EP2785896B1 - Procédé de fabrication de structures électroconductrices sur des substrats non conducteurs et structures produites de cette façon - Google Patents

Procédé de fabrication de structures électroconductrices sur des substrats non conducteurs et structures produites de cette façon Download PDF

Info

Publication number
EP2785896B1
EP2785896B1 EP12798611.5A EP12798611A EP2785896B1 EP 2785896 B1 EP2785896 B1 EP 2785896B1 EP 12798611 A EP12798611 A EP 12798611A EP 2785896 B1 EP2785896 B1 EP 2785896B1
Authority
EP
European Patent Office
Prior art keywords
dispersion
electrically conductive
solubilizate
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12798611.5A
Other languages
German (de)
English (en)
Other versions
EP2785896A1 (fr
Inventor
Michael Berkei
Tobias TINTHOFF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altana AG
Original Assignee
Altana AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Altana AG filed Critical Altana AG
Priority to EP12798611.5A priority Critical patent/EP2785896B1/fr
Publication of EP2785896A1 publication Critical patent/EP2785896A1/fr
Application granted granted Critical
Publication of EP2785896B1 publication Critical patent/EP2785896B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to the technical field of producing electrically conductive structures.
  • the invention relates to a method for producing electrically conductive structures on electrically non-conductive substrates, in particular a method for the electrochemical deposition of metals on substrates.
  • the method according to the invention is suitable for producing conductive structures, in particular conductive metallic structures and / or galvanoplastics.
  • the present invention relates to the conductive structures obtainable by the process according to the invention, in particular conductive metallic structures, as well as their use.
  • conductive structures such as, for example, conductive coatings, and miniaturized objects or workpieces, in particular electro-technical and precision mechanical components
  • material-removing methods include, for example, etching, milling, grinding, etc.
  • material-applying methods include printing, casting, sputtering, etc.
  • material is applied to a substrate or introduced into a mold, wherein, if possible, only the amount of material is used, which is also necessary for the production of the desired article or the desired structure.
  • Material applying processes thus allow efficient use of resources and starting materials to produce coatings and microstructures.
  • fine printed conductors can be produced by printing of silver pastes, but due to the size of the silver particles and the high viscosity of the pastes most printing processes, especially the sophisticated and inexpensive ink jet printing process can not be performed. If, on the other hand, inks containing silver nanoparticles are used, the printed conductor must first be sintered before sufficient conductivity is achieved.
  • microstructured objects and components by conventional material applying methods, such as casting techniques, also designed difficult.
  • casting processes are only of limited use for the production of uniform coatings and microstructured articles, since the surface tension of the casting compound often precludes even wetting of the casting mold, in particular in the case of very fine structures.
  • the electrolytic or galvanic deposition of metals onto substrates for the production of electrically conductive coatings is also used as the material-applying process.
  • the galvanization is used in particular as a reproducing method or for the production of electroforming.
  • a non-conductive form of the object to be imaged which is in the Generally later destroyed, and then coated with an electrically conductive layer.
  • techniques such as graphitization are used, for example, in which the finest graphitic dust is scattered onto the mold and then distributed with brushes or brushes, so that a coherent conductive layer is formed.
  • the application of metal powders is used.
  • the concerns EP 0 200 398 B1 a method of electroplating a conductive metal layer onto the surface of a nonconductive material, wherein a carbon black dispersion is applied to the nonconductive material, and then the surface of the substrate is electroplated or electroplated.
  • the DE 198 06 360 A1 relates to a method for electrolytically depositing a smooth surface metal layer on a substrate using a graphite dispersion, wherein a substrate is contacted with a dispersion containing graphite particles, and then a metal layer is electrolytically deposited on the graphite layer.
  • the EP 0 799 911 A1 relates to a method and composition for electroplating a non-conductive substrate comprising forming a layer of conductive polymer on the surface of the non-conductive substrate and electrochemically depositing a metal thereon.
  • the conductive layer is formed by the application of a conductive polymer to the surface, wherein the polymer is in the form of an aqueous suspension of the polymer comprising a polymeric stabilizer having repeating alkylene oxide units and a hydrophilic-lipophilic balance (HLB) of at least 12, is applied to the surface.
  • HLB hydrophilic-lipophilic balance
  • the concerns EP 1 897 975 A1 a method of metallizing the surface of a dielectric substrate by electroplating, the method comprising immersing the substrate in a composition comprising a precursor to form the electrically conductive polymer, a copper ion source, and an acid to form an electrically conductive polymer on the surface of the dielectric substrate and the provision of an external voltage source for the electrochemical deposition of copper on the electrically conductive polymer.
  • the concerns EP 0 616 558 B1 a method for coating surfaces with finely divided solid particles, wherein the substrate to be coated is pretreated in a bath with polyelectrolytes and then the substrate thus treated is immersed in a second bath with a solid dispersion.
  • the solid particles remain adhering to the substrate surface by coagulation, which should in particular make conductive layers accessible.
  • the abovementioned starting materials and processes generally can not be combined with cost-effective printing processes and are limited in their applicability to special process parameters and materials and consequently can not be used flexibly.
  • the present invention is therefore based on the object to provide a method for producing conductive structures on non-conductive substrates, wherein the previously described, occurring in connection with the prior art problems and disadvantages should be at least largely avoided or at least mitigated.
  • the order should be regioselective or site-specific and local by simple methods.
  • Another object of the present invention are electrically conductive metallic structures according to claim 16 or 17.
  • Yet another subject of the present invention is the use of the electrically conductive structures according to claim 18 or 19.
  • Another object of the present invention are products or articles according to claim 20, which contain the electrically conductive structures according to the invention.
  • a process step (a) at least one solubilizate or a dispersion based on electrically conductive materials which are selected from the group of electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides is applied to an electrically non-conductive substrate.
  • a subsequent process step (b) of drying and / or curing of the solubilizate applied in this manner or the dispersion applied in this way is carried out.
  • electrical conductivity is in the context of the present invention, in particular the ability to conduct electrical current to understand.
  • the electrical conductivity of the conductive structures obtainable by the process according to the invention are generally within the values for typical conductors and semiconductors, ie generally in the range from 10 -7 to 10 7 S / m.
  • solubilizate is to be understood in the broadest sense as meaning solutions of substances or compounds, in particular of macromolecules, which are generally not soluble in the solvent concerned without the addition of auxiliaries or additives.
  • a solubilizer which influences the dissolving properties of the solvent and / or, for example, increases the solubility of the relevant chemical substance or of the relevant chemical compound, as in the case of micelle formation by surfactants.
  • a dispersion is to be understood as meaning a mixture of at least two clearly delimited phases which do not dissolve or at least substantially do not dissolve with one another.
  • at least one phase namely the dispersed or discontinuous phase
  • Dispersions can be mixtures of solid phases (solid / solid), solid and liquid phases (solid / liquid and liquid / solid) and mixtures of gaseous phases with solid or liquid phases (liquid / gaseous, gaseous / liquid or solid / gaseous), be educated.
  • solid / liquid systems are generally used, wherein a solid phase is dispersed in a liquid dispersion medium; however, the use of solid / solid dispersions, such as powder coatings, is also possible.
  • the method according to the invention is distinguished, in particular, by the fact that the application of the solubilizate or the dispersion to the electrically nonconductive substrate is locally limited and / or site-specific or regioselective.
  • a locally limited and / or site-specific or regioselective order is to be understood in particular as meaning that the solubilizate or the dispersion is applied to the substrate only at very specific, preferably desired or defined points, so that only a partial or incomplete one or partial coating of the substrate or the carrier takes place.
  • non-conductive substrates in a manner with conductive non-metallic structures, so that in a subsequent process steps metals electrolytically, in particular by galvanization, in particular according to a predetermined or defined pattern, can be deposited on the substrate.
  • metals electrolytically in particular by galvanization, in particular according to a predetermined or defined pattern, can be deposited on the substrate.
  • the method according to the invention it is equally possible with the method according to the invention to obtain three-dimensional objects, such as precision mechanical or electrotechnical components, by electroforming or in the form of electroforming.
  • electroforming is a so-called primary molding process, which can be used primarily for the production of metallic coatings or self-supporting metallic objects or workpieces.
  • microstructured or miniaturized three-dimensional objects and workpieces are accessible in the process of the invention with a wealth of detail or resolution, which are not yet known in the art.
  • electrically conductive structures which are accessible in accordance with the method according to the invention are solubilizates or dispersions based on electrically conductive materials, in particular non-metallic electrically conductive materials.
  • solubilizates or dispersions based on electrically conductive materials, in particular non-metallic electrically conductive materials.
  • soldubilizate and / or dispersion based on electrically conductive materials is to be understood in the context of the present invention such that the solubilizate or the dispersion contains at least one electrically conductive material.
  • At least one metal is electrochemically deposited on the electrically conductive structure, in particular on the optionally dried or cured one Solubilisat and / or on the optionally dried or cured dispersion deposited.
  • metal-conductive structures and miniaturized or microstructured three-dimensional objects and workpieces made of metal are accessible in the context of electroforming or as electroforming by electrolytic deposition of metals or electroplating in the context of process step (c).
  • the electrically conductive structures applied to the electrically nonconducting substrate are used as cathodes, at which the reduction of metal ions and thus a deposition of the elemental metals takes place.
  • the structure or the three-dimensional metallic object or workpiece obtained by electrochemical deposition of metals may moreover be provided for the structure or the three-dimensional metallic object or workpiece obtained by electrochemical deposition of metals to be detached again from the substrate.
  • the method according to the invention is thus also suitable for the efficient and time-saving production of, for example, prototypes and can therefore also be used in the context of rapid prototyping methods.
  • inventive method can thus be used for the production of conductive structures, wherein in carrying out the method according to the invention with the method steps (a), (b) and (c) or with the method steps (a) and (c) result in metallically conductive structures.
  • solubilizates or dispersions based on electrically conductive materials are used as the starting material in the process according to the invention, wherein the electrically conductive materials can be selected from the group of electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides.
  • electrically conductive carbon allotropes are used as electrically conductive materials in the context of the process according to the invention, graphite, fullerenes and / or carbon nanotubes (CNTs), in particular carbon nanotubes (CNTs), are generally used in the context of the present invention as electrically conductive carbon allotropes.
  • CNTs carbon nanotubes
  • SWCNTs single-walled and multi-walled carbon nanotubes
  • MWCNTs M ulti W all carbon nanotubes
  • Dispersions of carbon nanotubes which are preferably used in the context of the present invention, can, for example, according to the in the DE 10 2006 055 106 A1 , of the WO 2008/058589 A2 , of the US 2010/0059720 A1 and the CA 2,668,489 A1 obtained, the respective disclosure of which is incorporated by reference in its entirety.
  • the above-mentioned documents relate to a process for dispersing carbon nanotubes (CNTs) in a continuous phase, in particular in at least one dispersant, wherein the carbon nanotubes (CNTs), in particular without prior pre-treatment, in a continuous phase, in particular in at least one dispersant, in the presence at least a dispersant (dispersant) are dispersed while introducing an energy input sufficient for the dispersion.
  • CNTs carbon nanotubes
  • the amount of energy introduced during the dispersing process calculated as the registered energy per amount of carbon nanotubes (CNTs) to be dispersed, can be in particular 15,000 to 100,000 kJ / kg;
  • Dispersants which can be used are, in particular, polymeric dispersants, preferably based on functionalized polymers, in particular with number-average molecular masses of at least 500 g / mol. With this dispersion method, stable dispersions of carbon nanotubes (CNTs) with a weight fraction of up to 30% by weight of carbon nanotubes (CNTs) can be obtained.
  • electrically conductive polymers in particular polyacetylenes, polyanilines, polyparaphenylenes, polypyrroles and / or polythiophenes, can be used as electrically conductive materials.
  • the electrically conductive polymers can be used alternatively or in combination with the electrically conductive carbon allotropes and / or with the electrically conductive inorganic oxides described below.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • AZO aluminum zinc oxide
  • ATO antimony tin oxide
  • FTO fluorotinc oxide
  • electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides described above can each be used individually or in combination with one another in the solubilizates or dispersions used according to the invention.
  • the respective use of the materials, in particular in combinations, the expert can thereby on the basis of external conditions, such as deposition condition of the metal, substrate materials, intended use of the product, etc., select, with the use of carbon nanotubes, especially as the sole electrically conductive material is preferred ,
  • solubilizate and / or the dispersion is water-based and / or solvent-based in the context of the present invention. It may be provided that the solvent of the solubilizate and / or the continuous phase of the dispersion is an aqueous-based, organically based or organic-aqueous-based solvent and / or Dipersionsmedium.
  • Solubilisates or dispersions of solids in liquid dispersion media are therefore preferably used in the context of the present invention.
  • Commercially available organic solvents, if appropriate in mixtures, and / or water are used in particular as dispersion media or solvents.
  • liquid polymers it is also possible for liquid polymers to be used as the dispersion medium under application conditions.
  • the solvent or the dispersing agent can be removed after the order has been applied (for example by drying according to process step (b)), as a result of which the conductive materials and any additives present in the solubilizate or in the dispersion remain on the substrate. If the solubilizate or the dispersion has sufficiently high viscosities or is at least partially curable, removal of the solvent or dispersion medium may optionally be omitted; In this case, the solvent or the dispersion medium influences the mechanical and electrical properties of the conductive structures.
  • the dispersion used in the context of the present invention is a mixture of solids, which is not liquid under the process conditions of application to the substrate. Such conditions are present, for example, when the dispersion according to the invention is used in the form of a powder coating.
  • the solubilizate and / or the dispersion is curable, in particular radiation-curable and / or thermally curable, preferably radiation-curable.
  • the hardenability of the dispersion or of the solubilizate used according to the invention means that the dispersion or the solubilizate is cured immediately after application under controlled and determinable or defined conditions and the electrically conductive structure is thus spatially fixed on the substrate and prevented from "bleeding "can be secured.
  • the term radiation-curable is to be understood in particular as meaning that the solubilizate or the dispersion cures by irradiation with actinic radiation, in particular UV radiation, ie. H. from the liquid to the solid state, in particular, a uniform closed layer is obtained.
  • An exception here are solid dispersions, such as powder coatings, which crosslink by irradiation and form a closed layer, in particular a film or coating.
  • the solubilizate or the dispersion may generally have at least one curable, in particular radiation-curable and / or thermally curable, preferably radiation-curable, component in the context of the present invention. Particularly good results are obtained in particular when the solubilizate or the dispersion has a reactive diluent as the curable component.
  • a reactive diluent is in the context of the present invention, in particular a substance or a compound to understand, which is added to the solubilizate or the dispersion in addition to the actual solvent or the dispersion medium and having chemical functionalities which under the conditions of curing with other reactive diluent molecules and / or components of the solubilizate or the dispersion chemically react.
  • the chemical reaction in particular builds up a three-dimensional network which leads to a hardening of the dispersion or of the solvent.
  • Suitable reactive diluents are, for example, acrylates, polyurethane prepolymers, phenol / formaldehyde resins, unsaturated polyesters, etc.
  • the solvent of the solubilizate or the continuous phase of the dispersion curable in particular radiation-curable and / or thermally curable, preferably radiation-curable, is formed.
  • the curable component is the solvent of the solubilizate or the continuous phase of the dispersion, which are synonymously also referred to as binders.
  • radiation-curable binders for example, acrylates and / or methacrylates, polyurethane prepolymers, phenol / formaldehyde resins, melamine / formaldehyde resins or unsaturated polyesters can be used, whereas as thermally curable binders or components, for example, preferably film-forming polyurethanes or polyvinylidene chloride (PVDC) can be used.
  • PVDC polyvinylidene chloride
  • the solubilizate or the dispersion may contain the electrically conductive materials in amounts of from 0.001 to 90% by weight, in particular from 0.005 to 80% by weight, preferably from 0.01 to 50% by weight, preferably from 0.01 to 30% by weight. -%, particularly preferably 0.01 to 20 wt .-%, based on the solubilizate and / or the dispersion.
  • the amount of electrically conductive materials each contained in the dispersions is dependent on the particular application, the application conditions and the materials used.
  • the solubilizate and / or the dispersion may comprise at least one additive. It has proven to be advantageous if the solubilizate and / or the dispersion, the at least one additive in amounts of 0.01 to 60 wt .-%, in particular 0.05 to 50 wt .-%, preferably 0.01 to 40 Wt .-%, preferably 0.05 to 30 wt .-%, most preferably 0.1 to 20 wt .-%, based on the solubilizate and / or the dispersion having.
  • the additive or additives may be selected in particular from the group of dispersing agents (dispersants), surfactants or surface-active substances, defoamers, rheology modifiers, binders, film formers, biocides, marker substances, pigments, fillers, adhesion promoters, flow control additives, co-solvents, skin formation inhibiting agents , UV absorbers, anticlogging agents and / or stabilizers.
  • the solubilizate or the dispersion has at least one wetting and / or dispersing agent.
  • wetting or dispersing agents considerably increases the compatibility of the substance to be solubilized or the dispersing agent and the solvent or dispersion medium, and thus makes it possible to use dispersions having a significantly higher content of dissolved or dispersed substances.
  • the solubilizate or the dispersion has at least one surface-active additive. It has proven useful if the surfactant additive from the group of lubricants and / or slip additives; Leveling agents; Surface additives, in particular crosslinkable surface additives; Adhesion promoters and / or substrate wetting additives; Hydrophobizing agents and antiblocking agents is selected.
  • the surface-active additives increase the compatibility of the dispersion or of the solubilizate with the substrate and thus lead to improved adhesion of the dispersion or of the solubilizate to the substrate and to improved abrasion resistance; on the other hand, the surface-active additives further increase the compatibility of solvent / dispersion medium and dissolved or dispersed substance.
  • the solubilizate and / or the dispersion has at least one rheology-controlling additive.
  • the rheology-controlling additives influence the consistency and viscosity of the solubilizate or of the dispersion and thus likewise ensure that the solubilizate or the dispersion can be optimally adapted to the particular application method and that the solubilisate or dispersion applied to the substrate is leveled is prevented.
  • Particularly good results are obtained when the rheology controlling additive from the group of rheology additives, in particular thickeners and / or thixotropic agents; defoamers; Dehydrators; Structuring agents and plasticizers and / or plasticizers is selected.
  • the solubilizate and / or the dispersion contains at least one additive which may be selected from the group of corrosion inhibitors; Light stabilizers, in particular UV absorbers, radical scavengers, quenchers and / or hydroperoxide decomposers; Driers; Skinning prevention means; catalysts; accelerators; biocides; Preservatives; Scratch resistance additives; antistatic agents; Driers; To grow; Fillers and pigments.
  • these further additives or adjuvants optionally round off the properties of the solubilizate or of the dispersion with regard to the application and the further use.
  • solubilizate or the dispersion fillers such as barium sulfate or talc, and / or conductive pigments, which also increase the conductivity of the solubilizate or the dispersion.
  • the substrate is an inorganic and / or organic substrate.
  • the substrate is selected from the group of glass, ceramics, silicones, clays, waxes, plastics and composite materials.
  • the solubilizate or the dispersion is applied to the substrates used according to the invention on the basis of electrically conductive materials, and subsequently (if appropriate after a Intermediate drying or curing step) optional metals can be electrochemically deposited on the conductive structures. After deposition of the metals, it may be provided that the substrate is separated from the objects obtained by electroforming, in particular the galvanoplastics.
  • the substrates can be either sustainably separated or, as in the case of classical Galvanoplastik, destroyed, for example by dissolution in solvents or melting of wax-based substrates.
  • the substrate used according to the invention may be a two-dimensional, in particular planar, substrate or a three-dimensional substrate.
  • Two-dimensional substrates are used, for example, in the production of printed conductors, whereas three-dimensional substrates are used to produce fine-mechanical components or workpieces.
  • the solubilizate and / or the dispersion is applied to the substrate by means of printing processes.
  • printing processes allows a high throughput and excellent precision in the production of the electrically conductive structures according to the invention and a simple and flexibly applicable application of the solubilizate or dispersion in a locally limited or regioselective manner.
  • a classical printing process such as, for example, intaglio printing, flexographic printing or offset printing, can be used, which ensures a very high throughput in the printing of preferably two-dimensional substrates.
  • electronic printing methods such as, for example, ink-jet printing methods and toner-based printing methods (for example by means of laser printers) can also be used.
  • ink-jet printing methods as well as three-dimensional substrates can be printed reproducibly with this method in a simple and flexible manner.
  • the particular printing method used depends on the type of substrate and the particular application. However, common to all printing processes is that the solubilizate or the dispersion at least during the application or order passes through the liquid state of matter, d. H. even with the use of tough pastes and toners they are as it were melted during the printing process and applied in liquid form to the substrate.
  • the solubilizate or the dispersion is applied at temperatures in the range from 0 to 300.degree. C., in particular 0 to 200.degree. C., preferably 5 to 200.degree. C., preferably 10 to 100.degree. C., particularly preferably 15 to 80.degree .
  • the specific application temperature depends in particular on the temperature sensitivity of the substrate, the applied application method, in particular printing method, as well as the properties of the solubilizate or dispersion, in particular pasty and solid dispersions should generally go through the liquid state to a uniform and thin Order to ensure.
  • the dynamic viscosity determined according to DIN EN ISO 2431 can be in the range of 5 to 1100,000 mPas, in particular in the range of 5 to 100,000 mPas, preferably in the range of 5 to 50,000 mPas, preferably in the range of 7 to 1,000 mPas, particularly preferred in the range of 7 to 500 mPas, very particularly preferably in the range of 7 to 300 mPas.
  • the exact value for the viscosity of the solubilizate or the dispersion depends primarily on the application method used, in particular printing method: Thus, for example, for the offset printing process dynamic viscosities in the range of about 1,000,000 mPas for the dispersion or the Solubilisate needed, whereas solubilisates and dispersions, as can be used for ink jet printing process, dynamic densities of 10 mPas or less may have.
  • solubilizates or dispersions having a layer thickness of 0.5 to 30 .mu.m, preferably 1 to 20 .mu.m, particularly preferably 2 to 15 .mu.m, are applied to the substrate.
  • the electrically conductive structure after carrying out the process step (a) and / or (b) has a layer thickness of 0.01 to 100 .mu.m, in particular 0.05 to 50 .mu.m, preferably 0 , 1 to 30 ⁇ m, preferably 0.2 to 20 ⁇ m, more preferably 0.3 to 10 ⁇ m, most preferably 0.4 to 5 ⁇ m, even more preferably 0.5 to 3 ⁇ m, even more preferably 0.6 to 2 ⁇ m.
  • the electrically conductive structures are distinguished, in particular, by a high abrasion resistance.
  • the electrically conductive structure may have an abrasion resistance according to Taber according to DIN EN ISO 438 of at least the characteristic number 2, in particular at least the characteristic number 3, preferably at least the characteristic number 4 , exhibit.
  • the electrically conductive structure after carrying out the method step (a) and / or (b) a wet abrasion resistance according to EN 13300 at least Class 4, in particular at least Class 3, preferably Class 1 or 2, has.
  • the electrically conductive structures according to the invention can thus have abrasion resistance, as they occur, for example, in highly resistant and resistant paints.
  • the electrical conductivity of the electrically conductive structures can also vary within the scope of the present invention in a wide range, in particular between the conductivities of the structures based on Non-metal-based solubilizates or dispersions on the one hand and the electrical conductivities of the structures after the electrochemical deposition of metals must be distinguished.
  • the electrically conductive structures after carrying out process step (a) and / or (b) have a specific resistance p in the range from 10 -7 ⁇ m to 10 10 ⁇ m, in particular in the range from 10 -6 ⁇ m to 10 5 ⁇ m, preferably in the range of 10 -5 ⁇ m to 10 3 ⁇ m.
  • the electrically conductive structure can have a resistivity p in the range from 10 -9 ⁇ m to 10 -1 ⁇ m, in particular in the range from 10 -8 ⁇ m to 10 -2 ⁇ m, preferably in the range of 10 -7 ⁇ m to 10 -3 ⁇ m.
  • the metal to be deposited generally comprises at least one transition metal, in particular a noble metal or a metal from the lanthanide group.
  • the metal to be deposited can expressly also take place, as a result of which alloys with specific properties are accessible.
  • metal or metals are selected from subgroups I, V, VI and VIII of the Periodic Table of the Elements. It is preferred if one or more metals from the group of Cu, Ag, Au, Pd, Pt, Rh, Co, Ni, Cr, V and Nb are electrochemically deposited on the substrate.
  • the metal is deposited from a solution of the metal.
  • the solutions of the metals are usually in particular aqueous solutions of metal salts, but also solutions containing metal ions based on aqueous-organic or organic solvents or salt melts, such as ionic liquids, can be used.
  • the metal is generally deposited by applying an external electrical voltage, in particular by electrolysis, in particular galvanically deposited.
  • the metal In the deposition of the metal, it has also proven to be advantageous if the metal with current densities in the range of 1 to 10 mA / cm 2 , in particular 2 to 8 mA / cm 2 , preferably 3 to 6 mA / cm 2 , deposited ,
  • the metal flexible and adapted to the particular application with a layer thickness of 1 nm to 8,000 .mu.m, in particular 2 nm to 4,000 .mu.m, preferably 5 nm to 2,500 microns, preferably 10 nm to 2,000 microns, more preferably 50 nm to 1,000 microns, to be deposited.
  • a layer thickness of 1 nm to 8,000 .mu.m, in particular 2 nm to 4,000 .mu.m, preferably 5 nm to 2,500 microns, preferably 10 nm to 2,000 microns, more preferably 50 nm to 1,000 microns, to be deposited.
  • the metallic structure obtained by electrochemical deposition in particular in process step (c) is subjected to a final treatment, in particular in a process step (d).
  • a final treatment in particular in a process step (d).
  • the final treatment has the purpose of optimizing the resulting metallic structures in terms of their property profile or to prepare for any subsequent operations.
  • smaller irregularities that occur during electroplating at the connection points of the electrodes balanced or, for example, electrical components to protect against mechanical stress and environmental influences in a resin, such as an epoxy resin, are cast.
  • the conductive structures obtainable by the process according to the invention are distinguished from the structures and objects or workpieces obtainable hitherto by the prior art by a particular regularity of the layer application. This applies in particular both with regard to the non-metallic conductive structures according to the invention and with regard to the metallic conductive structures according to the invention.
  • the conductive structures obtainable by the process according to the invention have an increased abrasion resistance compared to the conductive structures hitherto known in the prior art, which is due in particular to an improved adhesion or adhesion of the solubilizate used according to the invention or the dispersion used according to the invention.
  • the conductive structures obtainable according to the present invention are not only more stable, d. H. more abrasion-resistant and scratch-resistant, than the structures known in the prior art, but also characterized by an increased elasticity, which is reflected in significantly improved flexural strengths.
  • Another object of the present invention - according to a second aspect of the present invention - are consequently electrically conductive (ie electrically conductive metallic) structures, which are obtainable by the method described above.
  • the electrically conductive metallic structures comprise a non-conductive substrate to which at least partially an electrically conductive material, which is selected from the group of electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides, is applied by means of printing processes electrically conductive material in turn, at least one metal is electrochemically deposited.
  • an electrically conductive material which is selected from the group of electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides
  • the conductive metallic structures according to the invention are distinguished by particularly low layer thicknesses and high regularity combined with excellent conductivity and excellent mechanical properties.
  • Yet another object of the present invention is - according to a third aspect of the present invention - the use of the previously described electrically conductive structures in electronics or electrical engineering.
  • the conductive structures according to the invention can be used in the computer and semiconductor industry as well as in metrology.
  • Yet another object of the present invention - according to a fourth aspect of the present invention - is the use of the previously described conductive structures for the production of metallic structures.
  • the conductive structures according to the invention are particularly suitable for the production of two-dimensional and / or three-dimensional metallic structures, in particular for electroforming.
  • the conductive structures according to the invention can be used especially for the production of electroforming and / or for the production of decorative elements.
  • Another object of the present invention - according to a fifth aspect of the present invention - printed conductors, microstructured components, precision mechanical components, electronic or electrical components, microstructures, decorative elements or electroplating, comprising an electrically conductive structure according to the invention.
  • Example 1 Using a CNT dispersion for the manufacture of electroplating
  • a wax positive of a key fob was coated thinly with a wet film thickness of about 30 to 40 microns with a CNT dispersion (2 wt .-% CNTs in methoxypropyl acetate (PMA)) and subsequently dried.
  • the contacting of the specimen to the power source was carried out by an insulated copper cable, which was inserted into the wax body and had contact with the conductive CNT dispersion.
  • the thus prepared specimen was completely immersed in a copper sulfate solution.
  • the anode was a piece of pure copper. Even at a low current (0.5 A, constant voltage), a thin layer of copper formed on the specimen after a short time, which increased in weight as a function of time and current.
  • the specimen was placed in the oven at about 100 ° C to remove the wax. By carefully removing the oxide layer, the underlying shiny metallic copper could be made visible. With this technique it is possible to image even fine three-dimensional structures.
  • Example 2 Use of an aqueous stoving lacquer for producing metallically conductive layers and conductor tracks
  • An aqueous stoving lacquer of the type Bayhydrol ® E 155 has been functionalized with a dispersion of 8 wt .-% CNTs in methoxypropyl acetate (PMA) and made electrically conductive.
  • An electrical circuit diagram was applied with the functionalized Bayhydrol E 155 to a thin PET film by means of an ink-jet process. Analogously to Example 1, a thin layer of copper was deposited on the coated areas of the film. On the uncoated areas, no copper separated and remained electrically insulating.
  • Example 3 Use of a solvent-based CNT dispersion for producing metallic shaped bodies (including detachment of the shaped bodies from the foil / glass)
  • a dispersion of 2 parts by weight of CNTs in 98 parts by weight of methoxypropyl acetate (PMA) was used to image a tensile test specimen on a polyethylene (PE) substrate.
  • PMA methoxypropyl acetate
  • the adhesion to the PE substrate is in the pure dispersion worse than z.
  • This circumstance can be used so that the sample body can be easily detached from the substrate after the deposition of the copper on the coated areas.
  • Example 4 Comparison of abrasion resistance and resistivity of conductive non-metallic structures
  • MWCNTs graphite or carbon nanotubes
  • ITO indium-tin oxide
  • PMA methoxypropyl acetate
  • the dispersions were applied to a glass plate by means of ink-jet processes with a layer thickness of 25 to 30 ⁇ m, and the dispersion medium was then removed. For comparison, another glass plate was dusted with elemental powdered graphite. Subsequently, the resistivity of the coating as well as the abrasion resistance according to Taber according to DIN EN ISO 438 were determined on all samples. The results are summarized in Table 1 below.
  • Table 1 show that although the application of elemental powdered graphite to a substrate results in comparable conductivities as the application of a graphite dispersion, the graphite dispersion according to the invention has a significantly higher abrasion resistance.
  • the values in Table 1 show that with carbon nanotubes significantly lower values for the resistivity and thus significantly higher specific conductivities at the same time significantly improved Abrasion resistance - which is comparable to that of mechanically resistant paints - can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Conductive Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)
  • Physical Vapour Deposition (AREA)

Claims (20)

  1. Procédé de dépôt électrochimique de métaux sur des substrats pour la fabrication de structures métalliques et/ou de dépôts électrolytiques,
    (a) dans lequel, dans une première étape, on applique sur un substrat non-conducteur de l'électricité un solubilisat et/ou une dispersion à base de matériaux conducteurs de l'électricité, choisis parmi les allotropes de carbone conducteurs de l'électricité, les polymères conducteurs de l'électricité et les oxydes inorganiques conducteurs de l'électricité, l'application du solubilisat et/ou de la dispersion étant mise en oeuvre d'une manière localement limitée et/ou d'une manière spécifique de site par des procédés d'impression, le solubilisat et/ou la dispersion étant appliqué sur le substrat sur une épaisseur de couche de 0,5 à 30 µm,
    (b) éventuellement une étape ultérieure de séchage ou de durcissement du solubilisat et/ou de la dispersion étant mise en oeuvre, et
    (c) dans une étape ultérieure, au moins un métal est déposé par voie électrochimique sur le solubilisat éventuellement séché ou durci et/ou sur la dispersion éventuellement séchée ou durcie.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on utilise en tant qu'allotropes de carbone conducteurs de l'électricité du graphite, du graphène, un fullerène et/ou des nanotubes de carbone (CNTs), en particulier des nanotubes de carbone (CNTs).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on utilise en tant que polymères conducteurs de l'électricité des polyacétylènes, des polyanilines, des polyparaphénylènes, des polypyrroles et/ou des polythiophènes.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise en tant qu'oxydes inorganiques conducteurs de l'électricité l'oxyde d'indium et d'étain (ITO), l'oxyde d'indium et de zinc (IZO), l'oxyde d'aluminium et de zinc (AZO), l'oxyde d'antimoine et d'étain (ATO) et/ou l'oxyde de fluor et d'étain (FTO).
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que le solubilisat et/ou la dispersion est à base d'eau et/ou d'un solvant, en particulier dans lequel le solvant du solubilisat et/ou la phase continue de la dispersion sont un solvant et/ou un milieu de dispersion à base aqueuse, organique ou organique-aqueuse, ou cependant que la dispersion est un mélange de matières solides, en particulier une peinture en poudre.
  6. Procédé selon l'une des revendications précédentes, caractérisé
    en ce que le solubilisat et/ou la dispersion sont conçus de façon à être durcissables, en particulier durcissables sous l'effet d'un rayonnement et/ou durcissables par durcissement thermique, de préférence durcissables sous l'effet d'un rayonnement, et/ou
    en ce que le solubilisat et/ou la dispersion comprennent au moins un composant durcissable, en particulier durcissable sous l'effet d'un rayonnement et/ou d'un durcissement thermique, de préférence durcissable sous l'effet d'un rayonnement, en particulier au moins un diluant réactif, et/ou
    en ce que le solvant du solubilisat et/ou la phase continue de la dispersion sont durcissables, en particulier durcissables sous l'effet d'un rayonnement et/ou durcissables sous l'effet d'un durcissement thermique, de préférence durcissables sous l'effet d'un rayonnement.
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce que le solubilisat et/ou la dispersion contiennent les matériaux conducteurs de l'électricité en des quantités de 0,001 à 90 % en poids, en particulier de 0,005 à 80 % en poids, de préférence de 0,01 à 50 % en poids, de préférence de 0,01 à 30 % en poids, d'une manière particulièrement préférée de 0,01 à 20 % en poids, par rapport au solubilisat et/ou à la dispersion.
  8. Procédé selon l'une des revendications précédentes, caractérisé
    en ce que le solubilisat et/ou la dispersion comprennent au moins un additif, en particulier en des quantités de 0,001 à 60 % en poids, en particulier de 0,005 à 50 % en poids, de préférence de 0,01 à 40 % en poids, de préférence de 0,05 à 30 % en poids, d'une manière tout particulièrement préférée de 0,1 à 20 % en poids par rapport au solubilisat et/ou à la dispersion, et/ou
    en ce que le solubilisat et/ou la dispersion comprennent au moins un additif, choisi en particulier dans le groupe des auxiliaires de dispersion (dispersants), des tensioactifs ou des substances tensioactives, des antimoussants, des agents modifiant la rhéologie, des liants, des agents filmogènes, des biocides, des substances marqueurs, des pigments, des charges, des promoteurs d'adhérence, des additifs d'écoulement, des co-solvants, des agents antipeaux, des agents absorbant les UV, des agents anti-colmatage et/ou des stabilisants, et/ou
    en ce que le solubilisat et/ou la dispersion comprennent au moins un mouillant et/ou un dispersant, et/ou
    en ce que le solubilisat et/ou la dispersion comprennent au moins un additif tensioactif choisi dans le groupe des additifs lubrifiants et/ou antifriction, des agents d'étalement, des additifs de surface, en particulier des additifs de surface réticulables ; des promoteurs d'adhérence et/ou des additifs de mouillage du substrat ; des agents d'hydrophobisation et des agents anti-adhérence de contact, et/ou
    en ce que le solubilisat et/ou la dispersion comprennent au moins un additif régulateur de rhéologie, choisi dans le groupe des additifs rhéologiques, en particulier des épaississants et/ou des agents de thixotropie ; des antimoussants, des agents déshydratants ; des agents de structuration, ainsi que des agents de plastification et/ou des plastifiants, et/ou
    en ce que le solubilisat et/ou la dispersion comprennent au moins un additif choisi dans le groupe des inhibiteurs de corrosion ; des agents de protection contre la lumière, en particulier les absorbants UV, des capteurs de radicaux, des extincteurs et/ou des agents de décomposition des hydroperoxydes ; des substances siccatives ; des agents antipeaux ; des catalyseurs ; des accélérateurs ; des biocides ; des conservateurs ; des additifs de résistance à la rayure ; des antistatiques ; des siccatifs ; des cires ; des matières de charge et des pigments.
  9. Procédé selon l'une des revendications précédentes, caractérisé
    en ce que le substrat est un substrat inorganique et/ou un substrat organique, choisi en particulier dans le groupe du verre, de la céramique, des silicones, des argiles, des cires, des plastiques et des matériaux composites, et/ou
    en ce que le substrat est un substrat bidimensionnel, en particulier plan, ou un substrat tridimensionnel.
  10. Procédé selon l'une des revendications précédentes, caractérisé en ce que le solubilisat et/ou la dispersion sont appliqués par des procédés d'impression au jet d'encre, des procédés d'impression héliographique, des procédés d'impression flexographique, des procédés d'impression offset, des procédés d'impression à base d'un toner, de préférence par des procédés d'impression au jet d'encre.
  11. Procédé selon l'une des revendications précédentes, caractérisé
    en ce que le solubilisat et/ou la dispersion sont appliqués à des températures de 0 à 300°C, en particulier de 0 à 200°C, de préférence de 5 à 200°C, préférentiellement de 10 à 100°C, d'une manière particulièrement préférée de 15 à 80°C, et/ou
    en ce que la dispersion présente une viscosité dynamique, déterminée selon DIN EN ISO 2431, comprise dans la plage de 5 à 1 100 000 mPas, en particulier dans la plage de 5 à 100 000 mPas, de préférence dans la plage de 5 à 50 000 mPas, préférentiellement dans la plage de 7 à 1000 mPas, d'une manière particulièrement préférée dans la plage de 7 à 500 mPas, d'une manière tout particulièrement préférée dans la plage de 7 à 300 mPas, et/ou
    en ce que la dispersion est appliquée sur le substrat sur une épaisseur de couche de 0,5 à 30 µm, de préférence de 1 à 20 µm, d'une manière particulièrement préférée de 2 à 15 µm.
  12. Procédé selon l'une des revendications précédentes, caractérisé
    en ce que la structure conductrice de l'électricité présente, après mise en oeuvre de l'étape (a) et/ou de l'étape (b), une épaisseur de couche de 0,01 à 100 µm, en particulier de 0,05 à 50 µm, de préférence de 0,1 à 30 µm, préférentiellement de 0,2 à 20 µm, d'une manière particulièrement préférée de 0,3 à 10 µm, d'une manière tout particulièrement préférée de 0,4 à 5 µm, d'une manière encore plus préférée de 0,5 à 3 µm, d'une manière encore plus préférée de 0,6 à 2 µm, et/ou
    en ce que la structure conductrice de l'électricité présente, après mise en oeuvre de l'étape (a) et/ou de l'étape (b) et/ou de l'étape (c), une résistance à l'abrasion selon Taber selon DIN EN ISO 438 correspondant à au moins la note 2, en particulier à au moins la note 3, de préférence à au moins la note 4, et/ou
    en ce que la structure conductrice de l'électricité présente, après mise en oeuvre de l'étape (a) et/ou de l'étape (b) une résistance à l'abrasion à l'état humide selon EN 13300 correspondant au moins à la classe 4, en particulier au moins à la classe 3, de préférence à la classe 1 ou 2, et/ou
    en ce que la structure conductrice de l'électricité présente, après mise en oeuvre de l'étape (a) et/ou de l'étape (b), une résistance spécifique p comprise dans la plage de 10-7 Ωm à 1010 Ωm, en particulier dans la plage de 10-6 Ωm à 105 Ωm, de préférence dans la plage de 10-5 Ωm à 103 Ωm, et/ou
    en ce que la structure conductrice de l'électricité présente, après mise en oeuvre de l'étape (c), une résistance spécifique p comprise dans la plage de 10-9 Ωm à 10-1 Ωm, en particulier dans la plage de 10-8 Ωm à 10-2 Ωm, de préférence dans la plage de 10-7 Ωm à 10-3 Ωm.
  13. Procédé selon l'une des revendications précédentes, caractérisé
    en ce que le métal devant être déposé dans l'étape (c) comprend au moins un métal de transition, en particulier un métal noble ou un métal du groupe des lanthanides, et/ou
    en ce qu'on dépose sur le substrat par voie électrochimique au moins un métal choisi dans le groupe consistant en Cu, Ag, Au, Pd, Pt, Rh, Co, Ni, Cr, V et Nb.
  14. Procédé selon l'une des revendications précédentes, caractérisé
    en ce que le métal est déposé à partir d'un alliage du métal, et/ou
    en ce que le métal est déposé par application d'une tension électrique extérieure, en particulier par électrolyse, en particulier est déposé par un procédé électrolytique, et/ou
    en ce que le métal est déposé avec des densités de courant de 1 à 10 mA/cm2, en particulier de 2 à 8 mA/cm2, de préférence de 3 à 6 mA/cm2, et/ou
    en ce que le métal est déposé sur une épaisseur de couche de 1 nm à 8000 µm, en particulier de 2 nm à 4000 µm, de préférence de 5 nm à 2500 µm, préférentiellement de 10 nm à 2000 µm, d'une manière particulièrement préférée de 50 nm à 1000 µm.
  15. Procédé selon l'une des revendications précédentes, caractérisé en ce que la structure métallique obtenue par dépôt électrochimique, en particulier dans l'étape (c), est soumise à un traitement final, en particulier dans une étape (d), en particulier par attaque chimique, polissage, pulvérisation cathodique, coulée, remplissage ou revêtement.
  16. Structures métalliques conductrices de l'électricité, pouvant être obtenues par un procédé selon l'une des revendications précédentes.
  17. Structures métalliques conductrices de l'électricité selon la revendication 16, comprenant un substrat non conducteur, sur lequel est appliqué par des procédés par impression au moins partiellement au moins un matériau conducteur de l'électricité, choisi dans le groupe des allotropes de carbone conducteurs de l'électricité, des polymères conducteurs de l'électricité et des oxydes inorganiques conducteurs de l'électricité, de nouveau au moins un métal étant déposé par voie électrochimique sur le matériau conducteur de l'électricité.
  18. Utilisation de structures conductrices selon la revendication 16 ou 17 en électronique et en électrotechnique, en particulier dans l'industrie des ordinateurs et des semiconducteurs et en métrologie, en particulier pour fabriquer des pistes conductrices, des composants microstructurés, des composants de la mécanique fine et des composants électroniques ou électrotechniques.
  19. Utilisation de structures conductrices selon la revendication 16 ou 17 pour fabriquer des structures métalliques, en particulier des structures métalliques bidimensionnelles et/ou tridimensionnelles, de préférence pour électroformage, et/ou pour fabriquer des plastiques métallisés et/ou pour fabriquer des éléments décoratifs.
  20. Pistes conductrices, composants microstructurés, composants de la mécanique fine, composants électroniques ou électrotechniques, microstructures, éléments décoratifs ou plastiques métallisés, comprenant une structure conductrice de l'électricité selon la revendication 16 ou 17.
EP12798611.5A 2011-12-02 2012-11-30 Procédé de fabrication de structures électroconductrices sur des substrats non conducteurs et structures produites de cette façon Active EP2785896B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12798611.5A EP2785896B1 (fr) 2011-12-02 2012-11-30 Procédé de fabrication de structures électroconductrices sur des substrats non conducteurs et structures produites de cette façon

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11009542 2011-12-02
EP12798611.5A EP2785896B1 (fr) 2011-12-02 2012-11-30 Procédé de fabrication de structures électroconductrices sur des substrats non conducteurs et structures produites de cette façon
PCT/EP2012/004965 WO2013079219A1 (fr) 2011-12-02 2012-11-30 Procédé de fabrication de structures électroconductrices sur des substrats non conducteurs et structures produites de cette façon

Publications (2)

Publication Number Publication Date
EP2785896A1 EP2785896A1 (fr) 2014-10-08
EP2785896B1 true EP2785896B1 (fr) 2015-09-23

Family

ID=47326051

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12798611.5A Active EP2785896B1 (fr) 2011-12-02 2012-11-30 Procédé de fabrication de structures électroconductrices sur des substrats non conducteurs et structures produites de cette façon

Country Status (7)

Country Link
US (1) US20140339092A1 (fr)
EP (1) EP2785896B1 (fr)
JP (1) JP2014533780A (fr)
KR (1) KR20140098229A (fr)
CN (1) CN104080956A (fr)
IN (1) IN2014KN01179A (fr)
WO (1) WO2013079219A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016124682A1 (de) 2016-12-16 2018-06-21 Technische Universität Chemnitz Verfahren zum Drucken auf einer Flüssigkeitsoberfläche

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849904B (zh) * 2014-04-01 2016-05-04 山东理工大学 直接由薄脆型生物表面反向电铸出仿生复型表面的方法
WO2017034292A1 (fr) * 2015-08-26 2017-03-02 김형락 Procédé de fabrication d'un motif de particules dispersées à l'aide d'un champ électrique sur substrat non conducteur
GB201604342D0 (en) * 2016-03-14 2016-04-27 Aurubis Belgium Nv Sa Substrate
CN107187143B (zh) * 2017-05-11 2019-12-17 歌尔股份有限公司 一种金属和塑料的复合体及其制备方法
KR102036607B1 (ko) * 2017-07-06 2019-10-28 김혜연 비전도성 물체의 전기도금 방법에 의해 제조된 장식품
DE102017121228A1 (de) * 2017-09-13 2019-03-14 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Verfahren zur Oberflächenbehandlung einer Probe die mindestens eine Oberfläche eines Metalloxids aufweist und Metalloxid mit behandelter Oberfläche
KR102492733B1 (ko) 2017-09-29 2023-01-27 삼성디스플레이 주식회사 구리 플라즈마 식각 방법 및 디스플레이 패널 제조 방법
CN107620096A (zh) * 2017-09-29 2018-01-23 佛山市春暖花开科技有限公司 一种分层电镀工艺方法
CN107620095A (zh) * 2017-09-29 2018-01-23 佛山市春暖花开科技有限公司 一种复合层金属电镀工艺方法
CN110158132A (zh) * 2018-02-13 2019-08-23 华瑞墨石丹阳有限公司 一种绝缘材料的电镀方法
CN109285635A (zh) * 2018-08-09 2019-01-29 苏州千层茧农业科技有限公司 一种单面导电膜辊压式及其制备方法
LU100919B1 (en) * 2018-08-27 2020-02-27 Luxembourg Inst Science & Tech List Metal-CNT composite, production method and materials therefor
CN108834309B (zh) * 2018-08-30 2020-07-31 陈伟元 一种石墨烯金属化溶液及其制备方法与应用
CN109440155A (zh) * 2018-10-30 2019-03-08 厦门建霖健康家居股份有限公司 一种对非金属基材表面金属化处理的方法
CN110596986A (zh) * 2019-09-03 2019-12-20 深圳市华星光电技术有限公司 彩膜基板的制备方法、彩膜基板及液晶显示面板
CN112791225A (zh) * 2019-11-14 2021-05-14 美国发现集团有限公司 用于肿瘤治疗的纳米机器人及其制备方法
CN112500741B (zh) * 2020-10-29 2024-04-19 宁波石墨烯创新中心有限公司 一种石墨烯复合导电油墨及其制备方法和应用
CN113179592A (zh) * 2021-04-27 2021-07-27 江门市德众泰工程塑胶科技有限公司 一种线路板及其制作方法
CN116216701B (zh) * 2023-03-06 2024-05-28 大连交通大学 一种原位制备高还原率氧化石墨烯薄膜的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619741A (en) 1985-04-11 1986-10-28 Olin Hunt Specialty Products Inc. Process for preparing a non-conductive substrate for electroplating
DE4141416A1 (de) 1991-12-11 1993-06-17 Schering Ag Verfahren zur beschichtung von oberflaechen mit feinteiligen feststoff-partikeln
US5476580A (en) 1993-05-17 1995-12-19 Electrochemicals Inc. Processes for preparing a non-conductive substrate for electroplating
US5389270A (en) 1993-05-17 1995-02-14 Electrochemicals, Inc. Composition and process for preparing a non-conductive substrate for electroplating
US5667662A (en) * 1996-04-01 1997-09-16 Shipley Company, L.L.C. Electroplating process and composition
DE19806360A1 (de) * 1997-03-13 1998-09-17 Juergen Otto Prof Dr Besenhard Verfahren zum elektrolytischen Abscheiden einer Metallschicht mit glatter Oberfläche auf einem Substrat unter Verwendung einer Graphitdispersion
JP2001267376A (ja) * 2000-03-14 2001-09-28 Seiko Instruments Inc Fpcの製造方法及び表示装置
WO2006108165A2 (fr) * 2005-04-06 2006-10-12 Ohmcraft, Inc. Encre conductrice amelioree
DE102005043242A1 (de) * 2005-09-09 2007-03-15 Basf Ag Dispersion zum Aufbringen einer Metallschicht
JP4411289B2 (ja) * 2006-03-22 2010-02-10 三井金属鉱業株式会社 配線基板
KR20090025337A (ko) * 2006-06-14 2009-03-10 바스프 에스이 지지체 상의 전기 전도성 표면의 제조 방법
CN101522956A (zh) * 2006-08-03 2009-09-02 巴斯夫欧洲公司 在基质上施加金属层的方法
EP1897975B1 (fr) * 2006-09-07 2012-03-14 Enthone, Inc. Deposition d'un polymère conducteur et métallisation d'un substrat non-conducteur
EP1897973A1 (fr) * 2006-09-07 2008-03-12 Enthone, Inc. Dépôt d'un polymère conducteur et métallisation de substrats non conducteurs
DE102006055106C5 (de) 2006-11-14 2018-08-23 Byk-Chemie Gmbh Dispergierverfahren
US20100038251A1 (en) * 2008-08-14 2010-02-18 Snu R&Db Foundation Carbon nanotube network-based nano-composites
JP2010076110A (ja) * 2008-09-24 2010-04-08 Toshiba Corp 樹脂成形体及びその製造方法
JP2010174084A (ja) * 2009-01-28 2010-08-12 Panasonic Corp カーボンナノチューブを含有するインク

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016124682A1 (de) 2016-12-16 2018-06-21 Technische Universität Chemnitz Verfahren zum Drucken auf einer Flüssigkeitsoberfläche

Also Published As

Publication number Publication date
WO2013079219A1 (fr) 2013-06-06
IN2014KN01179A (fr) 2015-10-16
JP2014533780A (ja) 2014-12-15
KR20140098229A (ko) 2014-08-07
EP2785896A1 (fr) 2014-10-08
US20140339092A1 (en) 2014-11-20
CN104080956A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
EP2785896B1 (fr) Procédé de fabrication de structures électroconductrices sur des substrats non conducteurs et structures produites de cette façon
EP2087490B1 (fr) Formulation aqueuse contenant de l'argent et son utilisation pour la préparation de revêtements électriquement conducteurs ou réfléchissants
EP2119747B1 (fr) Composition imprimable à base de particules d'argent pour la production de revêtements conducteurs électriques
Skotheim et al. Conjugated polymers: processing and applications
JP6005852B2 (ja) 金属性ナノ粒子分散系
WO2008142070A2 (fr) Procédé de réalisation de feuilles de métal à revêtement polymère et leur utilisation
DE4343509B4 (de) Leitfähiges Element und seine Verwendung
WO2008142064A1 (fr) Procédé de réalisation de laminés de base dotés d'un revêtement métallique
EP1779392A1 (fr) Procede de revetement de fines particules avec des polymeres conducteurs
EP2265746A2 (fr) Procédé et dispersion pour l'application d'une couche métallique sur un substrat, et matière thermoplastique pour moulage métallisable
EP2033501A1 (fr) Procédé de fabrication de surfaces électriquement conductrices sur un support
EP2127507A1 (fr) Procédé de fabrication de surfaces structurées électro-conductrices
WO2008065069A1 (fr) Dispositif et procédé de revêtement par électrolyse
WO2008015201A1 (fr) Procédé de réalisation de surfaces structurées conductrices de l'électricité
WO2008015167A1 (fr) Dispersion pour appliquer une couche métallique
WO2008101884A2 (fr) Procédé d'établissement des contacts de composants électriques
EP2287240B1 (fr) Procédé d'introduction de particules de carbone dans une couche de surface en polycarbonate
WO2005116298A1 (fr) Electrode en diamant synthetique
TW201120162A (en) Polymer thick film silver electrode composition for use as a plating link
EP2980167A1 (fr) Revêtement antifouling et son utilisation, et procédé de protection de surface contre le biofouling.
DE102009045061A1 (de) Verfahren zur Herstellung von elektrisch leitfähigen, strukturierten oder vollflächigen Oberflächen auf einem Träger
CN108055768B (zh) 一种高分子导电薄膜的制备方法
Zhang et al. Selective Metallization of Thermoplastic Elastomers Based on Laser‐Induced Surface Activation
DE3733002A1 (de) Additiv metallisierte elektrisch leitfaehige struktur
DE102008018939A1 (de) Verfahren zum Herstellen einer elektrisch leitenden Struktur auf einem temperaturempfindlichen Foliensubstrat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TINTHOFF, TOBIAS

Inventor name: BERKEI, MICHAEL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150703

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 751306

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012004708

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012004708

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

26N No opposition filed

Effective date: 20160624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 751306

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130