EP2797676A1 - Procédé de séparation de gaz - Google Patents

Procédé de séparation de gaz

Info

Publication number
EP2797676A1
EP2797676A1 EP12791499.2A EP12791499A EP2797676A1 EP 2797676 A1 EP2797676 A1 EP 2797676A1 EP 12791499 A EP12791499 A EP 12791499A EP 2797676 A1 EP2797676 A1 EP 2797676A1
Authority
EP
European Patent Office
Prior art keywords
stream
permeate
retentate
helium
separation stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP12791499.2A
Other languages
German (de)
English (en)
Inventor
Jörg BALSTER
Markus Ungerank
Ingrid Winette VELTHOEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Fibres GmbH
Original Assignee
Evonik Fibres GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Fibres GmbH filed Critical Evonik Fibres GmbH
Priority to EP12791499.2A priority Critical patent/EP2797676A1/fr
Priority to EP18151878.8A priority patent/EP3338876B1/fr
Publication of EP2797676A1 publication Critical patent/EP2797676A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • B01D53/226Multiple stage diffusion in serial connexion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0042Physical processing only by making use of membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0042Physical processing only by making use of membranes
    • C01B23/0047Physical processing only by making use of membranes characterised by the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • B01D2053/223Devices with hollow tubes
    • B01D2053/224Devices with hollow tubes with hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/11Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/251Recirculation of permeate
    • B01D2311/2512Recirculation of permeate to feed side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • B01D2313/243Pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/001Physical processing by making use of membranes
    • C01B2210/0012Physical processing by making use of membranes characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0029Obtaining noble gases
    • C01B2210/0031Helium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0068Organic compounds
    • C01B2210/007Hydrocarbons

Definitions

  • the invention relates to a special method and a special device, in particular chaining of
  • Gas separation membrane modules for the separation of helium-containing gas mixtures and for the production of helium in high purity.
  • the helium extraction of gas sources is energetically a very complex process and is operated so far mainly by means of cryogenic distillation.
  • Time unit, area, differential pressure and layer thickness of the individual gases can be separated.
  • plastics are made into hollow fibers or flat membranes to make such gas separation membranes.
  • PPO polyphenylene oxide
  • the object of the present invention to provide a method and an apparatus for the separation and purification of helium-containing gas mixtures, which the
  • Another specific object of the present invention was to minimize the losses of helium compared to raw gas flow. Further tasks not explicitly mentioned emerge from the overall context of the following claims,
  • Claim 2 or one of the dependent claims pure streams of permeate (helium stream) and retentate can be obtained without more than one compressor is needed.
  • the device according to the invention allows
  • the quotient of the permeances of two individual gases gives the selectivity of the membrane for the separation with respect to the two gases and thus indicates how well the membrane can separate a gas mixture with respect to the two components.
  • Permeate is the total flow on the low pressure side of the membrane, membrane modules or membrane separation step.
  • the permeate gas is / are in each case at the membrane, at the membrane module, or in the membrane separation step in
  • Permeate referred to the respective inlet stream enriched component / components.
  • retentate refers to the total flow occurring on the high-pressure side of the membrane, membrane modules or membrane separation step, which does not pass through the membrane.
  • Retentatgas is / are in each case at the membrane, at the membrane module, or in the membrane separation step in
  • Retentate referred to the respective inlet stream enriched component / components.
  • Crude gas or crude gas mixture or crude gas stream (17) denotes a gas mixture of at least two gases or a stream of this gas mixture, the / by means of the method according to the invention or the device according to the invention
  • the content of helium may vary within any limits, but is preferably between 0.01 and 80% by volume, more preferably 0.1 and 20% by volume and most preferably 1 to 10% by volume.
  • the raw gas stream may be an untreated gas stream, z. B.
  • Suitable gas streams are process gases in which helium is e.g. when
  • Feed stream (5) denotes a gas stream of helium and at least one further component, which is the
  • Feed current separation stage (1) is supplied. This stream can correspond to the crude gas stream (17) or to the crude gas stream compressed by a compressor. After recycling the second permeate stream (9) and / or the third
  • the feed stream (5) is preferably generated by the streams (9) and (10) either both with the uncompressed crude gas stream (17) or both with the
  • Feed stream separation stage (1) denotes a membrane separation stage for separating the feed stream (5) into a first, compared to the feed stream (5) with respect to helium
  • Retentate separation stage (2) denotes a membrane separation stage, which may be the same or different from the feedstream separation stage (1), for separating the first
  • Permeattrenncut (3) denotes a membrane separation stage, which may be the same or different to the feed current separation stage (1) or retentate separation stage (2), to
  • FIG. 1 to 3 contains a concatenation of at least three membrane separation stages.
  • Each stage consists of one or more physical gas separation modules connected in parallel and / or in series within one stage.
  • As a driving force for the gas separation in the modules a partial pressure difference between the Retentate and the permeate side in the respective
  • the partial pressure difference can be achieved either by means of a compressor (4) which is arranged on the feed side of the feed stream separation stage (1) and / or by means of at least one, preferably one or two vacuum pump (s) (not shown in FIGS. 1 to 3) the permeate side of the retentate separation stage (2) in the second permeate stream (9) and / or on the permeate side permeate separation stage (3) in the third permeate stream (11) are generated. Possibly. it can be beneficial in one or
  • a compressor (4) brings the crude gas mixture or the gas mixture from the raw gas stream (17) and the second permeate stream (9) and / or the third retentate stream (10) to the desired pressure in the region of 5 to 100 bar, but preferably to a pressure of 5 to 50 bar or particularly preferably 10 to 25 bar.
  • the resulting feed stream (5) is introduced into the feed stream separation stage (1).
  • Device can be carried out in particular in the purification of crude helium without recycling the streams (9) and (10) (see Example 2). In particular, however, when the helium content in
  • Crude gas flow (17) is very low and / or high
  • the inventive method or device according to the invention in a preferred variant characterized in that it / is designed such that the concentration of helium in the feed stream (5) through the
  • Return of the second permeate stream (9) and the third retentate stream (10) is increased, preferably by at least 2%, more preferably by at least 3%, most preferably by 4 to 10% and especially preferably by 5 to 10%, each in comparison to the helium concentration in the
  • Crude gas stream (17) The increase may depend on the composition of the crude gas stream (17) and is particularly pronounced at low concentrations of helium (0.01 to 10%). As a rule, the concentration increase of helium is between 2 and 10%, more preferably between 3 and 5%, if the content of the permeate gas in the crude gas stream (17) is between 2 and 7%.
  • Feed stream separation stage (1) increases, which in turn has the consequence that less retentate gas enters the first permeate stream (6). This in turn increases the efficiency of the
  • feed stream separation stage (1) preferably 20 to 100%, more preferably 30 to 90% and most preferably 40 to 70% of helium pass from the feed stream (5) into the permeate.
  • the retentate of the feedstream separation stage (1) is optionally depressurized by an optional existing one
  • Pressure reducing valve (12) or with pressure increase by means of the first retentate stream (7) of the retentate separation stage (2), in which the fine cleaning of the retentate (7) takes place.
  • the content of the heavier permeating components or of a retentate gas B is further increased in the retentate separation stage (2), so that the content of component B or a component B is increased
  • Retentatgases B in the second retentate stream (8) preferably more than 80 vol.%, Particularly preferably more than 90 vol.%, More preferably 90 to 99.9 vol.% And especially
  • the method or device according to the invention is characterized in that at least 95% by volume, preferably at least 97% by volume, particularly preferably at least 99% by volume and very particularly preferably at least 99.5% by volume which introduced into the device with the crude gas stream (17)
  • Retentatkomponente the feed stream separation stage (1) via the second retentate stream (8) are discharged.
  • the step separation cut of the retentate separation step (2) is at a helium concentration of 5% in the first
  • Retentate stream (7) between 2 and 30%, preferably between 5 and 15%.
  • the helium-containing permeate of the retentate separation stage (2) is recycled by means of the second permeate stream (9), fed to the feed stream (5) and recycled - which
  • Compressor (4) or even a multi-stage compressor (4) is used in different ways.
  • a single-stage compressor (4) is the second Permeate stream (9) preferably the suction side of the compressor (4) (see Fig. 1) supplied.
  • the second permeate stream (9) is introduced between two compression stages in the compressor (see Fig. 2 and 3).
  • Feed stream separation stage (1) is by means of the first
  • the permeate separation stage (3) preferably produces a permeate (helium product stream) containing
  • the step separation cut of the permeate separation stage (3) is between 30 and 95%, preferably between 50 and 70%.
  • the third retentate stream (10) is recycled, the
  • the feedback can, as already explained above, be carried out in different ways and z. B. depending on whether a
  • Compressor (4) or even a multi-stage compressor (4) is used.
  • the third retentate stream (10) is preferably fed to the suction side of the compressor (4) (see Fig. 2). Becomes a
  • Compression levels is introduced into the compressor (see Fig. 2 and 3).
  • the method according to the invention or the device according to the invention is distinguished in the particularly preferred embodiment in that it / they are so
  • the control of the amount of recirculating Gas flows can, for. B. by selecting the respective
  • the method according to the invention or the device is characterized in that, despite very low backflows, the above-explained increase in the concentration of helium in the
  • Feed stream (5) is ensured. This significantly increases the efficiency of the entire process.
  • the first permeate stream (6) is preferably conducted such that the feed pressure of the permeate separation stage (3), preferably by means of a pressure reducing valve (14) on the retentate side of the permeate separation stage (3), 1 to 30 bar, preferably 2 to 20 bar and more preferably 2 up to 10 bar.
  • Compressor stages of the compressor (4) can be fed (see Fig. 2 and 3). Since the retentate separation stage (2) would normally be operated in the pressure range limited to relaxation at feed pressure, it may be expedient to relax the second permeate stream (9) only to a higher pressure level of a multi-stage pressure increase unit, ie a multi-stage compressor (4) reduce the operating costs of the compression unit without significantly worsening the separation result. In a particularly preferred embodiment of the present invention Invention, therefore, a multi-stage compressor (4) is used and the gas streams (9) and (10) fed to this compressor in each case between two compression stages. Such an interconnection is shown in Fig. 3.
  • the device according to the invention may comprise one or more pressure-reducing valves (12), (13) or (14).
  • a pressure reducing valve (14) preferably by means of a pressure reducing valve (14),
  • Feed stream separation stage (1) to 1 to 30 bar, preferably 2 to 20 bar and particularly preferably 3 to 10 bar
  • Feed stream separation stage (1) and the retentate separation stage (2), to 1 to 100 bar, preferably 5 to 80 bar and particularly preferably 10 to 70 bar is limited.
  • the inventive device or the inventive method can be realized in principle with all membranes that are capable of binary gas mixtures or
  • Polyimides, polyamides, polysulfones, cellulose acetates and derivatives, polyphenylene oxides are particularly preferably used as plastics in the separation-active layer.
  • Polysiloxanes polymers with intrinsic microporosity, mixed matrix membranes, facilitated transport membranes, polyethylene oxides, polypropylene oxides, carbon membranes or zeolites or mixtures thereof in question.
  • polyethylene oxides polypropylene oxides
  • carbon membranes or zeolites or mixtures thereof in question.
  • zeolites or mixtures thereof in question.
  • the invention also includes the specifically preferred embodiments with mixed gas selectivities of 200 to 350 and more preferably of 250 to 300.
  • Permeate separation stage (3) must be returned. Their use is therefore a good option the invention
  • Particularly preferred membranes have as materials for the separation-active layer or as material for the complete membrane a polyimide of the general formula
  • R is selected from the group consisting of
  • Very particularly preferred membranes comprise a polyimide as the material for the separation-active layer of the membranes comprising 10 to 90% by weight, preferably 15 to 25% by weight and very particularly preferably 20% by weight
  • Particularly preferred polyimides are in Chemical
  • membranes are available from Evonik Fibers GmbH under the name polyimide P84 and especially as polyimide P84 HT.
  • the membranes are preferably used according to the invention in the form of hollow-fiber membranes and / or flat membranes.
  • the membranes are built into modules, which are then in the
  • modules all gas separation modules known in the art may be used, such as but not limited to hollow fiber gas separation modules, spiral winding gas separation modules,
  • Tube bundle gas separation modules are used.
  • the device has the advantages that it is a pure membrane process.
  • Feed stream (5) as well as in the most preferred
  • Embodiments of the feature mixed gas selectivity, a device or a method can be provided, which is clearly superior to the method of the prior art.
  • the inventive method can be used to obtain high-purity helium streams.
  • the process can also be used to produce "crude helium.”
  • "Crude helium” is defined as helium with a purity of 50 to 70% by volume of helium, which is used for further processing or
  • Purification can be supplied.
  • the inventive method can thus be more conventional
  • Gas mixtures consists for. B. from the steps: a) removal of CO 2 , z. B. by amine absorption b) drying, for example on molecular sieve
  • Helium is obtained with a purity of up to 99.99 vol.
  • the method according to the invention can here in particular replace the steps d) and / or e) but also further of the mentioned steps.
  • Measuring methods For determining the mixed gas selectivity He / CH 4 or
  • He / 2 become membrane modules with a mixture of 50% He and 50% 2 or 50% He and 50% CH 4 at room temperature
  • Each membrane separation step consists of the o.g. Modules.
  • 1 m 3 / h of a crude gas mixture having the composition given in the examples is introduced into a mixing chamber and then, optionally together with recirculated gas from the gas streams (9) and (10), compressed to the pressure specified in the examples.
  • the compressed and cooled to 20 ° C gas is applied to the feed current separation stage (1).
  • the retentate of this stage is supplied to the retentate separation stage (2) by means of the first retentate stream (7).
  • a reducing valve (13) on the retentate side of the retentate separation stage (2) determines the driving force through the membrane of the membrane separation stages (1) and (2).
  • the pressure drop across the membrane of the stage (1) does not take place to the ambient pressure but is by a Reducing valve (14) on the retentate side of
  • Permeattrennhand (3) limited to the pressure specified in the examples.
  • the sum of recycled gas streams (9) and (10) is given in the following examples.
  • the sum of the recycled material streams (9) and (10) was 14% by volume.
  • the feed pressure was 20 bar (a).
  • Second permeate stream (9) 26, 67 17, 9 55, 43 0.28
  • Example 4 only achieved a helium concentration of 10 vol.%.
  • the helium yield is 62%. This confirms the signification of technical progress achieved by the method according to the invention.
  • Example 2 According to the Invention: Production of High-purity Helium from "Crude Helium"
  • the crude gas stream is a "raw helium mixture" in a mixer
  • the helium yield was> 99% by weight. This shows that with the process according to the invention one process step and in high yields in already highly purified
  • Helium stream can be obtained.
  • Helium yield based on the amount of helium used was> 95% by weight. Further compositions and pressures of the gas streams obtained are shown in Table 2 below.
  • Second retentate stream (8) 0.03 16.56 83.41 20.00
  • the sum of the recycled material streams (9) and (10) was 15% by volume.
  • the feed pressure was 20 bar (a).
  • Helium yield was> 97 wt.%. Further compositions and pressures of the gas streams obtained can be found in
  • Method helium can be obtained with high purity without creating crude helium as an intermediate and thus 2 steps of classical helium preparation can be replaced.
  • Inventive Example 4 Preparation of high purity helium from a He / N 2 gas stream
  • the sum of the recycled material streams (9) and (10) was 20% by volume.
  • the feed pressure was 16 bar (a). It became one
  • Example 3 only achieved a helium concentration of 28 vol.%.
  • the helium yield is 75%. in the
  • Retentate are still 0.7 vol.% Helium. This again confirms the significant technical progress achieved by the method according to the invention. With the method according to the invention not only an already highly enriched helium stream can be generated, At the same time you get a very pure N2 ⁇ electricity and thus at the same time two usable products.
  • Fig.2 3-stage interconnection of membrane modules with a compressor and retentate recirculation of the permeate separation stage (3) without total relaxation in an increased compression stage of the
  • Fig. 3 3-stage interconnection of membrane modules with a compressor and third-stage retentate recirculation without total relaxation and second-stage permeate recirculation into an increased compression stage of the compressor (4)
  • Optional pressure-reducing valve in the first retentate stream 7 13

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

L'invention concerne un dispositif spécial, en particulier une chaîne de modules de séparation de gaz à membranes, et un procédé spécial pour la séparation de mélanges gazeux contenant de l'hélium.
EP12791499.2A 2011-12-27 2012-11-29 Procédé de séparation de gaz Ceased EP2797676A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12791499.2A EP2797676A1 (fr) 2011-12-27 2012-11-29 Procédé de séparation de gaz
EP18151878.8A EP3338876B1 (fr) 2011-12-27 2012-11-29 Procédé de séparation de gaz par des membranes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11195776 2011-12-27
EP12791499.2A EP2797676A1 (fr) 2011-12-27 2012-11-29 Procédé de séparation de gaz
PCT/EP2012/073901 WO2013098024A1 (fr) 2011-12-27 2012-11-29 Procédé de séparation de gaz

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP18151878.8A Division EP3338876B1 (fr) 2011-12-27 2012-11-29 Procédé de séparation de gaz par des membranes

Publications (1)

Publication Number Publication Date
EP2797676A1 true EP2797676A1 (fr) 2014-11-05

Family

ID=47227820

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18151878.8A Active EP3338876B1 (fr) 2011-12-27 2012-11-29 Procédé de séparation de gaz par des membranes
EP12791499.2A Ceased EP2797676A1 (fr) 2011-12-27 2012-11-29 Procédé de séparation de gaz

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18151878.8A Active EP3338876B1 (fr) 2011-12-27 2012-11-29 Procédé de séparation de gaz par des membranes

Country Status (16)

Country Link
US (2) US9314735B2 (fr)
EP (2) EP3338876B1 (fr)
JP (1) JP6351508B2 (fr)
KR (1) KR102005593B1 (fr)
CN (1) CN104023821B (fr)
AU (1) AU2012361210B2 (fr)
BR (1) BR112014016032A8 (fr)
CA (1) CA2860502C (fr)
CO (1) CO7101226A2 (fr)
EA (1) EA025596B9 (fr)
MX (1) MX2014007985A (fr)
MY (1) MY165047A (fr)
PH (1) PH12014501412A1 (fr)
SG (1) SG11201403605PA (fr)
TW (1) TWI581856B (fr)
WO (1) WO2013098024A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11471823B2 (en) 2019-02-12 2022-10-18 Haffmans B.V. System and method for separating a gas mixture

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013171856A1 (fr) * 2012-05-16 2013-11-21 石油資源開発株式会社 Procédé de traitement et dispositif de traitement pour gaz naturel
US9375677B2 (en) * 2013-02-26 2016-06-28 Air Liquide Advanced Technologies U.S. Llc Helium recovery from natural gas
JP2015083296A (ja) * 2013-09-20 2015-04-30 富士フイルム株式会社 ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
JP6435961B2 (ja) * 2014-03-31 2018-12-12 宇部興産株式会社 ガス分離システム及び富化ガスの製造方法
CN104001409B (zh) * 2014-05-22 2016-05-11 上海精腾新能源科技有限公司 一种膜法氦气提纯装置系统和工艺
DE102014018883A1 (de) * 2014-12-17 2016-06-23 Linde Aktiengesellschaft Kombiniertes Membran-Druckwechseladsorptions-Verfahren zur Rückgewinnung von Helium
WO2016104049A1 (fr) * 2014-12-26 2016-06-30 日本碍子株式会社 Procédé de séparation de gaz
WO2016104048A1 (fr) * 2014-12-26 2016-06-30 日本碍子株式会社 Procédé de séparation de gaz
US9433888B2 (en) * 2014-12-29 2016-09-06 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Three stage membrane separation with partial reflux
US9623370B2 (en) * 2015-02-10 2017-04-18 Praxair Technology, Inc. Integrated process and apparatus for recovery of helium rich streams
DE102016003637A1 (de) * 2015-03-30 2016-10-06 Ube Industries, Ltd. Gastrennsystem und Herstellungsverfahren für angereichertes Gas
WO2017002407A1 (fr) * 2015-06-30 2017-01-05 富士フイルム株式会社 Membrane de séparation de gaz, module de séparation de gaz, dispositif de séparation de gaz, procédé de séparation de gaz, et composé polyimide
RU2618818C1 (ru) * 2016-02-01 2017-05-11 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ получения гелия на основе сжигания природного газа с полезным использованием тепловой энергии
CN105879688A (zh) * 2016-05-26 2016-08-24 天邦膜技术国家工程研究中心有限责任公司 一种双封柔式无中心管氦气膜组件
WO2017206069A1 (fr) 2016-05-31 2017-12-07 Evonik Specialty Chemicals (Shanghai) Co., Ltd. Procédé et appareil de séparation de gaz
CN105971581A (zh) * 2016-06-30 2016-09-28 华南理工大学 电厂烟气高效开采天然气水合物的装置及方法
CN108339377B (zh) 2017-01-23 2021-02-26 神华集团有限责任公司 一种从含co2气流中分离co2的方法和膜分离系统
EP3813984A4 (fr) * 2018-06-26 2022-03-23 Deluze, James Robert Filtre passe-bande pour la séparation d'un gaz spécifiquement sélectionné dans un groupe de gaz ou une atmosphère
EP3632525A1 (fr) 2018-10-02 2020-04-08 Evonik Fibres GmbH Dispositif et procédé permettant de séparer le méthane d'un mélange gazeux contenant du méthane, du dioxyde de carbone et du sulfure d'hydrogène
CN111874881B (zh) * 2019-06-27 2022-10-25 南京工业大学 一种采用dd3r分子筛膜提纯氙气的方法
US11285434B2 (en) * 2020-03-30 2022-03-29 Air Products And Chemicals, Inc. Membrane process and system for high recovery of a nonpermeating gas
CN111974175B (zh) * 2020-05-20 2021-08-17 迈特尔膜技术有限公司 膜法天然气提氦方法和设备
JP2021194641A (ja) 2020-06-17 2021-12-27 エボニック ファイバース ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Fibres GmbH 架橋中空糸膜およびその新たな製造方法
CN114057169A (zh) * 2020-07-31 2022-02-18 中国石油化工股份有限公司 从含氦尾气中回收氦气的方法和系统
CN112275099B (zh) * 2020-09-28 2023-03-24 江苏君澄空间科技有限公司 一种氦气回收装置及方法
US20220205717A1 (en) * 2020-12-31 2022-06-30 Saudi Arabian Oil Company Recovery of noncondensable gas components from a gaseous mixture
US11717787B2 (en) * 2021-01-04 2023-08-08 Saudi Arabian Oil Company High free volume membrane for gas separation
WO2023160073A1 (fr) * 2022-02-23 2023-08-31 中国石油化工股份有限公司 Membrane de séparation à fibres creuses, son procédé de préparation et son application
CN114890397B (zh) * 2022-05-31 2024-06-11 苏州睿分气体技术有限公司 一种常温浓缩氦气的方法及装置系统
WO2024074673A1 (fr) 2022-10-06 2024-04-11 Evonik Operations Gmbh Procédé mis en œuvre par ordinateur, programme informatique et ordinateur pour générer un jumeau numérique pour un processus chimique ou un appareil ou un système d'une installation chimique

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3256675A (en) * 1962-11-30 1966-06-21 Gen Electric Method and apparatus for gas separation by thin films or membranes
JPS588283B2 (ja) * 1976-03-23 1983-02-15 株式会社東芝 混合ガスの分離装置
JPS63296820A (ja) * 1987-05-29 1988-12-02 Ube Ind Ltd 高純度水素又はヘリウムの製造方法
US5102432A (en) * 1990-12-10 1992-04-07 Union Carbide Industrial Gases Technology Corporation Three-stage membrane gas separation process and system
WO1992020431A1 (fr) * 1991-05-21 1992-11-26 Exxon Chemical Patents Inc. Traitement de gaz acides au moyen de systemes de separation a membranes hybrides
CA2101804A1 (fr) 1992-10-06 1994-04-07 Christian Friedrich Gottzmann Procede d'ultrafiltration multi-etage par membranes
US5378263A (en) 1992-12-21 1995-01-03 Praxair Technology, Inc. High purity membrane nitrogen
CN1122727A (zh) 1994-08-04 1996-05-22 普拉塞尔技术有限公司 采用部分吹扫预净化或后净化的气体分离法
US5632803A (en) * 1994-10-21 1997-05-27 Nitrotec Corporation Enhanced helium recovery
US5709732A (en) 1996-04-02 1998-01-20 Praxair Technology, Inc. Advanced membrane system for separating gaseous mixtures
US5753011A (en) 1997-01-17 1998-05-19 Air Products And Chemicals, Inc. Operation of staged adsorbent membranes
US6168649B1 (en) * 1998-12-09 2001-01-02 Mg Generon, Inc. Membrane for separation of xenon from oxygen and nitrogen and method of using same
US6572679B2 (en) * 2000-05-19 2003-06-03 Membrane Technology And Research, Inc. Gas separation using organic-vapor-resistant membranes in conjunction with organic-vapor-selective membranes
JP3727552B2 (ja) * 2001-05-31 2005-12-14 財団法人地球環境産業技術研究機構 パーフルオロ化合物ガスの分離回収装置
AT411225B (de) * 2001-07-09 2003-11-25 Wiengas Gmbh Vorrichtung und verfahren zur gaskonditionierung
US6425267B1 (en) * 2001-07-27 2002-07-30 Membrane Technology And Research, Inc. Two-step process for nitrogen removal from natural gas
US6565626B1 (en) * 2001-12-28 2003-05-20 Membrane Technology And Research, Inc. Natural gas separation using nitrogen-selective membranes
US6630011B1 (en) * 2002-09-17 2003-10-07 Membrane Technology And Research, Inc. Nitrogen removal from natural gas using two types of membranes
US20050268782A1 (en) * 2004-03-26 2005-12-08 Kulkarni Sudhir S Novel polyimide based mixed matrix membranes
US20050217479A1 (en) 2004-04-02 2005-10-06 Membrane Technology And Research, Inc. Helium recovery from gas streams
DE102004044645B3 (de) 2004-09-13 2006-06-08 RÜTGERS Carbo Tech Engineering GmbH Umweltschonendes Verfahren zur Gewinnung von Bioerdgas
US7422623B2 (en) * 2005-03-02 2008-09-09 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Separation membrane by controlled annealing of polyimide polymers
JP2009242773A (ja) * 2008-03-14 2009-10-22 Air Water Inc メタンガス濃縮装置および方法ならびに燃料ガスの製造装置および方法
EP2296784B1 (fr) * 2008-05-12 2013-09-04 Membrane Technology And Research, Inc. Procédé de séparation de gaz à l'aide de membranes avec un balayage du perméat pour enlever le co2 à partir de gaz de combustion
CA2769033C (fr) 2009-07-23 2019-09-03 Evonik Fibres Gmbh Membranes de polyimide obtenues a partir de solutions de polymerisation
PT2588217T (pt) * 2010-07-01 2017-04-24 Evonik Fibres Gmbh Procedimento para a separação de gases
US9375677B2 (en) * 2013-02-26 2016-06-28 Air Liquide Advanced Technologies U.S. Llc Helium recovery from natural gas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013098024A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11471823B2 (en) 2019-02-12 2022-10-18 Haffmans B.V. System and method for separating a gas mixture
US11964231B2 (en) 2019-02-12 2024-04-23 Haffmans B.V. System and method for separating a gas mixture

Also Published As

Publication number Publication date
SG11201403605PA (en) 2014-10-30
WO2013098024A1 (fr) 2013-07-04
CA2860502A1 (fr) 2013-07-04
JP6351508B2 (ja) 2018-07-04
US20140345457A1 (en) 2014-11-27
EP3338876B1 (fr) 2020-07-01
EA025596B9 (ru) 2018-03-30
CN104023821A (zh) 2014-09-03
MY165047A (en) 2018-02-28
US20160228828A1 (en) 2016-08-11
MX2014007985A (es) 2014-08-21
EP3338876A1 (fr) 2018-06-27
CN104023821B (zh) 2017-05-17
CO7101226A2 (es) 2014-10-31
EA025596B1 (ru) 2017-01-30
JP2015505273A (ja) 2015-02-19
TW201341040A (zh) 2013-10-16
AU2012361210A1 (en) 2014-07-03
KR102005593B1 (ko) 2019-07-30
CA2860502C (fr) 2019-03-05
PH12014501412A1 (en) 2014-09-22
EA201491280A1 (ru) 2014-10-30
TWI581856B (zh) 2017-05-11
US9314735B2 (en) 2016-04-19
KR20140108537A (ko) 2014-09-11
BR112014016032A8 (pt) 2017-07-04
AU2012361210B2 (en) 2016-12-08
BR112014016032A2 (pt) 2017-06-13

Similar Documents

Publication Publication Date Title
EP3338876B1 (fr) Procédé de séparation de gaz par des membranes
EP2588217B1 (fr) Procédé de séparation de gaz
EP2919888B1 (fr) Contrôle de la composition d'un gaz d'une installation de séparation de gaz par membranes
DE69529759T3 (de) Mehrstufiges trennverfahren mit semipermeablen membranen
DE68921187T2 (de) Verfahren zur Abtrennung von Stickstoff aus Luft mittels Gasabtrennungsmembranen.
DE69127267T2 (de) Dreistufiges Membrangastrennungsverfahren und Einrichtung dazu
DE69211823T2 (de) Membrane Sauerstoffverfahren und -vorrichtung
EP0329962B1 (fr) Procédé pour la séparation de composés organiques des mélanges air/gaz permanent
DE69116781T2 (de) Integriertes Verfahren zur Herstellung von Kohlenoxyd
EP2996794B1 (fr) Réglage de composition de gaz d'une installation de séparation de gaz avec membranes
EP0029600B1 (fr) Procédé de séparation de fluides par perméation
DE202019001414U1 (de) Vorrichtung zum Trennen von Gaskomponenten aus einem Gasstrom mit veränderlicher Zusammensetzung oder Strömungsrate
EP0022178A1 (fr) Procédé d'adsorption cyclique pour la séparation d'un mélange gazeux
WO2019141508A1 (fr) Procédé et installation pour l'obtention d'hélium pur
WO2017020919A1 (fr) Procédé pour obtenir une fraction de produit riche en hélium
EP3498668A1 (fr) Procédé et installation destinées à l'obtention des oléfines
DE69330449T2 (de) Verfahren zur Herstellung von Stickstoff mit Hilfe einer Membrane
WO2005079960A1 (fr) Procede ameliore de separation de substances au moyen de membranes
AT507891B1 (de) Vorrichtung und verfahren zur auftrennung eines gasgemisches
DE102016003637A1 (de) Gastrennsystem und Herstellungsverfahren für angereichertes Gas
EP3180104B1 (fr) Dispositif et procédé destinés a la separation d'un melange gazeux par une unité de membrane
DE69403090T2 (de) Entfernung von argon in einem verfahren zur herstellung von ethylenoxid
DE2910743A1 (de) Verfahren zur herstellung von synthesegasgemischen mit hilfe von semipermeablen hohlfasermembranen
DE2847310A1 (de) Verfahren zum trennen von gasen
EP4380717A1 (fr) Appareil et procédé de traitement simultané de différents flux de gaz fluctuants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20171214