EP2812147A1 - Dispositif d'usinage au laser d'une surface d'une pièce, ou de traitement ultérieur d'un revêtement sur la face extérieure ou la face intérieure d'une pièce - Google Patents

Dispositif d'usinage au laser d'une surface d'une pièce, ou de traitement ultérieur d'un revêtement sur la face extérieure ou la face intérieure d'une pièce

Info

Publication number
EP2812147A1
EP2812147A1 EP13704583.7A EP13704583A EP2812147A1 EP 2812147 A1 EP2812147 A1 EP 2812147A1 EP 13704583 A EP13704583 A EP 13704583A EP 2812147 A1 EP2812147 A1 EP 2812147A1
Authority
EP
European Patent Office
Prior art keywords
workpiece
laser light
outside
coating
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13704583.7A
Other languages
German (de)
English (en)
Inventor
Paul Alexander Harten
Peter Bruns
Vitalij Lissotschenko
Thomas Mitra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Limo GmbH
Original Assignee
Limo Patentverwaltung GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201210002487 external-priority patent/DE102012002487A1/de
Application filed by Limo Patentverwaltung GmbH and Co KG filed Critical Limo Patentverwaltung GmbH and Co KG
Publication of EP2812147A1 publication Critical patent/EP2812147A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/10Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam
    • B23K26/103Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam the laser beam rotating around the fixed workpiece
    • B23K26/106Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam the laser beam rotating around the fixed workpiece inside the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to an apparatus for processing a surface of a workpiece or for the post-treatment of a coating on the outside or the inside of a
  • Workpiece in particular a metal workpiece, preferably a tube.
  • the invention further relates to a method for
  • the invention further relates to a method for coating the outside or the inside of a workpiece.
  • the workpiece may in particular consist of metal or comprise metal. Furthermore, it may in particular have a cylindrical shape and be, for example, a pipe or a rod.
  • the coatings which can be processed with the aid of the invention may comprise, for example, at least one layer which is in contact with the
  • Such coatings are often intended to serve as anti-corrosion or wear-resistant coatings.
  • the coatings must be thermally post-processed in order to convert the applied powdered materials into a solid one
  • the aftertreatment of a coating arranged in the interior of a pipe proves to be particularly complicated.
  • the problem underlying the present invention is the provision of a device of the type mentioned, which can effectively treat a, in particular arranged in the interior of a pipe, coating or can effectively work a surface of a workpiece. Furthermore, methods for processing a surface of a workpiece or for the post-treatment of a coating on the outside or inside of a
  • the device is movable through the workpiece or outside the workpiece
  • Process head an optical fiber for supplying laser light to the process head or means for generating laser light in the
  • Process head and optical means in the process head includes, which can act on the inside or the outside of the workpiece with the laser light.
  • a surface of a workpiece can be processed effectively or the coating can be effectively reworked, with it being possible in particular for a coating, smelting or melting of coating constituents to be carried out on or into the surface of the underlying workpiece.
  • coatings are workable, but also uncoated metal surfaces.
  • a device according to the invention allows, in a similar manner such as coatings also post-process polished and / or ground metal surfaces which have been pretreated by other methods, for example mechanical machining
  • the last-mentioned forms (annealing, sintering, hardening) and the smoothening of a molten surface can be used in the same way for the laser after-treatment of coatings.
  • the process header may look like one from another
  • the optical means comprise a component which is designed in such a way that the laser light in the component is deflected by internal reflection and / or refraction, so that it is applied to the outside to be treated or treated
  • Such a component can be much easier to adjust and manufacture than, for example, a mirrored component on the outer sides of the laser light is reflected to the pipe inner walls.
  • optical means such as
  • annular intensity distribution can be determined by the movement of the
  • optical means a
  • Homogenizer agents include, for example, a
  • the laser light can be optimally shaped and homogenized for the annular intensity distribution.
  • the method claimed in this application is characterized in particular in that it achieves a uniformly distributed heat-affected zone, and that it
  • Transitionless means for the workpiece that no thermal stresses occur along the surface or along the coating on the workpiece during the laser treatment, which cracks in the surface
  • the optical means may be designed such that the
  • Intensity distribution of the laser light at the front, in which the intensity distribution moves, has a different edge shape, as on the back.
  • Intensity distribution at the front must be optimized for material not yet irradiated and the flank form of the intensity distribution at the back must be optimized for already irradiated material.
  • the angle of incidence is not exactly 90 °. This has the advantage that no back reflections can get into the laser light source or the laser light sources.
  • FIG. 1 shows a schematic sectional view through a tube with a partially depicted first embodiment of a device according to the invention
  • Fig. 2 is a schematic sectional view of a second
  • Fig. 3 is a schematic sectional view of a third
  • Fig. 5 is a schematic sectional view corresponding to Fig.4 of the fourth embodiment with a wider laser beam
  • Fig. 6 is a schematic sectional view of a fifth
  • Embodiment of a component of the optical means of a device according to the invention with an exemplary laser beam is a perspective view of a homogenizer means a schematic representation (l (z) / z) of a first intensity distribution of the laser light on the workpiece. a schematic representation (l (z) / z) of a second intensity distribution of the laser light on the workpiece; a schematic representation (L (z) / z) of a third intensity distribution of the laser light on the workpiece; a schematic sectional view through a pipe with a partially mapped second embodiment of a device according to the invention; a schematic view of an optical structure of the device of FIG. 12; a schematic representation (l (z) / z) of a fourth intensity distribution of the laser light on the workpiece; an exemplary illustration of a linear
  • a coating has been applied in a tube 1 on the inside thereof, which consists for example of powdered material.
  • this may be a coating applied by means of high-speed flame spraying.
  • this can be a coating applied by means of high-speed flame spraying.
  • Coating Al 2 0 3 include.
  • the coating can be a few 100 ⁇ m thick.
  • the coating on the inside of the tube 1 should be aftertreated. This can be done in particular by the fact that the coating with the same
  • the coating can be partially melted and the individual powdery components of the layer can be firmly joined together.
  • the finished coatings may, for example, be an anti-corrosion layer or a wear-resistant layer.
  • the tube 1 may in particular consist of metal or comprise metal.
  • the device according to the invention comprises a laser light source 16 and a process head 2, which is movable in the interior of the tube 1, in particular in the axial direction.
  • the laser light source 16 is shown only schematically and in particular not true to scale with an optical fiber 5 connected thereto, which is also not shown to scale.
  • Laser light is to be understood in the present application not only visible light, but any type of laser radiation, such as IR radiation or UV radiation.
  • the process head 2 has in the illustrated embodiment to on its outside guide rollers 3, which on the
  • the process head 2 is with a guide tube 4, through which the laser light from an external laser light source can be supplied to the process head 2 via an optical fiber 5.
  • a guide tube 4 through which the laser light from an external laser light source can be supplied to the process head 2 via an optical fiber 5.
  • Process head 2 may be provided a laser light source.
  • the guide tube 4 can also be used to guide the guide tube 4
  • At least one line for process gases to be passed for example, if the post-treatment of the coating to be carried out to be carried out under a protective gas atmosphere.
  • nozzles 6, in particular annular nozzles 6 for the exit of the process gas can be seen.
  • optical means 7 are arranged, which form the emerging from the end 8 of the optical fiber 5 laser light and can deflect to the inside of the tube 1.
  • the optical means comprise a cone-shaped component 9 which is particularly reflective on the outside and which can divert the laser light outwards onto the inner sides of the tube 1 such that an annular intensity distribution of the laser light arises there.
  • This annular intensity distribution can be moved along the inside of the tube 1 in the axial direction by the movement of the process head 2, so that the application of laser light can thereby be effected very effectively.
  • Intensity distribution in the axial direction can be selected according to the application. It is thus either possible to move the process head 2 to the right in FIG. 1 or to the left in FIG.
  • a criterion for the direction of movement can be, for example, whether the coating on the inside of the tube 1 before the irradiation is resistant enough to come in contact with the guide rollers 3, for example.
  • FIGS. 2 to 7 show further rotationally symmetrical components 9 which are not mirrored on their outside.
  • FIGS. 2 to 4 and FIGS. 6 and 7 each show only a part of the laser light 10, which is incident off-center and is therefore deflected only to one side.
  • the incident laser light 10 enters the component 9 through a planar surface 11 oriented perpendicularly to the laser light 10, experiences a total internal reflection on a further surface 12 and passes through a further surface 13 out. Due to the rotational symmetry of the component 9, this results in an annular intensity distribution of the
  • the laser light 10 is deflected overall by an angle of approximately 75 °.
  • the laser light 10 is deflected in total by an angle of about 90 °.
  • the laser light passes without internal reflection by a Surface 13 of the component 9 from.
  • the laser light 10 experiences a total internal reflection on a further surface 12 and exits through a surface 13.
  • the laser light 10 is deflected overall by an angle of approximately 55 °.
  • the laser light 10 is deflected in total by an angle of about 90 °.
  • the optical means 7 may further at least one
  • Homogenizer 14 include, which may consist of a lens array with concentric or coaxially arranged lenses 15 in the case of a desired annular intensity distribution (see an embodiment in Fig. 8). Such a thing
  • Homogenizer means 14 may be designed so that it emits an angular distribution of the laser radiation with an M-profile.
  • a comparable lens array is in WO 2012/095422 A2
  • FIGS. 9 to 11 are possible examples
  • the axial direction z is applied to the right, so that the representations show the profile of the laser radiation in the transverse direction of the ring.
  • the arrow 20 indicates the direction of advance of the intensity distribution on the inside of the tube 1.
  • the dashed line 21 indicates an exemplary Gaussian profile. From such a profile, the intensity distribution 17 deviates through a region 22 which is the rear edge of the distribution increases, so that after the maximum intensity 23, a phase longer reheating is achieved.
  • the dashed line 21 again indicates an exemplary Gaussian profile. From such a profile gives way to the
  • Intensity maximum 23 a phase of preheating is achieved.
  • the intensity distribution 19 shown in FIG. 11 is a
  • Circumferential direction to be moved over the inside of the tube.
  • FIGS. 12 and 13 shows the optical structure in which the
  • Optic means 7 a collimating lens 25, preferably
  • uniaxial two-stage homogenizer 26 a mirror 27 and a Fourier lens 28 include.
  • a line-shaped angular distribution of the laser light 10 is generated by the optical means 7, wherein the longitudinal direction of the line extends in the radial direction of the tube 1. Furthermore, the mirror 27, which is inclined at an angle of, for example, 45 ° to the axial direction of the tube 1, the line-shaped intensity distribution of the laser light 10 on the
  • the mirror 27 can be rotated together with the homogenizer 26 and possibly also with the other optical means 7 about the axial direction.
  • Fig. 12 illustrates this spiral movement schematically, wherein for clarity, the spiral has been stretched, so that between the individual
  • irradiated areas 29 unirradiated areas 30 can be seen.
  • This structure is for illustrative purposes only. In practice, of course, a gapless or preferably overlapping action on the inside of the tube 1 with the laser light 10 is provided.
  • Fig. 14 shows an example of a possible intensity distribution 31 of the laser light 10 on the inside of the tube 1 as a function of z.
  • the axial direction z is applied to the right, so that the representations show the profile of the laser radiation in the longitudinal direction of the linear intensity distribution.
  • the arrow 20 again indicates the direction of advance of the intensity distribution 31 on the inside of the tube 1.
  • Fig. 14 illustrates that even in the linear
  • Intensity distribution 31 the flank 32, the unprocessed material irradiated and the edge 33, the illuminated material already irradiated can be designed differently. However, the design can be adapted in detail to the thermal properties of the sample and the rotational speed of the line.
  • Fig. 15 shows once again the line-shaped intensity distribution 31 in plan view. It is schematically indicated that the extension of the beam cross-section in the z-direction (from left to right in FIG. 15) is significantly greater than in the direction perpendicular thereto (from top to bottom in FIG. 15), that of the circumferential direction of the tube 1 equivalent.
  • outsides of workpieces can be aftertreated with the device according to the invention.
  • a cylindrical workpiece which may be a pipe but also a rod, a
  • This "outer laser ring” can then be moved in the axial direction along the cylindrical workpiece.
  • the laser radiation used in the processing of the surface or the aftertreatment of the coating may have a wavelength between 192 nm and 10700 nm. Furthermore, in the processing of the surface or the aftertreatment of
  • Coating used laser radiation have a power between 300 W and 300 kW. Furthermore, in the processing of the Surface or the aftertreatment of the coating laser radiation used have an intensity between 6 kW / cm 2 and 1000 kW / cm 2 .
  • the laser radiation used in the processing of the surface or the aftertreatment of the coating may have an extension of the line focus in the long axis between 1 mm and 6000 mm. Furthermore, the laser radiation used in the processing of the surface or the aftertreatment of the coating can have an extension of the line focus in the short axis between 50 ⁇ m and 5 mm.
  • the relative speed between the workpiece surface and the laser beam can be between 1 mm / s and 1000 mm / s.
  • the intensity distribution of the laser light at the front side in which the intensity distribution moves in the axial direction of the tube 1, has a different flank shape than at the rear side.
  • the flank shape of the intensity distribution at the front can be optimized for not yet irradiated material and the flank shape of the intensity distribution can be optimized at the back for already irradiated material.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

L'invention concerne un dispositif d'usinage d'une surface d'une pièce, ou de traitement ultérieur d'un revêtement sur la face extérieure ou la face intérieure d'une pièce, en particulier d'une pièce métallique, de préférence d'un tube. Ledit dispositif d'usinage au laser comprend : une tête de traitement (2) pouvant être déplacée à travers la pièce ou au-dessus de la pièce ; un moyen de type fibre optique (5) servant à guider la lumière laser (10) vers la tête de traitement (2) ou un moyen servant à produire de la lumière laser dans la tête de traitement (2) ; ainsi que des moyens optiques (7) agencés dans la tête de traitement (2) et permettant d'exposer la face intérieure ou la face extérieure de la pièce à la lumière laser (10).
EP13704583.7A 2012-02-10 2013-02-11 Dispositif d'usinage au laser d'une surface d'une pièce, ou de traitement ultérieur d'un revêtement sur la face extérieure ou la face intérieure d'une pièce Withdrawn EP2812147A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201210002487 DE102012002487A1 (de) 2012-02-10 2012-02-10 Vorrichtung zur Nachbehandlung einer Beschichtung auf der Außenseite oder der Innenseite eines Werkstücks
DE102012014209 2012-07-18
PCT/EP2013/052653 WO2013117754A1 (fr) 2012-02-10 2013-02-11 Dispositif d'usinage au laser d'une surface d'une pièce, ou de traitement ultérieur d'un revêtement sur la face extérieure ou la face intérieure d'une pièce

Publications (1)

Publication Number Publication Date
EP2812147A1 true EP2812147A1 (fr) 2014-12-17

Family

ID=47720496

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13704583.7A Withdrawn EP2812147A1 (fr) 2012-02-10 2013-02-11 Dispositif d'usinage au laser d'une surface d'une pièce, ou de traitement ultérieur d'un revêtement sur la face extérieure ou la face intérieure d'une pièce

Country Status (6)

Country Link
US (1) US20160151862A1 (fr)
EP (1) EP2812147A1 (fr)
JP (1) JP2015512786A (fr)
KR (1) KR20140122252A (fr)
CN (2) CN105665934A (fr)
WO (1) WO2013117754A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2935651A1 (fr) 2012-12-20 2015-10-28 Shell Internationale Research Maatschappij B.V. Raccord de tuyau et procédé associé
JP6260253B2 (ja) * 2013-12-17 2018-01-17 日産自動車株式会社 溶射方法
WO2015197811A1 (fr) 2014-06-26 2015-12-30 Shell Internationale Research Maatschappij B.V. Procédé de revêtement et substrat revêtu
NL2015734B1 (en) * 2015-11-06 2017-05-24 Laser Clad Company B V Method for laser cladding.
DE102016105985A1 (de) * 2016-04-01 2017-10-05 Wipotec Wiege- Und Positioniersysteme Gmbh Verfahren und Vorrichtung zur Laserbearbeitung
FR3061963B1 (fr) * 2017-01-18 2020-11-13 Safran Dispositif optique pour le traitement par laser de surfaces internes d'une piece de recouvrement
RU182054U1 (ru) * 2017-12-28 2018-08-01 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" Устройство для нанесения двухслойного покрытия
CN113182282A (zh) * 2021-05-13 2021-07-30 圣同激光设备(上海)有限公司 一种管道内壁激光清洗方法及激光清洗头

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100278480A1 (en) * 2009-04-21 2010-11-04 Vasylyev Sergiy V Light collection and illumination systems employing planar waveguide

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279386A (ja) * 1985-06-06 1986-12-10 Nec Corp レ−ザ集光装置
JPS62294202A (ja) * 1986-06-13 1987-12-21 Matsushita Electric Ind Co Ltd インテグレ−タ−およびそれを用いた露光装置
JPS639186A (ja) * 1986-06-30 1988-01-14 Komatsu Ltd 照明光学装置
JPS63144888A (ja) * 1986-12-09 1988-06-17 Toshiba Corp レ−ザ出射光学装置
DE3866985D1 (de) * 1987-07-21 1992-01-30 Mitsubishi Heavy Ind Ltd Laserstrahlschweissverfahren fuer eine innenumfangsflaeche eines rohres.
JPS6439360A (en) * 1987-08-03 1989-02-09 Mitsubishi Heavy Ind Ltd Treatment for internal tube surface
JPH0247221A (ja) * 1988-08-09 1990-02-16 Mitsubishi Heavy Ind Ltd 管内面の表面熱処理法
DE3910098C2 (de) * 1989-03-29 1998-09-10 Siemens Ag Verfahren zum Schweißen von Rohren mittels eines Lasers und Vorrichtung zur Durchführung des Verfahrens
FR2652025A1 (fr) * 1989-09-15 1991-03-22 Electricite De France Appareil et procede de soudage de pieces metalliques par faisceau laser.
JPH03170616A (ja) * 1989-11-29 1991-07-24 Mitsubishi Heavy Ind Ltd パイプ内面加熱用レーザ光学装置
US5196671A (en) * 1990-08-17 1993-03-23 Siemens Aktiengesellschaft Device and process for the laser welding of a tube
DE4115561A1 (de) * 1990-08-17 1992-02-20 Siemens Ag Vorrichtung und verfahren zum laserschweissen eines rohres
DE4115562A1 (de) * 1990-08-17 1992-02-20 Siemens Ag Vorrichtung und verfahren zum laserschweissen eines rohres
FR2671503B1 (fr) * 1991-01-11 1993-07-30 Framatome Sa Procede et tete de travail au laser.
JPH05253680A (ja) * 1992-03-12 1993-10-05 Hitachi Ltd 管内表面の改質方法及び装置
JP3214074B2 (ja) * 1992-07-15 2001-10-02 石川島播磨重工業株式会社 レーザ照射用トーチ
JPH06262384A (ja) * 1993-01-14 1994-09-20 Toshiba Corp レーザ加工装置
JPH06316722A (ja) * 1993-04-30 1994-11-15 Ntn Corp 円筒表面のレーザ焼入加工装置
DE69426058T2 (de) * 1993-12-22 2001-05-10 Canon Kk Vorrichtung zur optischen Beleuchtung
JPH07292481A (ja) * 1994-04-25 1995-11-07 Ishikawajima Harima Heavy Ind Co Ltd 塗布膜クラッディング装置
JPH081358A (ja) * 1994-06-22 1996-01-09 Ishikawajima Harima Heavy Ind Co Ltd 原子力プラント配管のレーザクラッディング装置
US5569238A (en) * 1994-10-19 1996-10-29 Shei; Sun-Sheng Energy delivery system controllable to continuously deliver laser energy in performing photorefractive keratectomy
JPH1085964A (ja) * 1996-09-11 1998-04-07 Ishikawajima Harima Heavy Ind Co Ltd 配管内面のレーザ照射方法及び装置
JPH10141132A (ja) * 1996-11-11 1998-05-26 Nissan Motor Co Ltd 肉盛りバルブシートおよびその肉盛り方法
US6002102A (en) * 1997-02-25 1999-12-14 Lsp Technologies, Inc. Hidden surface laser shock processing
FR2762244B1 (fr) * 1997-04-21 1999-07-16 Peugeot Appareil de traitement par laser de la paroi de cylindre d'un moteur a combustion interne
DE19826138B4 (de) * 1998-04-17 2007-06-28 NU TECH Gesellschaft für Lasertechnik Materialprüfung und Meßtechnik mbH Verfahren zur Herstellung eines Werkstücks mit einer verschleißbeständigen Oberfläche
US6760295B1 (en) * 1999-01-08 2004-07-06 Pentax Corporation Optical pick-up
JP3368422B2 (ja) * 1999-01-29 2003-01-20 富士通株式会社 レンズ装置、これを用いた光学ヘッドおよび光ディスク装置
JP3695984B2 (ja) * 1999-03-30 2005-09-14 日鐵溶接工業株式会社 レ−ザアシスト高速フレ−ム溶射法および装置
JP3918379B2 (ja) * 1999-10-20 2007-05-23 トヨタ自動車株式会社 溶射方法、溶射装置及び粉末通路装置
JP2002184724A (ja) * 2000-12-13 2002-06-28 Komatsu Ltd シリコンインゴット切断装置、シリコンインゴットの切断方法、及びシリコンウェハ
DE10116720A1 (de) * 2001-04-04 2002-10-10 Bayerische Motoren Werke Ag Gerät zur Laser-Pulverbeschichtung
FR2826893B1 (fr) * 2001-07-05 2003-09-19 Snecma Moteurs Appareil de soudage par faisceau laser miniaturise
JP2007535783A (ja) * 2003-12-22 2007-12-06 ショット アクチエンゲゼルシャフト 段付レンズを備える光学装置
DE102004020250A1 (de) * 2004-04-26 2005-11-10 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co. Kg Vorrichtung und Verfahren zur optischen Strahlhomogenisierung
US7390704B2 (en) * 2004-06-16 2008-06-24 Semiconductor Energy Laboratory Co., Ltd. Laser process apparatus, laser irradiation method, and method for manufacturing semiconductor device
DE202005005905U1 (de) * 2005-04-07 2005-06-16 Gehring Gmbh & Co. Kg Vorrichtung zur Erzeugung von Vertiefungen in den zylindrischen Innenflächen von Bohrungen mit einem Laserstrahl
JP2007310368A (ja) * 2006-04-21 2007-11-29 Sumitomo Electric Ind Ltd ホモジナイザを用いた整形ビームの伝搬方法およびそれを用いたレ−ザ加工光学系
DE102007035715A1 (de) * 2006-12-27 2008-07-03 Robert Bosch Gmbh Laserstrahlbearbeitungsvorrichtung sowie Verfahren zum Justieren der Fokuslage
CN100547113C (zh) * 2007-06-13 2009-10-07 华中科技大学 激光感应复合熔覆制备材料涂层的方法及装置
EP2390046A1 (fr) * 2010-05-25 2011-11-30 Lasag Ag Installation d'usinage laser à fibre optique pour graver des rainures formant des amorces de rupture
JP2012037572A (ja) * 2010-08-03 2012-02-23 Hamamatsu Photonics Kk レーザ光整形及び波面制御用光学系
DE102011008192A1 (de) 2011-01-10 2012-07-12 Limo Patentverwaltung Gmbh & Co. Kg Vorrichtung zur Umwandlung von Laserstrahlung in Laserstahlung mit einem M-Profil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100278480A1 (en) * 2009-04-21 2010-11-04 Vasylyev Sergiy V Light collection and illumination systems employing planar waveguide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2013117754A1 *

Also Published As

Publication number Publication date
WO2013117754A1 (fr) 2013-08-15
CN104136163B (zh) 2016-02-03
JP2015512786A (ja) 2015-04-30
KR20140122252A (ko) 2014-10-17
CN105665934A (zh) 2016-06-15
CN104136163A (zh) 2014-11-05
US20160151862A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
WO2013117754A1 (fr) Dispositif d'usinage au laser d'une surface d'une pièce, ou de traitement ultérieur d'un revêtement sur la face extérieure ou la face intérieure d'une pièce
EP0743888B1 (fr) Dispositif et procede de mise en forme de faisceaux laser, en particulier pour l'usinage des surfaces par laser
DE102011100456B4 (de) Extremes Hochgeschwindigkeitslaserauftragsschweißverfahren
EP3221740B1 (fr) Système optique de mise en forme d'un faisceau
EP2762259B1 (fr) Procédé d'usinage d'une surface d'une pièce au moyen d'un rayonnement laser
EP2429755B1 (fr) Dispositif et procédé permettant l'usinage périphérique au laser d'un cordon de matière
DE102007038502B4 (de) Verfahren zum Fügen von mindestens zwei Werkstücken mittels eines Laserstrahls
DE102015104411B4 (de) Laserstrahlfügeverfahren und Laserbearbeitungsoptik
EP3110591A1 (fr) Dispositif d'usinage laser et procédé
DE2927130A1 (de) Verfahren und vorrichtung zur waermebehandlung von oberflaechen von werkstuecken aus stahl
CH710428B1 (de) Laserbearbeitungssysteme und -verfahren, die einen Laserstrahl dithern können.
EP2468445B1 (fr) Machine de traitement au laser avec un laser diode, dont son faisceau peut tourner autour de son axe, et procédé de traitement d'une pièce
WO2013010876A1 (fr) Procédé et dispositif de lissage et de polissage de surfaces de pièces par traitement au moyen de deux rayonnements énergétiques
DE102020127116B4 (de) Vorrichtung und Verfahren zum Laserbearbeiten eines Werkstücks
DE10020327A1 (de) Vorrichtung zur Bearbeitung von Werkstücken, Schweißverfahren zum Erzeugen einer in sich geschlossenen Schweißnaht und Verfahren zum Härten metallischer Werkstücke
EP3962691B1 (fr) Agencement pour modifier des surfaces de composants métalliques
DE3121555A1 (de) Verfahren zur kontrollierten formaenderung eines erwaermten teils aus stahl mittels laserstrahlung
DE10140533A1 (de) Verfahren und Vorrichtung zur Mikrobearbeitung eines Werkstücks mit Laserstrahlung
DE102009051336B4 (de) Verwendung brillanter Laserstrahlung eines Faser- oder Scheibenlasers zum Schweißen von Werkstücken aus Keramik, Dentalkeramik, Porzellan, Hartmetall oder hochlegierten austenitischen Stählen
DE102020200909B4 (de) Verfahren zum Bearbeiten eines metallischen Werkstücks
DE102021130289A1 (de) Verfahren zum Laserauftragschweißen
DE102023102044A1 (de) Verfahren zum Beschichten metallischer Werkstücke
DE202023002714U1 (de) Vorrichtung zum Laserbeschichten
WO2023089194A1 (fr) Dispositif de traitement d'une surface d'une pièce à usiner à l'aide d'une combinaison d'un faisceau de plasma atmosphérique et d'un faisceau laser
DE102022100173A1 (de) Vorrichtung und Verfahren zur additiven Fertigung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180326

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LIMO GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180807