CN103849904B - 直接由薄脆型生物表面反向电铸出仿生复型表面的方法 - Google Patents

直接由薄脆型生物表面反向电铸出仿生复型表面的方法 Download PDF

Info

Publication number
CN103849904B
CN103849904B CN201410127205.6A CN201410127205A CN103849904B CN 103849904 B CN103849904 B CN 103849904B CN 201410127205 A CN201410127205 A CN 201410127205A CN 103849904 B CN103849904 B CN 103849904B
Authority
CN
China
Prior art keywords
sample
electroforming
acid etching
transition zone
crisp fritter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410127205.6A
Other languages
English (en)
Other versions
CN103849904A (zh
Inventor
韩鑫
陈亮亮
靳印凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201410127205.6A priority Critical patent/CN103849904B/zh
Publication of CN103849904A publication Critical patent/CN103849904A/zh
Application granted granted Critical
Publication of CN103849904B publication Critical patent/CN103849904B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

本发明涉及仿生制造技术领域,具体涉及一种直接由薄脆型生物表面反向电铸出仿生复型表面的方法,包括薄脆型生物表面取样及预处理、薄脆型生物表面热蒸发沉积可酸蚀过渡层、可酸蚀过渡层外表面浇铸弹性高分子背衬、薄脆型生物表面氧等离子体低温灰化清除、可酸蚀过渡层内表面沉积导电金属层、薄脆型生物表面直接反向电铸复型、清除弹性背衬及可酸蚀过渡层等步骤。与现有技术相比,本发明可以于“无形”中实现“有形”电铸,因而特别适用于植物叶片、昆虫翅膀等薄脆型生物表面的电铸复型;可以直接由生物原型得到同结构阳模,实现了反向增材型电铸复型;可以直接得到金属质的硬质仿生复型表面。

Description

直接由薄脆型生物表面反向电铸出仿生复型表面的方法
技术领域
本发明涉及一种仿生表面的制作方法,更特别地说,是指一种直接由薄脆型生物表面反向电铸出仿生复型表面的方法,属于仿生制造技术领域。
背景技术
生物经过几亿年的进化,其结构和功能为了适应环境而在不断优化,其中最为直接和普遍的现象是许多生物体表已逐渐进化出各种功能性生物表面。众多昆虫、植物、鱼类、鸟类等均具有各种类型的功能性生物表面,其所呈现的生物功能包括伪装、脱附、自洁、减阻、降噪等,为人类制造仿生功能表面提供了无比优越的生物原型模板。
对自然生物表面进行高逼真复型是制作仿生功能表面的一条便捷途径,其中电铸是当前在对生物原型进行复型过程中普遍被采用的方法之一。常规的做法是利用金属电解沉积原理逐渐在原模表面沉积出一定厚度的金属电铸层,将电铸层与原模分离便获得与原模形状相阴阳对应的金属质复制件,是一种正向(即原模表面法向)增材型复型方法,具有能精确复制复杂微细结构、操作简便等优点。例如,专利号为ZL200910076509.3的中国专利公开了一种采用脉冲电铸方法制作有鳞生物表皮形貌复制模板的复制方法,可以实现鲨鱼皮、穿山甲皮、鳄鱼皮、蛇皮等有鳞生物表皮的高逼真电铸复型。
然而,上述电铸型生物复型方法也具有其局限性:(1)所针对的生物原模多是具有一定厚度、强度和韧性的生物表面,而在针对诸如植物叶片、昆虫翅膀等薄脆型生物原型时则存在生物原型轻薄易碎而不易操持、铸层沉积过程中生物原型易受电铸液热流扰动继而变形脱落而造成电铸不充分甚至失败等难题;(2)正向增材型电铸模式决定了其只能一次性制作出与生物原型表面相对应的阴模板,要制作同形貌阳模还需进行后续翻模工艺;(3)所得到的金属质阴模板决定了其很难在后续翻模工艺中再制作金属质阳模,亦即利用该方法很难一次性直接得到硬质的仿生复型表面。
发明内容
本发明的目的在于,提供一种直接由薄脆型生物表面反向电铸出仿生复型表面的方法,以解决上述技术问题。
本发明所解决的技术问题可以采用以下技术方案来实现:直接由薄脆型生物表面反向电铸出仿生复型表面的方法,包括如下步骤:
第一步:薄脆型生物表面取样及预处理
(A)对薄脆型生物表面进行取样,进而用去离子水清洗2~4次,然后0℃~4℃下置入质量百分比浓度为2.5%的戊二醛溶液中化学固定4h~6h,制得固定表面样本;
(B)将经(A)步骤制得的固定表面样本用去离子水清洗3~6次,然后依次放入体积百分比浓度为50%、75%、95%、100%的乙醇溶液中分别脱水20min~30min,制得脱水表面样本;
(C)将经(B)步骤制得的脱水表面样本在50℃~70℃条件下烘干,得到含水率为5%~10%的干燥表面样本。
此步骤的目的是保持生物表面原型结构,防止组织细胞发生分解腐败,并增加其硬度和强度。
第二步:薄脆型生物表面热蒸发沉积可酸蚀过渡层
(A)根据薄脆型生物表面的形貌结构特征,将第一步制得的干燥表面样本与热蒸发源成一定角度固定到热蒸发沉积设备内的样品基座上,制得热蒸发沉积试样;
(B)以硅或硅的化合物作为热蒸发沉积材料,利用相应的热蒸发沉积设备在经(A)步骤制得的热蒸发沉积试样外表面上沉积出一定厚度的可酸蚀过渡层。
此步骤的目的是借助一定厚度的可酸蚀过渡层将生物表面的微细结构加以覆盖,以达到结构定型的目的。
第三步:可酸蚀过渡层外表面浇铸弹性高分子背衬
(A)将第二步制得的沉积有可酸蚀过渡层的热蒸发沉积试样固定在一夹具上,并保持有可酸蚀过渡层的一面朝上,制得弹性背衬浇铸试样;
(B)选择固化后有一定弹性的常温固化型有机高分子作为弹性背衬的基质材料,配制对应的预聚体,对经(A)步骤制得的弹性背衬浇铸试样可酸蚀过渡层外表面进行预聚体浇铸,常温固化后卸掉夹具,制得弹性背衬包埋试样。
第四步:薄脆型生物表面氧等离子体低温灰化清除
(A)将第三步制得的弹性背衬包埋试样置于等离子清洗机内的试样舟上,在保持有生物原型表面一面朝上的前提下,利用铝箔对弹性背衬进行包覆遮盖,制得等离子清洗试样;
(B)以氧气作为工艺气体,利用等离子清洗机对经(A)步骤制得的等离子清洗试样进行一定时间的氧等离子体低温灰化处理,以彻底清除生物原型表面样本,并完全暴露出可酸蚀过渡层。
第五步:可酸蚀过渡层内表面沉积导电金属层
(A)将第四步制得的已清除生物原型表面样本的等离子清洗试样与热蒸发源成一定角度固定到热蒸发沉积设备内的样品基座上,并保持有可酸蚀过渡层的一面朝向热蒸发源,制得导电层沉积试样;
(B)以某种金属作为热蒸发沉积材料,利用相应的热蒸发沉积设备在经(A)步骤制得的导电层沉积试样可酸蚀过渡层内表面上沉积出一定厚度的导电金属层。
第六步:薄脆型生物表面直接反向电铸复型
(A)将第五步制得的已沉积导电金属层的导电层沉积试样置于电铸槽内,在清除包覆弹性背衬的铝箔后,将其导电金属层与电铸系统的阴极相连接,制得反向电铸试样;
(B)以与导电层沉积试样上导电金属层成分相同的金属板连接电铸系统的阳极,在相应的电铸液中进行电铸制模,以在该导电金属层上沉积一定厚度的同质金属电铸层。
第七步:清除弹性背衬及可酸蚀过渡层
(A)对第六步制得的沉积有金属电铸层的反向电铸试样进行去离子水清洗3~6次,然后剥离弹性背衬,制得可酸蚀试样;
(B)将经(A)步骤制得的可酸蚀试样置于一定浓度、一定温度的氢氟酸中进行酸洗,以彻底清除残留于可酸蚀试样上的可酸蚀过渡层,酸洗结束后用去离子水清洗3~6次,最终制得仿生复型表面样件。
所述的直接由薄脆型生物表面反向电铸出仿生复型表面的方法,适用的薄脆型生物表面是昆虫翅膀、昆虫复眼、植物叶片、植物花朵。
所述的直接由薄脆型生物表面反向电铸出仿生复型表面的方法,可酸蚀过渡层的成分是硅、氧化硅、二氧化硅、氮化硅,其厚度是0.8μm~1.2μm。
所述的直接由薄脆型生物表面反向电铸出仿生复型表面的方法,导电金属层与电铸过程中所沉积金属的成分相同,且均为镍、铜。
所述的直接由薄脆型生物表面反向电铸出仿生复型表面的方法,导电金属层的厚度是0.3μm~0.5μm。
所述的直接由薄脆型生物表面反向电铸出仿生复型表面的方法,清除可酸蚀过渡层所用氢氟酸的温度为60℃~65℃,质量百分比浓度为60%~65%。
本发明与现有技术相比,具有如下优点:(1)在适用对象上,本发明在实施电铸之前先借助一定厚度的可酸蚀过渡层将生物表面的微细结构加以覆盖,以达到结构定型目的,再采用氧等离子体低温灰化方法将生物原型加以清除,这样处理的优势在于可以于“无形”中实现“有形”电铸,进而有效避免薄脆型生物原型直接参与电铸下存在的诸多问题,因此特别适用于植物叶片、昆虫翅膀等薄脆型生物表面的电铸复型;(2)在制造模式上,本发明利用金属电铸层填补生物原型等离子体灰化后留出的空白空间,因而可以直接由生物原型得到同结构阳模,实现了反向增材型电铸复型,避免了传统正向增材型电铸复型所必经的阴模板翻模工序;(3)在制造结果上,本发明提出的薄脆型生物表面反向电铸出仿生复型表面的方法,可以直接得到金属质的硬质仿生复型表面,这是传统正向型电铸复型方法所难于实现的。
附图说明
图1是本发明直接由薄脆型生物表面反向电铸出仿生复型表面的方法流程图。
图2是本发明直接由薄脆型生物表面反向电铸出仿生复型表面的方法工艺简图。
图中:1、生物原型表面样本2、可酸蚀过渡层3、弹性背衬4、导电金属层5、金属电铸层6、仿生复型表面样件。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合附图,以直接由蝴蝶翅膀表面反向电铸出仿蝴蝶翅膀表面为具体实施例进一步阐述本发明。
参见图1、图2所示,本发明直接由蝴蝶翅膀表面反向电铸出仿蝴蝶翅膀表面的方法,包括下列步骤:
第一步:蝴蝶翅膀表面取样及预处理
(A)对蝴蝶翅膀表面进行取样,进而用去离子水清洗4次,然后4℃下置入质量百分比浓度为2.5%的戊二醛溶液中化学固定4h,制得固定表面样本;
(B)将经(A)步骤制得的固定表面样本用去离子水清洗3次,然后依次放入体积百分比浓度为50%、75%、95%、100%的乙醇溶液中分别脱水20min,制得脱水表面样本;
(C)将经(B)步骤制得的脱水表面样本在50℃条件下烘干,得到含水率为5%的干燥表面样本,亦即蝴蝶翅膀的生物原型表面样本1。
此步骤的目的是保持蝴蝶翅膀表面的原型结构,防止组织细胞发生分解腐败,并增加其硬度和强度。
第二步:蝴蝶翅膀表面热蒸发沉积可酸蚀过渡层2
(A)根据蝴蝶翅膀表面的形貌结构特征,将第一步制得的干燥表面样本与热蒸发源成70°角固定到热蒸发沉积设备内的样品基座上,制得热蒸发沉积试样;
(B)以二氧化硅作为热蒸发沉积材料,利用相应的热蒸发沉积设备在经(A)步骤制得的热蒸发沉积试样外表面上沉积出厚度为0.8μm的可酸蚀过渡层2。
此步骤的目的是借助一定厚度的可酸蚀过渡层2将蝴蝶翅膀表面的微细结构加以覆盖,以达到结构定型的目的。
第三步:可酸蚀过渡层2外表面浇铸弹性背衬3
(A)将第二步制得的沉积有可酸蚀过渡层2的热蒸发沉积试样固定在一夹具上,并保持有可酸蚀过渡层2的一面朝上,制得弹性背衬浇铸试样;
(B)选择固化后有一定弹性的Sylgard184型聚二甲基硅氧烷作为弹性背衬3的基质材料,配制对应的预聚体,对经(A)步骤制得的弹性背衬浇铸试样可酸蚀过渡层2外表面进行预聚体浇铸,常温固化后卸掉夹具,制得弹性背衬包埋试样。
第四步:蝴蝶翅膀表面氧等离子体低温灰化清除
(A)将第三步制得的弹性背衬包埋试样置于等离子清洗机内的试样舟上,在保持有蝴蝶翅膀表面一面朝上的前提下,利用铝箔对弹性背衬3进行包覆遮盖,制得等离子清洗试样;
(B)以氧气作为工艺气体,利用等离子清洗机对经(A)步骤制得的等离子清洗试样进行一定时间的氧等离子体低温灰化处理,以彻底清除生物原型表面样本1,并完全暴露出可酸蚀过渡层2。
第五步:可酸蚀过渡层2内表面沉积导电金属层4
(A)将第四步制得的已清除生物原型表面样本1的等离子清洗试样与热蒸发源成70°角固定到热蒸发沉积设备内的样品基座上,并保持有可酸蚀过渡层2的一面朝向热蒸发源,制得导电层沉积试样;
(B)以金属镍作为热蒸发沉积材料,利用相应的热蒸发沉积设备在经(A)步骤制得的导电层沉积试样可酸蚀过渡层2内表面上沉积出厚度为0.5μm的镍质导电金属层4。
第六步:蝴蝶翅膀表面直接反向电铸复型
(A)将第五步制得的已沉积导电金属层4的导电层沉积试样置于电铸槽内,在清除包覆弹性背衬3的铝箔后,将其导电金属层4与电铸系统的阴极相连接,制得反向电铸试样;
(B)以与导电层沉积试样上导电金属层4成分相同的镍金属板连接电铸系统的阳极,在相应的镍电铸液中进行电铸制模,以在该导电金属层4上沉积一定厚度的镍质金属电铸层5。
第七步:清除弹性背衬3及可酸蚀过渡层2
(A)对第六步制得的沉积有金属电铸层5的反向电铸试样进行去离子水清洗6次,然后剥离弹性背衬3,制得可酸蚀试样;
(B)将经(A)步骤制得的可酸蚀试样置于质量百分比浓度为60%、温度为60℃的氢氟酸中进行酸洗,以彻底清除残留于可酸蚀试样上的可酸蚀过渡层2,酸洗结束后用去离子水清洗6次,最终制得具有仿蝴蝶翅膀表面的仿生复型表面样件6。
最后应当说明的是:以上实施例仅用以显示和描述本发明的基本原理、主要特征和本发明的优点,所属领域的普通技术人员应当了解,本发明不受上述实施例的限制,在不脱离本发明精神和范围的前提下,本发明还会有各种修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.直接由薄脆型生物表面反向电铸出仿生复型表面的方法,包括:
第一步:薄脆型生物表面取样及预处理
(A)对薄脆型生物表面进行取样,进而用去离子水清洗2~4次,然后0℃~4℃下置入质量百分比浓度为2.5%的戊二醛溶液中化学固定4h~6h,制得固定表面样本;
(B)将经(A)步骤制得的固定表面样本用去离子水清洗3~6次,然后依次放入体积百分比浓度为50%、75%、95%、100%的乙醇溶液中分别脱水20min~30min,制得脱水表面样本;
(C)将经(B)步骤制得的脱水表面样本在50℃~70℃条件下烘干,得到含水率为5%~10%的干燥表面样本;
其特征在于,还包括如下步骤:
第二步:薄脆型生物表面热蒸发沉积可酸蚀过渡层
(A)根据薄脆型生物表面的形貌结构特征,将第一步制得的干燥表面样本与热蒸发源成一定角度固定到热蒸发沉积设备内的样品基座上,制得热蒸发沉积试样;
(B)以硅或硅的化合物作为热蒸发沉积材料,利用相应的热蒸发沉积设备在经(A)步骤制得的热蒸发沉积试样外表面上沉积出一定厚度的可酸蚀过渡层;
第三步:可酸蚀过渡层外表面浇铸弹性高分子背衬
(A)将第二步制得的沉积有可酸蚀过渡层的热蒸发沉积试样固定在一夹具上,并保持有可酸蚀过渡层的一面朝上,制得弹性背衬浇铸试样;
(B)选择固化后有一定弹性的常温固化型有机高分子作为弹性背衬的基质材料,配制对应的预聚体,对经(A)步骤制得的弹性背衬浇铸试样可酸蚀过渡层外表面进行预聚体浇铸,常温固化后卸掉夹具,制得弹性背衬包埋试样;
第四步:薄脆型生物表面氧等离子体低温灰化清除
(A)将第三步制得的弹性背衬包埋试样置于等离子清洗机内的试样舟上,在保持有生物原型表面一面朝上的前提下,利用铝箔对弹性背衬进行包覆遮盖,制得等离子清洗试样;
(B)以氧气作为工艺气体,利用等离子清洗机对经(A)步骤制得的等离子清洗试样进行一定时间的氧等离子体低温灰化处理,以彻底清除生物原型表面样本,并完全暴露出可酸蚀过渡层;
第五步:可酸蚀过渡层内表面沉积导电金属层
(A)将第四步制得的已清除生物原型表面样本的等离子清洗试样与热蒸发源成一定角度固定到热蒸发沉积设备内的样品基座上,并保持有可酸蚀过渡层的一面朝向热蒸发源,制得导电层沉积试样;
(B)以某种金属作为热蒸发沉积材料,利用相应的热蒸发沉积设备在经(A)步骤制得的导电层沉积试样可酸蚀过渡层内表面上沉积出一定厚度的导电金属层;
第六步:薄脆型生物表面直接反向电铸复型
(A)将第五步制得的已沉积导电金属层的导电层沉积试样置于电铸槽内,在清除包覆弹性背衬的铝箔后,将其导电金属层与电铸系统的阴极相连接,制得反向电铸试样;
(B)以与导电层沉积试样上导电金属层成分相同的金属板连接电铸系统的阳极,在相应的电铸液中进行电铸制模,以在该导电金属层上沉积一定厚度的同质金属电铸层;
第七步:清除弹性背衬及可酸蚀过渡层
(A)对第六步制得的沉积有金属电铸层的反向电铸试样进行去离子水清洗3~6次,然后剥离弹性背衬,制得可酸蚀试样;
(B)将经(A)步骤制得的可酸蚀试样置于一定浓度、一定温度的氢氟酸中进行酸洗,以彻底清除残留于可酸蚀试样上的可酸蚀过渡层,酸洗结束后用去离子水清洗3~6次,最终制得仿生复型表面样件。
2.根据权利要求1所述的直接由薄脆型生物表面反向电铸出仿生复型表面的方法,其特征在于:适用的薄脆型生物表面是昆虫翅膀、昆虫复眼、植物叶片、植物花朵。
3.根据权利要求1所述的直接由薄脆型生物表面反向电铸出仿生复型表面的方法,其特征在于:可酸蚀过渡层的成分是硅、氧化硅、二氧化硅、氮化硅,其厚度是0.8μm~1.2μm。
4.根据权利要求1所述的直接由薄脆型生物表面反向电铸出仿生复型表面的方法,其特征在于:导电金属层与电铸过程中所沉积金属的成分相同,且均为镍、铜中的一种或两种金属的合金。
5.根据权利要求1所述的直接由薄脆型生物表面反向电铸出仿生复型表面的方法,其特征在于:导电金属层的厚度是0.3μm~0.5μm。
6.根据权利要求1所述的直接由薄脆型生物表面反向电铸出仿生复型表面的方法,其特征在于:清除可酸蚀过渡层所用氢氟酸的温度为60℃~65℃,质量百分比浓度为60%~65%。
CN201410127205.6A 2014-04-01 2014-04-01 直接由薄脆型生物表面反向电铸出仿生复型表面的方法 Expired - Fee Related CN103849904B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410127205.6A CN103849904B (zh) 2014-04-01 2014-04-01 直接由薄脆型生物表面反向电铸出仿生复型表面的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410127205.6A CN103849904B (zh) 2014-04-01 2014-04-01 直接由薄脆型生物表面反向电铸出仿生复型表面的方法

Publications (2)

Publication Number Publication Date
CN103849904A CN103849904A (zh) 2014-06-11
CN103849904B true CN103849904B (zh) 2016-05-04

Family

ID=50858019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410127205.6A Expired - Fee Related CN103849904B (zh) 2014-04-01 2014-04-01 直接由薄脆型生物表面反向电铸出仿生复型表面的方法

Country Status (1)

Country Link
CN (1) CN103849904B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106544705A (zh) * 2016-10-31 2017-03-29 常州瑞丰特科技有限公司 精密电铸微复型金属微结构的制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101487130A (zh) * 2009-01-06 2009-07-22 北京航空航天大学 采用脉冲电铸方法制作有鳞生物表皮形貌复制模板的复制方法
CN101590580A (zh) * 2008-05-27 2009-12-02 鲁毅 一种仿生鲨鱼皮金属模具的制备方法
CN102145567A (zh) * 2010-10-30 2011-08-10 华南理工大学 基于鲨鱼皮表面和基体结构的仿生减阻膜材及其制备方法
WO2013079219A1 (de) * 2011-12-02 2013-06-06 Byk-Chemie Gmbh Verfahren zur herstellung elektrisch leitfähiger strukturen auf nichtleitenden substraten und auf diese weise erzeugte strukturen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101590580A (zh) * 2008-05-27 2009-12-02 鲁毅 一种仿生鲨鱼皮金属模具的制备方法
CN101487130A (zh) * 2009-01-06 2009-07-22 北京航空航天大学 采用脉冲电铸方法制作有鳞生物表皮形貌复制模板的复制方法
CN102145567A (zh) * 2010-10-30 2011-08-10 华南理工大学 基于鲨鱼皮表面和基体结构的仿生减阻膜材及其制备方法
WO2013079219A1 (de) * 2011-12-02 2013-06-06 Byk-Chemie Gmbh Verfahren zur herstellung elektrisch leitfähiger strukturen auf nichtleitenden substraten und auf diese weise erzeugte strukturen

Also Published As

Publication number Publication date
CN103849904A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
US20180087171A1 (en) Electrical connector electroplating process
CN101942638B (zh) 一种仿生可控粘附性疏水金表面的制备方法
CN104195518B (zh) 一种黑色吸光薄膜及其制备方法
CN110093645A (zh) 一种塑胶电镀的方法
CN103556148B (zh) 一种NiTi形状记忆合金的表面改性方法
CN104127911A (zh) 一种以钛合金为种植体的生物复合材料制备方法
CN103849904B (zh) 直接由薄脆型生物表面反向电铸出仿生复型表面的方法
CN104887227A (zh) 一种石墨烯柔性表面肌电电极及其制备方法
EP1739208A4 (en) ELECTRODE FOR GENERATING HYDROGEN, PROCESS FOR PRODUCING THE SAME, AND ELECTROLYSIS METHOD WITH SAME
CN103881120B (zh) 一种仿荷叶超疏水自清洁表面的制备方法
CN104073857A (zh) 一种纳米压印镍印章的制备方法
JP2020523486A (ja) 表面に電気めっき層を有する難溶融金属またはステンレス鋼、および難溶融金属またはステンレス鋼の表面の電気めっきプロセス
CN102114682A (zh) 采用聚乙烯醇制作有鳞生物表皮形貌复制模板的复制方法
CN106591899B (zh) 具有光致亲水与疏水转换功能的镁锂合金超疏水镀层及制备方法
CN109023471A (zh) 一种铝合金及其制备方法
CN105568243B (zh) 一种用于不锈钢表面的石墨烯防腐涂层制备方法
CN103963300B (zh) 直接由薄脆型生物表面反向塑铸出仿生复型表面的方法
CN107130275B (zh) 一种锌合金阳极氧化的方法
JP2007254866A (ja) アルミニウムまたはアルミニウム合金素材のめっき前処理方法
CN107490652B (zh) 一种单一取向氧化铱纳米阵列制备及膜电极的构筑方法
CN108950500A (zh) 一种基于磁控溅射的纳米孔结构金电极的制备方法
CN104789964A (zh) 一种高温合金表面高温绝缘涂层的制备方法
CN103046103B (zh) 一种钛表面疏水微弧氧化生物涂层的制备方法
CN106567041A (zh) 一种适用于硅胶按键镀金镍材的制备方法
CN102851720A (zh) 一种铝酸盐电解液及其在制备镁合金微弧氧化膜中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160504

Termination date: 20170401

CF01 Termination of patent right due to non-payment of annual fee