EP2835583B1 - Vanne de commande de gaz - Google Patents
Vanne de commande de gaz Download PDFInfo
- Publication number
- EP2835583B1 EP2835583B1 EP13772967.9A EP13772967A EP2835583B1 EP 2835583 B1 EP2835583 B1 EP 2835583B1 EP 13772967 A EP13772967 A EP 13772967A EP 2835583 B1 EP2835583 B1 EP 2835583B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- carriage
- control valve
- rotary disk
- safety valve
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 claims description 25
- 230000000903 blocking effect Effects 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 70
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K5/00—Feeding or distributing other fuel to combustion apparatus
- F23K5/002—Gaseous fuel
- F23K5/007—Details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/005—Regulating fuel supply using electrical or electromechanical means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/24—Preventing development of abnormal or undesired conditions, i.e. safety arrangements
- F23N5/245—Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electrical or electromechanical means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K2400/00—Pretreatment and supply of gaseous fuel
- F23K2400/20—Supply line arrangements
- F23K2400/201—Control devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K2900/00—Special features of, or arrangements for fuel supplies
- F23K2900/05002—Valves for gaseous fuel supply lines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/12—Fuel valves
- F23N2235/18—Groups of two or more valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/12—Fuel valves
- F23N2235/24—Valve details
Definitions
- the present invention relates to a gas control valve which controls a supply amount of a fuel gas to a gas burner of gas equipment.
- a flow rate control valve for controlling a gas supply flow rate and a safety valve for blocking gas supply are arranged in series in gas equipment such as a gas stove.
- a flow rate control valve in which open-close operations of a flow rate control valve and a safety valve are performed with one motor (for example, see Patent Literature 1).
- a flow rate control valve includes a shutoff-function-provided rotating member to prohibit gas communication in a given rotational angular range of a motor.
- the rotating member includes a rotary disk which is linked to a motor rotary shaft and a fixed disk which has a plurality of communication holes whose sizes are different to each other for controlling a gas flow rate.
- the rotational angular range of the motor in which gas communication is prohibited is a range from starting of advancing of an operation rod which holds the safety valve to retracting thereof.
- the operation rod is advanced along with rotation of the rotary disk and the safety valve is opened.
- the operation rod is retracted by further rotating the motor while the safety valve is kept in an opened state by an electromagnet.
- a communication port of the rotary disk and a communication port of the fixed disk are prevented from being matched in position to prevent a gas from flowing through the flow rate control valve.
- the communication port of the rotary disk and the communication port, having any of sizes, of the fixed disk are matched in position and gas communication through the flow rate control valve is allowed.
- JP 2010/266 151 A refers to a fire power regulating device for regulating a gas flow rate to the burner by increasing and decreasing an overlapping area of an opening of a rotating plate and an opening of a fixed plate by rotating a movable plate by the stepping motor, a cam member rotated by the rotating shaft is provided with an engagement section, a stopper is disposed at a device body side, and the rotation of the rotating shaft is forcibly stopped by bringing the engagement section into contact with the stopper.
- Patent Literature 1 Japanese Patent Application Laid-Open No. 2002-323218
- the gas valve disclosed in Patent Literature 1 has a structure that the rotary disk is rotated along with the rotation of the motor and both the safety valve and the flow rate control valve are operated in accordance with rotation of the rotary disk.
- the rotary disk is rotated continuously even when the safety valve is operated as well as when the flow rate control valve is operated.
- the rotary disk and the fixed disk are configured to be contacted tightly to each other at closing faces with a coil spring to prevent a gas from leaking to the downstream side through a gap between the disks.
- friction is produced between the rotary disk and the fixed disk continuously in operation of each of the safety valve and the flow rate control valve. Accordingly, there has been a problem that wear thereat deteriorates reliability of the closing faces.
- an object of the present invention is to suppress wear at the closing faces while reducing friction to be produced between the rotary disk and the fixed disk.
- the present invention provides a gas control valve according to claim 1, which is configured to perform open-close operations of a flow rate control valve and a safety valve with one motor.
- the gas control valve includes a rotary disk and a fixed disk as a shutoff-function-provided rotating member to prohibit gas communication through the flow rate control valve in a safety valve operation range, and a transmission interruption unit for interrupting power transmission from the motor to the rotary disk in the safety valve operation range.
- an adhesion varying unit for varying adhesion of the rotary disk to the fixed disk is further provided, so that the adhesion is caused to differ between in the safety valve operation range and in a flow rate control range.
- the rotation of the rotary disk is stopped in the safety valve operation range. Accordingly, friction between the rotary disk and the fixed disk is prevented from being produced and wear at the closing faces between both the disks can be prevented.
- adhesion of the rotary disk to the fixed disk in the flow rate control range can be lessened from that in the safety valve operation range.
- the safety valve it is required to enlarge adhesion at the closing faces to prevent a gas from leaking to the downstream side through a gap between the rotary disk and the fixed disk just in case.
- the adhesion between the rotary disk and the fixed disk can be lessened to some extent as supplying the gas. Since the adhesive is small, friction to be produced between the rotary disk and the fixed disk is lessened even when the rotary disk is rotated and wear at the closing faces between both the disks can be suppressed.
- FIG. 1 is a schematic view illustrating a main structure of a gas control valve 1 according to the present embodiment.
- the gas control valve 1 of the present embodiment is applied to gas equipment such as a gas stove as including a flow rate control valve 11 for controlling a gas supply flow rate and a safety valve 12 for blocking gas supply.
- the gas control valve 1 of the present embodiment is configured to perform open-close operations of the flow rate control valve 11 and the safety valve 12 with a single motor 28.
- the flow rate control valve 11 includes a shutoff-function-provided rotating member to prohibit gas communication in a safety valve operation range being a rotational angular range in which the safety valve 12 is operated.
- the shutoff-function-provided rotating member includes a rotary disk 13 which is rotated along with rotation of the motor 28 and a fixed disk 14 which is arranged as being opposed to the rotary disk 13.
- the safety valve 12 includes a magnet case 16.
- the magnet case 16 accommodates an electromagnet which is magnetized based on a signal from a control circuit 29 and a sticking piece to be stuck thereto.
- a valve body 17 protruded to the downstream side from the magnet case 16 is linked to the sticking piece. In a state that the safety valve 12 is closed, the valve body 17 blocks a gas passage in a state of being urged to the downstream side by a return spring (not illustrated).
- An opening operation of the safety valve 12 is performed with an operation rod 18 which is movable in a front-back direction of the gas passage (lateral direction in FIG. 1 ) .
- the operation rod 18 is moved to the upstream side by a link member 20 which is rotated along with the motor 28 and pushes the valve body 17, so that the gas passage is in an opened state. That is, the safety valve 12 is in an opened state.
- the link member 20 is configured to operate the safety valve 12 by advancing and retracting the operation rod 18 urged to the downstream side by a spring 19 in the front-back direction of the gas passage. That is, when the motor 28 is rotated, the link member 20 is rotated as being interlocked therewith and the operation rod 18 is advanced to the upstream side by a link lever portion (not illustrated) protruded toward the operation rod 18 to open the safety valve 12. Subsequently, the operation rod 18 is retracted by rotating the motor 28 in the opposite direction while the safety valve 12 is kept in the opened state with the electromagnet in the magnet case 16 magnetized with a signal from the control circuit 29.
- the safety valve operation range denotes a rotational angular range of the motor 28 from starting of advancing of the operation rod 18 to retracting thereof to the original position.
- the valve body 17 is moved to the downstream side with a force of the return spring and the safety valve 12 returns into the closed state.
- a fixed-side communication port 15 having constant opening area is formed at the fixed disk 14. Meanwhile, a rotating-side communication port (not illustrated) whose opening area is gradually varied along a circumferential direction is formed at the rotary disk 13.
- gas supplied from the upstream side (right side in FIG. 1 ) of the safety valve 12 flows toward a gas burner (not illustrated) (upward in FIG. 1 ) via the rotating-side communication port and the fixed-side communication port 15.
- a flow rate control range denotes a rotational angular range of the motor 28 in which gas communication is allowed between the rotary disk 13 and the fixed disk 14.
- the gas control valve 1 of the present embodiment includes a carriage member 21, between the link member 20 and the rotary disk 13, which transmits power from the motor 28 to the rotary disk 13 as being rotated along with the link member 20.
- a power transmission shaft 22 is arranged on a face of the carriage member 21 at the side of the rotary disk 13.
- a power transmission bearing 23 is arranged on a face of the rotary disk 13 at the side of the carriage member 21. A part of the power transmission shaft 22 at the top end side is inserted to the power transmission bearing 23.
- the power transmission shaft 22 is configured to be movable in the upper-lower direction at the inside of the power transmission bearing 23.
- the gas control valve 1 of the present embodiment includes a transmission interruption unit for interrupting power transmission from the motor 28 to the rotary disk 13 in the safety valve operation range.
- the transmission interruption unit includes a stopper 25 which is arranged at a case 24 of the gas control valve 1 and an engaging portion 26 which is arranged at the carriage member 21 to stop rotation of the carriage member 21 as being engaged with the stopper 25.
- the safety valve operation range rotation of the carriage member 21 is stopped and the link member 20 is solely rotated independently from the carriage member 21, so that the safety valve 12 is operated.
- the flow rate control range being a range in which the flow rate control valve 11 is operated by the motor 28, the carriage member 21 is rotated as being interlocked with the link member 20 and transmits power of the motor 28 to the rotary disk 13.
- the gas control valve 1 of the present embodiment further includes an adhesion varying unit for varying adhesion of the rotary disk 13 to the fixed disk 14, so that adhesion in the safety valve operation range and adhesion in the flow rate control range are caused to differ to each other. It is preferable that the adhesion is maximized in the safety valve operation range and is minimized in the flow rate control range.
- the adhesion varying unit includes a spring member 27 arranged between the carriage member 21 and the rotary disk 13 and a distance varying unit for varying a distance between the carriage member 21 and the rotary disk 13.
- the spring member 27 is compressed and an urging force to the rotary disk 13 is enlarged. Accordingly, the adhesion of the rotary disk 13 to the fixed disk 14 is enlarged.
- the distance varying unit when the distance between the carriage member 21 and the rotary disk 13 is enlarged by the distance varying unit, the spring member 27 is extended and the urging force to the rotary disk 13 is lessened. Accordingly, the adhesion of the rotary disk 13 to the fixed disk 14 is lessened.
- a detailed structural example of the distance varying unit will be described later.
- FIGs. 2 to 5 are views illustrating a specific structural example of the gas control valve 1 of the present embodiment.
- FIG. 2 is a sectional view of the gas control valve 1 of the present embodiment.
- FIG. 3 is a sectional view at A-A of the gas control valve 1 in FIG. 2 .
- FIG. 4 is a view illustrating a structural example of the distance varying unit provided in the gas control valve 1 of the present embodiment.
- FIG. 5 is a view illustrating operational states of the distance varying unit.
- the same reference is given to a structural element having the same function as a structural element illustrated in FIG. 1 .
- the link member 20 is linked to a motor rotary shaft 31 to be rotated along with rotation of the motor 28.
- the carriage member 21 is linked to the linkmember 20 to be rotated along with rotation of the motor 28 via the link member 20.
- a carriage lifting-lowering cam unit 32 as the distance varying unit is arranged at the link member 20 and the carriage member 21.
- the carriage lifting-lowering cam unit 32 also has a function to link the link member 20 and the carriage member 21.
- the carriage lifting-lowering cam unit 32 includes a link cam portion 32a which is arranged at one face of the link member 20 (a face opposed to the carriage member 21) and a carriage cam portion 32b which is arranged at one face of the carriage member 21 (a face opposed to the link member 20).
- the link cam portion 32a includes two concave portions formed along a circumferential direction of the link member 20. One end of the concave portion is formed as an approximately perpendicular face and the other end thereof is formed as an inclined face (taper face) having a predetermined angle.
- the carriage cam portion 32b includes two convex portions formed along a circumferential direction of the carriage member 21. One end of the convex portion is formed as an approximately perpendicular face and the other end is formed as an inclined face (taper face) having a predetermined angle.
- the concave portions of the link cam portion 32a and the convex portions of the carriage cam portion 32b are formed approximately the same in size and the taper faces thereof have approximately the same inclination as well.
- the link cam portion 32a and the carriage cam portion 32b are just-fitted to each other, so that the link member 20 and the carriage member 21 are rotated as being interlocked with each other. That is, in a state that the link member 20 and the carriage member 21 are rotated as being interlocked with each other without the engaging portion 26 of the carriage member 21 engaged with the case 24, the link cam portion 32a and the carriage cam portion 32b are fitted to each other and the carriage member 21 is in a lowered state as illustrated in FIG. 5(a) .
- the taper face formed at the link cam portion 32a and the taper face formed at the carriage cam portion 32b are arranged to be opposed to each other.
- the carriage cam portion 32b is slid along the taper face to be raised onto a flat portion where the link cam portion 32a of the link member 20 is not formed, as illustrated in FIG. 5(b) .
- the carriage member 21 is to be in a lifted state.
- the spring member 27 is in a compressed state compared to the lowered state in FIG. 5(a) .
- the link member 20 in a case that the carriage member 21 is not to be rotated even when the motor 28 is rotated owing to that the engaging portion 26 of the carriage member 21 is engaged with the stopper 25 of the case 24, the link member 20 is in a state of being solely rotatable independently from the carriage member 21.
- the engagement of the carriage lifting-lowering cam unit 32 is released and the carriage cam portion 32b is raised onto the flat portion of the link member 20, so that the carriage member 21 is to be in the lifted state.
- the motor rotary shaft 31 being at the rotational center of the link member 20 and the carriage member 21 does not exist on an extension line of a rod movement axis 33 on which the operation rod 18 moves in the front-back direction of the gas passage.
- the motor rotary shaft 31 is arranged at a position being offset from the rod movement axis 33.
- the link member 20 linked to the motor rotary shaft 31 includes a link lever portion 20a which is protruded toward the rod movement axis 33. When the link member 20 is rotated along with the motor 28, the link lever portion 20a performs a pushing operation on a slider 34 and the operation rod 18 linked to the slider 34 is to be advanced and retracted in the front-back direction of the gas passage.
- valve body 17 of the safety valve 12 is arranged ahead (at the upstream side) of the operation rod 18. Owing to that the moved operation rod 18 pushes the valve body 17, the gas passage is in an opened state. An electromagnet 35 for keeping the safety valve 12 in the opened state is arranged further ahead the valve body 17.
- FIGs. 6 to 10 are views illustrating operational examples of the gas control valve 1 of the present embodiment.
- FIG. 6 is a timing chart.
- FIGs. 7 to 10 are views illustrating states of the gas control valve 1 at respective timings indicated by I) to V) and *1 to *3 in the timing chart of FIG. 6 .
- the motor 28 is rotated in reverse (CCW) at timing I).
- the link lever portion 20a is not abutted to the slider 34 (see FIG. 8-I ), so that the operation rod 18 is not moved to the upstream side as illustrated in FIG. 6(d) .
- the valve body 17 of the safety valve 12 is in the closed state as illustrated in FIG. 6(c) (see FIG. 8-I )).
- the link cam portion 32a and the carriage cam portion 32b are fitted to each other, so that the carriage lifting-lowering cam unit 32 is in the lowered state as illustrated in FIG. 6(b) (see FIGs. 7-I and 10-I )).
- the fixed-side communication port 15 arranged at the fixed disk 14 and the rotating-side communication port 41 arranged at the rotary disk 13 are completely deviated in position. Accordingly, as illustrated in FIG. 6(a) , the flow rate control valve 11 is completely in a closed state.
- the spring member 27 arranged between the carriage member 21 and the rotary disk 13 is in the compressed state. That is, as illustrated in FIGs. 10-I) and 10-II ), a length d2 of the spring member 27 while the carriage lifting-lowering cam unit 32 is in the lifted state is smaller than a length d1 of the spring member 27 while the carriage member 32 is in the lowered state. Accordingly, a stronger force is exerted from the spring member 27 to the rotary disk 13. As a result, the adhesion of the rotary disk 13 to the fixed disk 14 becomes larger than that when the carriage lifting-lowering cam unit 32 is in the lowered state.
- the rotation of the motor 28 is switched to a forward rotation (CW) at timing II) in FIG. 6(e) while keeping the safety valve 12 in the opened state with the force of the electromagnet 35. Accordingly, as illustrated at a later stage of *1 in FIG. 6(d) , the operation rod 18 is retracted to the downstream side. Further, as illustrated at a later stage of *2 in FIG. 6(b) , the carriage cam portion 32b is slid along the taper face in the direction opposite to the above. As a result, the link cam portion 32a and the carriage cam portion 32b are fitted to each other, so that the carriage lifting-lowering cam unit 32 is in the lowered state (see FIGs. 7-III and 10-I )).
- the rotational angular range of the motor 28 from starting of advancing of the operation rod 18 to the upstream side to retracting thereof to the original position is denoted as the safety valve operation range indicated by *1 in FIGs. 6 and 8 .
- the rotation of the carriage member 21 is stopped and the link member 20 is solely rotated.
- the power of the motor 28 is not transmitted to the rotary disk 13 via the carriage member 21.
- Such a rotational angular range is denoted as a power non-transmission range indicated by *2 in FIGs. 6 and 9 .
- the motor 28 After passing through the power non-transmission range, the motor 28 continues to be rotated forwardly (CW) . Then, as illustrated in FIGs. 7-IV ) and 9-IV ) , a part of the fixed-side communication port 15 formed at the fixed disk 14 and a part of the rotating-side communication port 41 formed at the rotary disk 13 are matched in position. Thus, as illustrated in FIG. 6(a) , the flow rate control valve 11 is shifted into a state of allowing gas communication at a minimum flow rate (see FIG. 7-IV )). When the motor 28 further continues to be forwardly rotated, communicated area between the fixed-side communication port 15 and the rotating-side communication port 41 are increased and the gas flow rate is increased accordingly. Timing V) indicated respectively in FIGs. 6 , 7 , and 9 indicates a state in which the gas flow rate allowed with the communication is maximized.
- the rotational angular range of the moor 28 while the gas communication is allowed (between the minimum state and the maximum state of the gas flow rate) with the fixed-side communication port 15 and the rotating-side communication port 41 matched in position is denoted as the flow rate control range indicated by *3 in FIGs. 6 and 9 .
- the flow rate control range indicated by *3 is considerably larger than the safety valve operation range indicated by *1.
- the transmission interruption unit (the stopper 25 and the engaging portion 26) is arranged to interrupt power transmission from the motor 28 to the rotary disk 13 in the safety valve operation range.
- the rotation of the rotary disk 13 is stopped in the safety valve operation range. Accordingly, friction between the rotary disk 13 and the fixed disk 14 is prevented from being produced and wear at closing faces between both the disks can be prevented.
- the present embodiment includes the adhesion varying unit (the spring member 27 and the carriage lifting-lowering cam unit 32) for varying adhesion of the rotary disk 13 to the fixed disk 14.
- the adhesion varying unit the spring member 27 and the carriage lifting-lowering cam unit 32
- the carriage lifting-lowering cam unit 32 In the safety valve operation range, the carriage lifting-lowering cam unit 32 is in the lifted state as compressing the spring member 27 and the adhesion is maximized accordingly.
- the carriage lifting-lowering cam unit 32 is in the lowered state as extending the spring member 27 and the adhesion is minimized accordingly.
- the adhesion between the rotary disk 13 and the fixed disk 14 can be lessened to some extent as supplying the gas actually. Since the adhesive is small, friction to be produced between the rotary disk 13 and the fixed disk 14 is lessened even when the rotary disk 13 is rotated and wear at the closing faces between both the disks can be suppressed.
- the power non-transmission range is set larger than the safety valve operation range as illustrated in FIG. 6 .
- the present invention is not limited thereto.
- the safety valve operation range and the power non-transmission range are set to have the same largeness.
- both the transmission interruption unit and the adhesion varying unit are arranged.
- the present invention is not limited thereto.
- the abovementioned embodiment is exemplified with an example that the motor rotary shaft 31 and the rod movement axis 33 are arranged offset in position and the motor 28 is rotated in two directions as being forward rotation and reverse rotation.
- the present invention is not limited thereto. That is, the motor rotary shaft 31 and the rod movement axis 33 are not necessarily arranged offset in position and the motor 28 may be rotated in one direction, as long as the transmission interruption unit and the adhesion varying unit are arranged.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Feeding And Controlling Fuel (AREA)
- Electrically Driven Valve-Operating Means (AREA)
- Mechanically-Actuated Valves (AREA)
Claims (8)
- Soupape de commande de gaz (1), prévue pour exécuter, avec un moteur (28), des actionnements d'ouverture-fermeture d'une soupape de commande de débit (11) afin de commander un débit d'alimentation en gaz et d'une soupape de sécurité (12) pour stopper l'alimentation en gaz,
où la soupape de commande de débit (11) présente un élément rotatif à fonction de fermeture destiné à empêcher une communication gazeuse dans une plage de fonctionnement de la soupape de sécurité qui est une plage angulaire de rotation où la soupape de sécurité (12) est actionnée par le moteur (28), ledit élément rotatif à fonction de fermeture comprenant un disque rotatif (13) entraîné en rotation par le moteur (28) et un disque fixe (14) disposé en opposition au disque rotatif (13), et où ladite soupape de commande de gaz (1) comprend en outre un élément de transfert (21) destiné à transmettre la puissance du moteur (28) au disque rotatif (13) quand ledit élément de transfert est entraîné par un élément de liaison (20) actionnant la soupape de sécurité (12) par va-et-vient d'une tige d'actionnement(18) quand il est entraîné en rotation par le moteur (28), ledit élément de transfert (21) étant disposé entre l'élément de liaison (20) et le disque rotatif (13), et où
une unité d'interruption de transmission est prévue pour interrompre la transmission de puissance du moteur (28) au disque rotatif (13) dans la plage de fonctionnement de la soupape de sécurité,
caractérisée en ce que dans la plage de fonctionnement de la soupape de sécurité, la rotation de l'élément de transfert (21) est arrêtée et seul l'élément de liaison (20) est entraîné en rotation indépendamment de l'élément de transfert (21), de sorte que la soupape de sécurité est actionnée. - Soupape de commande de gaz (1) selon la revendication 1, ladite soupape de commande de gaz (1) comprenant en outre
une plage angulaire de rotation du moteur (28) entre le début de l'avance de la tige d'actionnement et son retrait en position initiale, réglée pour être la plage de fonctionnement de la soupape de sécurité (12), et
une unité de variation d'adhérence destinée à modifier l'adhérence du disque rotatif (13) sur le disque fixe (14), de manière à faire différer l'une de l'autre l'adhérence dans la plage de fonctionnement de la soupape de sécurité (12) et l'adhérence dans une plage de commande de débit qui est une plage angulaire de rotation où la soupape de commande de débit (11) est actionnée par le moteur (28). - Soupape de commande de gaz (1) selon la revendication 2, où l'adhérence est maximisée dans la plage de fonctionnement de la soupape de sécurité (12) et est minimisée dans la plage de commande de débit.
- Soupape de commande de gaz (1) selon la revendication 2 ou la revendication 3, où l'unité de variation d'adhérence comprend un élément de ressort (27) disposé entre l'élément de transfert (21) et le disque rotatif (13), et une unité de variation de distance destinée à modifier la distance entre l'élément de transfert (21) et le disque rotatif (13).
- Soupape de commande de gaz (1) selon la revendication 1, où l'unité d'interruption de transmission comprend une butée (25) disposée sur un carter de soupape de commande de gaz (1) et une section d'insertion (26) disposée sur l'élément de transfert (21), de sorte que la section d'insertion (26) bloque la rotation de l'élément de transfert (21) en étant en prise avec la butée (25)
- Soupape de commande de gaz (1) selon la revendication 2, où l'unité de variation d'adhérence comprend un élément de ressort (27) disposé entre l'élément de transfert (21) et le disque rotatif (13), et une unité de variation de distance destinée à modifier la distance entre l'élément de transfert (21) et le disque rotatif (13).
- Soupape de commande de gaz (1) selon la revendication 6, où l'unité de variation de distance comprend une unité de came de montée/descente de chariot (32) disposée sur l'élément de liaison (20) et l'élément de transfert (21), et où
l'unité de came de montée/descente de chariot (32) est en état de montée quand la rotation de l'élément de transfert (21) est bloquée par l'élément d'insertion en prise avec la butée (25), et en état de descente quand l'élément d'insertion (26) n'est pas en prise avec la butée (25). - Soupape de commande de gaz (1) selon la revendication 7, où l'unité de came de montée/descente de chariot (32) comprend une section de came de liaison (32a) prévue sur l'élément de liaison (20) et une section de came de chariot (32b) prévue sur l'élément de transfert (21), et où
l'élément de transfert (21) est entraîné en rotation avec l'élément de liaison (20) par la section de came de liaison (32a) et la section de came de chariot (32b) qui sont en prise quand l'unité de came de montée/descente de chariot (32) est en état de descente, alors que l'élément de liaison (20) est entraîné en rotation indépendamment de l'élément de transfert (21) par la section de came de liaison (32a) et la section de came de chariot (32b) qui ne sont pas en prise quand l'unité de came de montée/descente de chariot (32) est en état de montée.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012087026A JP6016418B2 (ja) | 2012-04-06 | 2012-04-06 | ガス制御弁 |
PCT/JP2013/058957 WO2013150934A1 (fr) | 2012-04-06 | 2013-03-27 | Vanne de commande de gaz |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2835583A1 EP2835583A1 (fr) | 2015-02-11 |
EP2835583A4 EP2835583A4 (fr) | 2015-11-11 |
EP2835583B1 true EP2835583B1 (fr) | 2020-08-26 |
Family
ID=49300424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13772967.9A Active EP2835583B1 (fr) | 2012-04-06 | 2013-03-27 | Vanne de commande de gaz |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP2835583B1 (fr) |
JP (1) | JP6016418B2 (fr) |
KR (1) | KR102061063B1 (fr) |
CN (1) | CN104220811B (fr) |
ES (1) | ES2825040T3 (fr) |
TW (1) | TWI601898B (fr) |
WO (1) | WO2013150934A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2738654T3 (es) * | 2016-02-24 | 2020-01-24 | Copreci S Coop | Válvula de regulación para un aparato de cocción de gas y aparato de cocción de gas que incorpora dicha válvula de regulación |
CN108267558A (zh) * | 2018-01-19 | 2018-07-10 | 五矿勘查开发有限公司 | 水环境监控装置及方法 |
JP7132145B2 (ja) * | 2019-02-06 | 2022-09-06 | リンナイ株式会社 | 電動式ガス弁装置 |
JP2021021560A (ja) * | 2019-07-30 | 2021-02-18 | リンナイ株式会社 | コンロバーナ用火力調節装置 |
JP7538693B2 (ja) | 2020-11-05 | 2024-08-22 | リンナイ株式会社 | 電磁安全弁の強制開弁装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4125817C2 (de) * | 1991-07-31 | 1995-05-24 | Mannesmann Ag | Wegeventil, insbesondere Proportionalventil für pneumatisches Medium |
JP2000257738A (ja) * | 1999-03-10 | 2000-09-19 | Yoshimine Itou | 流量制御弁 |
JP2002303418A (ja) * | 2001-03-30 | 2002-10-18 | Rinnai Corp | ガスバルブ |
WO2002084179A1 (fr) * | 2001-04-18 | 2002-10-24 | Jin-Ha Park | Hydrostat pour réchaud à gaz portable |
JP3830357B2 (ja) * | 2001-04-26 | 2006-10-04 | リンナイ株式会社 | ガスバルブ |
JP2003049732A (ja) * | 2001-08-03 | 2003-02-21 | Mikuni Corp | 燃料供給装置 |
JP2003130248A (ja) * | 2001-10-24 | 2003-05-08 | Mikuni Adec Corp | 流体弁装置 |
JP3750061B2 (ja) * | 2002-09-10 | 2006-03-01 | リンナイ株式会社 | ガス流量制御装置 |
JP4160522B2 (ja) * | 2004-03-11 | 2008-10-01 | リンナイ株式会社 | 電動弁装置 |
JP4317143B2 (ja) * | 2005-02-03 | 2009-08-19 | リンナイ株式会社 | 流量調節装置 |
JP2008064210A (ja) * | 2006-09-08 | 2008-03-21 | Matsushita Electric Ind Co Ltd | ガス流量制御装置 |
JP5334679B2 (ja) * | 2009-05-15 | 2013-11-06 | リンナイ株式会社 | 火力調節装置 |
JP5473695B2 (ja) * | 2010-03-18 | 2014-04-16 | リンナイ株式会社 | モータ安全弁 |
-
2012
- 2012-04-06 JP JP2012087026A patent/JP6016418B2/ja active Active
-
2013
- 2013-03-27 ES ES13772967T patent/ES2825040T3/es active Active
- 2013-03-27 KR KR1020147028027A patent/KR102061063B1/ko active IP Right Grant
- 2013-03-27 EP EP13772967.9A patent/EP2835583B1/fr active Active
- 2013-03-27 CN CN201380018882.8A patent/CN104220811B/zh active Active
- 2013-03-27 WO PCT/JP2013/058957 patent/WO2013150934A1/fr active Application Filing
- 2013-04-03 TW TW102112174A patent/TWI601898B/zh active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
ES2825040T3 (es) | 2021-05-14 |
EP2835583A4 (fr) | 2015-11-11 |
TWI601898B (zh) | 2017-10-11 |
CN104220811A (zh) | 2014-12-17 |
WO2013150934A1 (fr) | 2013-10-10 |
JP2013217539A (ja) | 2013-10-24 |
CN104220811B (zh) | 2016-12-14 |
EP2835583A1 (fr) | 2015-02-11 |
KR102061063B1 (ko) | 2020-02-20 |
JP6016418B2 (ja) | 2016-10-26 |
KR20150004338A (ko) | 2015-01-12 |
TW201341695A (zh) | 2013-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2835583B1 (fr) | Vanne de commande de gaz | |
EP2843310B1 (fr) | Soupape de commande de gaz | |
JP2007255258A (ja) | 可変バルブタイミング制御装置 | |
JP5219916B2 (ja) | 火力調節装置 | |
JP5289810B2 (ja) | 緊急遮断弁装置 | |
JP5289809B2 (ja) | 緊急遮断弁装置 | |
JP2008046670A (ja) | 流量制御弁 | |
EP3564054A3 (fr) | Mécanisme de verrouillage et construction de toit ouvrant en étant dotée | |
JP2000179833A (ja) | ガスコック装置 | |
JP2014077390A (ja) | 内燃機関の可変動弁装置 | |
EP3022447B1 (fr) | Actionneur | |
JP5334680B2 (ja) | 火力調節装置 | |
JPS61117039A (ja) | 工具マガジン制御装置 | |
JP4198128B2 (ja) | コンロ | |
EP3426957B1 (fr) | Injecteur pour un système d'alimentation de carburant à gaz pour un moteur à combustion interne | |
JP5416013B2 (ja) | 圧力制御装置 | |
EP3450786A1 (fr) | Appareil de transmission de puissance pour véhicule | |
EP4141300A1 (fr) | Actionneur de soupape | |
JP6120638B2 (ja) | 電動開閉弁 | |
JP5548009B2 (ja) | 圧力制御装置 | |
CN109139171B (zh) | 一种能控制发动机气门关闭的装置 | |
JP4237327B2 (ja) | トルクスイッチ | |
JPS61175208A (ja) | エンジンの弁作動装置 | |
JP2005256650A (ja) | 電子制御絞り弁装置 | |
JPS5853248B2 (ja) | 先混合バ−ナ−に於ける空燃比制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141029 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20151009 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F23K 5/00 20060101AFI20151005BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20171026 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200310 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1306737 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013071976 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201126 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201127 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201126 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201228 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200826 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1306737 Country of ref document: AT Kind code of ref document: T Effective date: 20200826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2825040 Country of ref document: ES Kind code of ref document: T3 Effective date: 20210514 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013071976 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20210407 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210327 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210327 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210327 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210327 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240130 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240212 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |