WO2020037824A1 - 太阳能车辆组件及其制备方法和车辆 - Google Patents

太阳能车辆组件及其制备方法和车辆 Download PDF

Info

Publication number
WO2020037824A1
WO2020037824A1 PCT/CN2018/113136 CN2018113136W WO2020037824A1 WO 2020037824 A1 WO2020037824 A1 WO 2020037824A1 CN 2018113136 W CN2018113136 W CN 2018113136W WO 2020037824 A1 WO2020037824 A1 WO 2020037824A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
adhesive film
solar
film layer
Prior art date
Application number
PCT/CN2018/113136
Other languages
English (en)
French (fr)
Inventor
程晓龙
佟德林
Original Assignee
汉能移动能源控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810949811.4A external-priority patent/CN108831944A/zh
Priority claimed from CN201821345685.3U external-priority patent/CN209119132U/zh
Application filed by 汉能移动能源控股集团有限公司 filed Critical 汉能移动能源控股集团有限公司
Publication of WO2020037824A1 publication Critical patent/WO2020037824A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • This application relates to, but is not limited to, the field of solar modules, and in particular, relates to, but is not limited to, a solar vehicle component, a method for manufacturing the same, and a vehicle.
  • Solar cell modules do not need to consume energy such as gasoline and diesel to convert solar energy into electricity.
  • Placing solar battery modules on the roof can not only help cars reduce the consumption of gasoline, diesel, and natural gas, reduce carbon dioxide emissions, improve air quality, but also extend the range of rechargeable electric vehicles and improve the convenience of electric vehicles. Because of its flexibility and flexibility, it is widely used in vehicles such as motor vehicles.
  • crystalline silicon solar cells or most other solar modules are mostly flat and rigid. If you want to apply solar cell modules to vehicles (such as the roof of a vehicle), generally use a bracket or other structure to fix them. , Not only increase the body weight, but also affect the aesthetics of the vehicle.
  • flexible solar film standard components can also be used for surface-mount installation.
  • the existing solar cell modules do not follow the curve design of the vehicle body, which limits its laying. It can only be installed on relatively flat surfaces such as the roof and the vehicle body. And cannot be closely fitted to the body after mounting, it may fall off when driving at high speed, which poses a certain safety hazard.
  • An embodiment of the present application provides a solar vehicle component, which includes a vehicle shell substrate, a cured resin-based composite material layer, a first adhesive film layer, a solar chipset layer, and a second adhesive film layer stacked in order from bottom to top. And on the packaging layer.
  • An embodiment of the present application further provides a method for preparing a solar vehicle component, and the method includes:
  • step S2 The preform obtained in step S1 is vacuum cured and packaged.
  • An embodiment of the present application further provides a vehicle including the solar vehicle component as described above or a solar vehicle component prepared by the method for manufacturing a solar vehicle component as described above.
  • FIG. 1 is a schematic structural diagram of a solar vehicle component according to an embodiment of the present application.
  • orientation words such as “up” and “down” generally refer to the up or down of the module in actual use.
  • the drawing direction of FIG. 1 That is, with respect to the backlight surface of the solar vehicle component, the side where the light-receiving surface of the solar vehicle component is located is up; and with respect to the light-receiving surface of the solar vehicle component, the side where the backlight surface of the solar vehicle component is located is down.
  • An embodiment of the present application provides a solar vehicle component, which includes a vehicle shell substrate, a cured resin-based composite material layer, a first adhesive film layer, a solar chipset layer, and a second adhesive film layer stacked in order from bottom to top. And on the packaging layer.
  • the vehicle housing base may include one or more of a roof base, a front roof base, a rear roof base, a left door base, and a right door base.
  • the resin-based composite material layer may include a resin and a fiber
  • the resin may be an epoxy resin, an unsaturated polyester resin, a vinyl resin, or a polyurethane resin
  • the fiber may be a glass fiber, Carbon fiber or aramid fiber.
  • the content of the resin may be 30% to 70% by weight, and the content of the fiber may be 30% to 70% by weight.
  • the resin may be epoxy resin
  • the fiber may be glass fiber.
  • the content of the epoxy resin may be 45% by weight.
  • the content of the carbon fiber may be 35% to 55% by weight.
  • the thickness of the resin-based composite material layer may be 0.2 mm to 0.6 mm.
  • the solar chipset layer may include a plurality of interconnected sub-chips, and the sub-chips may be a copper indium gallium selenium thin film solar cell, a perovskite thin film solar cell, an organic semiconductor thin film solar cell, A gallium arsenide (GaAs) compound semiconductor thin film solar cell or an amorphous silicon heterojunction solar cell.
  • the sub-chips may be a copper indium gallium selenium thin film solar cell, a perovskite thin film solar cell, an organic semiconductor thin film solar cell, A gallium arsenide (GaAs) compound semiconductor thin film solar cell or an amorphous silicon heterojunction solar cell.
  • the materials of the first adhesive film layer and the second adhesive film layer may each be an ethylene-vinyl acetate copolymer, a polyvinyl butyral resin, a polyolefin, or a polyolefin derivative. Or silicone.
  • the visible light transmittance of the material of the first adhesive film layer and the material of the second adhesive film layer may be greater than 85% each.
  • the thickness of the first adhesive film layer (3) and the second adhesive film layer (5) may be 0.1 mm to 1.5 mm each.
  • the material of the upper encapsulation layer may be selected from Ethylene-Tetra-Fluoro-Ethylene (ETFE), Ethylene-Vinyl alcohol copolymer (EVOH) ), One or more of Polyethylene terephthalate (PET) and Polycarbonate (PC).
  • EFE Ethylene-Tetra-Fluoro-Ethylene
  • EOH Ethylene-Vinyl alcohol copolymer
  • PET Polyethylene terephthalate
  • PC Polycarbonate
  • the thickness of the upper packaging layer (6) may be 0.1 mm to 8 mm.
  • the resin-based composite material layer (2), the first adhesive film layer (3), the solar chip group layer (4), the second adhesive film layer (5), and The shape of the upper encapsulation layer (6) may match the shape of the vehicle shell base body (1), respectively.
  • An embodiment of the present application further provides a method for preparing a solar vehicle component, and the method includes:
  • step S2 The preform obtained in step S1 is vacuum cured and packaged.
  • the vacuum curing and encapsulation molding may include: first vacuum-treating the preform at a temperature of 30 ° C to 60 ° C to a vacuum degree of 80kPa to 100kPa and maintaining it for 0.5h to 1h. , And then laminating and curing for 2h to 3h at a temperature of 130 ° C to 160 ° C and a vacuum of 90kPa to 100kPa.
  • An embodiment of the present application further provides a vehicle including the solar vehicle component as described above or a solar vehicle component prepared according to the method for manufacturing a solar vehicle component as described above.
  • the solar vehicle component of the embodiment of the present application directly performs the packaging structure design according to the shape of the vehicle body.
  • the flexible resin-based composite material, the solar chipset, and the like are successively laid on the vehicle shell substrate, and then integrated into a package. It is made with high production efficiency and low cost. It does not need to re-engineer the car body structure, and does not need fixed structures such as brackets. It has a significant weight reduction effect, is not easy to fall off, and has good safety.
  • the component includes a vehicle shell substrate 1, a resin-based composite material layer 2, a first adhesive film layer 3, and a solar chipset layer 4 which are sequentially stacked from bottom to top. , The second adhesive film layer 5 and the upper encapsulation layer 6.
  • the above-mentioned layers are shown at intervals, and those skilled in the art may know that in actual module products, the above-mentioned layers are closely adhered to each other. .
  • the vehicle shell substrate 1 is directly used as the lower encapsulation layer, and a multilayer structure including a resin-based composite material layer 2, a solar chipset layer 4 and the like is provided thereon, so as to obtain a solar module that matches the shape of the vehicle body. , There is no need to re-engineer the vehicle body structure or use additional fixed structures, which has a significant lightening effect on the vehicle, is not easy to fall off, and has good safety.
  • the vehicle shell base 1 may be a base (vehicle housing) suitable for arranging any part of a solar cell on a vehicle, and may include, for example, a roof base, a front cover base, a rear cover base, a left One or more of a door base and a right door base.
  • the vehicle shell base 1 may be a roof base.
  • the thickness of the resin-based composite material layer 2 may generally be 0.2 mm to 0.6 mm.
  • the resin-based composite material layer 2 has the functions of adhesion and sealing, protecting the module from moisture and the like, and improving the mechanical strength of the module. Formed after one or more layers of resin-based composites are molded.
  • the resin-based composite material layer 2 may include resin and fibers.
  • the type of the resin can be selected within a wide range, for example, it can be an epoxy resin, an unsaturated polyester resin, a vinyl resin, or a urethane resin, and its molecular weight is not particularly limited.
  • the fiber may be any kind having a reinforcing effect.
  • the fiber may be glass fiber, carbon fiber, or aramid fiber.
  • the fiber may be short-cut fiber, long-cut fiber or continuous fiber, and hollow fiber.
  • the content of the resin may be 30% to 70% by weight, and the content of the fibers may be 30% to 70% by weight.
  • the resin may be epoxy resin
  • the fiber may be carbon fiber
  • the total weight of the resin-based composite material layer 2 As a reference, the content of the epoxy resin may be 45% to 65% by weight, and the content of the carbon fiber may be 35% to 55% by weight.
  • the solar chipset layer 4 may include a plurality of interconnected sub-chips.
  • the connection and arrangement of the plurality of sub-chips are not particularly limited, and may be connected to each other in a manner well known to those skilled in the art, for example Parallel, series, combination of series and parallel, etc. Multiple sub-chips can be stacked on top of each other, or can be arranged in parallel in parallel. An appropriate gap (for example, 0 mm to 5 mm) can be reserved between adjacent sub-chips to avoid short circuits.
  • the sub chip may be various common thin film solar cells, such as a copper indium gallium selenium thin film solar cell, a perovskite thin film solar cell, an organic semiconductor thin film solar cell, a gallium arsenide (GaAs) compound semiconductor thin film solar cell, or an amorphous Silicon Heterojunction Solar Cell.
  • the number and arrangement of the sub-chips can be adjusted according to actual needs (for example, according to the shape and area of the vehicle shell substrate, etc.) to achieve a high degree of flexibility. All of the sub-chips can be formed as a whole chip without loss of output power.
  • the materials of the first adhesive film layer 3 and the second adhesive film layer 5 may each be an ethylene-vinyl acetate copolymer, a polyvinyl butyral resin, a polyolefin, or a polyolefin derivative. Or silicone, in exemplary embodiments, may be a polyolefin or a polyolefin derivative.
  • the materials of the first adhesive film layer 3 and the second adhesive film layer 5 may be the same or different.
  • the visible light transmittance of the material of the first adhesive film layer 3 and the material of the second adhesive film layer 5 may each be greater than 85%, and in addition, it may have sufficiently low water vapor transmission. Overrun rate (such as below 1 ⁇ 10 -1 g / m 2 ⁇ day).
  • the thickness of the first adhesive film layer 3 and the second adhesive film layer 5 may each be 0.1 mm to 1.5 mm.
  • the material of the upper encapsulation layer 6 may be a conventional high molecular polymer that can be used for encapsulation, for example, one or more selected from ETFE, EVOH, PET, and PC.
  • the above materials can also be used after being modified (such as high-barrier modification, UV-resistant modification, anti-scratch modification, etc.).
  • the visible light transmittance of the material of the upper encapsulation layer 6 may be greater than 90%, and in addition, it may be selected to have a better barrier to water vapor (for example, the water vapor transmission rate is less than 1 ⁇ 10 -3 g / m 2 ⁇ day), UV-resistant materials and the like as the upper encapsulation layer 6.
  • the thickness of the upper encapsulation layer 6 may be 0.1 mm to 8 mm.
  • the embodiment of the present application further provides a method for preparing the solar vehicle component as described above, and the method includes:
  • step S2 The preform obtained in step S1 is vacuum cured and packaged.
  • step S1 the incompletely cured flexible resin-based composite material, the material of the first adhesive film layer, the solar chip group, the material of the second adhesive film layer, and the The laying area of the material of the upper encapsulation layer matches the shape of the vehicle shell base body, so as to finally form a solar vehicle component conforming to the shape of the vehicle body. After laying, it can be properly fixed to avoid displacement of the preform.
  • the incompletely-cured flexible resin-based composite material in step S1, is a staged intermediate product before the resin is completely cured, and it has certain flexibility, so it can be adapted to the shape of the vehicle shell substrate and realize the connection with the vehicle body. In addition, it can continue to melt and cross-link and solidify in step S2, so as to achieve an adhesive seal, and achieve the effect of protecting the component from moisture and the like, and improving the mechanical strength of the component.
  • the degree of flexibility and curing of the incompletely-cured flexible resin-based composite material differs according to the type of resin, and there are no special restrictions on it in the embodiments of the present application, as long as the above-mentioned purpose can be achieved.
  • the composite material when it is an epoxy-based composite material or a polyurethane-based composite material, it may be a flexible semi-cured material with a curing degree of about 50%; when the composite material is an unsaturated polyester resin-based composite material or ethylene When it is a resin-based composite material, it may be a flexible semi-cured material obtained by curing.
  • the vacuum curing packaging molding may be performed in a conventional packaging equipment in the art, such as a vacuum laminator.
  • the vacuum encapsulation molding may include: placing the preform in a vacuum bag of a vacuum laminator, first performing a vacuum treatment at 30 ° C to 60 ° C to a vacuum degree of 80kPa to 100kPa and maintaining it for 0.5h to 1h, Then, the vacuum bag is pushed into a laminator, and lamination and curing are performed at a temperature of 130 ° C to 160 ° C and a vacuum degree of 90kPa to 100kPa for 2h to 3h.
  • the above conditions are conducive to the complete curing of the resin-based composite material, and the expected effects of adhesion and structural enhancement are achieved.
  • the material of the first adhesive film layer, the resin-based composite material, and the material of the second adhesive film layer are fully melted, cured, and crosslinked to fill the gaps between the vehicle shell substrate, the solar chipset, and the lower encapsulation layer, and finally The three are bonded together.
  • the vacuum encapsulation molding After the vacuum encapsulation molding is completed, it is naturally cooled to room temperature to obtain a solar vehicle component.
  • the method in the embodiment of the present application directly lays a prefabricated body on the vehicle shell substrate according to the shape of the vehicle body, and then integrates one-time encapsulation molding to make a solar vehicle component, which has high production efficiency and low cost.
  • An embodiment of the present application further provides a vehicle including the solar vehicle component described above.
  • the thicknesses of the resin-based composite material layer, the first adhesive film layer, the second adhesive film layer, and the upper encapsulation layer of the solar vehicle component are measured using a spiral micrometer.
  • the test method for adhesive strength is to cut a component with a width of 1 cm, and perform a peel test at 180 ° using a peel force machine.
  • the cost of component preparation is the sum of the cost of related auxiliary materials such as components and fixed structures, labor costs and equipment costs.
  • the flexible resin-based composite material includes 55% by weight of epoxy resin and 45% by weight of carbon fiber
  • the materials of the first adhesive film layer and the second adhesive film layer are both polyolefin (ethylene-octene copolymer, The visible light transmittance is 89%)
  • the material of the upper encapsulation layer is a composite material of ETFE and PET
  • the solar chipset is formed by combining 50 sub-chips (copper indium gallium selenium thin film solar cells) in series and parallel.
  • the above-mentioned flexible resin-based composite material, the material of the first adhesive film layer, the material of the solar chip group, the material of the second adhesive film layer, and the material of the upper encapsulation layer are sequentially laid on the roof substrate to obtain a preform; put it into a vacuum layer
  • the vacuum bag of the press was first evacuated at 30 ° C to a vacuum degree of 100kPa and maintained for 0.5h, and then the vacuum bag was pushed into the laminator at a temperature of 150 ° C and a vacuum degree of 100kPa.
  • the laminate was cured and formed for 2 hours, and the laminator was launched, and then naturally cooled to room temperature to obtain the solar vehicle component prepared in this embodiment.
  • the thickness of the resin-based composite material layer in the module is 0.5 mm
  • the thickness of the first adhesive film layer is 0.4 mm
  • the thickness of the second adhesive film layer is 0.4 mm
  • the thickness of the upper encapsulation layer is 0.3 mm.
  • the unit weight, adhesive strength and production cost data are listed in Table 1.
  • the flexible resin-based composite material includes 45% by weight of epoxy resin and 55% by weight of glass fiber, and the materials of the first adhesive film layer and the second adhesive film layer are both ethylene-vinyl acetate copolymer (visible light The transmittance is 85%), the material of the upper encapsulation layer is a modified PET composite material, and the solar chipset is formed by combining 50 sub-chips (copper indium gallium selenium thin film solar cells) in series and parallel.
  • the above-mentioned flexible resin-based composite material, the material of the first adhesive film layer, the material of the solar chip group, the material of the second adhesive film layer, and the material of the upper encapsulation layer are sequentially laid on the roof substrate to obtain a preform; put it into a vacuum layer In the vacuum bag of the press, first carry out a vacuum treatment at 50 ° C to a vacuum degree of 90kPa and maintain it for 1 hour, and then push the vacuum bag into the laminator, and perform the layer at a temperature of 130 ° C and a vacuum degree of 100kPa. Compression molding was performed for 3 hours, a laminator was launched, and the mixture was naturally cooled to room temperature to obtain the solar vehicle component prepared in this embodiment.
  • the thickness of the resin-based composite material layer in the module is 0.6 mm
  • the thickness of the first adhesive film layer is 0.5 mm
  • the thickness of the second adhesive film layer is 0.5 mm
  • the thickness of the upper encapsulation layer is 0.2 mm.
  • the unit weight, adhesive strength and production cost data are listed in Table 1.
  • a comparative method is used to prepare solar vehicle components and then install them on the roof. The specific steps are:
  • Bracket structure design design the bracket structure according to the roof structure and process it;
  • Module packaging packaging according to the packaging structure of thin film solar cells
  • Module installation Install the thin-film solar cell on a pre-designed bracket structure, and weld the structure to the roof as a whole.
  • a solar vehicle module was prepared according to another comparative method, and then installed on the roof. The specific steps are:
  • a, module packaging according to the packaging structure of thin film solar cell packaging requirements;
  • Module installation Paste the thin-film solar cell with adhesive, and then install the module on the pre-paved roof with adhesive.
  • the solar vehicle component of the embodiment of the present application has higher adhesive strength, a significant weight reduction effect, and a lower manufacturing cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

提供一种太阳能车辆组件及其制备方法和车辆。太阳能车辆组件包括由下向上依次叠置的车辆壳基体(1)、固化的树脂基复合材料层(2)、第一胶膜层(3)、太阳能芯片组层(4)、第二胶膜层(5)和上封装层(6)。

Description

太阳能车辆组件及其制备方法和车辆 技术领域
本申请涉及但不限于太阳能组件领域,具体地,涉及但不限于一种太阳能车辆组件及其制备方法和车辆。
背景技术
太阳能电池模组不需要消耗汽油、柴油等能源便可以将太阳能转化为电能。将太阳能电池模组布置在车顶上,不仅能够帮助汽车降低汽油、柴油、天然气的消耗,减少二氧化碳的排放,改善空气质量,还可以延长充电式电动汽车的续航里程,提高电动汽车使用的便利性和灵活性,因此被广泛地应用在机动车等车辆中。
目前,晶硅太阳能电池片或者大部分其他太阳能组件多为平面结构且偏刚性,如果想将太阳能电池模组应用在机动车上(比如车辆的车顶)时,一般要采取支架等结构进行固定,不但增加车身重量,而且会影响整车的美观性。
此外还可以采取柔性太阳能薄膜标准组件以表面贴装形式进行安装,但现有的太阳能电池模组不依据车身曲线设计,使其铺设受限,仅能铺设在如车顶及车身等相对较平面的位置;并且贴装后无法与车身紧密贴合,在高速驾驶时可能会脱落,存在一定安全隐患。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种太阳能车辆组件,该组件包括由下向上依次叠置的车辆壳基体、固化的树脂基复合材料层、第一胶膜层、太阳能芯片组层、第二胶膜层和上封装层。
本申请实施例还提供了一种制备太阳能车辆组件的方法,该方法包括:
S1、在车辆壳基体上依次铺设未完全固化的柔性树脂基复合材料、第一胶膜层的材料、太阳能芯片组、第二胶膜层的材料和上封装层的材料,得到预制体;
S2、将步骤S1得到的所述预制体进行真空固化封装成型。
本申请实施例还提供了一种车辆,该车辆包括如上所述的太阳能车辆组件或通过如上所述的制备太阳能车辆组件的方法制备得到的太阳能车辆组件。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得更加清楚,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述
附图是用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与下面的具体实施例一起用于解释本申请的技术方案,但并不构成对本申请技术方案的限制。在附图中:
图1是本申请实施例提供的太阳能车辆组件的结构示意图。
附图标记说明:
1-车辆壳基体    2-树脂基复合材料层
3-第一胶膜层    4-太阳能芯片组层
5-第二胶膜层    6-上封装层
详述
以下结合附图对本申请的具体实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在本申请实施例中,在未作相反说明的情况下,使用的方位词如“上”、“下”通常是指组件实际使用时的上或下,具体可参考图1的图面方向,即相对于太阳能车辆组件的背光面来说,太阳能车辆组件的受光面所在的一侧为上;相对于太阳能车辆组件的受光面来说,太阳能车辆组件的背光面所在 的一侧为下。
本申请实施例提供了一种太阳能车辆组件,该组件包括由下向上依次叠置的车辆壳基体、固化的树脂基复合材料层、第一胶膜层、太阳能芯片组层、第二胶膜层和上封装层。
在本申请实施例中,所述车辆壳基体可以包括车顶基体、前顶盖基体、后顶盖基体、左车门基体和右车门基体中的一种或多种。
在本申请实施例中,所述树脂基复合材料层可以包括树脂和纤维,所述树脂可以为环氧树脂、不饱和聚酯树脂、乙烯基树脂或聚氨酯树脂,所述纤维可以为玻璃纤维、碳纤维或芳纶纤维。
在本申请实施例中,以所述树脂基复合材料层的总重量为基准,所述树脂的含量可以为30重量%至70重量%,所述纤维的含量可以为30重量%至70重量%。
在本申请实施例中,所述树脂可以为环氧树脂,所述纤维可以为玻璃纤维;以所述树脂基复合材料层的总重量为基准,所述环氧树脂的含量可以为45重量%至65重量%,所述碳纤维的含量可以为35重量%至55重量%。
在本申请实施例中,所述树脂基复合材料层的厚度可以为0.2mm至0.6mm。
在本申请实施例中,所述太阳能芯片组层可以包括多个相互连接的子芯片,所述子芯片可以为铜铟镓硒薄膜太阳能电池、钙钛矿薄膜太阳能电池、有机半导体薄膜太阳能电池、砷化镓(GaAs)化合物半导体薄膜太阳能电池或非晶硅异质结太阳能电池。
在本申请实施例中,所述第一胶膜层和所述第二胶膜层的材料可以各自为乙烯-醋酸乙烯酯共聚物、聚乙烯醇缩丁醛树脂、聚烯烃、聚烯烃衍生物或有机硅。
在本申请实施例中,所述第一胶膜层的材料和所述第二胶膜层的材料的可见光透过率可以各自为大于85%。
在本申请实施例中,所述第一胶膜层(3)和所述第二胶膜层(5)的厚度可以各自为0.1mm至1.5mm。
在本申请实施例中,所述上封装层的材料可以选自乙烯-四氟乙烯共聚物(Ethylene-Tetra-Fluoro-Ethylene,ETFE)、乙烯-乙烯醇共聚物(Ethylene-Vinyl alcohol copolymer,EVOH)、聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)和聚碳酸脂(Polycarbonate,PC)中的一种或多种。
在本申请实施例中,所述上封装层(6)的厚度可以为0.1mm至8mm。
在本申请实施例中,所述树脂基复合材料层(2)、所述第一胶膜层(3)、所述太阳能芯片组层(4)、所述第二胶膜层(5)和所述上封装层(6)的形状可以分别与所述车辆壳基体(1)的形状相匹配。
本申请实施例还提供了一种制备太阳能车辆组件的方法,该方法包括:
S1、在车辆壳基体上依次铺设未完全固化的柔性树脂基复合材料、第一胶膜层的材料、太阳能芯片组、第二胶膜层的材料和上封装层的材料,得到预制体;
S2、将步骤S1得到的所述预制体进行真空固化封装成型。
在本申请实施例中,步骤S2中,所述真空固化封装成型可以包括:将所述预制体先在30℃至60℃下进行抽真空处理至真空度为80kPa至100kPa并维持0.5h至1h,然后在温度为130℃至160℃,真空度为90kPa至100kPa的条件下进行层压固化成型2h至3h。
本申请实施例还提供了一种车辆,该车辆包括如上所述的太阳能车辆组件或根据如上所述的制备太阳能车辆组件的方法制备得到的太阳能车辆组件。
通过上述技术方案,本申请实施例的太阳能车辆组件直接依据车身形状进行封装结构设计,通过将柔性的树脂基复合材料、太阳能芯片组等先后在车辆壳基体上进行铺设,然后一体化一次封装成型制成,生产效率高、成本低,无需对车体结构进行二次改造,无需支架等固定结构,轻量化效果显著,且不易脱落,安全性好。
本申请实施例提供了一种太阳能车辆组件,参考图1,该组件包括由下向上依次叠置的车辆壳基体1、树脂基复合材料层2、第一胶膜层3、太阳能芯片组层4、第二胶膜层5和上封装层6。为清楚说明本申请实施例的太阳能车辆组件的结构,图1中将上述各层间隔示出,而本领域技术人员可以知晓 的是,在实际的组件产品中,上述各层是紧密贴合的。
本申请实施例直接以车辆壳基体1为下封装层,在其上设置包括树脂基复合材料层2、太阳能芯片组层4等在内的多层结构,从而得到与车身形状相匹配的太阳能组件,无需对车体结构进行二次改造或额外使用固定结构,对车辆的轻量化效果显著,且不易脱落,安全性好。
根据本申请实施例,所述车辆壳基体1可以为车辆上适于布置太阳能电池组的任意部位的基体(车辆外壳),例如可以包括车顶基体、前顶盖基体、后顶盖基体、左车门基体和右车门基体中的一种或多种。在本申请的示例性实施例中,所述车辆壳基体1可以为车顶基体。
根据本申请实施例,所述树脂基复合材料层2的厚度通常可以为0.2mm至0.6mm,其具有粘合密封、使组件免受湿气等侵蚀以及提升组件机械强度的作用,可以是由一层或多层树脂基复合材料成型后形成的。所述树脂基复合材料层2可以包括树脂和纤维。所述树脂的种类可在较大范围内选择,例如可以为环氧树脂、不饱和聚酯树脂、乙烯基树脂或聚氨酯树脂,对其分子量没有特殊的限定。所述纤维可以为具有增强效果的任意种类,例如可以为玻璃纤维、碳纤维或芳纶纤维,纤维的具体形态没有特殊的限制,例如可以为短切纤维、长切纤维或连续纤维、中空纤维等。以所述树脂基复合材料层2的总重量为基准,所述树脂的含量可以为30重量%至70重量%,所述纤维的含量可以为30重量%至70重量%。为了进一步提高组件的机械强度和轻量化效果,在本申请的示例性实施例中,所述树脂可以为环氧树脂,所述纤维可以为碳纤维;以所述树脂基复合材料层2的总重量为基准,所述环氧树脂的含量可以为45重量%至65重量%,所述碳纤维的含量可以为35重量%至55重量%。
根据本申请实施例,所述太阳能芯片组层4可以包括多个相互连接的子芯片,该多个子芯片的连接和排列方式没有特殊的限制,可以通过本领域技术人员熟知的方式相互连接,例如并联、串联、串联和并联结合等。多个子芯片可上下叠置,也可平行并列设置,相邻子芯片之间可预留适当间隙(例如0mm至5mm)以避免短路。所述子芯片可以为各种常见的薄膜太阳能电池,如铜铟镓硒薄膜太阳能电池、钙钛矿薄膜太阳能电池、有机半导体薄膜 太阳能电池、砷化镓(GaAs)化合物半导体薄膜太阳能电池或非晶硅异质结太阳能电池。所述子芯片的数量和布置方式等均可根据实际需要(如根据车辆壳基体的形状、面积等)进行调整,实现较高的灵活度。所述子芯片均可以形成为整片,输出功率无损失。
根据本申请实施例,所述第一胶膜层3和所述第二胶膜层5的材料各自可以为乙烯-醋酸乙烯酯共聚物、聚乙烯醇缩丁醛树脂、聚烯烃、聚烯烃衍生物或有机硅,在示例性实施例中可以为聚烯烃或聚烯烃衍生物。所述第一胶膜层3和第二胶膜层5的材料可以相同,也可以不同。为进一步提高组件的性能,所述第一胶膜层3的材料和所述第二胶膜层5的材料的可见光透过率各自可以为大于85%,此外,还可具有足够低的水汽透过率(如低于1×10 -1g/m 2·day)。所述第一胶膜层3和所述第二胶膜层5的厚度各自可以为0.1mm至1.5mm。
根据本申请实施例,所述上封装层6的材料可以为本领域常规的可用于封装的高分子聚合物,例如可以为选自ETFE、EVOH、PET和PC中的一种或多种。为了优化组件的性能,还可以将上述材料进行改性处理(如高阻隔改性处理、耐紫外改性处理、防刮伤改性处理等)后使用。在示例性实施例中,所述上封装层6的材料的可见光透过率可以为大于90%,此外,还可选择具有较优隔绝水汽(例如,水汽透过率低于1×10 -3g/m 2·day)、耐紫外等功效的材料作为所述上封装层6。所述上封装层6的厚度可以为0.1mm至8mm。
本申请实施例还提供了一种制备如上所述的太阳能车辆组件的方法,该方法包括:
S1、在车辆壳基体上依次铺设未完全固化的柔性树脂基复合材料、第一胶膜层的材料、太阳能芯片组、第二胶膜层的材料和上封装层的材料,得到预制体;
S2、将步骤S1得到的所述预制体进行真空固化封装成型。
根据本申请实施例,步骤S1中,所述未完全固化的柔性树脂基复合材料、所述第一胶膜层的材料、所述太阳能芯片组、所述第二胶膜层的材料和所述上封装层的材料的铺设区域与所述车辆壳基体的形状相匹配,以最终形 成符合车身形状的太阳能车辆组件。铺设完成后,可进行适当固定,避免预制体发生位移。
根据本申请实施例,步骤S1中,所述未完全固化的柔性树脂基复合材料为树脂完全固化前的阶段性中间产物,其具有一定的柔性,因此可适应车辆壳基体的形状,实现与车身的紧密贴合;而且,其可在步骤S2中继续熔融并交联固化,从而实现粘合密封,并达到使组件免受湿气等侵蚀,提升组件机械强度的效果。所述未完全固化的柔性树脂基复合材料的柔性程度和固化程度根据树脂的种类有所不同,本申请实施例对其没有特殊的限制,只要能达到上述目的即可。例如,当该复合材料为环氧树脂基复合材料或聚氨酯基复合材料时,其可以为固化程度在50%左右的柔性半固化材料;当该复合材料为不饱和聚酯树脂基复合材料或乙烯基树脂基复合材料时,其可以为经过熟化处理得到的柔性半固化材料。
根据本申请实施例,步骤S2中,所述真空固化封装成型可以在本领域的常规封装设备中进行,如真空层压机。所述真空封装成型可以包括:将所述预制体放入真空层压机的真空袋中,先在30℃至60℃下进行抽真空处理至真空度为80kPa至100kPa并维持0.5h至1h,然后将真空袋推入层压机,在温度为130℃至160℃,真空度为90kPa至100kPa的条件下进行层压固化成型2h至3h。上述条件有利于树脂基复合材料固化完全,达到粘合和结构增强的预期效果。该步骤中,第一胶膜层的材料、树脂基复合材料和第二胶膜层的材料充分融化和固化交联,填充车辆壳基体、太阳能芯片组和下封装层之间的空隙,最终使三者粘结为一体。所述真空封装成型完成后,自然冷却至室温,得到太阳能车辆组件。
本申请实施例的方法直接依据车身形状在车辆壳基体上铺设预制体,然后一体化一次封装成型,制成太阳能车辆组件,生产效率高、成本低。
本申请实施例还提供了一种车辆,该车辆包括如上所述的太阳能车辆组件。
以下通过示例性实施例进一步说明本申请的技术方案,但并不限定本申请的技术方案。
在以下实施例中,太阳能车辆组件的树脂基复合材料层、第一胶膜层、 第二胶膜层和上封装层的厚度采用螺旋测微器进行检测。粘合强度的测试方法为:裁切1cm宽度的组件,采用剥离力机以180°进行剥离测试。组件制备成本为组件及固定结构等相关辅料成本、人工成本与设备成本的总和。
实施例一
本实施例中,柔性树脂基复合材料包括55重量%的环氧树脂和45重量%的碳纤维,第一胶膜层和第二胶膜层的材料均为聚烯烃(乙烯-辛烯共聚物,可见光透过率为89%),上封装层的材料为ETFE与PET的复合材料,太阳能芯片组是由50个子芯片(铜铟镓硒薄膜太阳能电池)以串联和并联结合的方式形成的。
在车顶基体上依次铺设上述柔性树脂基复合材料、第一胶膜层的材料、太阳能芯片组、第二胶膜层的材料和上封装层的材料,得到预制体;将其放入真空层压机的真空袋中,先在30℃下进行抽真空处理至真空度为100kPa并维持0.5h,然后将真空袋推入层压机,在温度为150℃,真空度为100kPa的条件下进行层压固化成型2h,推出层压机,自然冷却至室温,得到本实施例制备的太阳能车辆组件。经检测,该组件中树脂基复合材料层的厚度为0.5mm,第一胶膜层的厚度为0.4mm,第二胶膜层的厚度为0.4mm,上封装层的厚度为0.3mm,该组件的单位重量、粘合强度和制备成本数据列于表1。
实施例二
本实施例中,柔性树脂基复合材料包括45重量%的环氧树脂和55重量%的玻璃纤维,第一胶膜层和第二胶膜层的材料均为乙烯-醋酸乙烯酯共聚物(可见光透过率为85%),上封装层的材料为改性PET复合材料,太阳能芯片组为由50个子芯片(铜铟镓硒薄膜太阳能电池)以串联和并联结合的方式形成的。
在车顶基体上依次铺设上述柔性树脂基复合材料、第一胶膜层的材料、太阳能芯片组、第二胶膜层的材料和上封装层的材料,得到预制体;将其放入真空层压机的真空袋中,先在50℃下进行抽真空处理至真空度为90kPa并维持1h,然后将真空袋推入层压机,在温度为130℃,真空度为100kPa的条件下进行层压固化成型3h,推出层压机,自然冷却至室温,得到本实施例制备的太阳能车辆组件。经检测,该组件中树脂基复合材料层的厚度为0.6mm, 第一胶膜层的厚度为0.5mm,第二胶膜层的厚度为0.5mm,上封装层的厚度为0.2mm,该组件的单位重量、粘合强度和制备成本数据列于表1。
对比例一
按照一种对比的方法制备太阳能车辆组件,然后安装于车顶上。具体步骤为:
a、支架结构设计:依据车顶结构设计支架结构,并加工成型;
b、组件封装:依据薄膜太阳能电池需求的封装结构进行封装;
c、组件安装:将薄膜太阳能电池安装于预先设计好的支架结构上,并将此结构整体焊接在车顶上。
该组件(包括支架结构)的单位重量、粘合强度和制备成本数据列于表1。
对比例二
按照另一种对比的方法制备太阳能车辆组件,然后安装于车顶上。具体步骤为:
a、组件封装:依据薄膜太阳能电池需求的封装结构进行封装;
b、组件安装:将薄膜太阳能电池贴背胶,然后用背胶将组件安装于预铺的车顶上。
该组件(包括固定结构)的单位重量、粘合强度和制备成本数据列于表1。
表1
  单位重量,kg/m 2 粘合强度,N/m 成本,元/瓦
实施例一 2 50 9.5
实施例二 2 45 10
对比例一 10 - 27
对比例二 3.5 20 13.5
由表1可见,相比通过对比例的方法制备得到的太阳能车辆组件,本申请实施例的太阳能车辆组件具有较高的粘合强度,轻量化效果显著,且制造成本更低。
本公开内容是本申请实施例的原则的示例,并非对本申请作出任何形式上或实质上的限定,或将本申请限定到具体的实施方案。对本领域的技术人员而言,很显然本申请实施例的技术方案的要素、方法和系统等,可以进行变动、改变、改动、演变,而不背离如上所述的本申请的实施例、技术方案的,如权利要求中所定义的原理、精神和范围。这些变动、改变、改动、演变的实施方案均包括在本申请的等同实施例内,这些等同实施例均包括在本申请的由权利要求界定的范围内。虽然可以许多不同形式来使本申请实施例具体化,但此处详细描述的是本申请的一些实施方案。此外,本申请的实施例包括此处所述的各种实施方案的一些或全部的任意可能的组合,也包括在本申请的由权利要求界定的范围内。在本申请中或在任一个引用的专利、引用的专利申请或其它引用的资料中任何地方所提及的所有专利、专利申请和其它引用资料据此通过引用以其整体并入。
以上公开内容规定为说明性的而不是穷尽性的。对于本领域技术人员来说,本说明书会暗示许多变化和可选择方案。所有这些可选择方案和变化旨在被包括在本权利要求的范围内,其中术语“包括”意思是“包括,但不限于”。在此完成了对本申请可选择的实施方案的描述。本领域技术人员可认识到此处所述的实施方案的其它等效变换,这些等效变换也为由附于本文的权利要求所包括。

Claims (15)

  1. 一种太阳能车辆组件,所述组件包括由下向上依次叠置的车辆壳基体(1)、固化的树脂基复合材料层(2)、第一胶膜层(3)、太阳能芯片组层(4)、第二胶膜层(5)和上封装层(6)。
  2. 根据权利要求1所述的组件,其中,所述车辆壳基体(1)包括车顶基体、前顶盖基体、后顶盖基体、左车门基体和右车门基体中的一种或多种。
  3. 根据权利要求1所述的组件,其中,所述树脂基复合材料层(2)包括树脂和纤维,所述树脂为环氧树脂、不饱和聚酯树脂、乙烯基树脂或聚氨酯树脂,所述纤维为玻璃纤维、碳纤维或芳纶纤维;
    以所述树脂基复合材料层(2)的总重量为基准,所述树脂的含量为30重量%至70重量%,所述纤维的含量为30重量%至70重量%。
  4. 根据权利要求3所述的组件,其中,所述树脂为环氧树脂,所述纤维为碳纤维;以所述树脂基复合材料层(2)的总重量为基准,所述环氧树脂的含量为45重量%至65重量%,所述碳纤维的含量为35重量%至55重量%。
  5. 根据权利要求1至4中任意一项所述的组件,其中,所述树脂基复合材料层(2)的厚度为0.2mm至0.6mm。
  6. 根据权利要求1所述的组件,其中,所述太阳能芯片组层(4)包括多个相互连接的子芯片,所述子芯片为铜铟镓硒薄膜太阳能电池、钙钛矿薄膜太阳能电池、有机半导体薄膜太阳能电池、砷化镓化合物半导体薄膜太阳能电池或非晶硅异质结太阳能电池。
  7. 根据权利要求1所述的组件,其中,所述第一胶膜层(3)和所述第二胶膜层(5)的材料各自为乙烯-醋酸乙烯酯共聚物、聚乙烯醇缩丁醛树脂、聚烯烃、聚烯烃衍生物或有机硅。
  8. 根据权利要求1或7所述的组件,其中,所述第一胶膜层(3)的材料和所述第二胶膜层(5)的材料的可见光透过率各自为大于85%。
  9. 根据权利要求1或7所述的组件,其中,所述第一胶膜层(3)和所述第二胶膜层(5)的厚度各自为0.1mm至1.5mm。
  10. 根据权利要求1至4、6至7中任意一项所述的组件,其中,所述上封装层(6)的材料选自乙烯-四氟乙烯共聚物、乙烯-乙烯醇共聚物、聚对苯二甲酸乙二醇酯和聚碳酸脂中的一种或多种。
  11. 根据权利要求1至4、6至7中任意一项所述的组件,其中,所述上封装层(6)的厚度为0.1mm至8mm。
  12. 根据权利要求1至4、6至7中任意一项所述的组件,其中,所述树脂基复合材料层(2)、所述第一胶膜层(3)、所述太阳能芯片组层(4)、所述第二胶膜层(5)和所述上封装层(6)的形状分别与所述车辆壳基体(1)的形状相匹配。
  13. 一种制备权利要求1至12中任意一项所述的太阳能车辆组件的方法,所述方法包括:
    S1、在车辆壳基体上依次铺设未完全固化的柔性树脂基复合材料、第一胶膜层的材料、太阳能芯片组、第二胶膜层的材料和上封装层的材料,得到预制体;
    S2、将步骤S1得到的所述预制体进行真空固化封装成型。
  14. 根据权利要求13所述的方法,其中,步骤S2中,所述真空固化封装成型包括:将所述预制体先在30℃至60℃下进行抽真空处理至真空度为80kPa至100kPa并维持0.5h至1h,然后在温度为130℃至160℃,真空度为90kPa至100kPa的条件下进行层压固化成型2h至3h。
  15. 一种车辆,所述车辆包括权利要求1至12中任意一项所述的太阳能车辆组件或通过权利要求13或14所述的方法制备得到的太阳能车辆组件。
PCT/CN2018/113136 2018-08-20 2018-10-31 太阳能车辆组件及其制备方法和车辆 WO2020037824A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810949811.4A CN108831944A (zh) 2018-08-20 2018-08-20 太阳能车辆组件及其制备方法和车辆
CN201821345685.3U CN209119132U (zh) 2018-08-20 2018-08-20 太阳能车辆组件和车辆
CN201821345685.3 2018-08-20
CN201810949811.4 2018-08-20

Publications (1)

Publication Number Publication Date
WO2020037824A1 true WO2020037824A1 (zh) 2020-02-27

Family

ID=69592159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113136 WO2020037824A1 (zh) 2018-08-20 2018-10-31 太阳能车辆组件及其制备方法和车辆

Country Status (1)

Country Link
WO (1) WO2020037824A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201511916U (zh) * 2009-08-31 2010-06-23 比亚迪股份有限公司 一种汽车车顶
CN104334384A (zh) * 2012-06-05 2015-02-04 法国圣戈班玻璃厂 具有集成光伏模块的顶部片材
CN104733185A (zh) * 2013-12-19 2015-06-24 现代自动车株式会社 车辆用染料敏化太阳能电池的曲面化方法
CN107284527A (zh) * 2016-04-07 2017-10-24 现代自动车株式会社 具有太阳能电池的汽车顶板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201511916U (zh) * 2009-08-31 2010-06-23 比亚迪股份有限公司 一种汽车车顶
CN104334384A (zh) * 2012-06-05 2015-02-04 法国圣戈班玻璃厂 具有集成光伏模块的顶部片材
CN104733185A (zh) * 2013-12-19 2015-06-24 现代自动车株式会社 车辆用染料敏化太阳能电池的曲面化方法
CN107284527A (zh) * 2016-04-07 2017-10-24 现代自动车株式会社 具有太阳能电池的汽车顶板

Similar Documents

Publication Publication Date Title
US11791429B2 (en) Lightweight and flexible photovoltaic module comprising a front layer consisting of a polymer and a rear layer consisting of a composite material
CN106299002B (zh) 柔性太阳电池组件及其制备方法和应用
US20090272436A1 (en) Non-glass photovoltaic module and methods for manufacture
CN105322039A (zh) 超轻柔性晶体硅太阳电池组件及其制备方法
CA2611594A1 (en) Method for producing weather-resistant laminates for encapsulating solar cell systems
CN104465823A (zh) 太阳能天窗
KR101451142B1 (ko) 선루프용 태양전지 모듈 및 그 제조방법
US20150047693A1 (en) Coatings for aircraft window surfaces to produce electricity for mission-critical systems and maintenance load on commercial aircraft
CN111540793B (zh) 一种带有保温层的碲化镉太阳能电池组件及其制备方法
CN106449819B (zh) 一种柔性太阳电池组件及其制备方法和应用
CN207909887U (zh) 一种柔性晶硅光伏组件及汽车
CN101404298B (zh) 一种光伏组件及其生产工艺和应用
CN107871797B (zh) 一种高空长航时太阳能无人机光伏翼面及其制作方法
CN102602114A (zh) 轻薄型太阳能层压板的生产工艺及其生产的太阳能层压板
CN108831944A (zh) 太阳能车辆组件及其制备方法和车辆
WO2020037824A1 (zh) 太阳能车辆组件及其制备方法和车辆
CN209119132U (zh) 太阳能车辆组件和车辆
JP2013513248A (ja) 光電池を含む曲面モジュール
KR101076787B1 (ko) 태양전지모듈용 이면 보호시트의 제조방법
CN106057976A (zh) 一种利用冷封装制造光伏组件的方法
CN207474482U (zh) 一种高空长航时太阳能无人机光伏翼面
EP2474043B1 (en) Solar battery assembly and method for forming the same
CN114149770A (zh) 一种新型光伏组件及其制造方法
CN209880632U (zh) 一种光伏组件
CN111403516A (zh) 太阳能电池组件及太阳能电池组件的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18931105

Country of ref document: EP

Kind code of ref document: A1