EP2848739A1 - Paroi en acier - Google Patents
Paroi en acier Download PDFInfo
- Publication number
- EP2848739A1 EP2848739A1 EP12875924.8A EP12875924A EP2848739A1 EP 2848739 A1 EP2848739 A1 EP 2848739A1 EP 12875924 A EP12875924 A EP 12875924A EP 2848739 A1 EP2848739 A1 EP 2848739A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wall body
- steel
- wall
- steel pipe
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 457
- 239000010959 steel Substances 0.000 title claims abstract description 457
- 239000000463 material Substances 0.000 claims description 113
- 230000002787 reinforcement Effects 0.000 claims description 96
- 238000010276 construction Methods 0.000 claims description 59
- 238000003466 welding Methods 0.000 claims description 14
- 230000008878 coupling Effects 0.000 abstract description 27
- 238000010168 coupling process Methods 0.000 abstract description 27
- 238000005859 coupling reaction Methods 0.000 abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 26
- 230000005540 biological transmission Effects 0.000 abstract description 9
- 230000010485 coping Effects 0.000 description 19
- 238000000034 method Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 11
- 239000004570 mortar (masonry) Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 239000000470 constituent Substances 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 238000009412 basement excavation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- -1 acryl Chemical group 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/02—Sheet piles or sheet pile bulkheads
- E02D5/03—Prefabricated parts, e.g. composite sheet piles
- E02D5/04—Prefabricated parts, e.g. composite sheet piles made of steel
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/22—Piles
- E02D5/24—Prefabricated piles
- E02D5/28—Prefabricated piles made of steel or other metals
- E02D5/285—Prefabricated piles made of steel or other metals tubular, e.g. prefabricated from sheet pile elements
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/04—Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
- E02B3/06—Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
- E02B3/066—Quays
Definitions
- the present invention relates to a steel wall used in earth retaining works, cofferdam, bank protection, land reclamation, embankment, and the like.
- a steel sheet pile and a steel pipe sheet pile have been used in various construction works such as earth retaining works, cofferdam, bank protection, land reclamation, and embankment.
- the steel sheet pile and the steel pipe sheet pile are used differently according to required rigidity.
- the steel sheet pile is used in a situation where the rigidity may be low, and the steel pipe sheet pile is used in a situation where the high rigidity is required.
- the steel pipe sheet pile has a larger amount of joint margin than the steel sheet pile. Therefore, in a case where water stopping performance is required when constructing the cofferdam, the bank protection, and the like, in general, a method in which a joint space is filled with packed cement mortar is used. In this method, in a case where a bag in which the mortar is packed is broken when used in a waterfront environment such as a river and a harbor, there is a possibility that the mortar may flow out. Since a space between the bags may become a water channel, it is not necessarily suitable for a use where the strict water stopping performance is required.
- the steel sheet pile has low rigidity compared to that of the steel pipe sheet pile but an excellent water stopping performance and a small expansion space of the joint. Even in a state where no measure is implemented, the water stopping performance thereof is high compared to that of the steel pipe sheet pile.
- a swelling water stopping material By coating the joint with a swelling water stopping material in advance, it is possible to further enhance the water stopping performance of the steel sheet pile.
- this method it is possible to provide the water stopping performance equal to or greater than the steel pipe sheet pile, to which the above-described measure has been implemented, as well as to save the effort in the work at the site.
- a tie rod type steel sheet pile wall such as a tie rod type steel sheet pile bank protection which couples a steel sheet pile wall to be a bank protection and a shoring provided on a land side than the bank protection by a tie rod.
- the tie rod is capable of transmitting a tensile force but not a compression force.
- the combination steel sheet pile having this structure has a large sectional area, and resistance at the time of driving becomes large, whereby a construction method thereof is limited. In particular, construction becomes difficult in a hard ground.
- rigidity as a steel wall is higher in a steel pipe sheet pile wall than in a steel sheet pile wall.
- water stopping performance in a joint can be enhanced more easily in the steel sheet pile wall than the steel pipe sheet pile wall.
- Patent Literature 2 by combining a shape steel with the steel sheet pile wall with which the water stopping performance can be easily enhanced, it is possible to construct a steel wall having both the rigidity and the high water stopping performance.
- the steel sheet pile wall (wall body) constituted of the steel sheet pile with the shape steel, in which the steel sheet pile and a reinforcement material such as the shape steel are not joined and integrated, and the steel sheet pile is in a state of being in contact with the shape steel.
- the steel sheet pile and the reinforcement material are constructed separately, relative to a member that is constructed first, a member to be constructed second is driven in a state where it is in contact with the member that is constructed first, whereby the following problem is caused. That is, due to sliding resistance between the steel sheet pile and the reinforcement material, a large force is needed at the time of driving, or there is a fear that noise and vibration may be generated.
- the member to be constructed second is driven in a state of being in contact with the member that is constructed first, a construction method is limited for the member to be driven second. For example, it becomes difficult to rotary press in a steel pipe as a reinforcement material and to use a vibratory type construction method in which a member is driven by being vibrated.
- the present invention has been made in view of the above-described circumstances and has an objective to provide an easily constructible steel wall having a structure in which a wall body, which is constituted of steel sheet piles to which it is possible to easily provide high water stopping performance are coupled with each other, and which is reinforced by a steel pipe or a H-shaped steel.
- a steel wall according to the present invention includes a corrugated-shaped wall body in which a plurality of steel sheet piles is coupled by a joint and in which a projection and a recess are repeated in a longitudinal direction, and a plurality of reinforcement materials constituted of a steel pipe or an H-shaped steel that reinforces the wall body and is arranged in a longitudinal direction of the wall body at a space with the wall body. A part of the reinforcement material is in a state of being entered into a recessed portion of the wall body.
- the wall body is coupled to the reinforcement material at head portions thereof.
- the wall body and the reinforcement material are apart, whereby there is little restriction on the construction method, and it is possible to select and use from various construction methods that are capable of driving a steel pipe and an H-shaped steel as a reinforcement material into the ground according to a situation.
- the wall body and the reinforcement material are apart, it is possible to separately perform construction for driving steel sheet piles into the ground while coupling them with each other to construct a wall body, and construction for driving a reinforcement material into the ground.
- the construction is easier since the wall body and the reinforcement material are not in contact with each other.
- the reinforcement material is a steel pipe
- the static press-in construction method such as the hydraulic press in construction method. Since there is little restriction on the construction method in this way, it is possible to select and use from various construction methods that are capable of driving a steel pipe and a H-shaped steel into the ground according to a situation.
- a high water stopping performance as with the conventional steel sheet pile wall can be obtained.
- a large construction space such in a case of a tie rod type wall body structure is not necessary.
- the reinforcement material entering into a recessed portion side of the wall body it is possible to make a wall width smaller than an addition of a steel sheet pile height and a steel pipe diameter, whereby it is possible to construct the steel wall by saving space of a construction space.
- a distance between the reinforcement material and the wall body is short, whereby unlike a tie rod type steel sheet pile wall, in a case where the reinforcement material and the wall body are coupled by a head portion thereof, it is possible to make a structure capable of transmitting both a tensile force and a compression force.
- the steel wall may be configured to have a structure in which the acting earth pressure and the acting water pressure may be shared and carried by the wall body and the reinforcement material.
- a waling material is necessary in order to distribute the acting force among tie rods discretely disposed in an extension direction of the wall body and to cause the wall body to behave uniformly.
- the reinforcement material enters into the recessed portion side, and the force is transmitted through a short distance, whereby the walingmaterial is not necessary.
- the reinforcement material is disposed to every other steel sheet pile or every two or more steel sheet piles, if there is a space between the reinforcement material and the steel sheet pile, an effect of the reinforcement material becomes partial, whereby a member for distributing the force in the extension direction of the waling material becomes necessary.
- the reinforcement material entering into the recessed portion of the wall body, the reinforcement material is capable of exerting an effect thereof to the steel sheet pile not installed with the reinforcement material, whereby the waling material and the like are not necessary.
- the wall body and the reinforcement material be coupled at the head portions thereof by a concrete, which has been driven across head portions thereof.
- this configuration it is configured to have a structure in which the head portion of the reinforcement material is coupled with the head portion of the wall body by the concrete, which has been driven across them, whereby it is possible to make a structure in which the head portions (upper end portions) of the steel pipe and the steel sheet pile are not exposed but covered with the concrete. Accordingly, it is possible to enhance aesthetics of the steel wall. Since the concrete is driven so as to extend across the reinforcement material and the wall body, there is little danger of a top end between the steel pipe and the wall body being collapsed, and the like.
- the wall body and the reinforcement material are coupled at head portions thereof being joined by welding them to a steel sheet installed between them.
- the coupling between the steel sheet and the reinforcement material at the head portion thereof is performed by welding the steel sheet to the reinforcement material and the wall body, whereby it is easy to construct and requires little construction effort.
- the coupling between the steel sheet and the reinforcement material at the head portion thereof is performed by welding the steel sheet to the reinforcement material and the wall body, whereby it is easy to construct and requires little construction effort.
- the tie rod type in which an effort to make a hole in the steel sheet pile and the steel pipe sheet pile through which the tie rod is passed and an effort of inserting the tie rod through the hole are necessary, is not necessary.
- a curing period of the concrete is not necessary, whereby it is possible to reduce a construction period.
- the wall body and the reinforcement material are coupled by being joined by welding to a steel sheet, which is installed between them, at the head portions thereof, and the wall body and the reinforcement material may also be coupled at the head portions thereof by the concrete, which is driven so as to extend across the head portions thereof.
- the concrete is excellent in transmitting a compression force at a coupled portion while the welded steel sheet is excellent in transmitting the tensile force at the coupled portion, whereby the strength may be mutually complemented.
- Improvement of transmission of the tensile force by the steel sheet and landscaping and safety measure (f or example, prevention of collapse of the top end) by the concrete (maintenance of scenery) may be mutually complemented.
- the reinforcement material be the steel pipe.
- a space be set between the wall body and the reinforcement material such that the steel sheet pile in the wall body and the reinforcement material are not in contact with each other during construction.
- the steel sheet pile of the wall body does not come in contact with the reinforcement material during the construction, whereby it is possible to prevent a problem caused by contact between the above-described wall body and the reinforcement material during the construction.
- the reinforcement material may be provided on a side of the wall body where a relatively large pressure is received.
- the wall body and the reinforcement material are to receive the pressure.
- a load acts on the wall body in a direction away from the reinforcement material.
- the head portion of the wall body is coupled to the head portion of the reinforcement material, and since it has a structure in which load transmission (tensile force transmission) is performed between the wall body and the reinforcement material, it is possible to share and receive the load between the wall body and the reinforcement material. Therefore, even if the reinforcement material is disposed on the side of the wall body where the relatively large pressure is received, it is possible to sufficiently improve the strength by combining the reinforcement material with the wall body.
- the reinforcement material is disposed on a back surface side. Therefore, on a side where a top portion of the steel wall is exposed, only a side surface of the wall body is exposed while the reinforcement material is in a hidden state, whereby it has an external appearance that is not complicated and aesthetically excellent.
- the reinforcement material may be provided on an opposite side of a side where the relatively large pressure is received of the wall body.
- the reinforcement material is provided on the opposite side of the side where the relatively large pressure is received of the wall body, whereby the earth pressure and the water pressure act on the wall body.
- the load is transmitted from the wall body to the reinforcement material (compression force transmission), whereby the earth pressure and the water pressure may be shared and received by the wall body and the reinforcement material.
- the reinforcement material is disposed on a front surface side, or a side where the top portion is exposed, of the wall body. Therefore, for example, drilling for exposing the head portion of the reinforcement material during the construction is not necessary, and repairs are easily made on the reinforcement material in an exposed state or on the coupled portion of the reinforcement material and the wall body.
- the present invention it is possible to obtain high water stopping performance similar to a conventional steel sheet pile wall, and to decrease a bending moment that occurs to the wall body due to the load being transmitted to the reinforcement material. It has a structure in which the steel sheet pile and the steel pipe or the H-shaped steel are combined; however, it is possible to construct them separately, whereby construction may be made easier.
- a steel wall 3 is configured to combine a hat-shaped steel sheet pile 1 as a steel sheet pile and a steel pipe (reinforcement material) 2.
- the plurality of steel pipes 2 is disposed at a space from each other and arranged in a line along a longitudinal direction of a wall body (steel sheet pile wall) 4, in which the plurality of hat-shaped steel sheet piles 1 is coupled.
- the hat-shaped steel sheet pile 1 includes: a web 1a; a pair of flanges 1b each diagonally extending from each of both side rims of the web 1a so as to spread out from each other; a pair of arms 1c extending to the right and left to be parallel to the web 1a from a tip of the right and left flanges 1b; and a joint Id provided at a tip of the arm 1c.
- the hat-shaped steel sheet pile 1 is not in contact with the steel pipe 2, and there is a space between the hat-shaped steel sheet pile 1 and the steel pipe 2.
- a diameter of the steel pipe 2 is narrower than a width (effective width) of the hat-shaped steel sheet pile 1.
- a part of this steel pipe 2 is in a state of being entered into a recessed portion, which is a valley portion on one of side surfaces of the wall body constituted of the hat-shaped steel sheet piles 1.
- the plurality of hat-shaped steel sheet piles 1 is arranged in a line by coupling the joints Id thereof with each other to constitute the above-described wall body 4 as the steel sheet pile wall.
- the hat-shaped steel sheet pile 1 and the steel pipe 2 are driven into the ground.
- a head portion of the wall body 4 constituted of the hat-shaped steel sheet piles 1 is coupled to a head portion of the steel pipe 2 by a coping 5. That is, the coping 5 is provided by the concrete, which is driven by involving the head portion of the wall body 4 and the head portion of the steel pipe 2. The head portion of the wall body 4 and the head portion of the steel pipe 2 enter into the concrete to be the coping 5, whereby the head portion of the wall body 4 and the head portion of the steel pipe 2 are coupled and fixed.
- the coping 5 is provided along the wall body 4 in a length direction, and by the coping 5 having the same length as the length of one wall body 4, all of the steel pipes 2 are coupled to the wall body 4.
- the steel pipe 2 is disposed on an opposite side of a side where the earth pressure is applied, or a front surface side, which is to be the side where the earth pressure is not applied.
- the steel wall 3 in this example is, for example, the bank protection, and relative to a high side ground surface a, a low side ground surface b is a waterside such as sea, lake, and river. Note that the steel wall 3 is not limited to the bank protection. It may be also used in earth retaining work, cofferdam, a land reclamation, embankment, and the like.
- the space is set such that the wall body 4 or the steel pipe 2 that is constructed second does not come in contact with each other during the construction.
- the space at the narrowest part between the wall body 4 and the steel pipe 2 be set to 50 mm or more during the construction. Note that the space may also be 60 mm or more, 70 mm or more, or 80 mm or more.
- a thickness of the steel wall body as a whole, and the like is configured such that at least a part of the steel pipe 2 is being entered into the recessed portion on the valley side of the corrugated-shaped sheet pile wall, in which a projection and a recess (a mountain and a valley) are repeated, as the wall body 4.
- the steel pipe By configuring such that the steel pipe enters into the recessed portion of the wall body, it is possible to perform hydraulic press in or rotary press in of the steel pipe 2 by grasping the steel sheet pile 4 of the already constructed steel sheet pile wall and an already driven steel pipe.
- the hydraulic press in and the rotary press in are performed by receiving a reaction force by the already constructed steel sheet pile wall and the steel pipe, in order to construct stably, it is preferred that the steel pipe be disposed as close as possible to the already constructed steel sheet pile wall and the steel pipe.
- a depth of the recessed portion (a distance between the web 1a and the arm 1c along a direction orthogonal thereto) is different.
- the depth of the recessed portion is about 200 mm to 300 mm, whereby it is preferred that the space between the steel pipe 2 and the web 1a of the hat-shaped steel sheet pile 1 of the wall body 4 be not greater than it.
- the hat-shaped steel sheet pile 1 constituting the wall body 4 and the steel pipe 2 to be the reinforcement material are driven separately into the ground.
- the wall body 4 may be an already established steel sheet pile wall, and the steel pipe may be driven for a purpose of reinforcing it and the like.
- the hydraulic press in construction method in which the hat-shaped steel sheet pile 1 is pressed in by receiving the reaction force by the hat-shaped steel sheet pile 1 driven first, to use the vibratory hammer construction method, or to perform drilling by an earth auger for driving.
- the wall body 4 which is a steel sheet pile wall
- the steel pipe 2 which is the reinforcement material
- the wall body 4 and the steel pipe 2 are driven into the ground at a space of, for example, 50 mm or more so as not to be in contact with each other during the construction, whereby it is possible to suppress the wall body 4 and the steel pipe 2 from sliding such that vibration, noise, and deformation are not caused during the construction.
- the wall body 4 and the steel pipe 2 are in contact during the construction, for example, when a vibratory type construction method in which a member to be driven is vibrated during driving or the rotary press in construction method is adopted, a possibility of causing the above-described noise, vibration, and deformation may become higher.
- a usable construction method may be limited, accordingly.
- the wall body 4 and the steel pipe 2 are apart during the construction, whereby there are many choices in the construction method.
- the concrete to be the coping 5 is driven across the wall body 4 and the steel pipe 2. Accordingly, the head portion of the wall body 4 is coupled with the head portion of the steel pipe 2.
- the head portion of the wall body 4 is coupled to the head portion of the steel pipe 2, whereby the load transmission is possible between the wall body 4 and the steel pipe 2 by the coupled portion. Therefore, the earth pressure and the water pressure received by the steel wall 3 are shared and received by the wall body 4 and the steel pipe 2.
- the head portion of the wall body 4 is coupled to the head portion of the steel pipe 2, whereby it is possible to prevent a positional misalignment in the vertical direction between the steel pipe 2 and the wall body 4.
- the steel pipe 2 is disposed to an opposite side of a side where the earth pressure is applied of the wall body 4, or on the front surface side where the earth pressure is not applied. Therefore, in a case where an objective is to reinforce the already established steel sheet pile wall, even if there is an obstacle in an above-ground portion or an under-ground portion on a back surface side, it is possible to install a steel pipe for reinforcement on the front surface side. Furthermore, even in a case where the reinforcement is performed with the steel pipe of the same length, compared to a case where it is installed to the back, the length to be driven into the soil becomes short, whereby it is possible to reduce the construction effort and the cost.
- the steel wall 3 is used as the bank protection, and the head portion of the steel pipe 2 is coupled to the head portion of the wall body 4 by the coping 5. Therefore, the coping 5 is a coupling material of the head portion of the steel pipe 2 and the head portion of the wall body 4, while it also has a function to block an opening portion of the steel pipe 2.
- a specialized coupling member such as a tie rod is not necessarily required, whereby it is possible to decrease the cost.
- a length of the steel pipe 2 is made longer than a vertical length of the wall body 4 (a length of the hat-shaped steel sheet pile 1).
- a free design becomes possible such as to allow receiving of the earth pressure by the steel pipe 2 and to allow the wall body 4 to play the role of preventing outflow of the earth and sand. Accordingly, it becomes possible to decrease a steel weight and the construction cost. For example, it is possible to make the steel pipe 2 longer than the wall body 4 and to allow only the steel pipe 2 to be embedded into a support layer.
- the length of the steel pipe 2 may be shorter than the vertical length of the wall body 4, or the length of the steel pipe 2 may be the same as the vertical length of the wall body 4.
- the length of the steel pipe 2 is determined from a viewpoint of the rigidity and a ground condition. In a case where boiling, heaving, and an arc sliding are concerned when the length of the steel pipe 2 is the same as the vertical length of the wall body 4, the vertical length of the wall body 4 may be made longer than the steel pipe 2. Furthermore, the wall body 4 may be made longer than the steel pipe 2 in order to cut off ground water.
- the steel pipe 2 is disposed to each of the hat-shaped steel sheet piles 1 of the wall body 4 (for each recessed portion of the wall body 4).
- the reinforcement material Since the reinforcement material is being entered into the recessed portion of the wall body, it is possible to exert an effect of the reinforcement material to an adjacent steel sheet pile without disposing the steel pipe to all of the hat-shaped steel sheet piles 1. It is preferred, however, that the steel pipe 2 be disposed substantially equal in a state where the steel pipe 2 is aligned in the longitudinal direction of the wall body 4.
- the steel sheet pile constituting the wall body 4 is not limited to the hat-shaped steel sheet pile 1; various steel sheet piles such as a U-shaped steel sheet pile, a Z-shaped steel sheet pile, and the like may be used.
- the head portion of the steel pipe 2, the head portion of the wall body 4, and the coping 5 are coupled by a steel pillow material (for example, a steel sheet or a shape steel cut into a predetermined length) 6 as a coupling member.
- the steel pipe 2 and the wall body 4 have the same vertical length.
- a configuration thereof is the same as that of the steel wall 3 of the first embodiment. Therefore, a constituent element that is the same as that of the first embodiment is denoted with the same reference numeral, and a description thereof is omitted.
- the steel pillow material 6 (steel material), as the coupling member, is provided in a state of being sandwiched between the head portion of the steel pipe 2 and the head portion of the wall body 4.
- This pillow material 6 is fixed to the steel pipe 2 and the wall body 4 by, for example, welding, a bolt, a drill screw, and the like. Accordingly, the head portion of the steel pipe 2 is coupled to the head portion of the wall body 4 in a state where the steel pipe 2 and the wall body 4 are apart.
- the length of the steel pipe 2 and the vertical length (length of the hat-shaped steel sheet pile 1) of the wall body 4 are substantially the same.
- a method of constructing the steel wall 31 according to the second embodiment is as follows.
- the steel sheet pile 1 and the steel pipe 2 are driven in the same way as in the first embodiment.
- a steel material to be the pillow material 6 is installed between the steel sheet pile 1 (wall body 4) and the steel pipe 2 and is fixed by welding, a bolt, a drill screw, and the like to the steel sheet pile 1 (wall body 4) and to the steel pipe 2, respectively.
- the coping is driven across the wall body 4 and the steel pipe 2.
- the head portion of the steel pipe 2 is coupled to the head portion of the wall body 4 through both the coping 5 and the pillow material 6. Accordingly, it is possible to more securely transmit the load received by the wall body 4 to the steel pipe 2. Except for this point and an effect based on that the steel pipe 2 and the hat-shaped steel sheet pile 1 have the same length, it is possible to obtain the same act and effect as the steel wall 3 of the first embodiment.
- the head portion of the steel pipe 2 is coupled to the head portion of the wall body 4 not only by the coping 5 but also by a pair of plate materials 7 as coupling members. Furthermore, a vertical length of the wall body 4 is made longer than the length of the steel pipe 2.
- the steel pipe 2 is disposed on a back surface side of the wall body 4 where an earth pressure is applied. Besides, it has the same configuration as the steel wall 3 of the first embodiment. Therefore, a constituent element that is the same as that of the first embodiment is denoted with the same reference numeral, and a description thereof is omitted.
- the steel plate materials 7 are provided in a state of being sandwiched between the head portion of the steel pipe 2 and the head portion of the wall body 4.
- the plate materials 7 are fixed to the steel pipe 2 and the wall body 4 by welding, a bolt, and the like, respectively.
- the head portion of the steel pipe 2 is coupled to the head portion of the wall body 4 in a state where the steel pipe 2 and the wall body 4 are apart.
- the coping 5 by providing the coping 5 by involving with concrete across the head portion of the steel pipe 2 and the head portion of the wall body 4, which are coupled by the plate material 7, the head portion of the steel pipe 2 is coupled to the head portion of the wall body 4 by the coping 5 as well.
- the vertical length (length of the hat-shaped steel sheet pile 1) of the wall body 4 is made longer than the length of the steel pipe 2. Accordingly, it is possible to prevent the boiling, heaving, and arc sliding as well as to cut off the ground water.
- the plate material 7 By performing coupling by the plate material 7 in addition to coupling by the coping 5, it is possible to enhance strength of the coupled portion of the head portion of the steel pipe 2 and the head portion of the wall body 4.
- a tensile load acts between the wall body 4 and the steel pipe 2, the coupling by the steel plate material 7 becomes further effective.
- the steel wall 32 of the third embodiment it is possible to obtain the same act and effect as the first embodiment except for the structure of the coupled portion, the length of the steel pipe 2 and the wall body 4, and the act and effect based on the disposition of the steel pipe 2 relative to the wall body 4.
- a steel wall 33 according to the fourth embodiment has an H-shaped steel 9 as a reinforcement material in place of a steel pipe 2; any other configuration is the same as the configuration of the steel wall 3 of the first embodiment. Therefore, a constituent element that is the same as that of the first embodiment is denoted with the same reference numeral, and a description thereof is omitted.
- the steel wall 33 of the fourth embodiment uses the H-shaped steel 9 as the reinforcement material.
- the H-shaped steel 9 is disposed along a longitudinal direction of the wall body 4, to which the hat-shaped steel sheet pile 1 is connected, being arranged in a line at a space in the same way as the steel pipe 2 of the first embodiment. In the same way as the steel pipe 2 of the first embodiment, the space is provided between the H-shaped steel 9 and the wall body 4.
- H-shaped steel 9 is in a state of being entered into a recessed portion, which is a valley portion on one of side surfaces of a wall body constituted of the hat-shaped steel sheet pile 1.
- the H-shaped steel 9 is disposed such that a web 9a is orthogonal to the longitudinal direction of the wall body 4. Therefore, a flange 9b is parallel to the longitudinal direction of the wall body 4.
- the head portion of the wall body 4 is coupled to a head portion of the H-shaped steel 9.
- the same method as the first to third embodiments may be used as a method of coupling the steel wall 33 to the H-shaped steel 9 as the reinforcement material. That is, the wall body 4 is coupled to the H-shaped steel 9 by the coping 5. Note that the wall body 4 and the H-shaped steel 9 may be coupled by welding through a steel material or by fastening with a bolt. The head portion of the wall body 4 may be coupled to the head portion of the H-shaped steel 9 by combining these methods of coupling.
- any other configuration such as a relationship between the length of the wall body 4 and the length of the H-shaped steel 9 and disposition of the H-shaped steel 9 relative to the wall body 4 (including a space between the wall body 4 and the H-shaped steel 9), may be the same as that of the first to third embodiments.
- the method of constructing the steel wall 33 may be the same as the method of constructing the steel wall of the first to third embodiments except that it is not possible to construct the H-shaped steel 9 by the inner excavation construction method or by the rotary press in construction method.
- a steel wall 34 of the fifth embodiment coupling of the head portion of the steel pipe 2 and the head portion of the wall body 4 are performed by welding of a steel sheet 8 in each of the above-described embodiments.
- Concrete is not used for coupling the head portion of the steel pipe 2 and the head portion of the wall body 4.
- the configuration thereof is the same as the steel wall 3 of the first embodiment, except for this structure of coupling the head portion of the steel pipe 2 and the head portion of the wall body 4. Therefore, the same constituent element is denoted with the same reference numeral, and a description thereof is omitted.
- the plurality of steel pipes 2 is disposed at a space from each other and arranged in a line along the longitudinal direction of the wall body (sheet pile wall) 4, in which the plurality of hat-shaped steel sheet piles 1 is coupled. It is disposed in a state where a part of the steel pipe 2 is being entered into a recessed portion of the corrugated steel sheet pile 1 in which a recess and a projection are repeated.
- the steel sheet 8 is disposed between the hat-shaped steel sheet pile 1 of the wall body 4 and the steel pipe 2.
- the steel sheet 8 is disposed between an arm 1c of the hat-shaped steel sheet pile 1 and an outer circumference of the steel pipe 2.
- a pair of the steel sheets 8 is provided in the right and left.
- One of edges of the steel sheet 8 is welded to the arm 1c of the hat-shaped steel sheet pile 1 and the other edge thereof is welded to the outer circumference of the steel pipe 2.
- construction of the wall body 4 and driving of the steel pipe 2 are performed in the same way as those in the first embodiment.
- the steel sheet 8 is welded to the hat-shaped steel sheet pile 1 of the wall body 4 and the steel pipe 2.
- coupling between the head portions of the wall body 4 and the steel pipe 2 is performed by welding of the steel sheet 8, whereby it becomes easy to construct.
- a cure time is not necessary unlike in a case where the concrete is used for coupling, whereby the construction period becomes short.
- the steel sheet 8 may be disposed between the web 1a of the hat-shaped steel sheet pile 1 and the outer peripheral surface of the steel pipe 2, or it may be disposed between a flange 1b and the outer peripheral surface of the steel pipe 2.
- a steel wall 34A illustrated in Fig. 12 in addition to the coupling by welding of the steel sheet 8, in the same way as the first embodiment, it is also possible to provide a coping 5 by concrete that is driven by involving the head portion of the wall body 4 and the head portion of the steel pipe 2. In this case, the concrete is to be driven after the welding of the steel sheet 8.
- the wall body 4 and the steel pipe 2 are coupled by the concrete in addition to the welding of the steel sheet 8.
- the steel walls 3, 31, 32, 33, 34, and 34A may also be constructed by setting an already established steel sheet pile wall as the wall body 4 and by driving the steel pipe 2 or the H-shaped steel 9 relative to this wall body 4.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Paleontology (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Environmental & Geological Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Mechanical Engineering (AREA)
- Bulkheads Adapted To Foundation Construction (AREA)
- Lining And Supports For Tunnels (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/061574 WO2013164885A1 (fr) | 2012-05-01 | 2012-05-01 | Paroi en acier |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2848739A1 true EP2848739A1 (fr) | 2015-03-18 |
EP2848739A4 EP2848739A4 (fr) | 2016-04-13 |
Family
ID=49514295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12875924.8A Withdrawn EP2848739A4 (fr) | 2012-05-01 | 2012-05-01 | Paroi en acier |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP2848739A4 (fr) |
JP (1) | JP6015751B2 (fr) |
CN (2) | CN104271841A (fr) |
HK (1) | HK1203580A1 (fr) |
IN (1) | IN2014DN08915A (fr) |
SG (1) | SG11201407027YA (fr) |
WO (1) | WO2013164885A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017089144A (ja) * | 2015-11-05 | 2017-05-25 | 株式会社琉球技研 | 鋼矢板による護岸構造体 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110863473B (zh) * | 2019-11-27 | 2024-06-25 | 中国电建集团贵阳勘测设计研究院有限公司 | 一种埋藏式压力钢管的联合阻水结构 |
JP7516197B2 (ja) | 2020-02-27 | 2024-07-16 | 日本製鉄株式会社 | 岸壁構造および岸壁構造の構築方法 |
JP2021167523A (ja) * | 2020-04-10 | 2021-10-21 | 日本製鉄株式会社 | 岸壁補強構造および岸壁構造の補強方法 |
JP7364526B2 (ja) * | 2020-04-10 | 2023-10-18 | 日本製鉄株式会社 | 岸壁構造および岸壁構造の構築方法 |
CN114991187B (zh) * | 2022-06-28 | 2023-09-26 | 安徽省公路桥梁工程有限公司 | 一种深水钢板桩和钢管桩组合式围堰结构及其施工方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH074241B2 (ja) | 1987-05-07 | 1995-01-25 | 三菱重工業株式会社 | 微生物菌体の固定化法 |
JP3756755B2 (ja) | 2000-11-29 | 2006-03-15 | 新日本製鐵株式会社 | 鋼製矢板の継ぎ手構造と止水方法 |
JP3603793B2 (ja) | 2001-01-19 | 2004-12-22 | 住友金属工業株式会社 | 地中連続壁用鋼材および地中連続壁 |
CN100537904C (zh) * | 2002-10-31 | 2009-09-09 | 住友金属工业株式会社 | 钢板墙及其制造方法 |
JP4074241B2 (ja) * | 2003-12-15 | 2008-04-09 | 住友金属工業株式会社 | 鋼材の建込み方法 |
JP2005299202A (ja) * | 2004-04-12 | 2005-10-27 | Nippon Steel Corp | 鋼矢板とそれを用いた土留め構造及び土留め構造の構築方法 |
JP5163246B2 (ja) * | 2008-04-09 | 2013-03-13 | 新日鐵住金株式会社 | 地中連続壁及びその構築方法 |
WO2011142047A1 (fr) * | 2010-05-10 | 2011-11-17 | 住友金属工業株式会社 | Paroi d'acier et son procédé de construction |
CN102116031A (zh) * | 2011-01-17 | 2011-07-06 | 东南大学 | 一种钢板桩管桩组合基坑支护结构及其支护方法 |
CN202164596U (zh) * | 2011-06-30 | 2012-03-14 | 董荣进 | 钢管板桩组合构造 |
-
2012
- 2012-05-01 IN IN8915DEN2014 patent/IN2014DN08915A/en unknown
- 2012-05-01 WO PCT/JP2012/061574 patent/WO2013164885A1/fr active Application Filing
- 2012-05-01 JP JP2014513324A patent/JP6015751B2/ja active Active
- 2012-05-01 EP EP12875924.8A patent/EP2848739A4/fr not_active Withdrawn
- 2012-05-01 CN CN201280072877.0A patent/CN104271841A/zh active Pending
- 2012-05-01 SG SG11201407027YA patent/SG11201407027YA/en unknown
- 2012-05-01 CN CN201810196043.XA patent/CN108330952A/zh active Pending
-
2015
- 2015-04-30 HK HK15104183.2A patent/HK1203580A1/xx unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017089144A (ja) * | 2015-11-05 | 2017-05-25 | 株式会社琉球技研 | 鋼矢板による護岸構造体 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013164885A1 (ja) | 2015-12-24 |
EP2848739A4 (fr) | 2016-04-13 |
CN104271841A (zh) | 2015-01-07 |
JP6015751B2 (ja) | 2016-10-26 |
CN108330952A (zh) | 2018-07-27 |
SG11201407027YA (en) | 2014-12-30 |
IN2014DN08915A (fr) | 2015-05-22 |
HK1203580A1 (en) | 2015-10-30 |
WO2013164885A1 (fr) | 2013-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100866162B1 (ko) | 의자형 자립식 흙막이벽의 시공방법 | |
EP2848739A1 (fr) | Paroi en acier | |
JP4965922B2 (ja) | 盛土補強構造および盛土体 | |
JP5321741B2 (ja) | 鋼製壁および鋼製壁の施工方法 | |
KR20100068597A (ko) | 아치형 강판파일과 H-Pile을 이용한 흙막이공법 | |
JP5464370B2 (ja) | 盛土の補強構造 | |
KR101065017B1 (ko) | 아치형 강판파일과 h-파일을 이용한 흙막이공법 | |
JP4343080B2 (ja) | 連続地中壁 | |
KR101185423B1 (ko) | 복합기능 보강토 옹벽 및 그 시공방법 | |
KR101061516B1 (ko) | 아치형 강판 파일을 이용한 흙막이 가시설 구조 | |
JP6477565B2 (ja) | 既設鋼矢板壁の補強構造及び補強方法 | |
KR101781264B1 (ko) | 자립식 흙막이 구조 및 그 시공 방법 | |
JP2012102497A (ja) | 鋼製壁および鋼製壁の施工方法 | |
KR100984040B1 (ko) | 이중 보강 공법을 통한 절토용 보강토 옹벽 시공 방법 | |
JPH0663239B2 (ja) | 地すべり抑止用井筒およびその築造方法 | |
JP6292028B2 (ja) | 盛土補強構造 | |
JP2010095907A (ja) | 既設基礎の補強構造および補強方法 | |
JP2005256571A (ja) | 連続壁体とその構築方法 | |
JP6196901B2 (ja) | 既設構造物を補強する工法および構造物 | |
TWI554665B (zh) | Steel wall | |
CN108661061A (zh) | 铰接节点对撑式锚固桩结构 | |
CN103215959B (zh) | V形预制桩与搅拌桩结合的支护结构施工方法 | |
JP7359515B2 (ja) | 地中構造物の液状化対策構造 | |
KR20100071951A (ko) | 비대칭 h―시트 파일을 이용한 시공구조 | |
KR101045663B1 (ko) | 이중 연속벽 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141022 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20160315 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E02D 5/28 20060101ALI20160309BHEP Ipc: E02B 3/06 20060101ALI20160309BHEP Ipc: E02D 5/04 20060101AFI20160309BHEP |
|
17Q | First examination report despatched |
Effective date: 20170718 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20181212 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: NAGAO, NAOYA Inventor name: TANAKA, HIROYUKI |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20190424 |