner Folgendes umfasst:
    - einen zylindrischen Dauermagneten, dessen Magnetisierungsrichtung zu der Achse des Applikators, der am Ende des zentralen Kerns angeordnet ist, parallel ist, und
    - mindestens einen ringförmigen Dauermagneten, dessen Magnetisierungsrichtung zu der Achse des Applikators parallel ist und die gleiche Richtung wie die Magnetisierung des zentralen zylindrischen Magneten, der um das Ende des externen Leiters herum angeordnet ist, aufweist,
    wobei die Magnetisierung der Magnete derart gewählt ist, dass sich ein Magnetfeld bildet, das geeignet ist, um in einer Zone, die von dem Ende des Applikators entfernt ist, eine elektronische Zyklotronresonanzkopplung mit dem elektrischen Mikrowellenfeld, das von dem Applikator generiert wird, bereitzustellen,
    wobei der äußere Strahl und die Magnetisierung des Ringmagneten ferner derart gewählt werden, dass die Magnetfeldlinien, die durch die Magneten generiert werden, durch die Zone der elektronischen Zyklotronresonanzkopplung in einer Richtung gehen, die zu der Achse des Applikators im Wesentlichen parallel ist.
  9. Applikator nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass er eine Einschlussröhre (6) aus einem dielektrischen Material umfasst, die sich konzentrisch um die dielektrische Röhre (3) herum erstreckt, wobei die Einschlussröhre (6) in dem externen elektrischen Leiter (21) der koaxialen Einheit eingelassen ist.
  10. Vorrichtung zum Erzeugen von Oberflächenwellenplasma, umfassend eine Einfassung, die ein Plasmagas (4) und mindestens einen Applikator (1) nach einem der Ansprüche 1 bis 9 enthält, wobei ein Teil der Innenwand (30) und/oder der Außenwand (31) der dielektrischen Röhre (3), der sich über die Ausgangsebene des Applikators hinaus erstreckt, in Kontakt mit dem Plasmagas (4) steht.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass sich die dielektrische Röhre (3) im Innern der Einfassung befindet.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Einfassung eine Einschlussröhre (6) aus einem dielektrischen Material umfasst, die sich konzentrisch um die dielektrische Röhre (3) herum erstreckt, wobei die Einschlussröhre in dem externen elektrischen Leiter (21) der koaxialen Einheit des Applikators eingelassen ist.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Einlasstiefe (p) der dielektrischen Einschlussröhre (6) gleich (2k + 1) λ/4 ist, wobei k eine Ganzzahl ist, A die Wellenlänge der elektromagnetischen Welle ist, die sich innerhalb der dielektrischen Röhre (6), die in die koaxiale Einheit eingefügt ist, verbreitet, wobei die Wellenlänge (A) durch die Formel A = λ0 / ε1/2 gegeben ist, wobei λ0 die Wellenlänge der elektromagnetischen Welle ist, die sich im Vakuum oder in Luft verbreitet und ε die relative Permittivität des dielektrischen Materials der Einschlussröhre (6) im Verhältnis zur Permittivität des Vakuums ist.
  14. Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die dielektrische Röhre (3) an ihrem Ende (33) gegenüber der koaxialen Einheit (2) offen ist, wobei das Plasmagas (4) in Kontakt mit der Innenwand (30) und der Außenwand (31) der Röhre (3) steht.
  15. Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die dielektrische Röhre (3) an ihrem Ende (33) gegenüber der koaxialen Einheit (2) geschlossen ist, wobei das Plasmagas (4) nur mit der Außenwand (31) der Röhre (3) in Kontakt steht.
  16. Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die dielektrische Röhre (3) an ihrem Ende (33) gegenüber der koaxialen Einheit (2) geschlossen ist, wobei die Röhre (3) evakuiert oder mit einem dielektrischen Material gefüllt ist.
  17. Vorrichtung nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass die Einfassung eine Vorrichtung zum Einführen des Plasmagases in die Einfassung und eine Vorrichtung (5) zum Pumpen des Plasmagases (4) vom Inneren zum Äußeren der Einfassung umfasst.
  18. Vorrichtung nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass der zentrale Kern (20) eine Leitung (23) zum Einführen des Plasmagases in die Einfassung umfasst.
  19. Verfahren zum Erzeugen von Oberflächenwellenplasma entlang einer dielektrischen Röhre (3), deren Innenwand (30) und/oder Außenwand (31) in Kontakt mit einem Plasmagas (4) steht, dadurch gekennzeichnet, dass es folgende Schritte umfasst:
    - Verbreiten einer elektromagnetischen Welle (W) in einer elektrisch leitenden koaxialen Einheit (2), die aus einem zentralen Kern (20) und einem externen Leiter (21), der den zentralen Kern (20) umgibt und davon durch ein Ringvolumen (22) zur Verbreitung einer elektromagnetischen Welle getrennt ist, besteht, und
    - Einführen der elektromagnetischen Welle (W) in den Abschnitt der dielektrischen Röhre (3) in der Längsrichtung (X) der Röhre (3), wobei die dielektrische Röhre (3) an dem Ende der koaxialen Einheit (2) in das Ringvolumen (22) zur Verbreitung der elektromagnetischen Welle eingefügt ist und sich über die Ausgangsebene der koaxialen Einheit hinaus über eine Länge erstreckt, die mindestens gleich dem Zweifachen des Außendurchmessers der Röhre (3) ist.
EP13735272.0A 2012-07-11 2013-07-10 Oberflächenwellenapplikator und verfahren zur plasmaerzeugung Active EP2873307B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256673A FR2993428B1 (fr) 2012-07-11 2012-07-11 Applicateur d'onde de surface pour la production de plasma
PCT/EP2013/064578 WO2014009412A1 (fr) 2012-07-11 2013-07-10 Applicateur d'onde de surface pour la production de plasma

Publications (2)

Publication Number Publication Date
EP2873307A1 EP2873307A1 (de) 2015-05-20
EP2873307B1 true EP2873307B1 (de) 2016-07-06

Family

ID=46963891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13735272.0A Active EP2873307B1 (de) 2012-07-11 2013-07-10 Oberflächenwellenapplikator und verfahren zur plasmaerzeugung

Country Status (5)

Country Link
EP (1) EP2873307B1 (de)
JP (1) JP6263175B2 (de)
CN (1) CN104782235B (de)
FR (1) FR2993428B1 (de)
WO (1) WO2014009412A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3042092B1 (fr) * 2015-10-05 2019-07-26 Sairem Societe Pour L'application Industrielle De La Recherche En Electronique Et Micro Ondes Dispositif elementaire de production d’un plasma avec applicateur coaxial
FR3052326B1 (fr) * 2016-06-07 2018-06-29 Thales Generateur de plasma
KR101820242B1 (ko) * 2016-08-02 2018-01-18 한국기초과학지원연구원 수냉식 표면파 플라즈마 발생장치
KR101830007B1 (ko) * 2016-11-11 2018-02-19 한국기초과학지원연구원 동축 케이블 연결형 수냉식 표면파 플라즈마 발생장치
US11564292B2 (en) * 2019-09-27 2023-01-24 Applied Materials, Inc. Monolithic modular microwave source with integrated temperature control

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579868A (en) * 1980-06-18 1982-01-19 Toshiba Corp Surface treating apparatus with microwave plasma
FR2583250B1 (fr) * 1985-06-07 1989-06-30 France Etat Procede et dispositif d'excitation d'un plasma par micro-ondes a la resonance cyclotronique electronique
JPH0594899A (ja) * 1991-10-02 1993-04-16 Nippon Steel Corp プラズマ処理装置
JPH0685525A (ja) * 1992-08-31 1994-03-25 Kyocera Corp 1/2波長アンテナ
JPH05347508A (ja) * 1992-10-30 1993-12-27 Harada Ind Co Ltd 広帯域極超短波アンテナ
JPH0729889A (ja) * 1993-07-08 1995-01-31 Anelva Corp マイクロ波プラズマ処理装置
JPH0821476B2 (ja) * 1993-09-20 1996-03-04 ニチメン電子工研株式会社 Ecrプラズマ発生装置
JPH07161491A (ja) * 1993-12-02 1995-06-23 Daido Steel Co Ltd マイクロ波プラズマ処理装置
JPH0935651A (ja) * 1995-07-20 1997-02-07 Nissin Electric Co Ltd イオン源
JPH09245997A (ja) * 1996-03-05 1997-09-19 Nissin Electric Co Ltd カバーで覆われた内壁とアンテナを持つプラズマ室
JPH1083895A (ja) * 1996-09-06 1998-03-31 Hitachi Ltd プラズマ処理装置
JPH11102799A (ja) * 1997-09-26 1999-04-13 Mitsubishi Electric Corp プラズマ発生装置
JP4089022B2 (ja) * 1998-07-22 2008-05-21 日新イオン機器株式会社 自己電子放射型ecrイオンプラズマ源
JP2000277295A (ja) * 1999-03-25 2000-10-06 Toshiba Corp プラズマ処理装置
JP2002093597A (ja) * 2000-09-14 2002-03-29 Miura Gakuen プラズマ発生用アンテナ、プラズマ処理装置、プラズマ処理方法、及び被処理物の製造方法、並びに半導体装置の製造方法
FR2840451B1 (fr) * 2002-06-04 2004-08-13 Centre Nat Rech Scient Dispositif de production d'une nappe de plasma
JP5312411B2 (ja) * 2003-02-14 2013-10-09 東京エレクトロン株式会社 プラズマ発生装置およびリモートプラズマ処理装置
JP2005116362A (ja) * 2003-10-08 2005-04-28 Toshiba Corp マイクロ波励起のプラズマ処理装置およびプラズマ処理方法
JP2005353364A (ja) * 2004-06-09 2005-12-22 Shibaura Mechatronics Corp プラズマ発生装置、プラズマ処理装置及びプラズマ処理方法
JP4761244B2 (ja) * 2005-10-20 2011-08-31 株式会社小糸製作所 放電灯及び光源装置
JP4967107B2 (ja) * 2006-02-20 2012-07-04 国立大学法人名古屋大学 マイクロ波導入器、プラズマ発生装置及びプラズマ処理装置
FR2904177B1 (fr) * 2006-07-21 2008-11-07 Centre Nat Rech Scient Dispositif et procede de production et de confinement d'un plasma.
DE102006037144B4 (de) * 2006-08-09 2010-05-20 Roth & Rau Ag ECR-Plasmaquelle
FR2938150B1 (fr) * 2008-10-30 2010-12-17 Centre Nat Rech Scient Dispositif et procede de production et/ou de confinement d'un plasma
TW201105183A (en) * 2009-07-21 2011-02-01 Delta Electronics Inc Plasma generating apparatus
FR2955451A1 (fr) * 2010-05-25 2011-07-22 Centre Nat Rech Scient Dispositif de production d'un plasma, comportant au moins un applicateur coaxial

Also Published As

Publication number Publication date
FR2993428B1 (fr) 2014-08-08
CN104782235A (zh) 2015-07-15
FR2993428A1 (fr) 2014-01-17
WO2014009412A1 (fr) 2014-01-16
EP2873307A1 (de) 2015-05-20
CN104782235B (zh) 2017-03-08
JP2015530694A (ja) 2015-10-15
JP6263175B2 (ja) 2018-01-17

Similar Documents

Publication Publication Date Title
EP2873307B1 (de) Oberflächenwellenapplikator und verfahren zur plasmaerzeugung
EP0043740B1 (de) Plasmagenerator
EP0711100B1 (de) Plasmaerzeugungsvorrichtung, ermöglichend eine Trennung zwischen Mikrowellenübertragung und -absorptionszonen
FR2762748A1 (fr) Dispositif d'excitation d'un gaz par plasma d'onde de surface
EP2353347B1 (de) Einrichtung und verfahren zum erzeugen und/oder eingrenzen eines plasmas
EP0613329A1 (de) Vorrichtung zur ECR-Plasmaheizung durch einen Drahtapplikator eines Mikrowellenfeldes und eines statischen magnetischen Feldes
EP2873306B1 (de) Koaxialer mikrowellenapplikator zur plasmaerzeugung
EP1518256B1 (de) Verfahren zur erzeugung eines grossflächigen plasmas
EP2338318B1 (de) Niederleistungs-gasplasmaquelle
FR2955451A1 (fr) Dispositif de production d'un plasma, comportant au moins un applicateur coaxial
EP3360396B1 (de) Elementare vorrichtung zur erzeugung eines plasmas mit koaxialem applikator und plasmaeinrichtung mit dieser vorrichtung
EP2873090B1 (de) Gasentladungslampe
EP0499514B1 (de) Modenwandler und Leistungsteiler-Einrichtung für eine Mikrowellenröhre, und Mikrowellenröhre mit einer solchen Einrichtung
EP0468886A2 (de) Einrichtung zum Erzeugen eines Plasmas
EP4111831A1 (de) Hochfrequenzwellenapplikator, zugehöriger koppler und vorrichtung zur erzeugung eines plasmas
FR2702328A1 (fr) Dispositif de production d'un plasma.
WO2014184357A1 (fr) Générateur de plasma étendu comprenant des générateurs élémentaires intégrés
FR2933532A1 (fr) Dispositif generateur d'ions a resonance cyclotronique electronique
FR2688342A1 (fr) Tube electronique hyperfrequence.
EP0402282A2 (de) Mikrowellenenergiekupplungs- und -verteilungsvorrichtung in einem Erreger für Plasmaerzeugung
FR3114476A1 (fr) Dispositif d’excitation pour transformer un gaz en plasma dans un tube capillaire diélectrique et accélérateur laser-plasma.
FR3052326A1 (fr) Generateur de plasma
EP2743962A2 (de) Hyperfrequenzwellengenerator und entsprechendes Wellenerzeugungsverfahren
EP0462863A1 (de) Wanderfeldröhre mit einer Kopplungsvorrichtung zwischen ihrer Verzögerungsleitung und einer aussen gelegenen Mikrowellenschaltung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PELLETIER, JACQUES

Owner name: UNIVERSITE GRENOBLE ALPES

INTG Intention to grant announced

Effective date: 20160502

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 811494

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013009170

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160706

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 811494

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161006

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161007

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013009170

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

26N No opposition filed

Effective date: 20170407

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160710

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20221110 AND 20221116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602013009170

Country of ref document: DE

Owner name: UNIVERSITE GRENOBLE ALPES, FR

Free format text: FORMER OWNERS: PELLETIER, JACQUES, SAINT-MARTIN-D'HERES, FR; UNIVERSITE GRENOBLE ALPES, SAINT-MARTIN-D'HERES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602013009170

Country of ref document: DE

Owner name: PELLETIER, JACQUES, FR

Free format text: FORMER OWNERS: PELLETIER, JACQUES, SAINT-MARTIN-D'HERES, FR; UNIVERSITE GRENOBLE ALPES, SAINT-MARTIN-D'HERES, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602013009170

Country of ref document: DE

Representative=s name: RICHARDT PATENTANWAELTE PARTG MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230725

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230706

Year of fee payment: 11

Ref country code: DE

Payment date: 20230712

Year of fee payment: 11