EP2814047A1 - Système d'alimentation sans contact - Google Patents
Système d'alimentation sans contact Download PDFInfo
- Publication number
- EP2814047A1 EP2814047A1 EP13746028.3A EP13746028A EP2814047A1 EP 2814047 A1 EP2814047 A1 EP 2814047A1 EP 13746028 A EP13746028 A EP 13746028A EP 2814047 A1 EP2814047 A1 EP 2814047A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- power
- supplying
- cover
- coil
- receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 92
- 230000004907 flux Effects 0.000 claims abstract description 77
- 230000007246 mechanism Effects 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 13
- 230000035699 permeability Effects 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000000843 powder Substances 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 239000013013 elastic material Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000005674 electromagnetic induction Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013523 data management Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- -1 nickel metal hydride Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/122—Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/124—Detection or removal of foreign bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/126—Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/35—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
- B60L53/37—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles using optical position determination, e.g. using cameras
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/35—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
- B60L53/38—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
- H01F27/363—Electric or magnetic shields or screens made of electrically conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/70—Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
- H02J7/0049—Detection of fully charged condition
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/147—Emission reduction of noise electro magnetic [EMI]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60M—POWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
- B60M7/00—Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
- B60M7/003—Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to a wireless power supply system.
- Priority is claimed on Japanese Patent Application No. 2012-23440, filed February 6, 2012 , the contents of which are incorporated herein by reference.
- a wireless power supply system that shields leakage magnetic flux generated around a power-receiving coil of an electric vehicle and around a power-supplying coil of a power-supplying device is disclosed.
- the power-receiving coil that has a cylindrical shape provided at the bottom of the electric vehicle in a posture in which the coil axis is in the up-and-down direction (in a vertical direction) in which only one end face of the power-receiving coil is exposed from the bottom, and a shield box that covers side faces and the other end face of the power-receiving coil is provided.
- the power-supplying coil that has a cylindrical shape having the same diameter as the power-receiving coil and that is buried in the ground so that one end face of the power-supplying coil faces the other end face of the power-receiving coil, and a shield box that covers side faces and the other end face of the power-supplying coil is provided in the power supplying-device.
- Patent document 1 Japanese Unexamined Patent Application Publication (JP-A) No. 2010-70048
- the leakage magnetic flux is shielded by covering the sides and the other end face of the coils thereof using the shield box with only exposing an end face of the power-receiving coil and the power-supplying coil (opposing surface).
- space between the power-receiving coil and the power-supplying coil is not covered by the shield. Therefore, there is a problem in the conventional art that leakage magnetic flux that is emitted from the space between the power-receiving coil and the power-supplying coil to the periphery thereof.
- the power-receiving coil is provided at the bottom of the electric vehicle and the power-supplying coil is buried in the ground, space between the coils thereof would be wider by an amount equal to the vehicle height. Therefore, the leakage magnetic flux is likely to be emitted to the environment.
- the present invention is conceived in view of the above-described circumstances and it is an object thereof to reduce leakage magnetic flux emitted to the environment so as to be less than in the conventional art.
- a wireless power supply system is provided with a power-supplying device having a power-supplying coil and a power-receiving device having a power-receiving coil, and supplies electric power wirelessly from the power-supplying coil to the power-receiving coil.
- the wireless power supply system includes a cover that is provided at least at one of the power-supplying device and the power-receiving device and that shields leakage magnetic flux by covering the periphery of the power-supplying coil and the power-receiving coil and a periphery of the space between the coils.
- the wireless power supply system is provided with a gas supply and exhaust mechanism.
- the cover is expandable and sealed.
- the gas supply and exhaust mechanism when electric power is supplied, inflates the cover by supplying gas inside of the cover and establishes a shielding state from outside the cover where the inflated cover covers the periphery of the power-supplying coil and the power-receiving coil as well as the periphery of the space between the coils.
- the gas supply and exhaust mechanism deflates the cover and cancels the shielding state by exhausting gas from inside the cover when electric power is not supplied.
- a material is disposed at a portion of the cover located between the power-supplying coil and the power-receiving coil.
- the material has a higher magnetic permeability than the other portions.
- the power-receiving device is a vehicle that charges received electric power to a battery and the vehicle is driven by electric power stored in the battery.
- the present invention it is possible to reduce or shield the leakage magnetic flux emitted from the power-supplying coil, from the power-receiving coil and from the space between the power-supplying coil and power-receiving coil to the environment, since the wireless power supply space constituting the periphery of the power-supplying coil and the power-receiving coil and the space between said coils are covered by the cover when electric power is supplied. Therefore, it is possible to reduce the leakage magnetic flux emitted from the wireless power supply space constituting the power-supplying coil, the power-receiving coil and the space between the coils.
- the leakage magnetic flux means magnetic flux that does not directly or indirectly reach own or other coil ends from the end of the power-supplying coil and the power-receiving coil.
- the wireless power supply space is space where electromagnetic field is formed by the magnetic flux emitted from an end portion of the power-supplying coil and the power-receiving coil.
- a cover includes a covering, a wrapping, a lid, an umbrella or the like, made of a material that is impermeable to gas and fluid, or includes the equivalent of these.
- a wireless power supply system A according to an embodiment of the present invention, as shown in FIG. 1 , is provided with a ground power-supplying device S and a vehicle M to which electric power is supplied from the ground power-supplying device S.
- the wireless power supply system A supplies electric power from the ground power-supplying device S to the vehicle M on the basis of magnetic resonance that is one type of wireless power supply methods.
- the ground power-supplying device S is buried, for example, at stops in road intersection or train crossing, or at parking position or the like in the parking, and wirelessly supplies electric power to the vehicle M parked in a parking position.
- the ground power-supplying device S as shown in FIG. 1 , is provided with a power source 1, a rectifier circuit 2, a power-supplying circuit 3, a power-supplying coil 4, a power-supplying cover 5, a power-supplying gas supply and exhaust mechanism 6 and a power-supplying controller 7.
- the power source 1 is an AC electric power supply whose output terminal is connected to an input terminal of the rectifier circuit 2 and supplies AC power to the rectifier circuit 2 that is required to supply power to the vehicle M.
- the power source 1 is a power supply system that supplies, for example, a three-phase AC power of 200V or 400V or a single-phase AC power of 100V.
- the input terminal of the rectifier circuit 2 is connected to the power source 1 and the output terminal of the rectifier circuit 2 is connected to the power-supplying circuit 3.
- the rectifier circuit 2 rectifies the AC power supplied from the power source 1 and converts it to a DC power, and outputs the DC power to the power-supplying circuit 3.
- An input terminal of the power-supplying circuit 3 is connected to the rectifier circuit 2, and an output terminal of the power-supplying circuit 3 is connected to both ends of the power-supplying coil 4.
- the power-supplying circuit 3 is provided with a resonance capacitor, which constitutes the power-supplying side resonance circuit together with the power-supplying coil 4.
- the power-supplying circuit 3 is a kind of inverter that converts the DC power supplied from the rectifier circuit 2 to the AC power (high-frequency power) having a higher frequency than the AC power of the power source 1, and supplies it to the power-supplying coil 4 based on the control command input from the power-supplying controller 7.
- the power-supplying coil 4 is a helical coil or a solenoid coil having a predetermined coil diameter.
- the power-supplying coil 4 is installed in the parked position as described above, for example, in a posture in which the coil axis is aligned in the up-and-down direction (vertical direction), and in a state of being molded with a non-magnetic material such as a plastic, a fiber reinforced plastic, a ceramic, or a composite thereof or the like.
- the power-supplying coil 4 is connected to an output end of the power-supplying circuit 3 at both ends thereof and wirelessly supplies power to the vehicle M through magnetic field generated by supplying high-frequency power from the power-supplying circuit 3.
- the power-supplying coil 4 may be in a posture where the coil axis is in horizontal direction or may be inclined at an angle, as far as it is magnetically coupled.
- the power-supplying cover 5 is a kind of balloon of bag shape formed from a film of expandable elastic material such as rubber and installed on the ground in a state of enclosing the power-supplying coil 4.
- the power-supplying cover 5 is sealed and inflated over the periphery of the power-supplying coil 4 if gas (for example, air) is supplied from the power-supplying gas supply and exhaust mechanism 6, as shown in FIG. 2A .
- gas for example, air
- FIG. 2B a portion of the contact surface covering power-receiving coil 11 side of the power supplying coil 4 is formed as magnetic flux transmitting portion 5a in an inflated state.
- a portion other than the magnetic flux transmitting portion 5a is formed as magnetic flux shielding portion 5b in the inflated state. Further, if it does not contact, the power-supplying cover 5 and a power-receiving cover 15 are inflated as shown in FIG. 2C .
- the magnetic flux transmitting portion 5a is formed by depositing or mixing with powders of high magnetic permeability material such as ferrite on the surface and inside of a membrane-like elastic material as the base material.
- the magnetic flux transmitting portion 5a may have both permeability for magnetic flux and expandability, but a contact portion may not necessarily be expanded.
- the magnetic flux shielding portion 5b is formed with being deposited or mixed with paramagnetic powders consisting of the magnetic flux shielding material such as aluminum or copper powder on the surface and inside of the film-like elastic material as the base material.
- the magnetic flux shielding portion 5b has both shielding performance for the magnetic flux and expandability.
- the power-supplying gas supply and exhaust mechanism 6 is a kind of pump that supplies gas into the power-supplying cover 5 and exhausts gas from the power-supplying cover 5 in response to the control command input from the power-supplying controller 7.
- the power-supplying controller 7 is a software-based control device comprising a microprocessor and memory, which works following a predetermined power-supplying control program.
- the power-supplying controller 7 controls the power-supplying circuit 3 and the power-supplying gas supply and exhaust mechanism 6. Details of the processing of the power-supplying controller 7 will be described later in the explanation of operation.
- a vehicle M is a car that travels on a road by being operated by a driver, and is, for example, an electric vehicle or a hybrid vehicle that runs by electric power as a power source. As shown in FIG. 1 , the vehicle M has the power-receiving coil 11, a power-receiving circuit 12, a charging circuit 13, a battery 14, the power-receiving cover 15, and a power-receiving gas supply and exhaust mechanism 16 and power-receiving controller 17. Although not shown in FIG 1 , a vehicle M is equipped with components such as an engine, a travel motor, a steering wheel, and a brake and the like that are required to travel. The vehicle M may not necessarily use electric power as a power source for traveling, but can supply electric power to electric devices of the vehicle.
- the power-receiving coil 11 is a helical coil or a solenoid coil having a coil diameter substantially the same as the power-supplying coil 4 of the ground power-supplying device S.
- the power-receiving coil 11 is provided at the bottom of the vehicle M in the posture where magnet coupling with the power-supplying coil 4 is possible, for example, the coil axis being the up-and-down direction (in vertical direction).
- the power-receiving coil 11 is connected to the input terminal of the power-receiving circuit 12 at both ends. Magnetic field from the power-supplying coil 4 induces voltage across the power-receiving coil 11 by magnetic resonance or by electromagnetic induction, and power-receiving coil 11 outputs the voltage to the power-receiving circuit 12.
- the power-receiving coil 11 may be in a posture where the coil axis is in horizontal direction or may be inclined at an angle, as far as it is magnetically coupled.
- An input terminal of the power-receiving circuit 12 is connected to both ends of the power-receiving coil 11 and an output terminal of the power-receiving circuit 12 is connected to an input terminal of a charging circuit 13.
- the power-receiving circuit 12 is provided with a resonance capacitor, which constitutes the power-receiving side resonance circuit together with the power-receiving coil 11.
- the power-receiving circuit 12 is a kind of rectifier circuit and converts to DC power the AC power supplied from the power-receiving coil 11, and supplies the DC power to the charging circuit 13. It should be noted that capacitance of the resonance capacitor of the power-receiving circuit 12 is set so that the resonance frequency of the power-supplying side resonance circuit and that of the power-receiving side resonance circuit matches.
- An input terminal of the charging circuit 13 is connected to the output terminal of the power-receiving circuit 12 and an output terminal of the charging circuit 13 is connected to an input terminal of the battery 14, and the charging circuit 13 charges electric power (DC power) to the battery 14 supplied from the power-receiving circuit 12.
- the battery 14 is a rechargeable battery (for example, a lithium ion battery, a nickel metal hydride battery or another type of secondary battery) equipped in the vehicle M, and the battery 14 supplies driving power to a driving motor or the like (figure not shown).
- the power-receiving cover 15 is a kind of balloon of bag shape formed from a film of expandable elastic material such as rubber as in the power-supplying cover 5 as described above, and the power-receiving cover 15 is disposed at the bottom of the vehicle M in a state of enclosing the power-receiving coil 11.
- the power-receiving cover 15 is sealed and inflates over the periphery of the power-receiving coil 11 as shown in FIG. 2A when gas (for example, air) is supplied from the power-receiving gas supply and exhaust mechanism 16. Further, as shown in FIG.
- a portion locating under an end face (lower face) of the power-receiving coil 11 is formed as a magnetic flux transmitting portion 15a of the power-receiving cover 15 in the inflated state.
- a part other than the magnetic flux transmitting portion 15a of the power-receiving cover 15 is formed as the magnetic flux shielding portion 15b in the inflated state.
- the magnetic flux transmitting portion 15a is formed by depositing or mixing with powders of high magnetic permeability material such as ferrite on the surface and inside of a membrane-like elastic material as the base material, similar to the magnetic flux transmitting portion 5a of the power-supplying cover 5 described above.
- the magnetic flux transmitting portion 15a may have both permeability performance for magnetic flux and expandability, but the magnetic flux transmitting portion 15a may not expand.
- the magnetic flux shielding portion 15b is formed by depositing or mixing with paramagnetic powders composed of magnetic flux shielding material such as aluminum or copper powder on the surface and inside of a membrane-like elastic material as the matrix similar to the magnetic flux shielding portion 5b of the power-supplying cover 5 described above.
- the magnetic flux shielding portion 15b has both shielding performance for magnetic flux and expandability.
- the power-receiving gas supply and exhaust mechanism 16 is a kind of pump that supplies gas into the power-receiving cover 15 and exhausts gas from the power-receiving cover 15 in response to the control command input from the power-receiving controller 17.
- the power-receiving controller 17 is a software-based control device that includes a microprocessor, memory and so on, and functions following a predetermined power-receiving control program.
- the power-receiving controller 17 controls the charging circuit 13 and the power-receiving gas supply and exhaust mechanism 16. Details of the processing of the power-supplying controller 7 will be described later in the explanation of operation.
- the wireless power supply system A that is configured will be explained.
- an operation of a vehicle M and the ground power-supplying device S when power supply is stopped will be explained.
- the power-receiving controller 17 of the vehicle M makes the power-receiving gas supply and exhaust mechanism 16 exhaust gas from the power-receiving cover 15 so that the power-receiving cover 15 contracts completely.
- the power-receiving controller 17 stops the charging circuit 13.
- the power-supplying controller 7 of the ground power-supplying device S stops the power-supplying circuit 3 when power supply is stopped (that is, when the vehicle M which is a power supply target does not stop at the parked position). At the same time, the power-supplying controller 7 makes the power-supplying gas supply and exhaust mechanism 6 exhaust gas from inside of the power-supplying cover 5 so that the power-supplying cover 5 contracts completely.
- a user drives the vehicle M, moves the vehicle M to an installation location of the ground power-supplying device S, and stops the vehicle M.
- the power-receiving controller 17 of the vehicle M judges the installation position of the ground power-supplying device S from the output of a position sensor (figure not shown) such as an ultrasonic sensor or an optical sensor and so on.
- the power-receiving controller 17 detects that the vehicle M has moved to above the ground power-supplying device S by the output of the position sensor such as an ultrasonic sensor or an optical sensor and so on as described above.
- the power-receiving controller 17 makes the power-receiving gas supply and exhaust mechanism 16 supply gas so that the power-receiving cover 15 inflates and contacts the power-supplying cover 5 as shown in FIG.2A and in FIG.2B . In addition, then, the power-receiving controller 17 makes the charging circuit 13 start preparing a charging operation. Internal pressure of the power-receiving cover 15 is monitored by a pressure sensor (figure not shown), and the power-receiving controller 17 makes the charging circuit 13 start the charging operation if the power-receiving cover 15 contacts at a predetermined pressure.
- the power-supplying controller 7 of the ground power-supplying device S judges the position of the vehicle M from the output of the position sensor (figure not shown) such as an ultrasonic sensor or an optical sensor and so on in the same way as the vehicle M.
- the power-supplying controller 7 detects that the vehicle M has moved and stopped to above the ground power-supplying device S through the output of the position sensor such as an ultrasonic sensor or an optical sensor and so on.
- the power-supplying controller 7 makes the power-supplying gas supply and exhaust mechanism 6 supply gas so that the power-supplying cover 5 inflates and contacts the power-receiving cover 15. In addition, then, the power-supplying controller 7 makes the power-supplying circuit 3 start preparing a charging operation of power supply to the battery 14. Internal pressure of the power-receiving cover 15 is monitored by a pressure sensor (figure not shown), and the power-receiving controller 17 is able to make the charging circuit 13 start the charging operation if the power-receiving cover 15 contacts at a predetermined pressure.
- the power-supplying cover 5 of the ground power-supplying device S and the power-receiving cover 15 of the vehicle M contact each other in a state where the magnetic flux transmitting portion 5a and the magnetic flux transmitting portion 15a contact each other. That is, the magnetic flux transmitting portion 5a and the magnetic flux transmitting portion 15a are disposed between a magnetic flux end surface of the power-supplying coil 4 and a magnetic flux end surface of the power-receiving coil 11 which are magnetically coupled.
- the magnetic flux shielding portion 5b is disposed in a peripheral surface (side) of the power-transmitting coil 4, and the magnetic flux shielding portion 15b is disposed in a peripheral surface (side) of the power-receiving coil 11.
- high-frequency power is supplied from the power-supplying circuit 3 to the power-supplying coil 4.
- the magnetic flux (main magnetic flux) emitted from an end face of the power-supplying coil 4 enters an end face of the power-receiving coil 11 through the magnetic flux transmitting portion 5a and the magnetic flux transmitting portion 15a, and resonates.
- Magnetic flux emitted from both ends of each coil couples and resonates in the power-supplying cover 5 and in the power-receiving cover 15 through the magnetic flux transmitting portion 5a and the magnetic flux transmitting portion 15a.
- magnetic flux leakage magnetic flux
- magnetic flux shielding portion 5b and the magnetic flux shielding portion 15b magnetic flux shielding portion 15b
- the power-receiving controller 17 of the vehicle M controls the charging circuit 13 and properly charges the battery 14 by monitoring the state of charging of the battery 14. After that, the power receiving controller 17 detects a state in which the battery 14 is fully charged. The power-receiving controller 17 cancels the above-mentioned contact state by controlling the power-receiving gas supply and exhaust mechanism 16 and completely deflates the power-receiving cover 15. The power-receiving controller 17 stops the control of the power-supplying circuit 3 and completely deflates the power-supplying cover 5 by controlling the power-supplying gas supply and exhaust mechanism 6. Then, a user moves from the location of the ground power-supplying device S by driving the vehicle M when a fully charged state is recognized by an indicator and so on (figure not shown). Meanwhile, the power-supplying controller 7 of the ground power-supplying device S detects moving of the vehicle M by an output of the position sensor (figure not shown) such as an ultrasonic sensor or an optical sensor and so on.
- the position sensor figure not shown
- leakage magnetic flux of the power-supplying coil 4 to the outside of the power-supplying cover 5 and the power-receiving cover 15 is prevented by the magnetic flux shielding portion 5b and the magnetic flux shielding portion 15b.
- the magnetic flux transmitting portion 5a and the magnetic flux transmitting portion 15a are disposed between the magnetic flux end surface of the power-supplying coil 4 and the magnetic flux end surface of the power-receiving coil 11.
- space between the power-supplying coil 4 and the power-receiving coil 11 is occupied by the power-supplying cover 5 and the power-receiving cover 15. Therefore, it is possible to completely prevent a foreign object from entering between the power-supplying coil 4 and the power-receiving coil 11 during power supply.
- contact state of the covers is confirmed by gas supply amount and pressure of gas inside of each cover, and it is possible to confirm that power could not be supplied if the contact state is abnormal by a foreign object in the cover when the cover is inflated
- a magnetic resonance-type system is adopted for power transmission between the ground power-supplying device S and the vehicle M.
- the magnetic resonance-type system has a strong resistance against a position displacement (can tolerate a position displacement) of the power-supplying coil 4 and the power-receiving coil 11 compared with an electromagnetic induction system, and is able to realize a weak magnetic field, high efficiency and long-distance power transmission. Therefore, according to the present embodiment, as compared to a device adopting an electromagnetic induction system, a positioning mechanism with high precision is not required (sufficient for the generic position sensor such as an ultrasonic sensor or an optical sensor and so on described above). As a result, it is possible to achieve power transmission between the ground power-supplying device S and the vehicle M at low cost.
- leakage magnetic flux emitted from a power-supplying coil and a power-receiving coil and a wireless power supply space between coils to periphery is shielded, and the leakage magnetic flux is reduced than in the conventional arts.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Regulation Of General Use Transformers (AREA)
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012023440 | 2012-02-06 | ||
PCT/JP2013/052671 WO2013118745A1 (fr) | 2012-02-06 | 2013-02-06 | Système d'alimentation sans contact |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2814047A1 true EP2814047A1 (fr) | 2014-12-17 |
EP2814047A4 EP2814047A4 (fr) | 2015-10-28 |
EP2814047B1 EP2814047B1 (fr) | 2021-08-04 |
Family
ID=48947506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13746028.3A Active EP2814047B1 (fr) | 2012-02-06 | 2013-02-06 | Système d'alimentation sans contact |
Country Status (5)
Country | Link |
---|---|
US (1) | US9345177B2 (fr) |
EP (1) | EP2814047B1 (fr) |
JP (1) | JP6107667B2 (fr) |
CN (1) | CN104081482B (fr) |
WO (1) | WO2013118745A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9533592B2 (en) | 2013-09-11 | 2017-01-03 | Toyota Jidosha Kabushiki Kaisha | Vehicle |
EP3316443A4 (fr) * | 2015-06-26 | 2019-02-27 | Positec Power Tools (Suzhou) Co., Ltd | Dispositif mobile autonome et son système de charge sans fil |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9327608B2 (en) * | 2011-08-04 | 2016-05-03 | Schneider Electric USA, Inc. | Extendable and deformable carrier for a primary coil of a charging system |
US9895988B2 (en) * | 2012-03-14 | 2018-02-20 | Panasonic Intellectual Property Management Co., Ltd. | Electricity supply device, electricity reception device, and electricity supply system |
CN104271384B (zh) | 2012-05-09 | 2017-10-10 | 丰田自动车株式会社 | 车辆 |
JP6060546B2 (ja) * | 2012-07-26 | 2017-01-18 | 株式会社Ihi | 非接触給電システム |
JP6111583B2 (ja) | 2012-10-01 | 2017-04-12 | 株式会社Ihi | 非接触給電システム |
GB2512855A (en) | 2013-04-09 | 2014-10-15 | Bombardier Transp Gmbh | Receiving device for receiving a magnetic field and for producing electric energy by magnetic induction |
GB2512862A (en) | 2013-04-09 | 2014-10-15 | Bombardier Transp Gmbh | Receiving device with coil of electric line for receiving a magnetic field and for producing electric energy by magnetic induction |
JP6149499B2 (ja) | 2013-05-14 | 2017-06-21 | 株式会社Ihi | 非接触給電システム |
TW201500251A (zh) * | 2013-06-21 | 2015-01-01 | Hon Hai Prec Ind Co Ltd | 汽車方向盤及採用汽車方向盤之汽車 |
US9893557B2 (en) | 2013-07-12 | 2018-02-13 | Schneider Electric USA, Inc. | Method and device for foreign object detection in induction electric charger |
JP6392649B2 (ja) * | 2014-11-28 | 2018-09-19 | トヨタ自動車株式会社 | 受電装置および送電装置 |
WO2016121050A1 (fr) * | 2015-01-29 | 2016-08-04 | 日産自動車株式会社 | Dispositif d'aide au stationnement et procédé d'aide au stationnement |
CN104682525A (zh) * | 2015-01-31 | 2015-06-03 | 深圳市泰金田科技有限公司 | 电动汽车无线充电发射盘 |
US9829599B2 (en) | 2015-03-23 | 2017-11-28 | Schneider Electric USA, Inc. | Sensor and method for foreign object detection in induction electric charger |
CN105406613A (zh) * | 2015-12-15 | 2016-03-16 | 苏州铭冠软件科技有限公司 | 一种无线充电系统 |
US20170182903A1 (en) * | 2015-12-26 | 2017-06-29 | Intel Corporation | Technologies for wireless charging of electric vehicles |
US10377469B2 (en) * | 2016-03-04 | 2019-08-13 | The Boeing Company | Non-contact power supply and data transfer on aerial vehicles |
JP6284055B2 (ja) * | 2016-03-30 | 2018-02-28 | Tdk株式会社 | 送電装置 |
DE102017202138A1 (de) | 2017-02-10 | 2018-08-16 | Volkswagen Aktiengesellschaft | Induktive Ladeeinrichtung für Kraftfahrzeuge |
JP2019057959A (ja) * | 2017-09-19 | 2019-04-11 | 日本電産株式会社 | 無人移動体 |
JP6649925B2 (ja) * | 2017-10-11 | 2020-02-19 | 矢崎総業株式会社 | 電力伝送ユニット |
DE102018200252A1 (de) * | 2018-01-10 | 2019-07-11 | Audi Ag | Induktive Ladeanordnung für einen Fahrzeugakkumulator |
CN117162818A (zh) * | 2018-10-17 | 2023-12-05 | 合芯磁导科技(无锡)有限公司 | 电动汽车无线充电发射器用伸缩式安全防护栏 |
US11565594B2 (en) * | 2021-05-27 | 2023-01-31 | Ford Global Technologies, Llc | Vehicle and battery charging system for a vehicle |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4612486A (en) * | 1985-04-19 | 1986-09-16 | Itsuki Ban | Semiconductor electric motor having a rotary transformer to excite a rotor |
FR2695266B1 (fr) * | 1992-09-02 | 1994-09-30 | Cableco Sa | Ensemble pour recharger les batteries d'accumulateurs d'un véhicule automobile électrique. |
JPH08241386A (ja) * | 1995-03-03 | 1996-09-17 | Hitachi Maxell Ltd | 非接触メモリカード及びこれに搭載可能な電磁結合装置 |
JP2000114077A (ja) * | 1998-09-30 | 2000-04-21 | Furukawa Electric Co Ltd:The | 分離トランス |
JP2000114078A (ja) * | 1998-10-01 | 2000-04-21 | Harness Syst Tech Res Ltd | 電磁誘導型コネクタ |
JP2003068544A (ja) * | 2001-08-22 | 2003-03-07 | Yazaki Corp | 電磁誘導型コネクタ |
CN1802123B (zh) * | 2002-05-16 | 2010-04-28 | 梅德拉股份有限公司 | 应用3.0泰斯拉磁共振系统获取内腔结构图像与谱图的系统 |
JP2005269857A (ja) * | 2004-03-22 | 2005-09-29 | Hitachi Kiden Kogyo Ltd | 非接触給電装置 |
JP4865451B2 (ja) * | 2006-08-24 | 2012-02-01 | 三菱重工業株式会社 | 受電装置及び送電装置並びに車両 |
JP5254670B2 (ja) * | 2008-06-11 | 2013-08-07 | 三菱重工業株式会社 | 車両用受電装置 |
EP2161811A1 (fr) | 2008-09-05 | 2010-03-10 | Koninklijke Philips Electronics N.V. | Chargeur inductif et procédé de chargement |
JP4743244B2 (ja) | 2008-09-18 | 2011-08-10 | トヨタ自動車株式会社 | 非接触受電装置 |
US20120256494A1 (en) * | 2008-09-27 | 2012-10-11 | Kesler Morris P | Tunable wireless energy transfer for medical applications |
JP2010098807A (ja) * | 2008-10-15 | 2010-04-30 | Toyota Motor Corp | 非接触給電システム |
JP5606098B2 (ja) * | 2009-02-25 | 2014-10-15 | マスプロ電工株式会社 | 移動体の電力供給システム |
CA2715937C (fr) * | 2009-09-30 | 2017-11-07 | Cynetic Designs Ltd. | Chargeur inducteur de siege de vehicule et transmetteur de donnees |
JP5763675B2 (ja) * | 2010-01-05 | 2015-08-12 | アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー | 電気車両用の誘導充電システム |
DE102010020125B4 (de) * | 2010-05-10 | 2021-07-15 | Sew-Eurodrive Gmbh & Co Kg | Anordnung zur berührungslosen Energieübertragung |
JP2012014383A (ja) * | 2010-06-30 | 2012-01-19 | Saitama Univ | 電子棚札システム |
WO2012039077A1 (fr) * | 2010-09-21 | 2012-03-29 | パナソニック株式会社 | Appareil d'alimentation sans contact |
CN103262387B (zh) * | 2010-12-24 | 2016-08-17 | 丰田自动车株式会社 | 非接触充电系统和方法、车辆、以及非接触充电管理装置 |
JP5666355B2 (ja) * | 2011-03-15 | 2015-02-12 | 長野日本無線株式会社 | 非接触型電力伝送装置 |
JP5802424B2 (ja) * | 2011-04-22 | 2015-10-28 | 矢崎総業株式会社 | 共鳴式非接触給電システム |
CN105966578B (zh) * | 2011-12-07 | 2018-04-06 | 株式会社 Ihi | 输电装置及受电装置 |
-
2013
- 2013-02-06 EP EP13746028.3A patent/EP2814047B1/fr active Active
- 2013-02-06 WO PCT/JP2013/052671 patent/WO2013118745A1/fr active Application Filing
- 2013-02-06 JP JP2013557535A patent/JP6107667B2/ja active Active
- 2013-02-06 CN CN201380007946.4A patent/CN104081482B/zh active Active
-
2014
- 2014-07-31 US US14/447,852 patent/US9345177B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9533592B2 (en) | 2013-09-11 | 2017-01-03 | Toyota Jidosha Kabushiki Kaisha | Vehicle |
EP3316443A4 (fr) * | 2015-06-26 | 2019-02-27 | Positec Power Tools (Suzhou) Co., Ltd | Dispositif mobile autonome et son système de charge sans fil |
EP3693827A1 (fr) * | 2015-06-26 | 2020-08-12 | Positec Power Tools (Suzhou) Co., Ltd | Dispositif mobile autonome et son système de charge sans fil |
US10967752B2 (en) | 2015-06-26 | 2021-04-06 | Positec Power Tools (Suzhou) Co., Ltd. | Autonomous mobile device and wireless charging system thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104081482A (zh) | 2014-10-01 |
EP2814047B1 (fr) | 2021-08-04 |
CN104081482B (zh) | 2017-04-12 |
WO2013118745A1 (fr) | 2013-08-15 |
US9345177B2 (en) | 2016-05-17 |
JP6107667B2 (ja) | 2017-04-05 |
JPWO2013118745A1 (ja) | 2015-05-11 |
US20140340035A1 (en) | 2014-11-20 |
EP2814047A4 (fr) | 2015-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9345177B2 (en) | Wireless power supply system | |
US10263478B2 (en) | Wireless power supply system | |
KR101586133B1 (ko) | 차량 및 전력 송수전 시스템 | |
US9994112B2 (en) | Shield apparatus and wireless power supply system | |
JP5768878B2 (ja) | 車両 | |
JP6149499B2 (ja) | 非接触給電システム | |
WO2014185380A1 (fr) | Dispositif d'alimentation en énergie, système d'alimentation en énergie sans contact et unité à coussin | |
EP2450920A1 (fr) | Unité de bobine, dispositif de réception d'énergie sans contact, dispositif d'alimentation d'énergie sans contact, système d'alimentation d'énergie sans contact et véhicule | |
US20160257209A1 (en) | Interoperable ev wireless charging system | |
WO2012014038A2 (fr) | Unité de bobine, appareil de transmission de puissance sans contact, appareil de réception de puissance sans contact, véhicule et système d'alimentation électrique sans contact | |
CN104737415A (zh) | 非接触供电系统 | |
WO2014132115A2 (fr) | Transmetteur de puissance, récepteur de puissance et système de transfert de puissance | |
JP6146119B2 (ja) | 非接触給電システム及び袋体システム | |
JP6146124B2 (ja) | 非接触給電システム及びシステム | |
JP6146116B2 (ja) | 非接触給電システム及び袋体システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140818 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20150925 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B60M 7/00 20060101ALI20150921BHEP Ipc: H02J 7/00 20060101ALI20150921BHEP Ipc: H02J 17/00 20060101ALI20150921BHEP Ipc: B60L 11/18 20060101ALI20150921BHEP Ipc: B60L 5/00 20060101ALI20150921BHEP Ipc: H01F 27/36 20060101ALI20150921BHEP Ipc: H01F 38/14 20060101AFI20150921BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191126 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013078641 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H01F0038140000 Ipc: B60L0005000000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H02J 7/00 20060101ALI20210310BHEP Ipc: H02J 5/00 20160101ALI20210310BHEP Ipc: H01F 27/36 20060101ALI20210310BHEP Ipc: B60M 7/00 20060101ALI20210310BHEP Ipc: H01F 38/14 20060101ALI20210310BHEP Ipc: B60L 53/126 20190101ALI20210310BHEP Ipc: B60L 53/124 20190101ALI20210310BHEP Ipc: B60L 53/122 20190101ALI20210310BHEP Ipc: B60L 53/38 20190101ALI20210310BHEP Ipc: B60L 53/37 20190101ALI20210310BHEP Ipc: B60L 5/00 20060101AFI20210310BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210421 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1416650 Country of ref document: AT Kind code of ref document: T Effective date: 20210815 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013078641 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210804 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1416650 Country of ref document: AT Kind code of ref document: T Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211104 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211206 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211104 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013078641 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220228 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220206 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220206 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240123 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |