NL2015734B1 - Method for laser cladding. - Google Patents

Method for laser cladding. Download PDF

Info

Publication number
NL2015734B1
NL2015734B1 NL2015734A NL2015734A NL2015734B1 NL 2015734 B1 NL2015734 B1 NL 2015734B1 NL 2015734 A NL2015734 A NL 2015734A NL 2015734 A NL2015734 A NL 2015734A NL 2015734 B1 NL2015734 B1 NL 2015734B1
Authority
NL
Netherlands
Prior art keywords
laser beam
manipulating
powder
tube
melting bath
Prior art date
Application number
NL2015734A
Other languages
Dutch (nl)
Inventor
Wilhelmus Maria Mens Joseph
Husslage Wim
Original Assignee
Laser Clad Company B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser Clad Company B V filed Critical Laser Clad Company B V
Priority to NL2015734A priority Critical patent/NL2015734B1/en
Priority to PCT/NL2016/050765 priority patent/WO2017078524A1/en
Application granted granted Critical
Publication of NL2015734B1 publication Critical patent/NL2015734B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/10Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam
    • B23K26/103Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam the laser beam rotating around the fixed workpiece
    • B23K26/106Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam the laser beam rotating around the fixed workpiece inside the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles

Abstract

The invention relates to a method for laser cladding an interior surface of a hollow open ended pipe, the method comprising; - manipulating of a laser beam over the interior surface of the pipe to form a line shaped melting, - supplying powder to the melting pool simultaneously and evenly along the entire length of the melting pool in order to uniformly grow a material layer on the interior surface of the hollow pipe.

Description

Method for laser cladding Background
The present invention relates to a method for laser cladding an interior surface of a hollow open ended pipe.
It is known to direct a laser beam to the interior surface of the pipe to provide a dot shaped melting pool, and then to supply powder to the melting pool to grow a material layer on the interior surface of the hollow pipe. The dot shaped melting pool slowly moves along the interior surface to grow the material layer.
Regarding coating in general, from BE1000078A6 it is known to internally coat a tube by plasma powder spraying to form a deposit which inhibits crack formation or propagation in the tube resulting from stress corrosion. The range in length of pipe that can be plasma sprayed seems limited.
The invention further relates to a device for laser cladding an interior surface of a hollow open ended pipe.
Laser cladding is a type of material adding technology. In general laser cladding is a method of depositing material. A powdered or wire feedstock material is melted and consolidated by use of a laser. Laser cladding is used to coat parts of a substrate or even fabricate a near-net shape part referred to as additive manufacturing technology. In case of coating parts, the cladded coating improves mechanical properties of the coated part, increases corrosion resistance, increases wear resistance and/or repairs worn out parts.
Summary of the invention
The invention aims to provide a method for cladding an interior surface of a hollow pipe which method is more affordable and provides a better quality of the coating layer. Another object of the invention is to improve a known method for cladding an interior surface of a hollow pipe in that a drawback associated with that method is at least partly solved.
Yet another object of the invention is to provide an alternative method for cladding an interior surface of a hollow pipe.
According to a first aspect of the invention this is realized with a method for laser cladding an interior surface of a hollow open ended pipe, the method comprising; manipulating of a laser beam over the interior surface of the pipe to form a line shaped melting pool, supplying powder to the melting pool simultaneously and evenly along the entire length of the melting pool in order to uniformly grow a material layer on the interior surface of the hollow pipe.
Manipulating of the laser beam over the interior surface of the pipe to form a line shaped melting pool enables to grow a more uniform material layer on the interior surface of the pipe. In addition, the process is potentially faster since the material layer can grow along the entire length of the melting pool. The material layer is also referred to as a laserclad layer.
Thus, according to the invention, power of the laser is distributed to cause a line shaped melting pool having a melting pool length, while powder is supplied to the melting pool simultaneously and evenly along the entire length of the melting pool. In contrast, in the art the laserclad layer only grows spot wise.
Optionally, the pipe is maintained in a stationary position while manipulating the laser beam over the interior surface of the pipe to form a line shaped melting pool. This is beneficial since theses pipes can have a considerable weight and have a length of more than several meters.
The method of the invention has its use in demanding industries like the oil, gas and chemical industry.
In connection with the invention a high power laser beam is as an example able to supply 10 kW for treatment of a pipe with a diameter of 100 mm.
It will be clear the invention is not limited to pipes that are entirely hollow. It is conceivable that the pipe has a closed or solid section. The invention is in particular beneficial for cladding a cavity of a hollow that has a minimal length of e.g. at least about 2 meters.
In an embodiment of the method, the manipulating of a laser beam comprises; introducing the laser beam into the interior of the pipe so that a center line of the laser coincides with a longitudinal axis of the pipe, and deflecting the laser beam towards the interior surface of the pipe.
This enables to cover the entire interior surface of the pipe while using one source of laser light.
In an embodiment of the method, the deflecting the laser beam towards the interior surface of the pipe comprises deflecting the laser beam at an included angle δ of less than 90°, in particular at an included angle δ of about 35°.
In an embodiment of the method, the manipulating a laser beam to form a melting pool comprises manipulating the laser beam to form a melting pool that extends around the inner circumference of the pipe to form a continuous annular shaped melting pool.
This even more enables to grow a more uniform material layer on the interior surface of the pipe.
In an embodiment of the method, the manipulating a laser beam to form a melting pool comprises manipulating the laser beam to form a melting pool that extends around the inner circumference of the pipe to form an discontinuous annular shaped melting pool, wherein discontinuities of the melting pool are caused by switching the laser beam on and off.
This enables to create discontinuities in the laserclad layer. This can be advantageous when e.g. a connection to the pipe must be made at a specific pipe section.
In an embodiment of the method, the manipulating a laser beam to form a melting pool comprises manipulating the laser beam to form a melting pool that extends transverse with respect to the longitudinal axis of the pipe.
The melting pool extending transverse with respect to the longitudinal axis of the pipe facilitates to distribute the energy of the laser in a uniform way along the interior surface of the pipe.
In an embodiment of the method, the melting pool is continuous and has a circular shape. For that purpose, the laser beam continuously scans the interior surface of the pipe along a circular path.
This continuous and circular melting pool even more enables to grow a more uniform material layer on the interior surface of the pipe and aids in driving impurities away from the material layer already deposited on the interior surface of the pipe.
In an embodiment, the method comprises manipulating the laser beam to move the melting pool along the longitudinal axis of the pipe.
Moving the melting pool along the longitudinal axis of the pipe enables growth of the material layer.
According to a further aspect of the invention this is realized with a device for laser cladding an interior surface of an hollow open ended pipe, the device comprising; a vehicle for travelling along a longitudinal axis of the hollow pipe and supporting an optical system and a powder distributing system, the optical system being configured for receiving and deflecting a high power laser beam, wherein the optical system comprises means for manipulating the laser beam over an interior surface of the pipe to form a line shaped melting pool, and the powder distributing system being configured for supplying powder to the melting pool to form a material layer on the interior surface of the hollow pipe.
The vehicle for travelling along a longitudinal axis of the hollow pipe allows to clad the entire interior surface of the pipe. The vehicle may roll or slide or move in any suitable manner through the pipe. It will be clear that the device is able to perform the method according to the invention and brings the same benefits associated therewith.
In an embodiment of the device, the means for manipulating the laser beam comprises a movably arranged mirror, in particular a rotatably arranged mirror. The mirror reflects the laser towards the interior surface of the pipe. By moving the mirror, the laser beam is manipulated over the interior surface of the pipe to form a line shaped melting pool. The power of the laser is distributed over the melting pool. The power of the laser is distributed over the melting pool by continuously moving the laser beam, in particular repeatedly moving of laser beam along the melting pool. The rotatably arranged mirror is beneficial for continuously and repeatedly moving the laser beam along a circular melting pool. Therefore, the rotatably arranged mirror has an angular velocity which velocity is sufficient to distribute the power of the laser over the melting pool. As an example, the rotatably arranged mirror has an angular velocity of between 100 and 1000 rad/s or even more.
In an embodiment of the device, the powder distributing system comprises a nozzle arranged with respect to the means for manipulating the laser beam such that the laser beam is deflected past the nozzle and turns to the melting pool.
This arrangement of the nozzle and mirror facilitates the supply of powder to the melting pool.
In an embodiment of the device, the powder distributing system comprises a rotatably arranged member, and wherein the nozzle is mounted with the rotatably arranged member for supplying powder simultaneously and evenly along the length of the melting pool in order to uniformly grow the material layer.
The rotatably arranged member provided with the nozzle enables to create a uniform flow of powder towards the interior surface of the pipe. The flow of powder can also be referred to as “powder front”. The “uniformity” is related to the powder front over the circumference, as well as the powder front over time.
In an embodiment of the device, the rotatably arranged member comprises a supply channel for powder supply to the nozzle, wherein at least a section of the supply channel extends at an angle φ with respect to a radius r of the rotatably arranged member in order to effect the supply of powder in particular the powder velocity.
In an embodiment of the device, the supply channel has a supply channel length 1, the nozzle has an outflow opening having an outflow diameter d, and wherein the supply channel length, the radius r of the rotatably arranged member, the angle φ and the outflow diameter are configured such that at a predetermined angular velocity of the rotatably arranged member, a uniform flow of powder flows towards the melting pool..
In an embodiment of the device, the powder distributing system comprises a plurality of nozzles mutually arranged for evenly supplying of powder along a length of the melting pool. Each nozzle may have its own respective supply channel.
In an embodiment, the device comprises a gas powered drive system coupled with the powder distributing system and the means for manipulating the laser beam for rotating the rotatably arranged mirror and/or the rotatably arranged member.
This way, a flow of pressurized gas can both generate the flow of powder and drive the mirror.
In an embodiment of the device, the rotatably arranged mirror and the rotatably arranged member are coupled such that they rotate in unity.
The invention further relates to pipe laser cladded with the method according to the invention.
The invention further relates device comprising one or more of the characterizing features described in the description and/or shown in the attached drawings.
The invention further relates to a method comprising one or more of the characterizing features described in the description and/or shown in the attached drawings.
The various aspects discussed in this patent can be combined in order to provide additional advantages.
Description of the drawings
The invention will be further elucidated referring to a preferred embodiment shown in the schematic drawings wherein shown in:
Fig. 1 in cross sectional side view a device according the invention in a hollow pipe; and fig. 2 a detail of the device according to fig. 1 in a partially sectional- and cut-away view.
Detailed description of embodiments
In the figure 1 a device 9 according the invention is depicted in the interior 7 of a hollow pipe 2.
The device 9 is suitable and intended for laser cladding an interior surface 1 of a hollow open ended pipe 2.
The device 9 comprising vehicle 10 for travelling along a longitudinal axis 8 of the hollow pipe 2. The vehicle 10 advances through the pipe in any suitable manner. The vehicle 10 moves to the right as seen in the fig. 1.
The vehicle 10 supports an optical system 11. The optical system 11 is configured for receiving and deflecting a high power laser beam 3. The optical system comprises a mirror 13 for manipulating the laser beam 3 over an interior surface 1 of the pipe 2. The laser beam 3 is manipulated according a pattern such that a line shaped melting pool 4 is formed. The melting pool 4 is depicted with a dashed line. The mirror 13 is arranged with the optical system 11 in a movable manner, in this case in a rotatable manner. The mirror 13 is rotatable around an axis of rotation that coincides here with the central longitudinal axis 8 of the pipe 2.
The vehicle 10 supports a powder distributing system 12. The powder distributing system 12 is configured for supplying powder 5 to the melting pool 4 to form a material layer 6 on the interior surface 1 of the hollow pipe 2.
For supplying the powder 5 to the melting pool 4, the powder distributing system 12 comprises a nozzle 14. Here, the nozzle 14 is arranged with respect to the mirror 13 such that the laser beam 3 is deflected past the nozzle 14, referring to the traveling direction of the laser, and turns to the melting pool 4.
The powder distributing system comprises a rotatably arranged member 15, in this case a disc shaped member 15. The nozzle 14 is mounted with the rotatably arranged member 15. Here the nozzle 14 is arranged at the outer circumference of the rotatably arranged member 15. Here, the powder distributing system comprises a plurality of nozzles 14 mutually arranged with the rotatably arranged member 15 for supplying powder 5 simultaneously and evenly along the length of the melting pool 4 in order to uniformly grow the material layer 6. Here, all of the plurality of nozzles 14 are arranged at the outer circumference of the rotatably arranged circular member 15. The powder is supplied to the powder distributing system through a main powder supply conduit 18. The rotatably arranged member 15 has a central cavity 19 for containing powder. This cavity 19 enables to buffer powder to cause a more even supply of powder to the nozzles 14.
The conduit 18 supplies the powder to the central cavity 19. Therefore, the conduit 18 enters the cavity 19 through a central opening 20.
As is best shown in fig. 2, the rotatably arranged member 15 comprises a supply channel 16 for powder supply to the nozzle 14. The supply channel 16 has a supply channel length 1. The nozzle 14 has an outflow opening 17 where the powder 5 exits. The outflow opening 17 is arranged at an outflow radius r. The outflow opening 17 has an outflow diameter d. The supply channel length, the outflow radius and the outflow diameter are configured such that at a predetermined angular velocity of the rotatably arranged member 15, a uniform flow of powder 5 flows towards the melting pool 4.
The supply channel or channels 16 transport the powder 5 from the cavity 19 tot the nozzle(s) 17.
The device 9 comprising a gas powered drive system (not shown) coupled with the powder distributing system 12 and the optical system 11 for rotating the rotatably arranged mirror 13 and the rotatably arranged member 15. Here, the rotatably arranged mirror 13 and the rotatably arranged member 15 are coupled such that they rotate in unity.
During use of the above described device, the following steps are performed. Manipulating of a laser beam 3 over the interior surface 1 of the pipe 2 to form a line shaped melting pool 4. Meanwhile the pipe 2 is preferably maintained in a stationary position. Maintaining the pipe 2 in a stationary position is advantageous since these pipes typically may have a considerable weight and have a length of more than several meters.
At the same time, powder 5 is supplied to the melting pool 4 simultaneously and evenly along the entire length of the melting pool 4 in order to uniformly grow a material layer 6 on the interior surface 1 of the hollow pipe 2.
The laser beam is introduced into the interior 7 of the pipe 2. The laser beam 3 extends with respect to the longitudinal axis 8 as a center line of the pipe 2. The laser beam 3 is deflected towards the interior surface 1 of the pipe 2. Here, the laser is deflected by the mirror 11 at an included angle δ of about 35°. The laser beam 3 is focused on the interior surface 1 of the pipe 2.
In this case the melting pool 4 extends around the inner circumference of the pipe 2 to form a continuous annular shaped melting pool 4 or in other words circular shaped. The melting pool 4 extends transverse with respect to the longitudinal axis 8 of the pipe 2. The vehicle 10 is advanced through the pipe 2 to move the melting pool 4 along the longitudinal axis 8 of the pipe 2.
It will also be obvious after the above description and drawings are included to illustrate some embodiments of the invention, and not to limit the scope of protection. Starting from this disclosure, many more embodiments will be evident to a skilled person which are within the scope of protection and the essence of this invention and which are obvious combinations of prior art techniques and the disclosure of this patent.

Claims (19)

1. Werkwijze voor lasercladden van een inwendig oppervlak (1) van een holle buis (2) met een open einde, waarbij de werkwijze omvat; - manipuleren van een laserstraal (3) over het binnenoppervlak van de buis teneinde een lijnvormig smeltbad te vormen (4), toevoeren van poeder (5) naar het smeltbad, gelijktijdig en gelijkmatig over de gehele lengte van het smeltbad teneinde een materiaallaag (6) op het binnenoppervlak van de holle buis uniform aan te groeien.A method for laser cladding an inner surface (1) of a hollow tube (2) with an open end, the method comprising; - manipulating a laser beam (3) over the inner surface of the tube to form a line-shaped melting bath (4), feeding powder (5) to the melting bath, simultaneously and uniformly over the entire length of the melting bath to form a material layer (6) to grow uniformly on the inner surface of the hollow tube. 2. Werkwijze volgens conclusie 1, waarbij het manipuleren van een laserstraal omvat; inleiden van de laserstraal in het inwendige (7) van de buis zodat een hartlijn van de laser samenvalt met een longitudinale as (8) van de buis, en, afbuigen van de laserstraal naar het binnenoppervlak van de buis.The method of claim 1, wherein manipulating a laser beam comprises; introducing the laser beam into the interior (7) of the tube so that a center line of the laser coincides with a longitudinal axis (8) of the tube, and deflecting the laser beam to the inner surface of the tube. 3. Werkwijze volgens conclusie 1 of 2, waarbij het afbuigen van de laserstraal naar het binnenoppervlak van de buis omvat afbuigen van de laserstraal onder een ingesloten hoek δ van minder dan 90 °.The method of claim 1 or 2, wherein deflecting the laser beam to the inner surface of the tube comprises deflecting the laser beam at an enclosed angle δ of less than 90 °. 4. Werkwijze volgens conclusie 3, omvattende het afbuigen van de laserstraal onder een ingesloten hoek δ van ongeveer 35 °.The method of claim 3, comprising deflecting the laser beam at an enclosed angle δ of about 35 °. 5. Werkwijze volgens een der voorgaande conclusies 1-4, waarbij het manipuleren van een laserstraal teneinde een smeltbad te vormen omvat het manipuleren van de laserstraal teneinde een smeltbad te vormen dat zich uitstrekt rond de binnenomtrek van de buis om een doorlopend, ringvormig smeltbad te vormen.The method of any one of the preceding claims 1-4, wherein manipulating a laser beam to form a melting bath comprises manipulating the laser beam to form a melting bath extending around the inner circumference of the tube to form a continuous, annular melting bath to shape. 6. Werkwijze volgens een der voorgaande conclusies 1-4, waarbij het manipuleren van een laserstraal teneinde een smeltbad te vormen omvat het manipuleren van de laserstraal teneinde een smeltbad te vormen dat zich uitstrekt rond de binnenomtrek van de buis om een discontinu, ringvormig smeltbad te vormen, waarbij discontinuïteiten van het smeltbad zijn veroorzaakt door het aan- en uitschakelen van de laserstraal.The method of any one of the preceding claims 1-4, wherein manipulating a laser beam to form a melt bath comprises manipulating the laser beam to form a melt bath that extends around the inner circumference of the tube to form a discontinuous, annular melt bath. shapes where discontinuities of the melting bath are caused by turning the laser beam on and off. 7. Werkwijze volgens een der voorgaande conclusies, waarbij het manipuleren van een laserstraal teneinde een smeltbad te vormen omvat het manipuleren van de laserstraal om een smeltbad te vormen dat zich dwars ten opzichte van de longitudinale as van de buis uitstrekt.A method according to any preceding claim, wherein manipulating a laser beam to form a melting bath comprises manipulating the laser beam to form a melting bath extending transversely to the longitudinal axis of the tube. 8. Werkwijze volgens een der voorgaande conclusies, verder omvattende het manipuleren van de laser teneinde het smeltbad langs de longitudinale as van de buis te bewegen.The method of any one of the preceding claims, further comprising manipulating the laser to move the melting bath along the longitudinal axis of the tube. 9. Inrichting (9) voor lasercladden van een binnenoppervlak van een holle buis met een open einde, waarbij de inrichting omvat; een voertuig (10) voor bewegen langs een longitudinale as van de holle buis en dragende een optisch systeem (11) en een poeder distributie systeem (12), waarbij het optische systeem is ingericht voor het ontvangen en het afbuigen van een hoogvermogen laserstraal, en waarbij het optische systeem middelen (13) omvat voor het manipuleren van de laserstraal op een binnenoppervlak van de buis teneinde een lijnvormig smeltbad te vormen, en het poeder distributie systeem is geconfigureerd voor het toevoeren van poeder aan het smeltbad teneinde een materiaallaag op het binnenoppervlak van de holle buis te vormen.A device (9) for laser cladding of an inner surface of a hollow tube with an open end, the device comprising; a vehicle (10) for moving along a longitudinal axis of the hollow tube and carrying an optical system (11) and a powder distribution system (12), the optical system being adapted to receive and deflect a high-power laser beam, and wherein the optical system comprises means (13) for manipulating the laser beam on an inner surface of the tube to form a linear melting bath, and the powder distribution system is configured to apply powder to the melting bath to form a layer of material on the inner surface of to form the hollow tube. 10. Inrichting volgens conclusie 9, waarbij de middelen voor het manipuleren van de laserstraal een beweegbaar aangebrachte spiegel (13) omvatten.Device as claimed in claim 9, wherein the means for manipulating the laser beam comprise a movably arranged mirror (13). 11. Inrichting volgens conclusie 10, waarbij de spiegel roteerbaar is aangebracht.The device of claim 10, wherein the mirror is rotatably mounted. 12. Inrichting volgens een der voorgaande conclusies 9-11, waarbij het poederdistributiesysteem een mondstuk (14) omvat zodanig aangebracht ten opzichte van de middelen voor het manipuleren van de laserstraal dat de laserstraal wordt afgebogen voorbij het mondstuk en keert naar het smeltbad.Device according to any of the preceding claims 9-11, wherein the powder distribution system comprises a nozzle (14) arranged relative to the means for manipulating the laser beam such that the laser beam is deflected past the nozzle and turns to the melting bath. 13. Inrichting volgens een der voorgaande conclusies 9-12, waarbij het poederdistributiesysteem een roteerbaar aangebracht orgaan (15) omvat, en waarbij het mondstuk is gemonteerd aan het roteerbaar orgaan voor het toevoeren van poeder gelijktijdig en gelijkmatig over de lengte van het smeltbad teneinde de materiaallaag uniform aan te groeien.An apparatus according to any one of the preceding claims 9-12, wherein the powder distribution system comprises a rotatably arranged member (15), and wherein the nozzle is mounted on the rotatable member for supplying powder simultaneously and uniformly along the length of the melt bath in order to material layer to grow uniformly. 14. Inrichting volgens conclusie 13, waarbij het roteerbaar orgaan een toevoerkanaal (16) omvat voor poedertoevoer naar het mondstuk, waarbij ten minste een gedeelte van het toevoerkanaal zich uitstrekt onder een hoek φ ten opzichte van een straal r van het roteerbaar orgaan.The device of claim 13, wherein the rotatable member comprises a feed channel (16) for powder feed to the nozzle, wherein at least a portion of the feed channel extends at an angle φ relative to a radius r of the rotatable member. 15. Inrichting volgens conclusie 14, waarbij het toevoerkanaal een toevoerkanaal lengte 1 heeft, en het mondstuk een uitstroomopening (17) met een uitstroomopening diameter d, en waarbij de toevoerkanaal lengte, de straal r van het roteerbaar orgaan, de hoek φ en de uitstroom diameter zodanig uitgevoerd zijn dat bij een vooraf bepaalde hoeksnelheid van het roteerbaar orgaan, een gelijkmatige stroom van poeder naar het smeltbad stroomt.Device as claimed in claim 14, wherein the supply channel has a supply channel length 1, and the nozzle has an outflow opening (17) with an outflow opening diameter d, and wherein the supply channel length, the radius r of the rotatable member, the angle φ and the outflow diameter are designed such that at a predetermined angular velocity of the rotatable member, a uniform flow of powder flows to the molten bath. 16. Inrichting volgens een der voorgaande conclusies 9-15, waarbij het poederdistributiesysteem een aantal mondstukken omvat die onderling zijn aangebracht voor gelijkmatig toevoeren van poeder langs een lengte van het smeltbad.Device as claimed in any of the foregoing claims 9-15, wherein the powder distribution system comprises a number of nozzles which are mutually arranged for uniformly supplying powder along a length of the melting bath. 17. Inrichting volgens een der voorgaande conclusies 13-16, omvattende een gas aangedreven aandrijfsysteem verbonden met het poederdistributiesysteem en de middelen voor het manipuleren van de laserstraal voor het roteren van de roteerbaar aangebrachte spiegel en / of het roteerbaar orgaan.Device as claimed in any of the foregoing claims 13-16, comprising a gas-driven drive system connected to the powder distribution system and the means for manipulating the laser beam for rotating the rotatably mounted mirror and / or the rotatable member. 18. Inrichting volgens een der voorgaande conclusies 13-17, waarbij de roteerbaar aangebrachte spiegel en het roteerbaar orgaan zodanig zijn verbonden dat zij in eenheid roteren.Device as claimed in any of the foregoing claims 13-17, wherein the rotatably arranged mirror and the rotatable member are connected such that they rotate in unity. 19. Buis, laserbekleed met de werkwijze volgens één van de conclusies 1-8.A tube, laser coated with the method according to any of claims 1-8.
NL2015734A 2015-11-06 2015-11-06 Method for laser cladding. NL2015734B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2015734A NL2015734B1 (en) 2015-11-06 2015-11-06 Method for laser cladding.
PCT/NL2016/050765 WO2017078524A1 (en) 2015-11-06 2016-11-04 Method for laser cladding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2015734A NL2015734B1 (en) 2015-11-06 2015-11-06 Method for laser cladding.

Publications (1)

Publication Number Publication Date
NL2015734B1 true NL2015734B1 (en) 2017-05-24

Family

ID=55236877

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2015734A NL2015734B1 (en) 2015-11-06 2015-11-06 Method for laser cladding.

Country Status (2)

Country Link
NL (1) NL2015734B1 (en)
WO (1) WO2017078524A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923698A (en) * 2019-11-21 2020-03-27 济南金威刻科技发展有限公司 Rotating beam ultra-high-speed laser cladding method
CN111441048B (en) * 2020-04-02 2022-03-25 佛山根固激光科技有限公司 Powder feeding device for laser cladding, laser cladding equipment and metal coating processing method
CN113510249B (en) * 2021-07-02 2022-12-27 西安交通大学 Multi-runner high-speed rotary sealing device capable of conveying hard powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185927A (en) * 1981-05-08 1982-11-16 Sumitomo Metal Ind Ltd Formation of amorphous inside circumferential surface of steel pipe
DE19907105A1 (en) * 1999-02-19 2000-08-31 Volkswagen Ag Method and device for producing wear-resistant, tribological cylinder running surfaces
WO2005053896A1 (en) * 2003-12-04 2005-06-16 Lbc Laser Bearbeitungs Center Gmbh Device for working the surfaces of the internal surface of a cylinder using a laser beam
WO2013117754A1 (en) * 2012-02-10 2013-08-15 Limo Patentverwaltung Gmbh & Co. Kg Device for the laser processing of a surface of a workpiece or for the post-treatment of a coating on the outside or the inside of a workpiece

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1000078A6 (en) 1987-10-14 1988-02-02 Westinghouse Energy Systems In Internal plasma spray coating of tube - esp. steam generator tube to inhibit stress corrosion cracking

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185927A (en) * 1981-05-08 1982-11-16 Sumitomo Metal Ind Ltd Formation of amorphous inside circumferential surface of steel pipe
DE19907105A1 (en) * 1999-02-19 2000-08-31 Volkswagen Ag Method and device for producing wear-resistant, tribological cylinder running surfaces
WO2005053896A1 (en) * 2003-12-04 2005-06-16 Lbc Laser Bearbeitungs Center Gmbh Device for working the surfaces of the internal surface of a cylinder using a laser beam
WO2013117754A1 (en) * 2012-02-10 2013-08-15 Limo Patentverwaltung Gmbh & Co. Kg Device for the laser processing of a surface of a workpiece or for the post-treatment of a coating on the outside or the inside of a workpiece

Also Published As

Publication number Publication date
WO2017078524A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
NL2015734B1 (en) Method for laser cladding.
JP7326171B2 (en) A process for producing round preforms by cold spray deposition
EP2506981B1 (en) Coaxial laser assisted cold spray nozzle
KR100420877B1 (en) Process and device for laser treatment of the inner face of a light metal engine block
US9120123B2 (en) Spray nozzle
CN111676477B (en) Ultrahigh-speed laser-induction composite cladding method and device
Shi et al. Laser metal deposition with spatial variable orientation based on hollow-laser beam with internal powder feeding technology
US20160311059A1 (en) Nozzle device and manufacturing method of layered object
CN105562688A (en) Manufacture of a component through selective laser melting
RU2503740C2 (en) Method of making composite coatings by coaxial laser surfacing
US20180021793A1 (en) Directional cold spray method
AU781334B2 (en) Method for producing a surface-alloyed cylindrical, partially cylindrical or hollow cylindrical component and a device for carrying out said method
CN104703747A (en) Powder nozzle for a laser powder welding device
US10119195B2 (en) Multichannel cold spray apparatus
CN101909807B (en) Method for laser welding using a nozzle capable of stabilising the keyhole
CN105386035A (en) Manufacturing process for hard facing aluminum injection molds
CN110073033B (en) Cold spray apparatus with large area conformal deposition capability
RU2645631C1 (en) Method of applying the coating on the sample (variants) and the device for its implementation (variants)
WO2007097505A1 (en) Device and method for coating wire rod of optic overhead earth wire
JP2016074018A (en) Powder build-up nozzle
US20180178326A1 (en) Vacuum sls method for the additive manufacture of metallic components
RU2656906C1 (en) Method of a sample laser coating and device for its implementation
KR101850605B1 (en) Laser cladding nozzle
CN203554776U (en) Device for plasma coating
RU2638850C1 (en) Method of single-crystal growth and device for its implementation

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20181201