EP2855180A1 - Dachscheibe mit einem integrierten photovoltaik-modul - Google Patents

Dachscheibe mit einem integrierten photovoltaik-modul

Info

Publication number
EP2855180A1
EP2855180A1 EP13725602.0A EP13725602A EP2855180A1 EP 2855180 A1 EP2855180 A1 EP 2855180A1 EP 13725602 A EP13725602 A EP 13725602A EP 2855180 A1 EP2855180 A1 EP 2855180A1
Authority
EP
European Patent Office
Prior art keywords
layer
substrate
thermoplastic
roof
roof panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13725602.0A
Other languages
English (en)
French (fr)
Inventor
Andreas NOSITSCHKA
Pascal Remy
Marc-Oliver Prast
Dirk Neumann
Harald STOFFEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Priority to EP13725602.0A priority Critical patent/EP2855180A1/de
Publication of EP2855180A1 publication Critical patent/EP2855180A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/06Fixed roofs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10816Making laminated safety glass or glazing; Apparatus therefor by pressing
    • B32B17/10871Making laminated safety glass or glazing; Apparatus therefor by pressing in combination with particular heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10889Making laminated safety glass or glazing; Apparatus therefor shaping the sheets, e.g. by using a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/04Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of synthetic material
    • B62D29/043Superstructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/90Energy harvesting concepts as power supply for auxiliaries' energy consumption, e.g. photovoltaic sun-roof

Definitions

  • the invention relates to a roof panel with an integrated photovoltaic module, a method for their production and their use.
  • photovoltaic modules can be integrated into the roof of vehicles.
  • roof windows are known, for example, from DE 3713854 A1, DE 4006756 A1, DE 4105389 C1 and US 20120097218 A1.
  • Conventional roof panels with an integrated photovoltaic module are typically formed as composite disks of two glass panes, between which the photovoltaic module is arranged.
  • Such roof windows have the disadvantage that they have a high weight.
  • the object of the present invention is to provide an improved roof panel with an integrated photovoltaic module.
  • the roof panel should have a low weight.
  • the roof panel should be easy and inexpensive to manufacture.
  • the roof panel according to the invention with an integrated photovoltaic module comprises at least one substrate and an outer pane, which are connected to one another in terms of surface area via a thermoplastic layer, wherein a photovoltaic layer system is embedded in the thermoplastic layer and the substrate contains at least one polymer.
  • the roof panel according to the invention is intended to delimit the interior of, for example, a vehicle from the external environment in the region of the roof.
  • the outer pane is according to the invention facing the outer environment.
  • the substrate faces the interior. The solar radiation enters the roof pane via the outer pane and strikes the photovoltaic layer system within the thermoplastic layer.
  • the advantage of the invention lies in the substrate according to the invention, which contains at least one polymer.
  • integrated photovoltaic module roof panels typically include two glass sheets interconnected by lamination.
  • a significant reduction in the weight of the roof pane is achieved by the polymeric substrate according to the invention.
  • roof slabs according to the invention despite the polymeric substrate, have sufficient stability in order to be able to use them, for example, in motor vehicles.
  • the roof panel according to the invention is also cheaper to produce than conventional roof windows.
  • the photovoltaic layer system can be arranged over a large area in the thermoplastic layer and it can be realized with strong curvature roof tiles.
  • the mutually remote surfaces of the substrate and the outer pane preferably form the outer surfaces of the roof panel. This means that no further elements are arranged on the surfaces of the substrate remote from the outer pane and the outer pane, for example additional panes. In particular, it is not necessary to arrange a further glass pane on the surface of the polymeric substrate facing away from the outer pane in order to achieve sufficient stability of the roof pane. The particular advantage lies in the low weight of the roof window.
  • the mutually remote surfaces of the substrate and the outer pane may have coatings.
  • the polymeric substrate may, for example, have a protective coating, for example a UV protective layer or a layer to prevent damage by scratching.
  • the substrate is made of plastic.
  • the substrate contains no glass, for example as a glass pane.
  • no glass pane is arranged on the interior side of the photovoltaic layer system. This means that the roof pane according to the invention does not contain a glass pane which has a smaller one Distance to the limited by the roof glass interior than the photovoltaic layer system.
  • the substrate is designed as a rigid disk.
  • the substrate can be, for example, at least polyethylene (PE), polycarbonate (PC), polypropylene (PP), polystyrene (PS), polybutadiene, polynitriles, polyesters, polyurethane (PU), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyacrylate, polyamide, Polyethylene terephthalate (PET), acrylonitrile-butadiene-styrene (ABS), styrene-acrylonitrile (SAN), acrylic ester-styrene-acrylonitrile (ASA) and / or copolymers or mixtures thereof.
  • the substrate preferably contains at least one thermoplastic polymer.
  • the substrate particularly preferably contains at least polycarbonate (PC) and / or polymethyl methacrylate (PMMA). This is particularly advantageous in terms of processing, strength and mechanical and chemical resistance of the substrate.
  • the thickness of the substrate is preferably from 0.8 mm to 25 mm, particularly preferably from 0.8 mm to 4 mm, for example 2.1 mm.
  • the particular advantage of a substrate designed as a rigid disk is the stability of the roof pane according to the invention.
  • the substrate is formed as a flexible film.
  • the thickness of the flexible film is preferably from 0.02 mm to 2 mm, more preferably from 0.1 mm to 1, 5 mm, for example from 0.4 mm to 1, 5 mm, most preferably from 0.15 mm 0.8 mm, in particular from 0.45 mm to 0.8 mm.
  • the particular advantage is a low weight of the roof panel according to the invention and low production costs.
  • the flexible film preferably contains at least one thermoplastic polymer.
  • the thermoplastic polymer is preferably substituted with fluorine. This is particularly advantageous with regard to the chemical and mechanical stability of the substrate.
  • the substrate very particularly preferably contains at least polyvinyl fluoride and / or polyvinylidene fluoride.
  • ETFE ethylene-tetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • the substrate may also contain mixtures or copolymers thereof.
  • the outer pane glass preferably flat glass, float glass, quartz glass, borosilicate glass or soda-lime glass. This is particularly advantageous with regard to the stability of the roof pane according to the invention and the protection of the photovoltaic layer system from external influences, for example from damage by precipitation such as hail or sleet.
  • the outer pane may be non-prestressed, partially prestressed, tempered or hardened, for example hardened thermally or chemically.
  • the outer pane contains at least one polymer, preferably a thermoplastic polymer.
  • the outer pane can be, for example, at least polyethylene (PE), polycarbonate (PC), polypropylene (PP), polystyrene (PS), polybutadiene, polynitriles, polyesters, polyurethane (PU), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyacrylate, polyamide, Polyethylene terephthalate (PET), acrylonitrile-butadiene-styrene (ABS), styrene-acrylonitrile (SAN), acrylic ester-styrene-acrylonitrile (ASA) and / or copolymers or mixtures thereof, preferably polycarbonate (PC) and / or polymethylmethacrylate (PMMA) ,
  • PE polyethylene
  • PC polycarbonate
  • PP polypropylene
  • PS polystyrene
  • PMMA polyvinyl chloride
  • PVC polyacrylate
  • the substrate is designed as a flexible film.
  • roof windows can be realized with a very low weight.
  • the thickness of the outer pane is preferably from 1, 0 mm to 12 mm, more preferably from 1, 4 mm to 5 mm, for example, 2.1 mm. If the substrate is designed as a flexible film, the thickness of the outer pane is preferably from 2.8 mm to 5 mm. As a result, an advantageous stability of the roof pane is achieved.
  • the thermoplastic layer contains at least one thermoplastic polymer, preferably ethylene vinyl acetate (EVA), polyvinyl butyral (PVB), polyurethane (PU), polyethylene (PE) and / or polyethylene terephthalate (PET).
  • the thermoplastic layer can also contain, for example, at least polypropylene, polycarbonate, polymethyl methacrylate, polyacrylate, polyvinyl chloride, polyacetate resin, casting resins, acrylates, fluorinated ethylene-propylenes, polyvinyl fluoride and / or ethylene-tetrafluoroethylene.
  • the thermoplastic layer preferably has a thickness of 0.5 mm to 5 mm, particularly preferably from 1 mm to 3 mm, very particularly preferably from 1 mm to 2 mm.
  • the thermoplastic layer is preferably formed of at least a first thermoplastic film and a second thermoplastic film, between which the photovoltaic layer system is arranged.
  • Each thermoplastic film preferably has a thickness of 0.25 mm to 1 mm, particularly preferably 0.45 mm to 0.85 mm.
  • the first and second thermoplastic films may be made of the same or different materials.
  • the thermoplastic layer can also be formed from more than two films. Further films can serve, for example, as protective layers or carrier layers of the photovoltaic layer system prior to the production of the roof panel.
  • thermoplastic layer with a width of, for example, 3 mm to 50 mm is preferably not provided with the photovoltaic layer system.
  • first and the second thermoplastic film are preferably connected to one another directly or else via other layers, for example other polymer layers.
  • the photovoltaic layer structure is thus permanently stable and stored without contact with the external environment within the thermoplastic layer and advantageously protected against environmental influences, in particular corrosion and mechanical damage.
  • the roof panel according to the invention may have any three-dimensional shape.
  • the roof panel may be flat or slightly or strongly curved in one direction or in several directions of the room.
  • the radii of curvature of the curved roof panel may be, for example, from 50 mm to 1200 mm.
  • the radius of curvature does not have to be constant over the entire roof panel.
  • Conventional rooflights with integrated photovoltaic module typically have radii of curvature of 700 mm to 1000 mm.
  • roof windows can be realized which have radii of curvature of 600 mm to 900 mm, preferably of 600 to 650 mm, at least in one region.
  • the surface of the roof panel according to the invention can vary widely and so perfectly adapted to the requirements in individual cases.
  • the area of the roof pane can be, for example, from 100 cm 2 to 5 m 2 , preferably from 0.5 m 2 to 2 m 2 .
  • a reduced transmission of visible light is often desired in order to avoid direct sunlight into the interior.
  • the transmission may for example be less than 50%, less than 20% or even less than 10%.
  • This is achieved by a tinted and / or colored outer and / or inner pane or by tinted foils within the composite.
  • the light-absorbing photovoltaic layer system which is arranged over a large area within the roof pane, advantageously reduces the transmission of visible light through the roof pane, so that the outer pane, the substrate and the thermoplastic layers can be transparent and clear.
  • Such transparent outer panes, substrates and thermoplastic layers are simple and less expensive to produce and lead to a reduced corrosion susceptibility of, for example, applied on the outer pane functional coatings.
  • the transmission of visible light through the roof pane in the area of the photovoltaic layer system is preferably less than 50%.
  • the photovoltaic layer system effects the charge carrier separation required for the conversion of radiant energy into electrical energy.
  • the photovoltaic layer system is preferably a thin-layer system. These are understood as layer systems with thicknesses of only a few micrometers.
  • the particular advantage is a small thickness and a great flexibility of the thermoplastic layer according to the invention.
  • the great flexibility of the thermoplastic layer has the particular advantage that roof panes with strong curvatures can be realized.
  • the photovoltaic layer system preferably comprises at least one photovoltaically active absorber layer between a front electrode layer and a back electrode layer.
  • the front electrode layer is arranged on the side facing the outer disk side of the absorber layer.
  • the back electrode layer is arranged on the side of the absorber layer facing the substrate.
  • the photovoltaically active absorber layer preferably comprises at least one p-type semiconductor layer.
  • the p-type semiconductor layer may be, for example, amorphous, micromorphous or polycrystalline silicon, cadmium telluride (CdTe), cadmium selenide (CdSe), gallium arsenide (GaAs) or semiconducting organic polymers or oligomers.
  • the p-type semiconductor layer contains a chalcopyrite semiconductor such as a compound of the group copper-indium-sulfur / selenium (CIS), for example copper-indium-diselenide (CulnSe 2 ), or a compound of the group copper-indium Gallium sulfur / selenium (CIGS), for example Cu (InGa) (SSe) 2 .
  • CIS copper-indium-sulfur / selenium
  • CulnSe 2 copper-indium-diselenide
  • CIGS copper-indium Gallium sulfur / selenium
  • Cu (InGa) (SSe) 2 Cu
  • CI (G) S-based semiconductor layers are characterized by a particularly high absorption coefficient due to a band gap adapted to the spectrum of sunlight. This is particularly advantageous with regard to the performance of the photovoltaic layer system.
  • a homogeneous, dark impression of the roof panel without color cast is achieved by a CI (G) S-based absorber layer.
  • the absorber layer can be doped with metals, preferably sodium.
  • the photovoltaically active absorber layer preferably has a layer thickness of 500 nm to 5 ⁇ , more preferably from 1 ⁇ to 3 ⁇ .
  • the absorber layer contains semiconducting organic polymers or oligomers.
  • the transparency is advantageously adjustable, in particular by the choice of the layer thickness and the material of the active absorber layer and the material of the back electrode.
  • the back electrode layer may contain, for example, at least one metal, preferably molybdenum, titanium, tungsten, nickel, titanium, chromium and / or tantalum.
  • the back electrode layer preferably has a layer thickness of 300 nm to 600 nm.
  • the front electrode layer is transparent in the spectral region in which the absorber layer is sensitive.
  • the front electrode layer may contain, for example, an n-type semiconductor, preferably aluminum-doped zinc oxide or indium-tin oxide.
  • the front electrode layer preferably has a layer thickness of 500 nm to 2 ⁇ m.
  • the electrode layers may also contain silver, gold, copper, nickel, chromium, tungsten, tin oxide, silicon dioxide, silicon nitride and / or combinations and mixtures thereof.
  • the electrode layers may also comprise a layer stack of different individual layers.
  • a layer stack may contain, for example, a diffusion barrier layer of, for example, silicon nitride in order to prevent diffusion of ions into the photovoltaically active absorber layer.
  • the photovoltaic layer system can comprise further individual layers which are known to the person skilled in the art, for example a buffer layer for adaptation of the electronic properties between the absorber layer and an electrode layer.
  • the photovoltaic layer system can be subdivided into individual photovoltaically active regions, so-called solar cells, by suitable structuring and interconnection of the back electrode layer, absorber layer and front electrode layer known per se.
  • Such subdivided photovoltaic layer systems are known, for example, from EP 2200097 A1.
  • the subdivision is made by incisions using a suitable structuring technology such as laser writing and mechanical processing, for example by lifting or scribing.
  • the individual solar cells are connected in series via an area of the back electrode layer in integrated form.
  • the thermoplastic layer preferably contains known common conductors, so-called busbars, for electrical contacting of the photovoltaic layer system.
  • the bus bars are electrically connected to the front and / or back electrode layer.
  • the bus bar is advantageously designed as a band or strip.
  • the bus bar preferably contains at least one metal or a metal alloy or consists of a metal or a metal alloy.
  • any electrically conductive material that can be processed into films can be used for the bus bar.
  • Particularly suitable materials for the bus bar are, for example, aluminum, copper, tin-plated copper, gold, silver or tin and alloys thereof.
  • the bus bar has, for example, a thickness of 0.03 mm to 0.3 mm and a width of 2 mm to 16 mm.
  • the bus bars may be sandwiched between the first and second thermoplastic films before they become thermoplastic Layer are connected.
  • the bus bars are held in place by the gluing of the foils.
  • the electrically conductive connection between the bus bars and the respective electrode layer can be effected, for example, by welding, bonding, soldering, clamping or gluing by means of an electrically conductive adhesive.
  • the bus bars may extend beyond the side edges of the thermoplastic layer and be electrically contacted outside the thermoplastic layer via suitable cables.
  • the electrical contacting of the bus bars can take place by means of suitable cables, preferably flat conductors such as foil conductors, within the thermoplastic layer.
  • the cables are connected to the busbars prior to joining the first and second thermoplastic films so that the cables extend from the busbars in the interior of the thermoplastic layer beyond their side edges.
  • the photovoltaic layer system can be divided into physically separate subsections. These are to be understood as subsections which are not connected to one another directly via any of the individual layers of the photovoltaic layer system, ie without the use of further connecting elements.
  • a section preferably has a length and width of 100 mm to 2000 mm, more preferably of 500 mm to 1000 mm.
  • the distance between two adjacent sections is preferably from 1 mm to 100 mm, more preferably from 10 mm to 50 mm.
  • the sections may, for example, have a rectangular area and be arranged in the form of mutually parallel rows.
  • the individual partial regions are preferably connected in parallel and / or in series with one another by means of electrically conductive connecting elements depending on the intended use.
  • the electrically conductive connecting elements are formed, for example, as strips or strips which contain at least one metal or a metal alloy.
  • the electrically conductive connecting elements preferably contain at least aluminum, copper, tin-plated copper, gold, silver or tin and alloys thereof.
  • the electrically conductive connecting elements preferably have a thickness of 0.03 mm to 0.3 mm.
  • the subsections of the photovoltaic layer system can also be divided into groups, wherein the subsections of each group are connected in series with each other and wherein the groups are connected in parallel with each other, for example by the connection to common bus bars.
  • the area of the photovoltaic layer system is preferably from 50% to 100% of the area of the roof pane according to the invention, for example from 50% to 90%.
  • the area of the photovoltaic layer system can be, for example, from 0.1 m 2 to 5 m 2 , preferably 0.5 m 2 to 2 m 2 .
  • the integrated photovoltaic module has a specific maximum achievable power PMPP of 10 W / m 2 to 300 W / m 2 , particularly preferably of 50 W / m 2 to 150 W / m 2 .
  • the power is measured under the usual standard test conditions for photovoltaic modules (irradiance of 1000 W / m 2 , temperature 25 ° C, radiation spectrum AM 1, 5 global).
  • the object of the invention is further achieved by a method for producing a roof panel with an integrated photovoltaic module, wherein at least
  • thermoplastic layer (a) a photovoltaic layer system is introduced into a thermoplastic layer
  • thermoplastic layer is arranged in terms of area between a substrate containing at least one polymer and an outer pane
  • the substrate is bonded to the outer pane via the thermoplastic layer under the action of heat, vacuum and / or pressure.
  • the thermoplastic layer is preferably formed from at least a first and a second thermoplastic film, wherein the photovoltaic system is introduced in terms of area between the first and the second thermoplastic film.
  • the photovoltaic layer system can be deposited directly on a surface of the first or the second thermoplastic film.
  • the photovoltaic layer system may alternatively be deposited, for example, on a carrier film, which is then inserted between the first and the second thermoplastic film.
  • Further layers for example adhesion-promoting layers or further carrier films, can be arranged between the first and the second thermoplastic film.
  • the deposition of the thermoplastic layer system on a surface, for example, the first or second thermoplastic film or a carrier film is preferably carried out by sputtering, vapor deposition or chemical vapor deposition (CVD).
  • first the substrate or the outer pane is provided. At least the first thermoplastic film is arranged on a surface of the substrate or the outer pane. If the photovoltaic layer system is provided on a carrier film, then this carrier film is arranged in terms of area on the first thermoplastic film. Subsequently, at least the second thermoplastic film is arranged in terms of area on the first thermoplastic film or the carrier film. In method step (b), in this embodiment, the outer pane or the substrate is arranged in terms of area on the second thermoplastic film, whereby the thermoplastic layer with the photovoltaic system is arranged between the substrate and the outer pane.
  • the photovoltaic layer system is arranged between at least the first and the second thermoplastic film before one of the thermoplastic films is arranged on the substrate or the cover disk.
  • the first and the second thermoplastic film are connected over a large area via the photovoltaic layer system to a prelaminated thermoplastic layer.
  • the bonding preferably takes place under the action of heat, pressure and / or vacuum.
  • the prefabricated prelaminate with the embedded photovoltaic layer system is arranged between the substrate and the cover disk.
  • the advantage of such a prelaminate lies in a simple and cost-effective production of the roof pane according to the invention.
  • the prelaminate may be provided prior to bonding the substrate to the outer pane.
  • the conventional methods for producing a roof panel can be used, wherein the thermoplastic intermediate layer, via which the substrate is conventionally glued to the outer pane, is replaced by the prelaminate.
  • the photovoltaic system in the interior of the prelaminate is advantageously protected against damage, in particular corrosion.
  • the recuperlaminat can therefore be provided well before the actual production of the roof panel in larger quantities, which may be desirable for economic reasons.
  • the prelaminate can be connected directly or via further thermoplastic film with the substrate and the outer pane.
  • the back and / or the front electrode layer for electrical contacting after application of the photovoltaic layer system and before connecting first and second thermoplastic layer with electrically conductive, for example busbars and / or foil conductor.
  • the bonding of the substrate to the outer pane takes place via the thermoplastic layer by methods known per se for producing a composite pane.
  • so-called autoclave processes can be carried out at an elevated pressure of about 10 bar to 15 bar and temperatures of 130 ° C. to 145 ° C. for about 2 hours.
  • vacuum bag or vacuum ring methods known per se operate at about 200 mbar and 130 ° C. to 145 ° C.
  • the outer pane, the thermoplastic layer and the substrate can also be pressed in a calender between at least one pair of rollers to form a roof pane according to the invention.
  • Systems of this type are known for the production of laminated glazing and usually have at least one heating tunnel in front of a press shop.
  • the temperature during the pressing operation is, for example, from 40 ° C to 150 ° C.
  • Combinations of calender and autoclave processes have proven particularly useful in practice.
  • vacuum laminators can be used. These consist of one or more heatable and evacuable chambers, in which outer pane and substrate can be laminated within for example about 60 minutes at reduced pressures of 0.01 mbar to 800 mbar and temperatures of 80 ° C to 170 ° C.
  • the bonding of the substrate to the outer pane via the thermoplastic layer takes place in a particularly advantageous embodiment in the manner described below.
  • a release film is arranged on the surface of the substrate facing away from the outer pane and a support disk is arranged on the surface of the release film facing away from the substrate.
  • the support disk is preferably comprises a rigid pane and preferably contains glass, particularly preferably flat glass, float glass, quartz glass, borosilicate glass or soda-lime glass or plastics, preferably polyethylene, polypropylene, polycarbonate, polymethyl methacrylate, polystyrene, polyamide, polyester, polyvinyl chloride and / or mixtures thereof.
  • the thickness of the support disk is preferably from 1, 0 mm to 25 mm, particularly preferably from 1, 4 mm to 5 mm.
  • the surface of the support disk facing the substrate should have the same curvature as the surface of the outer disk facing the substrate. The support disk is thus selected in size and shape so that they would in principle be suitable to be connected to the outer disk to form a composite disk.
  • the release film is made of a material that is suitable for preventing permanent adhesion between the support disk and the substrate.
  • the release film preferably contains at least one polytetrahalogenoethylene, more preferably at least polytetrafluoroethylene and / or polychlorotrifluoroethylene. This is particularly advantageous with regard to the adhesion-preventing properties of the release film.
  • the release film preferably has a thickness of from 0.01 mm to 10 mm, particularly preferably from 0.1 mm to 2.5 mm, for example from 0.1 mm to 1 mm.
  • the stack of outer pane, thermoplastic layer, substrate, release film and support disk can be easily subjected to per se known methods for producing a composite disk, for example those described above. This provides a permanently stable connection between the outer pane and the substrate via the thermoplastic layer. Due to the adhesion-preventing effect of the release film, the support disk can then be easily removed.
  • a further aspect of the invention comprises the use of a roof panel according to the invention in vehicles for traffic on land, in the air or on water, preferably in trains, trams, ships and motor vehicles such as buses, trucks and especially passenger cars.
  • the electrical energy obtained by means of the integrated photovoltaic module for example, the battery of an electric vehicle can be cooled, the passenger compartment can be cooled during parking, a secondary battery of the vehicle can be charged, or a heatable pane can be operated during parking.
  • Fig. 1 shows a cross section through an embodiment of the invention
  • Fig. 3 shows a cross section through the substrate, the thermoplastic layer, the
  • Fig. 1 and Fig. 2 each show a detail of a roof panel according to the invention with an integrated photovoltaic module.
  • the roof pane comprises a substrate 1 and an outer pane 2, which are connected to one another via a thermoplastic layer 3.
  • the roof panel is the roof panel of a motor vehicle.
  • the outer pane 2 consists of thermally toughened soda-lime glass and has a thickness of 3 mm.
  • the substrate 1 is made of polyvinyl fluoride (Tedlar ®, DuPont) and has a thickness of 0.8 mm.
  • the surfaces facing away from each other of the outer pane 2 and the substrate 1 represent the outer surfaces of the roof panel.
  • the roof panel is curved formed, as is customary for motor vehicle roof windows.
  • the roof panel has a width of 1 10 cm and a length of 130 cm.
  • the thermoplastic layer 3 is formed from a first thermoplastic film 4 and a second thermoplastic film 5.
  • the first and second thermoplastic films 4, 5 are made of ethylene vinyl acetate (EVA) and each have a thickness of about 0.7 mm.
  • EVA ethylene vinyl acetate
  • the thermoplastic films 4, 5 are shown schematically for clarity. After lamination of the roof pane, the transition between the thermoplastic films 4, 5 need not be discernible as a clear boundary, especially if the thermoplastic films 4, 5 consist of the same material.
  • a Photovoltaic layer system 6 is arranged between the first thermoplastic film 4 and the second thermoplastic film 5 arranged. The photovoltaic layer system 6 does not extend to the side edges of the thermoplastic layer 3.
  • thermoplastic layer 3 with a width of about 50 mm is not provided with the photovoltaic layer system 6.
  • first and the second thermoplastic film 4, 5 are connected directly to one another.
  • the photovoltaic layer system 6 is thus protected in the interior of the thermoplastic layer 3 advantageously against environmental influences, in particular corrosion.
  • the photovoltaic layer system 6 has a total area of about 1.2 m 2 .
  • the surface of the photovoltaic layer system 6 is thus about 84% of the surface of the roof panel.
  • the photovoltaic layer system 6 comprises a back electrode layer 10, which contains molybdenum and has a layer thickness of about 300 nm.
  • the photovoltaic layer system 6 further contains a photovoltaically active absorber layer 1 1, which contains sodium-doped Cu (InGa) (SSe) 2 and has a layer thickness of about 2 ⁇ .
  • the photovoltaic layer system 6 further includes a front electrode layer 12 containing aluminum-doped zinc oxide (AZO) and having a layer thickness of about 1 ⁇ .
  • a buffer layer not shown, is arranged, which contains a single layer of cadmium sulfide (CdS) and a single layer intrinsic zinc oxide (i-ZnO).
  • the buffer layer effects an electronic adaptation between absorber layer 11 and front electrode layer 12.
  • the photovoltaic layer system 6 is subdivided into sections 7.
  • the sections 7 are physically separated from each other, so are not directly connected to each other via any of the individual layers of the photovoltaic layer system 6.
  • the photovoltaic layer system 6 has a total of nine of these sections 7, which are arranged in three mutually parallel rows, each with three sections 7.
  • FIG. 1 shows the cross section through one of these rows.
  • the sections 7 each one of these rows are interconnected in series. The interconnection takes place by means of a suitable electrical connection between the electrode layers 10, 12 of respectively adjacent sections 7 via electrically conductive connection elements 8.
  • the electrically conductive connection elements 8 are designed as strips of aluminum with a thickness of 0.2 mm. The distance between adjacent sections 7 is about 5 mm.
  • the two outer sections 7 of the illustrated series of serially connected sections 7 are each connected to a bus bar, not shown.
  • a likewise not shown foil conductor is connected, which extends beyond the side edges of the thermoplastic layer 3 and serves the external electrical connection.
  • Each of the three rows of the serially interconnected sections 7 is connected to the same bus bars, the rows are thus connected in parallel.
  • Each of the subsections 7 of the photovoltaic layer system 6 is subdivided into individual photovoltaically active regions, so-called solar cells 9, by means of processes known per se for the production of a thin-film photovoltaic module.
  • the solar cells 9 of a partial section 7 are each connected in series over a region of the back electrode layer 10 and a region of the front electrode layer 12, which is returned to the back electrode layer 10, in monolithic integrated form.
  • Fig. 3 shows a cross section through the components of a roof panel according to the invention prior to bonding to the roof panel in a preferred embodiment of the method according to the invention.
  • the substrate 1, the thermoplastic layer 3 with the first thermoplastic film 4, the photovoltaic layer system 6 and the second thermoplastic film 5 and the outer pane 2 are arranged one above the other in terms of area.
  • the thermoplastic films 4, 5 and the photovoltaic layer system 6 may optionally already be present as prelaminated thermoplastic layer 3.
  • the substrate 1, the thermoplastic layer 3, the photovoltaic layer system 6 and the outer pane 2 are configured as in the roof pane of FIG.
  • a support plate 14 is arranged on the side facing away from the outer pane 2 surface of the substrate 1.
  • the support disk 14 is made of soda lime glass and is formed in size and shape as the outer disk 2. Between the support disk 14 and the substrate 1, a release film 13 is arranged.
  • the release film 13 is made of polytetrafluoroethylene and has a thickness of 1 mm.
  • the release film 13 covers the entire surface of the substrate 1. The surface of the release film 13 is thus at least as large as the surface of the substrate 1, but may also be larger than in the example shown and protrude beyond the side edges of the substrate 1.
  • the roof panel according to the invention can be easily prepared, although the substrate 1 is formed as a flexible film.
  • the stack of support disk 14, release film 13, substrate 1, thermoplastic layer 3 and outer pane 2 can be easily known per se for producing a laminated glass be subjected.
  • the release film 13 prevents the adhesion between the support disk 14 and the substrate 1.
  • Fig. 4 shows an example of an embodiment of the method according to the invention for producing a roof panel with integrated photovoltaic module.
  • roof windows can be realized, which in comparison to conventional rooflights with integrated photovoltaic module a significantly reduced weight, but still have sufficient stability to be used as roof windows, for example in motor vehicles , Due to the flexibility of the thermoplastic layer 3 with the photovoltaic layer system 6 and roof windows can be realized with strong radii of curvature.
  • the photovoltaic layer structure 6 can be arranged over a large area in the thermoplastic layer 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Architecture (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Body Structure For Vehicles (AREA)
  • Laminated Bodies (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Dachscheibe mit einem integrierten Photovoltaik- Modul, mindestens umfassend ein Substrat (1) und eine Außenscheibe (2), die über eine thermoplastische Schicht (3) flächenmäßig miteinander verbunden sind, wobei ein photovoltaisches Schichtsystem (6) in die thermoplastische Schicht (3) eingelagert ist und das Substrat (1) zumindest ein Polymer enthält.

Description

Dachscheibe mit einem integrierten Photovoltaik-Modul
Die Erfindung betrifft eine Dachscheibe mit einem integrierten Photovoltaik-Modul, ein Verfahren zu deren Herstellung und deren Verwendung.
Es ist bekannt, dass Photovoltaik-Module in die Dachscheibe von Fahrzeugen integriert werden können. Solche Dachscheiben sind beispielsweise aus DE 3713854 A1 , DE 4006756 A1 , DE 4105389 C1 und US 20120097218 A1 bekannt.
Herkömmliche Dachscheiben mit einem integrierten Photovoltaik-Modul sind typischerweise als Verbundscheiben aus zwei Glasscheiben ausgebildet, zwischen denen das Photovoltaik-Modul angeordnet ist. Solche Dachscheiben haben den Nachteil, dass sie ein hohes Gewicht aufweisen. Viele herkömmliche Dachscheiben mit einem integrierten Photovoltaik-Modul, insbesondere mit einem integrierten Photovoltaik-Modul auf Basis von kristallinem Silizium, haben zudem den Nachteil, dass nur kleine Flächen mit dem Photovoltaik-Modul versehen werden können und dass die Dachscheiben nur eine geringe Krümmung aufweisen können.
Die Aufgabe der vorliegenden Erfindung ist es, eine verbesserte Dachscheibe mit einem integrierten Photovoltaik-Modul bereitzustellen. Die Dachscheibe soll ein geringes Gewicht aufweisen. Außerdem soll es möglich sein, einen Großteil der Fläche der Dachscheibe mit dem Photovoltaik-Modul zu versehen und die Dachscheibe mit einer starken Krümmung zu versehen. Zudem soll die Dachscheibe einfach und kostengünstig herzustellen sein.
Die Aufgabe der vorliegenden Erfindung wird erfindungsgemäß durch eine Dachscheibe mit einem integrierten Photovoltaik-Modul gemäß dem unabhängigen Anspruch 1 gelöst. Bevorzugte Ausführungen gehen aus den Unteransprüchen hervor.
Die erfindungsgemäße Dachscheibe mit einem integrierten Photovoltaik-Modul umfasst zumindest ein Substrat und eine Außenscheibe, die über eine thermoplastische Schicht flächenmäßig miteinander verbunden sind, wobei ein photovoltaisches Schichtsystem in die thermoplastische Schicht eingelagert ist und das Substrat zumindest ein Polymer enthält. Die erfindungsgemäße Dachscheibe ist dafür vorgesehen, im Bereich des Dachs den Innenraum beispielsweise eines Fahrzeugs von der äußeren Umgebung abzugrenzen. Die Außenscheibe ist dabei erfindungsgemäß der äußeren Umgebung zugewandt. Das Substrat ist dem Innenraum zugewandt. Die Sonnenstrahlung tritt über die Außenscheibe in die Dachscheibe ein und trifft auf das photovoltaische Schichtsystem innerhalb der thermoplastischen Schicht.
Der Vorteil der Erfindung liegt in dem erfindungsgemäßen Substrat, welches zumindest ein Polymer enthält. Nach dem Stand der Technik umfassen Dachscheiben mit integriertem Photovoltaik-Modul typischerweise zwei durch Lamination miteinander verbundene Glasscheiben. Im Vergleich dazu wird durch das erfindungsgemäße polymere Substrat eine deutliche Reduzierung des Gewichts der Dachscheibe erreicht. Es hat sich gezeigt, dass erfindungsgemäße Dachscheiben trotz des polymeren Substrats eine hinreichende Stabilität aufweisen, um sie beispielsweise in Kraftfahrzeugen einsetzen zu können. Die erfindungsgemäße Dachscheibe ist außerdem kostengünstiger herzustellen als herkömmliche Dachscheiben. Das photovoltaische Schichtsystem kann großflächig in der thermoplastischen Schicht angeordnet werden und es können Dachscheiben mit starker Krümmung realisiert werden.
Die voneinander abgewandten Oberflächen des Substrats und der Außenscheibe bilden bevorzugt die Außenflächen der Dachscheibe. Das bedeutet, dass auf den voneinander abgewandten Oberflächen des Substrats und der Außenscheibe keine weiteren Elemente angeordnet sind, beispielsweise weitere Scheiben. Insbesondere ist es nicht nötig, auf der von der Außenscheibe abgewandten Oberfläche des polymeren Substrats eine weitere Glasscheibe anzuordnen, um eine ausreichende Stabilität der Dachscheibe zu erreichen. Der besondere Vorteil liegt in dem geringen Gewicht der Dachscheibe. Die voneinander abgewandten Oberflächen des Substrats und der Außenscheibe können aber Beschichtungen aufweisen. Das polymere Substrat kann beispielsweise eine Schutzbeschichtung aufweisen, beispielsweise eine UV-Schutzschicht oder eine Schicht zur Vermeidung von Beschädigungen durch Verkratzen.
Bevorzugt besteht das Substrat aus Kunststoff. Das Substrat enthält insbesondere kein Glas, beispielsweise als Glasscheibe. Insbesondere ist innenraumseitig des photovoltaischen Schichtsystems keine Glasscheibe angeordnet. Das bedeutet, dass die erfindungsgemäße Dachscheibe keine Glasscheibe enthält, welche einen geringeren Abstand zu dem durch die Dachscheibe begrenzten Innenraum aufweist als das photovoltaische Schichtsystem.
In einer vorteilhaften Ausgestaltung der Erfindung ist das Substrat als starre Scheibe ausgebildet. Das Substrat kann beispielsweise zumindest Polyethylen (PE), Polycarbonat (PC), Polypropylen (PP), Polystyrol (PS), Polybutadien, Polynitrile, Polyester, Polyurethan (PU), Polymethylmethacrylat (PMMA), Polyvinylchlorid (PVC), Polyacrylat, Polyamid, Polyethylenterephthalat (PET), Acrylnitril-Butadien-Styrol (ABS), Styrol-Acrylnitril (SAN), Acrylester-Styrol-Acrylnitril (ASA) und/oder Copolymere oder Gemische davon enthalten. Das Substrat enthält bevorzugt zumindest ein thermoplastisches Polymer. Das Substrat enthält besonders bevorzugt zumindest Polycarbonat (PC) und/oder Polymethylmethacrylat (PMMA). Das ist besonders vorteilhaft im Hinblick auf die Verarbeitung, die Festigkeit und die mechanische und chemische Beständigkeit des Substrats. Die Dicke des Substrats beträgt bevorzugt von 0,8 mm bis 25 mm, besonders bevorzugt von 0,8 mm bis 4 mm, beispielsweise 2, 1 mm. Der besondere Vorteil eines als starre Scheibe ausgebildeten Substrats liegt in der Stabilität der erfindungsgemäßen Dachscheibe.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist das Substrat als flexible Folie ausgebildet. Die Dicke der flexiblen Folie beträgt bevorzugt von 0,02 mm bis 2 mm, besonders bevorzugt von 0,1 mm bis 1 ,5 mm, beispielsweise von 0,4 mm bis 1 ,5 mm, ganz besonders bevorzugt von 0,15 mm bis 0,8 mm, insbesondere von 0,45 mm bis 0,8 mm. Der besondere Vorteil liegt in einem geringen Gewicht der erfindungsgemäßen Dachscheibe und geringen Herstellungskosten. Die flexible Folie enthält bevorzugt zumindest ein thermoplastisches Polymer. Das thermoplastische Polymer ist bevorzugt mit Fluor substituiert. Das ist besonders vorteilhaft im Hinblick auf die chemische und mechanische Stabilität des Substrats. Das Substrat enthält ganz besonders bevorzugt zumindest Polyvinylfluorid und/oder Polyvinylidenfluorid. Gleichermaßen bevorzugt sind Ethylen-Tetrafluorethylen (ETFE) und/oder Polytetrafluorethylen (PTFE). Das ist besonders vorteilhaft im Hinblick auf die chemische und mechanische Beständigkeit sowie die Haftung der thermoplastischen Schicht am Substrat. Das Substrat kann auch Gemische oder Copolymere davon enthalten.
In einer vorteilhaften Ausgestaltung der Erfindung enthält die Außenscheibe Glas, bevorzugt Flachglas, Floatglas, Quarzglas, Borosilikatglas oder Kalk-Natron-Glas. Das ist besonders vorteilhaft im Hinblick auf die Stabilität der erfindungsgemäßen Dachscheibe und den Schutz des photovoltaischen Schichtsystems vor äußeren Einflüssen, beispielsweise vor Beschädigung durch Niederschlag wie Hagel oder Graupel. Die Außenscheibe kann nichtvorgespannt, teilvorgespannt, vorgespannt oder gehärtet, beispielsweise thermisch oder chemisch gehärtet sein.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung enthält die Außenscheibe zumindest ein Polymer, bevorzugt ein thermoplastisches Polymer. Die Außenscheibe kann beispielsweise zumindest Polyethylen (PE), Polycarbonat (PC), Polypropylen (PP), Polystyrol (PS), Polybutadien, Polynitrile, Polyester, Polyurethan (PU), Polymethylmethacrylat (PMMA), Polyvinylchlorid (PVC), Polyacrylat, Polyamid, Polyethylenterephthalat (PET), Acrylnitril-Butadien-Styrol (ABS), Styrol-Acrylnitril (SAN), Acrylester-Styrol-Acrylnitril (ASA) und/oder Copolymere oder Gemische davon enthalten, bevorzugt Polycarbonat (PC) und/oder Polymethylmethacrylat (PMMA). Durch die Verwendung einer polymeren Außenscheibe kann das Gewicht der Dachscheibe weiter reduziert werden.
Ist die Außenscheibe als polymere Außenscheibe ausgebildet, so ist in einer bevorzugten Ausgestaltung das Substrat als flexible Folie ausgebildet. So können Dachscheiben mit einem sehr geringen Gewicht realisiert werden.
Die Dicke der Außenscheibe beträgt bevorzugt von 1 ,0 mm bis 12 mm, besonders bevorzugt von 1 ,4 mm bis 5 mm, beispielsweise 2,1 mm. Ist das Substrat als flexible Folie ausgebildet, so beträgt die Dicke der Außenscheibe bevorzugt von 2,8 mm bis 5 mm. Dadurch wird eine vorteilhafte Stabilität der Dachscheibe erreicht.
Die thermoplastische Schicht enthält zumindest ein thermoplastisches Polymer, bevorzugt Ethylenvinylacetat (EVA), Polyvinylbutyral (PVB), Polyurethan (PU), Polyethylen (PE) und/oder Polyethylenterephthalat (PET). Die thermoplastische Schicht kann aber auch beispielsweise zumindest Polypropylen, Polycarbonat, Polymethylmetacrylat, Polyacrylat, Polyvinylchlorid, Polyacetatharz, Gießharze, Acrylate, Fluorinierte Ethylen-Propylene, Polyvinylfluorid und/oder Ethylen-Tetrafluorethylen enthalten. Die thermoplastische Schicht weist bevorzugt eine Dicke von 0,5 mm bis 5 mm, besonders bevorzugt von 1 mm bis 3 mm auf, ganz besonders bevorzugt von 1 mm bis 2 mm auf. Die thermoplastische Schicht ist bevorzugt aus zumindest einer ersten thermoplastischen Folie und einer zweiten thermoplastischen Folie ausgebildet, zwischen denen das photovoltaische Schichtsystem angeordnet ist. Jede thermoplastische Folie weist dabei bevorzugt eine Dicke von 0,25 mm bis 1 mm auf, besonders bevorzugt von 0,45 mm bis 0,85 mm. Die erste und die zweite thermoplastische Folie können aus dem gleichen oder aus unterschiedlichen Materialien bestehen.
Die thermoplastische Schicht kann aber auch aus mehr als zwei Folien gebildet werden. Weitere Folien können beispielsweise als Schutzschichten oder Trägerschichten des photovoltaischen Schichtsystems vor der Herstellung der Dachscheibe dienen.
Ein umlaufender Randbereich der thermoplastischen Schicht mit einer Breite von beispielsweise 3 mm bis 50 mm ist bevorzugt nicht mit dem photovoltaischen Schichtsystem versehen. In diesem Randbereich sind die erste und die zweite thermoplastische Folie bevorzugt direkt oder auch über andere Schichten, beispielsweise andere polymere Schichten miteinander verbunden. Die photovoltaische Schichtstruktur ist dadurch dauerhaft stabil und ohne Kontakt zur äußeren Umgebung innerhalb der thermoplastischen Schicht eingelagert und vorteilhaft vor Umwelteinflüssen, insbesondere Korrosion und mechanischer Beschädigung geschützt.
Die erfindungsgemäße Dachscheibe kann eine beliebige dreidimensionale Form aufweisen. Die Dachscheibe kann plan oder leicht oder stark in einer Richtung oder in mehreren Richtungen des Raumes gebogen sein. Die Krümmungsradien der gebogenen Dachscheibe können beispielsweise von 50 mm bis 1200 mm betragen. Der Krümmungsradius muss nicht über die gesamte Dachscheibe konstant sein. Es können stärker und weniger stark gebogene Bereiche vorliegen. Es können auch plane und gebogene Bereiche vorliegen. Bei herkömmlichen Dachscheiben mit integriertem Photovoltaik-Modul treten typischerweise Krümmungsradien von 700 mm bis 1000 mm auf. Durch das erfindungsgemäße, in der thermoplastischen Schicht eingelagerte photovoltaische Schichtsystem und das erfindungsgemäße polymere Substrat können demgegenüber Dachscheiben realisiert werden, die zumindest in einem Bereich Krümmungsradien von 600 mm bis 900 mm, bevorzugt von 600 bis 650 mm aufweisen. Die Fläche der erfindungsgemäßen Dachscheibe kann breit variieren und so hervorragend den Erfordernissen im Einzelfall angepasst werden. Die Fläche der Dachscheibe kann beispielsweise von 100 cm2 bis zu 5 m2 betragen, bevorzugt von 0,5 m2 bis 2 m2.
Bei Dachscheiben ist häufig eine verminderte Transmission von sichtbarem Licht gewünscht, um eine direkte Sonneneinstrahlung in den Innenraum zu vermeiden. Die Transmission kann beispielsweise kleiner 50%, kleiner 20% oder sogar kleiner 10% betragen. Typischerweise wird dies durch eine getönte und/oder gefärbte Außen- und/oder Innenscheibe oder durch getönte Folien innerhalb des Verbundes erreicht. Durch das lichtabsorbierende photovoltaische Schichtsystem, welches großflächig innerhalb der Dachscheibe angeordnet ist, wird die Transmission von sichtbarem Licht durch die Dachscheibe vorteilhaft verringert, so dass die Außenscheibe, das Substrat und die thermoplastischen Schichten transparent und klar ausgebildet sein können. Solche transparenten Außenscheiben, Substrate und thermoplastischen Schichten sind einfache und kostengünstiger herzustellen und führen zu einer verminderten Korrosionsgefährung von beispielsweise auf der Außenscheibe aufgetragenen funktionellen Beschichtungen. Die Transmission von sichtbarem Licht durch die Dachscheibe im Bereich des photovoltaischen Schichtsystems beträgt bevorzugt kleiner 50 %.
Das photovoltaische Schichtsystem bewirkt die zur Umwandlung von Strahlungsenergie in elektrische Energie erforderliche Ladungsträgertrennung. Das photovoltaische Schichtsystem ist bevorzugt ein Dünnschichtsystem. Darunter werden Schichtsysteme mit Dicken von nur wenigen Mikrometern verstanden. Der besondere Vorteil liegt in einer geringen Dicke und einer großen Flexibilität der erfindungsgemäßen thermoplastischen Schicht. Die große Flexibilität der thermoplastischen Schicht hat insbesondere den Vorteil, dass Dachscheiben mit starken Krümmungen realisiert werden können.
Das photovoltaische Schichtsystem umfasst bevorzugt zumindest eine photovoltaisch aktive Absorberschicht zwischen einer Frontelektrodenschicht und einer Rückelektrodenschicht. Die Frontelektrodenschicht ist dabei auf der zur Außenscheibe hingewandten Seite der Absorberschicht angeordnet. Die Rückelektrodenschicht ist auf der zum Substrat hingewandten Seite der Absorberschicht angeordnet.
Die photovoltaisch aktive Absorberschicht umfasst bevorzugt mindestens eine p-leitende Halbleiterschicht. Die p-leitende Halbleiterschicht kann beispielsweise amorphes, mikromorphes oder polykristallines Silizium, Cadmium-Tellurid (CdTe), Cadmium-Selenid (CdSe), Gallium-Arsenid (GaAs) oder halbleitende organische Polymere oder Oligomere enthalten.
Die p-leitende Halbleiterschicht enthält in einer besonders bevorzugten Ausgestaltung der Erfindung einen Chalkopyrithalbleiter wie eine Verbindung der Gruppe Kupfer-Indium- Schwefel/Selen (CIS), beispielsweise Kupfer-Indium-Diselenid (CulnSe2), oder eine Verbindung der Gruppe Kupfer-Indium-Gallium-Schwefel/Selen (CIGS), beispielsweise Cu(lnGa)(SSe)2. CI(G)S-basierte Halbleiterschichten zeichnen sich aufgrund eines an das Spektrum des Sonnenlichts angepassten Bandabstands durch einen besonders hohen Absorptionskoeffizienten aus. Das ist besonders vorteilhaft im Hinblick auf die Leistung des photovoltaischen Schichtsystems. Außerdem wird durch eine CI(G)S-basierte Absorberschicht ein homogener, dunkler Eindruck der Dachscheibe ohne Farbstich erreicht. Die Absorberschicht kann mit Metallen, bevorzugt Natrium dotiert sein. Die photovoltaisch aktive Absorberschicht hat bevorzugt eine Schichtdicke von 500 nm bis 5 μιη, besonders bevorzugt von 1 μιη bis 3 μιη.
In einer alternativen besonders bevorzugten Ausgestaltung der Erfindung enthält die Absorberschicht halbleitende organische Polymere oder Oligomere. Bei solchen Schichtsystemen ist die Transparenz vorteilhaft einstellbar, insbesondere durch die Wahl der Schichtdicke und des Materials der aktiven Absorberschicht sowie des Materials der Rückelektrode. Es lässt sich also auch durch solche Schichtsysteme ein vorteilhaft dunkles Erscheinungsbild realisieren.
Die Rückelektrodenschicht kann beispielsweise zumindest ein Metall enthalten, bevorzugt Molybdän, Titan, Wolfram, Nickel, Titan, Chrom und/oder Tantal. Die Rückelektrodenschicht weist bevorzugt eine Schichtdicke von 300 nm bis 600 nm auf.
Die Frontelektrodenschicht ist im Spektralbereich, in dem die Absorberschicht empfindlich ist, transparent. Die Frontelektrodenschicht kann beispielsweise einen n-leitenden Halbleiter enthalten, bevorzugt Aluminium-dotiertes Zinkoxid oder Indium-Zinnoxid. Die Frontelektrodenschicht weist bevorzugt eine Schichtdicke von 500 nm bis 2 μιη auf. Die Elektrodenschichten können auch Silber, Gold, Kupfer, Nickel, Chrom, Wolfram, Zinnoxid, Siliziumdioxid, Siliziumnitrid und/oder Kombinationen sowie Gemische davon enthalten.
Die Elektrodenschichten können auch einen Schichtstapel unterschiedlicher Einzelschichten umfassen. Ein solcher Schichtstapel kann beispielsweise eine Diffusionssperrschicht aus beispielsweise Siliziumnitrid enthalten, um eine Diffusion von Ionen in die photovoltaisch aktive Absorberschicht zu verhindern.
Das photovoltaische Schichtsystem kann natürlich weitere Einzelschichten umfassen, die dem Fachmann bekannt sind, beispielsweise eine Pufferschicht zur Anpassung der elektronischen Eigenschaften zwischen der Absorberschicht und einer Elektrodenschicht.
Das photovoltaische Schichtsystem kann in einer vorteilhaften Ausgestaltung der Erfindung durch eine geeignete, an sich bekannte Strukturierung und Verschaltung von Rückelektrodenschicht, Absorberschicht und Frontelektrodenschicht in einzelne photovoltaisch aktive Bereiche, sogenannte Solarzellen, unterteilt sein. Solche unterteilten photovoltaischen Schichtsysteme sind beispielsweise aus EP 2200097 A1 bekannt. Die Unterteilung erfolgt durch Einschnitte unter Einsatz einer geeigneten Strukturierungstechnologie wie Laserschreiben und mechanische Bearbeitung, beispielsweise durch Abheben oder Ritzen. Die einzelnen Solarzellen sind über einen Bereich der Rückelektrodenschicht in integrierter Form seriell miteinander verschaltet.
Die thermoplastische Schicht enthält bevorzugt an sich bekannte Sammelleiter, sogenannte Busbars, zur elektrischen Kontaktierung des photovoltaischen Schichtsystems. Die Sammelleiter sind mit der Front- und/oder Rückelektrodenschicht elektrisch leitend verbunden. Der Sammelleiter ist vorteilhafterweise als Band beziehungsweise Streifen ausgebildet. Der Sammelleiter enthält bevorzugt zumindest ein Metall oder eine Metalllegierung oder besteht aus einem Metall oder einer Metalllegierung. Prinzipiell kann jedes elektrisch leitfähige Material, das sich zu Folien verarbeiten lässt, für den Sammelleiter verwendet werden. Besonders geeignete Materialien für den Sammelleiter sind beispielsweise Aluminium, Kupfer, verzinntes Kupfer, Gold, Silber oder Zinn und Legierungen davon. Der Sammelleiter hat beispielsweise eine Dicke von 0,03 mm bis 0,3 mm und eine Breite von 2 mm bis 16 mm. Die Sammelleiter können zwischen die erste und die zweite thermoplastische Folie eingelegt werden, bevor diese zur thermoplastischen Schicht verbunden werden. Die Sammelleiter werden durch die Verklebung der Folien an der vorgesehenen Position gehalten. Alternativ kann die elektrisch leitende Verbindung zwischen den Sammelleitern und der jeweiligen Elektrodenschicht beispielsweise durch Schweißen, Bonden, Löten, Klemmen oder Kleben mittels eines elektrisch leitfähigen Klebers erfolgen.
Die Sammelleiter können sich über die Seitenkanten der thermoplastischen Schicht hinaus erstrecken und außerhalb der thermoplastischen Schicht über geeignete Kabel elektrisch kontaktiert werden. Alternativ kann die elektrische Kontaktierung der Sammelleiter mittels geeigneter Kabel, bevorzugt Flachleiter wie Folienleiter innerhalb der thermoplastischen Schicht erfolgen. Dazu werden die Kabel vor dem Verbinden der ersten und der zweiten thermoplastischen Folie mit den Sammelleitern verbunden, so dass sich die Kabel von den Sammelleitern im Inneren der thermoplastischen Schicht über ihre Seitenkanten hinaus erstrecken.
Das photovoltaische Schichtsystem kann in physisch voneinander getrennte Teilabschnitte unterteilt sein. Darunter sind Teilabschnitte zu verstehen, die über keine der Einzelschichten des photovoltaischen Schichtsystems direkt, also ohne die Verwendung weitere Verbindungselemente miteinander verbunden sind. Ein solcher Teilabschnitt weist bevorzugt eine Länge und Breite von 100 mm bis 2000 mm auf, besonders bevorzugt von 500 mm bis 1000 mm. Der Abstand zwischen zwei benachbarten Teilabschnitten beträgt bevorzugt von 1 mm bis 100 mm, besonders bevorzugt von 10 mm bis 50 mm. Die Teilabschnitte können beispielsweise eine rechteckige Fläche aufweisen und in Form zueinander paralleler Reihen angeordnet sein. Die einzelnen Teilbereiche sind bevorzugt mittels elektrisch leitfähiger Verbindungselemente in Abhängigkeit vom Einsatzzweck parallel und/oder seriell miteinander verschaltet sein. Die elektrisch leitfähigen Verbindungselemente sind beispielsweise als Bänder oder Streifen, welche zumindest ein Metall oder eine Metalllegierung enthalten, ausgebildet. Die elektrisch leitfähigen Verbindungselemente enthalten bevorzugt zumindest Aluminium, Kupfer, verzinntes Kupfer, Gold, Silber oder Zinn und Legierungen davon. Die elektrisch leitfähigen Verbindungselemente weisen bevorzugt eine Dicke von 0,03 mm bis 0,3 mm auf. Die Teilabschnitte des photovoltaischen Schichtsystems können auch in Gruppen aufgeteilt sein, wobei die Teilabschnitte jeweils einer Gruppe seriell miteinander verschaltet sind und wobei die Gruppen parallel miteinander verschaltet sind, beispielsweise durch den Anschluss an gemeinsame Sammelleiter. Die Fläche des photovoltaischen Schichtsystems beträgt bevorzugt von 50 % bis 100 % der Fläche der erfindungsgemäßen Dachscheibe, beispielsweise von 50 % bis 90%. Das ist besonders vorteilhaft im Hinblick auf die Leistung des integrierten Photovoltaik-Moduls sowie ein einheitliches Erscheinungsbild der Dachscheibe. Die Fläche des photovoltaischen Schichtsystems kann beispielsweise von 0, 1 m2 bis 5 m2, bevorzugt 0,5 m2 bis 2 m2 betragen.
Das integrierte Photovoltaik-Modul weist in einer bevorzugten Ausgestaltung eine spezifische maximale erzielbare Leistung PMPP von 10 W/m2 bis 300 W/m2, besonders bevorzugt von 50 W/m2 bis 150 W/m2 auf. Die Leistung ist dabei unter den üblichen Standardtestbedingungen für Photovoltaik-Module gemessen (Einstrahlungsstärke von 1000 W/m2, Temperatur 25 °C, Strahlungsspektrum AM 1 ,5 global).
Die Aufgabe der Erfindung wird weiter durch ein Verfahren zur Herstellung einer Dachscheibe mit einem integrierten Photovoltaik-Modul gelöst, wobei zumindest
(a) ein photovoltaisches Schichtsystem in eine thermoplastische Schicht eingebracht wird,
(b) die thermoplastische Schicht flächenmäßig zwischen einem Substrat, welches zumindest ein Polymer enthält, und einer Außenscheibe angeordnet wird und
(c) das Substrat mit der Außenscheibe über die thermoplastische Schicht unter Einwirkung von Hitze, Vakuum und/oder Druck verbunden wird.
Die thermoplastische Schicht wird bevorzugt aus zumindest einer ersten und einer zweiten thermoplastischen Folie gebildet, wobei das photovoltaische System flächenmäßig zwischen der ersten und der zweiten thermoplastischen Folie einbracht wird.
Das photovoltaische Schichtsystem kann direkt auf eine Oberfläche der ersten oder der zweiten thermoplastischen Folie abgeschieden werden. Das photovoltaische Schichtsystem kann alternativ beispielsweise auf eine Trägerfolie abgeschieden werden, welche anschließend zwischen die erste und die zweite thermoplastische Folie eingelegt wird. Zwischen die erste und die zweite thermoplastische Folie können weiter Schichten, beispielsweise haftvermittelnde Schichten oder weitere Trägerfolien, angeordnet werden.
Das Abscheiden des thermoplastischen Schichtsystems auf eine Oberfläche beispielsweise der ersten oder zweiten thermoplastischen Folie oder einer Trägerfolie erfolgt bevorzugt durch Kathodenzerstäubung, Aufdampfen oder chemische Gasphasenabscheidung (chemical vapour deposition, CVD).
In einer Ausführung des erfindungsgemäßen Verfahrens wird zunächst das Substrat oder die Außenscheibe bereitgestellt. Zumindest die erste thermoplastische Folie wird auf einer Oberfläche des Substrats beziehungsweise der Außenscheibe angeordnet. Ist das photovoltaische Schichtsystem auf einer Trägerfolie vorgesehen, so wird diese Trägerfolie flächenmäßig auf der ersten thermoplastischen Folie angeordnet. Anschließend wird zumindest die zweite thermoplastische Folie flächenmäßig auf der ersten thermoplastischen Folie beziehungsweise der Trägerfolie angeordnet. In Verfahrensschritt (b) wird in dieser Ausführung die Außenscheibe beziehungsweise das Substrat flächenmäßig auf der zweiten thermoplastischen Folie angeordnet, wodurch die thermoplastische Schicht mit dem photovoltaischen System zwischen dem Substrat und der Außenscheibe angeordnet wird.
In einer alternativen Ausführung wird das photovoltaische Schichtsystem zwischen zumindest der ersten und der zweiten thermoplastischen Folie angeordnet, noch bevor eine der thermoplastischen Folien auf dem Substrat beziehungsweise der Deckscheibe angeordnet wird. Die erste und die zweite thermoplastische Folie werden großflächig über das photovoltaische Schichtsystem zu einer prälaminierten thermoplastischen Schicht verbunden. Das Verbinden erfolgt bevorzugt unter Einwirkung von Hitze, Druck und/oder Vakuum. In Verfahrensschritt (b) wird das vorgefertigte Prälaminat mit dem eingelagerten photovoltaischen Schichtsystem zwischen dem Substrat und der Deckscheibe angeordnet.
Der Vorteil eines solchen Prälaminats liegt in einer einfachen und kostengünstigen Herstellung der erfindungsgemäßen Dachscheibe. Das Prälaminat kann vor dem Verbinden des Substrats mit der Außenscheibe bereitgestellt werden. Es können dann die herkömmlichen Verfahren zur Herstellung einer Dachscheibe angewendet werden, wobei die thermoplastische Zwischenschicht, über die das Substrat herkömmlich mit der Außenscheibe verklebt wird, durch das Prälaminat ersetzt wird. Zudem ist das photovoltaische System im Inneren des Prälaminats vorteilhaft vor Beschädigungen, insbesondere Korrosion geschützt. Das Prälaminat kann daher deutlich vor der eigentlichen Herstellung der Dachscheibe auch in größerer Stückzahl bereitgestellt werden, was aus ökonomischen Gründen wünschenswert sein kann. Das Prälaminat kann direkt oder über weitere thermoplastische Folie mit dem Substrat und der Außenscheibe verbunden werden.
Bevorzugt werden die Rück- und/oder die Frontelektrodenschicht zur elektrischen Kontaktierung nach dem Aufbringen des photovoltaischen Schichtsystems und vor dem Verbinden von erster und zweiter thermoplastische Schicht mit beispielsweise Sammelleitern und/oder Folienleiter elektrisch leitend verbunden.
Ist das Substrat als starre Scheibe ausgebildet, so erfolgt das Verbinden des Substrats mit der Außenscheibe über die thermoplastische Schicht durch an sich bekannte Verfahren zur Herstellung einer Verbundscheibe. Es können beispielsweise sogenannte Autoklavverfahren bei einem erhöhten Druck von etwa 10 bar bis 15 bar und Temperaturen von 130 °C bis 145 °C über etwa 2 Stunden durchgeführt werden. An sich bekannte Vakuumsack- oder Vakuumringverfahren arbeiten beispielsweise bei etwa 200 mbar und 130 °C bis 145 °C.
Die Außenscheibe, die thermoplastische Schicht und das Substrat können auch in einem Kalander zwischen mindestens einem Walzenpaar zu einer erfindungsgemäßen Dachscheibe verpresst werden. Anlagen dieser Art sind zur Herstellung von Verbundverglasungen bekannt und verfügen normalerweise über mindestens einen Heiztunnel vor einem Presswerk. Die Temperatur während des Pressvorgangs beträgt beispielsweise von 40 °C bis 150 °C. Kombinationen von Kalander- und Autoklavverfahren haben sich in der Praxis besonders bewährt.
Alternativ können Vakuumlaminatoren eingesetzt werden. Diese bestehen aus einer oder mehreren beheizbaren und evakuierbaren Kammern, in denen Außenscheibe und Substrat innerhalb von beispielsweise etwa 60 Minuten bei verminderten Drücken von 0,01 mbar bis 800 mbar und Temperaturen von 80°C bis 170°C laminiert werden können.
Ist das Substrat als flexible Folie ausgestaltet, so erfolgt das Verbinden des Substrats mit der Außenscheibe über die thermoplastische Schicht in einer besonders vorteilhaften Ausführung in der nachfolgend beschriebenen Weise. Zeitlich vor, nach oder zeitgleich mit Verfahrensschritt (b) und vor Verfahrensschritt (c) wird eine Trennfolie auf der von der Außenscheibe abgewandten Oberfläche des Substrats und eine Stützscheibe auf der vom Substrat abgewandten Oberfläche der Trennfolie angeordnet. Die Stützscheibe ist bevorzugt eine starre Scheibe und enthält bevorzugt Glas, besonders bevorzugt Flachglas, Floatglas, Quarzglas, Borosilikatglas oder Kalk-Natron-Glas oder Kunststoffe, bevorzugt Polyethylen, Polypropylen, Polycarbonat, Polymethylmethacrylat, Polystyrol, Polyamid, Polyester, Polyvinylchlorid und/oder Gemische davon enthalten. Die Dicke der Stützscheibe beträgt bevorzugt von 1 ,0 mm bis 25 mm, besonders bevorzugt von 1 ,4 mm bis 5 mm. Die zum Substrat hingewandte Oberfläche der Stützscheibe sollte dabei die gleiche Krümmung aufweisen wie die zum Substrat hingewandte Oberfläche der Außenscheibe. Die Stützscheibe wird also nach Größe und Form so gewählt, dass sie prinzipiell dazu geeignet wäre, mit der Außenscheibe zu einer Verbundscheibe verbunden zu werden. Die Trennfolie ist aus einem Material gefertigt, dass dazu geeignet ist, eine dauerhafte Haftung zwischen Stützscheibe und Substrat zu verhindern. Die Trennfolie enthält bevorzugt zumindest ein Polytetrahalogenethylen, besonders bevorzugt zumindest Polytetrafluorethylen und/oder Polychlortrifluorethylen. Das ist besonders vorteilhaft im Hinblick auf die haftungsverhindernden Eigenschaften der Trennfolie. Die Trennfolie weist bevorzugt eine Dicke von 0,01 mm bis 10 mm auf, besonders bevorzugt von 0,1 mm bis 2,5 mm, beispielsweise von 0,1 mm bis 1 mm.
Der Stapel aus Außenscheibe, thermoplastische Schicht, Substrat, Trennfolie und Stützscheibe kann einfach an sich bekannten Verfahren zur Herstellung einer Verbundscheibe unterzogen werden, beispielsweise den oben beschriebenen. Dadurch wird eine dauerhaft stabile Verbindung zwischen Außenscheibe und Substrat über die thermoplastische Schicht bereitgestellt. Aufgrund der haftungsverhindernden Wirkung der Trennfolie kann die Stützscheibe anschließend einfach entfernt werden.
Ein weiterer Aspekt der Erfindung umfasst die Verwendung einer erfindungsgemäßen Dachscheibe in Fahrzeugen für den Verkehr auf dem Lande, in der Luft oder zu Wasser, bevorzugt in Zügen, Straßenbahnen, Schiffen und Kraftfahrzeugen wie Bussen, Lastkraftwagen und insbesondere Personenkraftwagen. Durch die mittels des integrierten Photovoltaik-Moduls gewonnen elektrische Energie kann beispielsweise die Batterie eines Elektro-Fahrzeugs gekühlt werden, die Fahrgastzelle während des Parkens gekühlt werden, eine sekundäre Batterie des Fahrzeugs geladen werden oder eine beheizbare Scheibe während des Parkens betrieben werden. Die Erfindung wird anhand einer Zeichnung und Ausführungsbeispielen näher erläutert. Die Zeichnung ist eine schematische Darstellung und nicht maßstabsgetreu. Die Zeichnung schränkt die Erfindung in keiner Weise ein. Es zeigen:
Fig. 1 einen Querschnitt durch eine Ausgestaltung der erfindungsgemäßen
Dachscheibe mit einem integrierten Photovoltaik-Modul,
Fig. 2 eine vergrößerte Darstellung des Abschnitts Z aus Figur 1 ,
Fig. 3 einen Querschnitt durch das Substrat, die thermoplastische Schicht, die
Außenscheibe, die Trennfolie und die Stützscheibe vor der Herstellung der erfindungsgemäßen Dachscheibe und
Fig. 4 ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens anhand eines
Flussdiagramms.
Fig. 1 und Fig. 2 zeigen je ein Detail einer erfindungsgemäßen Dachscheibe mit einem integrierten Photovoltaik-Modul. Die Dachscheibe umfasst ein Substrat 1 und eine Außenscheibe 2, die über eine thermoplastische Schicht 3 miteinander verbunden sind. Die Dachscheibe ist die Dachscheibe eines Kraftfahrzeugs. Die Außenscheibe 2 besteht aus thermisch vorgespanntem Kalk-Natron-Glas und weist eine Dicke von 3 mm auf. Das Substrat 1 besteht aus Polyvinylfluorid (DuPont Tedlar®) und weist eine Dicke von 0,8 mm auf. Die voneinander abgewandten Oberflächen der Außenscheibe 2 und des Substrats 1 stellen die Außenflächen der Dachscheibe dar. Dabei ist die vom Substrat 1 abgewandte Oberfläche der Außenscheibe 2 in Einbaulage der äußeren Umgebung zugewandt und die von der Außenscheibe 2 abgewandte Oberfläche des Substrats 1 dem Fahrzeuginnenraum zugewandt. Die Dachscheibe ist gebogen ausgeformt, wie es für Kraftfahrzeug- Dachscheiben üblich ist. Die Dachscheibe weist eine Breite von 1 10 cm und eine Länge von 130 cm auf.
Die thermoplastische Schicht 3 ist aus einer ersten thermoplastischen Folie 4 und einer zweiten thermoplastischen Folie 5 gebildet. Die erste und die zweite thermoplastische Folie 4, 5 bestehen aus Ethylenvinylacetat (EVA) und weisen jeweils eine Dicke von etwa 0,7 mm auf. Die thermoplastischen Folien 4, 5 sind schematisch zur Verdeutlichung dargestellt. Nach dem Laminieren der Dachscheibe muss der Übergang zwischen den thermoplastischen Folien 4, 5 nicht als klare Grenze zu erkennen sein, insbesondere wenn die thermoplastischen Folien 4, 5 aus dem gleichen Material bestehen. Zwischen der ersten thermoplastischen Folie 4 und der zweiten thermoplastischen Folie 5 ist ein photovoltaisches Schichtsystem 6 angeordnet. Das photovoltaische Schichtsystem 6 erstreckt sich nicht bis zu den Seitenkanten der thermoplastischen Schicht 3. Ein umlaufender Randbereich der thermoplastischen Schicht 3 mit einer Breite von etwa 50 mm ist nicht mit dem photovoltaischen Schichtsystem 6 versehen. In diesem Randbereich sind die erste und die zweite thermoplastische Folie 4, 5 direkt miteinander verbunden. Das photovoltaische Schichtsystem 6 ist somit im Inneren der thermoplastischen Schicht 3 vorteilhaft vor Umwelteinflüssen, insbesondere Korrosion geschützt. Das photovoltaische Schichtsystem 6 weist insgesamt eine Fläche von etwa 1 ,2 m2 auf. Die Fläche des photovoltaischen Schichtsystems 6 beträgt damit etwa 84 % der Fläche der Dachscheibe.
Das photovoltaische Schichtsystem 6 umfasst eine Rückelektrodenschicht 10, die Molybdän enthält und eine Schichtdicke von etwa 300 nm aufweist. Das photovoltaische Schichtsystem 6 enthält weiter eine photovoltaisch aktive Absorberschicht 1 1 , welche Natrium-dotiertes Cu(lnGa)(SSe)2 enthält und eine Schichtdicke von etwa 2 μιη aufweist. Das photovoltaische Schichtsystem 6 enthält weiter eine Frontelektrodenschicht 12, die Aluminium-dotiertes Zinkoxid (AZO) enthält und eine Schichtdicke von etwa 1 μιη aufweist. Zwischen Frontelektrodenschicht 12 und Absorberschicht 1 1 ist eine nicht dargestellte Pufferschicht angeordnet, die eine Einzellage Cadmiumsulfid (CdS) und eine Einzellage intrinsisches Zinkoxid (i-ZnO) enthält. Die Pufferschicht bewirkt eine elektronische Anpassung zwischen Absorberschicht 1 1 und Frontelektrodenschicht 12.
Das photovoltaische Schichtsystem 6 ist in Teilabschnitte 7 unterteilt. Die Teilabschnitte 7 sind physisch voneinander getrennt, sind also über keine der Einzelschichten des photovoltaischen Schichtsystems 6 direkt miteinander verbunden. Das photovoltaische Schichtsystem 6 weist insgesamt neun dieser Teilabschnitte 7 auf, welche in drei zueinander parallelen Reihen mit jeweils drei Teilabschnitten 7 angeordnet sind. Die Figur 1 zeigt den Querschnitt durch eine dieser Reihen. Die Teilabschnitte 7 jeweils einer dieser Reihen sind miteinander seriell verschaltet. Die Verschaltung erfolgt durch eine geeignete elektrische Verbindung zwischen den Elektrodenschichten 10, 12 jeweils benachbarter Teilabschnitte 7 über elektrisch leitfähige Verbindungselemente 8. Die elektrisch leitfähigen Verbindungselemente 8 sind als Streifen aus Aluminium mit einer Dicke von 0,2 mm ausgestaltet. Der Abstand zwischen benachbarten Teilabschnitten 7 beträgt etwa 5 mm. Die beiden äußeren Teilabschnitte 7 der dargestellten Reihe von seriell verschalteten Teilabschnitten 7 sind mit jeweils einem nicht dargestellten Sammelleiter verbunden. An den Sammelleiter ist jeweils ein ebenfalls nicht dargestellter Folienleiter angeschlossen, welcher sich über die Seitenkanten der thermoplastischen Schicht 3 hinaus erstreckt und dem äußeren elektrischen Anschluss dient. Jede der drei Reihen der seriell miteinander verschalteten Teilabschnitte 7 ist mit denselben Sammelleitern verbunden, die Reihen sind also parallel verschaltet.
Jeder der Teilabschnitte 7 des photovoltaischen Schichtsystems 6 ist mit an sich bekannten Verfahren zur Herstellung eines Dünnschicht-Photovoltaik-Moduls in einzelne photovoltaisch aktive Bereiche, sogenannte Solarzellen 9 unterteilt. Die Solarzellen 9 eines Teilabschnitts 7 sind jeweils über einen Bereich der Rückelektrodenschicht 10 und einen Bereich der Frontelektrodenschicht 12, welcher auf die Rückelektrodenschicht 10 zurückgeführt ist, in monolithisch-integrierter Form seriell miteinander verschaltet.
Fig. 3 zeigt einen Querschnitt durch die Bestandteile einer erfindungsgemäßen Dachscheibe vor dem Verbinden zur Dachscheibe in einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens. Das Substrat 1 , die thermoplastische Schicht 3 mit der ersten thermoplastischen Folie 4, dem photovoltaischen Schichtsystem 6 und der zweiten thermoplastischen Folie 5 und die Außenscheibe 2 sind flächenmäßig übereinander angeordnet. Die thermoplastischen Folien 4, 5 und das photovoltaische Schichtsystem 6 können optional bereits als prälaminierte thermoplastische Schicht 3 vorliegen. Das Substrat 1 , die thermoplastische Schicht 3, das photovoltaische Schichtsystem 6 und die Außenscheibe 2 sind wie bei der Dachscheibe aus Figur 1 ausgestaltet. Auf der von der Außenscheibe 2 abgewandten Oberfläche des Substrats 1 ist eine Stützscheibe 14 angeordnet. Die Stützscheibe 14 besteht aus Natron-Kalk-Glas und ist nach Größe und Form wie die Außenscheibe 2 ausgebildet. Zwischen der Stützscheibe 14 und dem Substrat 1 ist eine Trennfolie 13 angeordnet. Die Trennfolie 13 besteht aus Polytetrafluorethylen und weist eine Dicke von 1 mm auf. Die Trennfolie 13 bedeckt die gesamte Oberfläche des Substrats 1. Die Fläche der Trennfolie 13 ist also mindestens ebenso groß wie die Oberfläche des Substrats 1 , kann aber wie in dem gezeigten Beispiel auch größer sein und über die Seitenkanten des Substrats 1 hinausragen.
Durch die Stützscheibe 14 kann die erfindungsgemäße Dachscheibe einfach hergestellt werden, obwohl das Substrat 1 als flexible Folie ausgebildet ist. Zum Verbinden von Substrat 1 und Dachscheibe 2 über die thermoplastische Schicht 3 kann der Stapel aus Stützscheibe 14, Trennfolie 13, Substrat 1 , thermoplastischer Schicht 3 und Außenscheibe 2 in einfacher Weise an sich bekannten Verfahren zur Herstellung eines Verbundglases unterzogen werden. Dadurch wird eine dauerhaft stabile Verbindung zwischen Außenscheibe 2 und Substrat 1 über die thermoplastische Schicht 3 erreicht. Die Trennfolie 13 verhindert die Haftung zwischen der Stützscheibe 14 und dem Substrat 1. Nach der Herstellung der Dachscheibe können die Stützscheibe 14 und die Trennfolie 13 einfach entfernt werden.
Fig. 4 zeigt beispielhaft eine Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung einer Dachscheibe mit integriertem Photovoltaik-Modul.
Es hat sich gezeigt, dass mit dem erfindungsgemäßen polymeren Substrat 1 Dachscheiben realisiert werden können, die im Vergleich zu herkömmlichen Dachscheiben mit integriertem Photovoltaik-Modul ein deutlich verringertes Gewicht, aber dennoch eine ausreichende Stabilität aufweisen, um als Dachscheiben beispielsweise in Kraftfahrzeugen verwendet werden zu können. Durch die Flexibilität der thermoplastischen Schicht 3 mit dem photovoltaischen Schichtsystem 6 können auch Dachscheiben mit starken Krümmungsradien realisiert werden. Zudem kann die photovoltaische Schichtstruktur 6 großflächig in der thermoplastischen Schicht 3 angeordnet werden. Diese Vorteile der Erfindung waren für den Fachmann unerwartet und überraschend.
Bezugszeichenliste:
(1 ) Substrat
(2) Außenscheibe
(3) thermoplastische Schicht
(4) erste thermoplastische Folie
(5) zweite thermoplastische Folie
(6) photovoltaisches Schichtsystem
(7) Teilabschnitt des photovoltaischen Schichtsystems 6
(8) elektrisch leitfähiges Verbindungselement
(9) Solarzelle
(10) Rückelektrodenschicht
(1 1 ) Absorberschicht
(12) Frontelektrodenschicht
(13) Trennfolie
(14) Stützscheibe
Z Abschnitt der Dachscheibe

Claims

Patentansprüche
1. Dachscheibe mit einem integrierten Photovoltaik-Modul, mindestens umfassend ein Substrat (1 ) und eine Außenscheibe (2), die über eine thermoplastische Schicht (3) flächenmäßig miteinander verbunden sind,
wobei ein photovoltaisches Schichtsystem (6) in die thermoplastische Schicht (3) eingelagert ist und das Substrat (1 ) zumindest ein Polymer enthält.
2. Dachscheibe nach Anspruch 1 , wobei das Substrat (1 ) als flexible Folie ausgebildet ist und bevorzugt eine Dicke von 0,02 mm bis 2 mm, besonders bevorzugt von 0,1 mm bis 1 ,5 mm, ganz besonders bevorzugt von 0,15 mm bis 0,8 mm aufweist.
3. Dachscheibe nach Anspruch 2, wobei das Substrat (1 ) zumindest Polyvinylfluorid, Polyvinylidenfluorid, Ethylen-Tetrafluorethylen und/oder Polytetrafluorethylen.
4. Dachscheibe nach Anspruch 1 , wobei das Substrat (1 ) als starre Scheibe ausgebildet ist und bevorzugt eine Dicke von 0,8 mm bis 25 mm, besonders bevorzugt von 0,8 mm bis 4 mm aufweist und bevorzugt zumindest Polycarbonat und/oder Polymethylmethacrylat enthält.
5. Dachscheibe nach einem der Ansprüche 1 bis 4, wobei das photovoltaische Schichtsystem (6) zumindest eine photovoltaisch aktive Absorberschicht (1 1 ) zwischen einer Frontelektrodenschicht (12) und einer Rückelektrodenschicht (10) aufweist und wobei die photovoltaisch aktive Absorberschicht (1 1 ) zumindest amorphes, mikromorphes oder polykristallines Silizium, Cadmium-Tellurid (CdTe), Cadmium-Selenid (CdSe), Gallium-Arsenid (GaAs), halbleitende organische Polymere oder Oligomere oder Kupfer-lndium(Gallium)-Schwefel/Selen (CI(G)S) enthält, bevorzugt halbleitende organische Polymere oder Oligomere oder Kupfer- lndium(Gallium)-Schwefel/Selen (CI(G)S).
6. Dachscheibe nach einem der Ansprüche 1 bis 5, wobei die Außenscheibe (2) Glas, bevorzugt Flachglas, Floatglas, Quarzglas, Borosilikatglas oder Kalk-Natron-Glas, oder zumindest ein Polymer, bevorzugt Polycarbonat und / und Polymethylmethacrylat, enthält und bevorzugt eine Dicke von 1 ,0 mm bis 12 mm, besonders bevorzugt von 1 ,4 mm bis 5 mm aufweist.
7. Dachscheibe nach einem der Ansprüche 1 bis 6, wobei das photovoltaische Schichtsystem (6) in Teilabschnitte (7) unterteilt ist, die über elektrisch leitfähige Verbindungselemente (8) und/oder Sammelleiter seriell und/oder parallel miteinander verschaltet sind.
8. Dachscheibe nach einem der Ansprüche 1 bis 7, wobei die Fläche des photovoltaischen Schichtsystems (6) von 50 % bis100 % der Fläche der Dachscheibe beträgt.
9. Dachscheibe nach einem der Ansprüche 1 bis 8, wobei die thermoplastische Schicht (3) zumindest Ethylenvinylacetat (EVA), Polyvinylbutyral (PVB), Polyurethan (PU), Polyethylen (PE) und/oder Polyethylenterephthalat (PET) enthält und bevorzugt eine Dicke von 0,5 mm bis 5 mm, besonders bevorzugt von 1 mm bis 3 mm aufweist.
10. Dachscheibe nach einem der Ansprüche 1 bis 9, die gebogen ist und zumindest in einem Bereich einen Krümmungsradius von 600 mm bis 900 mm aufweist.
1 1. Dachscheibe nach einem der Ansprüche 1 bis 10, wobei die spezifische Leistung des integrierten Photovoltaik-Moduls von 10 W/m2 bis 300 W/m2, bevorzugt von 50 W/m2 bis 150W/m2 beträgt.
12. Verfahren zur Herstellung einer Dachscheibe mit einem integrierten Photovoltaik- Modul, wobei zumindest
(a) ein photovoltaisches Schichtsystem (6) in eine thermoplastische Schicht (3) eingebracht wird,
(b) die thermoplastische Schicht (3) flächenmäßig zwischen einem Substrat (1 ), welches zumindest ein Polymer enthält, und einer Außenscheibe (2) angeordnet wird und
(c) das Substrat (1 ) mit der Außenscheibe (2) über die thermoplastische Schicht (3) unter Einwirkung von Hitze, Vakuum und/oder Druck verbunden wird.
13. Verfahren nach Anspruch 12, wobei in Verfahrensschritt (a) das photovoltaische Schichtsystem (6) zwischen zumindest einer ersten thermoplastischen Folie (4) und einer zweiten thermoplastischen Folie (5) angeordnet wird, welche anschließend unter Einwirkung von Hitze, Vakuum und/oder Druck zu einer prälaminierten thermoplastischen Schicht (3) verbunden werden.
14. Verfahren nach Anspruch 12 oder 13, wobei vor Verfahrensschritt (d) eine Stützscheibe (14) über eine Trennfolie (13) auf der von der Außenscheibe (2) abgewandten Oberfläche des Substrats (1 ) angeordnet wird und wobei die Trennfolie (13) bevorzugt zumindest ein Polytetrahalogenethylen, besonders bevorzugt Polytetrafluorethylen und/oder Polychlortrifluorethylen enthält und bevorzugt eine Dicke von 0,01 mm bis 10 mm aufweist.
15. Verwendung einer Dachscheibe nach einem der Ansprüche 1 bis 1 1 in Fahrzeugen für den Verkehr auf dem Lande, in der Luft oder zu Wasser, bevorzugt in Zügen, Straßenbahnen, Schiffen und Kraftfahrzeugen wie Bussen, Lastkraftwagen und insbesondere Personenkraftwagen.
EP13725602.0A 2012-06-05 2013-05-17 Dachscheibe mit einem integrierten photovoltaik-modul Withdrawn EP2855180A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13725602.0A EP2855180A1 (de) 2012-06-05 2013-05-17 Dachscheibe mit einem integrierten photovoltaik-modul

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12170870 2012-06-05
PCT/EP2013/060245 WO2013182398A1 (de) 2012-06-05 2013-05-17 Dachscheibe mit einem integrierten photovoltaik-modul
EP13725602.0A EP2855180A1 (de) 2012-06-05 2013-05-17 Dachscheibe mit einem integrierten photovoltaik-modul

Publications (1)

Publication Number Publication Date
EP2855180A1 true EP2855180A1 (de) 2015-04-08

Family

ID=48536813

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13725602.0A Withdrawn EP2855180A1 (de) 2012-06-05 2013-05-17 Dachscheibe mit einem integrierten photovoltaik-modul

Country Status (6)

Country Link
US (1) US10056515B2 (de)
EP (1) EP2855180A1 (de)
JP (1) JP6328105B2 (de)
KR (1) KR20150013668A (de)
CN (1) CN104334384A (de)
WO (1) WO2013182398A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364080B (zh) * 2012-06-05 2017-06-23 法国圣戈班玻璃厂 具有集成光伏模块的顶部片材
CN103928545A (zh) * 2014-04-28 2014-07-16 杭州勇电照明有限公司 模块式太阳能电池板及成型方法
CN103928546A (zh) * 2014-04-28 2014-07-16 杭州勇电照明有限公司 浇注固化式太阳能模块及成型方法
CN103928549A (zh) * 2014-04-28 2014-07-16 杭州勇电照明有限公司 浇固式太阳能模块及成型方法
CN105128943B (zh) * 2015-09-09 2018-02-16 宁波山迪光能技术有限公司 聚碳酸酯封装的太阳能车顶或天窗及其制作方法
CN105438270B (zh) * 2015-12-25 2018-08-17 吉林大学 一种可实现光电转换的车辆顶棚
CN107848270B (zh) * 2016-07-13 2021-05-04 法国圣戈班玻璃厂 具有多层的复合层的复合玻璃板及其制造方法
WO2019001471A1 (zh) * 2017-06-30 2019-01-03 北京汉能光伏投资有限公司 光伏发电车顶
JP6779197B2 (ja) * 2017-12-13 2020-11-04 株式会社豊田自動織機 ソーラーパネルの製造方法
KR101879336B1 (ko) * 2018-01-29 2018-07-17 엘지전자 주식회사 태양광 발전 모듈
CN108735840A (zh) * 2018-05-25 2018-11-02 汉能移动能源控股集团有限公司 一种太阳能薄膜电池的制造方法
US20190378943A1 (en) * 2018-06-11 2019-12-12 Alta Devices, Inc. Planarization of photovoltaics
WO2020037824A1 (zh) * 2018-08-20 2020-02-27 汉能移动能源控股集团有限公司 太阳能车辆组件及其制备方法和车辆
US20220080835A1 (en) * 2020-09-17 2022-03-17 Utica Leaseco, Llc Replaceable solar module for automotive use
WO2022221295A1 (en) * 2021-04-12 2022-10-20 Conductix, Inc. Internally sprung shunt
WO2024193919A1 (de) 2023-03-17 2024-09-26 Saint-Gobain Glass France Photovoltaische verbundscheibe mit einer aerogel-lage

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666614A (en) * 1969-06-24 1972-05-30 Union Carbide Corp Glass-polycarbonate resin laminates
US4663228A (en) * 1983-05-03 1987-05-05 Advanced Glass Systems Corp. Laminated safety glass
JPS625671A (ja) 1985-07-02 1987-01-12 Sanyo Electric Co Ltd 光起電力装置の製造方法
DE3538986C3 (de) 1985-11-02 1994-11-24 Deutsche Aerospace Verfahren zur Herstellung eines Solargenerators
JPS62128652U (de) * 1986-02-07 1987-08-14
JPS62174916U (de) 1986-04-28 1987-11-06
JPS62186447U (de) 1986-05-19 1987-11-27
JPS63178357U (de) 1987-05-11 1988-11-18
US4860509A (en) 1987-05-18 1989-08-29 Laaly Heshmat O Photovoltaic cells in combination with single ply roofing membranes
DE3727825A1 (de) 1987-08-20 1989-03-02 Siemens Ag Serienverschaltetes duennschichtsolarmodul aus kristallinem silizium
JP2589529B2 (ja) * 1988-02-01 1997-03-12 日本板硝子株式会社 曲面太陽電池モジュールの製造方法
DE68911201T2 (de) * 1988-05-24 1994-06-16 Asahi Glass Co Ltd Methode für die Herstellung eines Solarzellenglassubstrates.
JPH03204979A (ja) 1989-10-02 1991-09-06 Kyocera Corp 太陽電池モジュール及びその製造方法
DE4006756A1 (de) 1990-03-03 1991-09-05 Webasto Ag Fahrzeugtechnik Lichtdurchlaessige scheibe fuer kraftfahrzeuge
DE4105389C1 (de) 1991-02-21 1992-06-11 Webasto-Schade Gmbh, 8031 Oberpfaffenhofen, De
JPH08236794A (ja) 1995-02-27 1996-09-13 Fuji Electric Co Ltd 薄膜太陽電池モジュールの製造方法
JP3687701B2 (ja) * 1995-05-08 2005-08-24 株式会社ブリヂストン 太陽電池モジュール
JPH0992867A (ja) 1995-09-27 1997-04-04 Asahi Glass Co Ltd 太陽電池モジュールの製造方法
EP0874404B1 (de) * 1997-04-21 2004-06-30 Canon Kabushiki Kaisha Solarzellenmodul und Verfahren zu dessen Herstellung
WO2001081475A1 (fr) 2000-04-21 2001-11-01 Kaneka Corporation Composition durcissable, composition pour un materiau optique, materiau optique, affichage a cristaux liquides, film conducteur transparent et procede de production associe
JP2002083992A (ja) 2000-09-07 2002-03-22 Nissan Motor Co Ltd 太陽電池パネルおよびその製造方法
JP2002231990A (ja) 2001-02-06 2002-08-16 Nissan Motor Co Ltd 太陽電池パネル
JP2004534404A (ja) * 2001-07-04 2004-11-11 株式会社荏原製作所 太陽電池モジュール及びその製造方法
JP2003031824A (ja) * 2001-07-13 2003-01-31 Sharp Corp 太陽電池モジュール
US6870087B1 (en) 2001-09-14 2005-03-22 Patrick Gallagher Assembly method and apparatus for photovoltaic module
JP2006013413A (ja) 2003-09-10 2006-01-12 Dainippon Printing Co Ltd 太陽電池モジュール用充填材層、太陽電池モジュール、ならびに再生太陽電池素子および再生透明前面基板の製造方法
CN100481524C (zh) * 2003-09-10 2009-04-22 大日本印刷株式会社 太阳能电池组件用填充材料层、太阳能电池组件
US20080283115A1 (en) 2004-01-28 2008-11-20 Yuko Fukawa Solar Battery Module and Photovoltaic Generation Device
US20080223429A1 (en) 2004-08-09 2008-09-18 The Australian National University Solar Cell (Sliver) Sub-Module Formation
JP2006165169A (ja) 2004-12-06 2006-06-22 Canon Inc 太陽電池モジュール、その製造方法及び、その施工方法
US20070012353A1 (en) * 2005-03-16 2007-01-18 Vhf Technologies Sa Electric energy generating modules with a two-dimensional profile and method of fabricating the same
JP5127123B2 (ja) * 2005-07-22 2013-01-23 ダイキン工業株式会社 太陽電池のバックシート
US20070295390A1 (en) * 2006-05-05 2007-12-27 Nanosolar, Inc. Individually encapsulated solar cells and solar cell strings having a substantially inorganic protective layer
CN101192630B (zh) 2006-11-30 2012-05-02 比亚迪股份有限公司 太阳能电池天窗及其制造方法
CN101192632A (zh) 2006-12-01 2008-06-04 中国科学院半导体研究所 聚光太阳电池单元
US7531740B2 (en) * 2006-12-22 2009-05-12 Lumeta, Inc. Photovoltaic module for roofs
DE102007037891B4 (de) 2007-08-10 2014-05-08 Webasto Ag Verfahren zur Herstellung eines gekrümmten Glasdeckels oder eines gekrümmten Glasfestelements für ein Fahrzeugdach
JP2009130193A (ja) 2007-11-26 2009-06-11 Toyota Motor Corp 太陽電池モジュール
AT506129B1 (de) 2007-12-11 2009-10-15 Heic Hornbachner En Innovation Gekrümmte photovoltaik-module und verfahren zu deren herstellung
EP2248186A2 (de) 2008-02-19 2010-11-10 CertainTeed Corporation Strukturierte fotovoltaische dachelemente, systeme und kits
DE102008030927A1 (de) 2008-07-02 2009-10-22 Robert Bürkle GmbH Verfahren und Vorrichtung zum Laminieren von im Wesentlichen plattenförmigen Werkstücken unter Druck- und Wärmeeinwirkung
JP2010021500A (ja) 2008-07-14 2010-01-28 Mitsubishi Chemicals Corp 電力供給システム
US20110226312A1 (en) 2008-08-12 2011-09-22 Webasto Ag Vehicle surface component having a solar cell arrangement
WO2010019829A1 (en) 2008-08-13 2010-02-18 Robert Stancel Impact resistant thin-glass solar modules
JP5448728B2 (ja) * 2008-11-26 2014-03-19 京セラ株式会社 太陽電池モジュールのラミネータ及びこれにより製造された太陽電池モジュール
EP2200097A1 (de) 2008-12-16 2010-06-23 Saint-Gobain Glass France S.A. Verfahren zur Herstellung einer Photovoltaikvorrichtung und System zur Strukturierung eines Objekts
US10640672B2 (en) 2009-03-03 2020-05-05 Arkema France Acrylic photovoltaic module backsheet
JP4877353B2 (ja) 2009-04-02 2012-02-15 トヨタ自動車株式会社 太陽電池モジュールの製造方法
US20110139225A1 (en) * 2009-06-23 2011-06-16 E. I. Du Pont De Nemours And Company Shaped photovoltaic module
JP2011046697A (ja) 2009-07-30 2011-03-10 Mitsubishi Chemicals Corp 新規ホスフィン化合物,およびこれを用いた電極バッファー材料ならびに光電変換素子
DE102009039246A1 (de) 2009-08-28 2011-03-10 Sunfilm Ag Vorrichtung, System mit mindestens zwei solcher Vorrichtungen und Verfahren zur Bestückung einer Photovoltaikanlage
EP2308679A1 (de) 2009-10-06 2011-04-13 Bayer MaterialScience AG Solarmodule mit Polycarbonatblend-Folie als Rückseitenfolie
JP2011151334A (ja) 2009-12-26 2011-08-04 Kyocera Corp 太陽電池モジュールの製造方法
JP5682122B2 (ja) 2010-03-05 2015-03-11 トヨタ自動車株式会社 太陽電池モジュール
EP2395567B1 (de) * 2010-06-10 2018-10-03 Solarwave AB Verfahren Zur Herstellung eines Solarzellenmoduls
JP5494334B2 (ja) 2010-07-28 2014-05-14 マツダ株式会社 車載太陽電池パネルの取付構造
US9312417B2 (en) * 2010-10-22 2016-04-12 Guardian Industries Corp. Photovoltaic modules, and/or methods of making the same
JP5421890B2 (ja) 2010-11-09 2014-02-19 富士フイルム株式会社 光電変換素子の製造方法
US10295712B2 (en) * 2012-04-19 2019-05-21 Honeywell International Inc. Backsheets for photovoltaic modules using infrared reflective pigments
CN104364080B (zh) 2012-06-05 2017-06-23 法国圣戈班玻璃厂 具有集成光伏模块的顶部片材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QINGFENG SU ET AL: "Flexible Thin Film Solar Cells Using in the Car", WORLD ELECTRIC VEHICLE JOURNAL, vol. 4, 5 November 2010 (2010-11-05), pages 793 - 797, XP055585682, ISSN: 2032-6653, DOI: 10.3390/wevj4040793 *

Also Published As

Publication number Publication date
WO2013182398A1 (de) 2013-12-12
KR20150013668A (ko) 2015-02-05
US10056515B2 (en) 2018-08-21
JP2015521388A (ja) 2015-07-27
JP6328105B2 (ja) 2018-05-23
CN104334384A (zh) 2015-02-04
US20150129013A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
EP2855180A1 (de) Dachscheibe mit einem integrierten photovoltaik-modul
EP2855146A1 (de) Dachscheibe mit einem integrierten photovoltaik-modul
EP2442977B1 (de) Verbundglasscheibe und deren verwendung
EP2710640A1 (de) Solarmodul
EP2718980A1 (de) Solarmodul
EP0630524A1 (de) Klimastabiles dünnschichtsolarmodul
EP2758993B1 (de) Dünnschichtsolarmodul mit serienverschaltung und verfahren zur serienverschaltung von dünnschichtsolarzellen
WO2014019780A1 (de) Verbundscheibe mit elektrischer kontaktierung
DE102007037891B4 (de) Verfahren zur Herstellung eines gekrümmten Glasdeckels oder eines gekrümmten Glasfestelements für ein Fahrzeugdach
EP2751848A1 (de) Dünnschicht-photovoltaik-modul mit hydrophober rückseitenbeschichtung
WO2021209433A1 (de) Scheibe mit elektrisch beheizbarem kommunikationsfenster für sensoren und kamerasysteme
WO2013143821A1 (de) Photovoltaik-modul mit kühlvorrichtung
WO2014075919A1 (de) Photovoltaik-modul mit rückverstärkungsblech
EP2929570A1 (de) Solarmodul mit anschlussdose
DE112013002119T5 (de) Verbesserte photovoltaische Module zur Verwendung in Fahrzeugdächern und/oder Verfahren zu ihrer Herstellung
DE102010004831A1 (de) Fahrzeug mit photovoltaischer Vorrichtung
WO2011110329A2 (de) Photovoltaisches element mit optisch funktionaler konversionsschicht zur verbesserung der umwandlung des einfallenden lichts sowie verfahren zu dessen herstellung
DE202021101982U1 (de) Verbundscheibe
DE102009016049A1 (de) Kraftfahrzeug
DE102010006681A1 (de) Photovoltaikzelle, Photovoltaikmodul, Verfahren zum Herstellen einer Photovoltaikzelle und eines Photovoltaikmoduls
WO2014005802A1 (de) Verfahren zur abdichtung eines kontaktloches eines photovoltaik-moduls
WO2024218231A1 (de) Verfahren zum herstellen einer verbundscheibe mit solarmodulen
WO2015107108A1 (de) Dachschindel mit einem photovoltaischem element
DE202021004243U1 (de) Verglasung
DE102009006962A1 (de) Photovoltaikmodul

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190514

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190925