CN108950500A - 一种基于磁控溅射的纳米孔结构金电极的制备方法 - Google Patents

一种基于磁控溅射的纳米孔结构金电极的制备方法 Download PDF

Info

Publication number
CN108950500A
CN108950500A CN201810675068.8A CN201810675068A CN108950500A CN 108950500 A CN108950500 A CN 108950500A CN 201810675068 A CN201810675068 A CN 201810675068A CN 108950500 A CN108950500 A CN 108950500A
Authority
CN
China
Prior art keywords
electrum
film
nano
gold electrode
pore structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810675068.8A
Other languages
English (en)
Inventor
鲁思渊
高清远
黄金磊
李淑欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201810675068.8A priority Critical patent/CN108950500A/zh
Publication of CN108950500A publication Critical patent/CN108950500A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种基于磁控溅射的纳米孔结构金电极的制备方法,特点是先制备金银合金靶材,再通过磁控溅射制备金银合金薄膜,然后对金银合金薄膜脱合金,清洗干燥后得到具有纳米孔结构的金电极;优点是其工艺简单,耗时较短,对材料没有损伤,且制备得到的金电极的纳米孔均匀、孔径较小、孔隙率高,使得金电极具有足够的韧性,不易损坏;此外,在制备金银合金薄膜时,将铬膜和金膜作为粘结层,可有效防止金银合金薄膜从硅片上脱落,使得金银合金薄膜溅射沉积均匀,进一步保证了金电极的使用性能。

Description

一种基于磁控溅射的纳米孔结构金电极的制备方法
技术领域
本发明涉及材料科学与工程领域中电极的制备,尤其涉及一种基于磁控溅射的纳米孔结构金电极的制备方法。
背景技术
金属纳米材料因为其尺寸效应和表面效应,能够表现出与宏观材料迥然不同的特性,在表面改性、传感、光学、催化以及能源转换与储存等多个领域具有广泛的应用潜力。因此探索简单易行的合成方法用于制备各种形态的金属微纳米结构是微纳米科学领域的一项重要课题,研究结果具有重要使用价值。
目前已有多种技术可以实现金属微纳米结构的合成与制备,例如气相物理沉积、气相化学沉积、溶液凝胶法、电弧放电法、溅射沉积法、模板法、前躯体分解法等等。而大多数的制备方法都存在一定的缺陷,比如:溶胶凝胶法在凝胶生成时,因为颗粒间结构的固定化,可以有效地抑制晶体的生长,但是它的缺点也很明显:合成周期长、成本高,限制了其应用。前躯体分解法首先合成纳米材料的前躯体,然后结合高温煅烧前躯体合成多孔纳米电极。该方法比较简单,但合成的多孔电极受前驱体的影响比较大,往往不能得到理想的多孔纳米电极。
发明内容
本发明所要解决的技术问题是提供一种材料无损伤,且纳米孔均匀、孔径小,电极的韧性好的基于磁控溅射的纳米孔结构金电极的制备方法。
本发明解决上述技术问题所采用的技术方案为:一种基于磁控溅射的纳米孔结构金电极的制备方法,包括以下具体步骤:
(1)、制备金银合金靶材:将纯金、纯银按原子比65:35进行混合,在氩气气氛中进行熔炼及浇注,待铸模冷却后取出金银合金锭,得到金银合金靶材;
(2)、制备金银合金薄膜:将200~400μm厚度的硅片置于磁控溅射设备中,先以纯铬为靶材,溅射沉积一层10~20nm厚度的铬膜,再以纯金为靶材,在铬膜上溅射沉积一层10~20nm厚度的金膜,最后以金银合金为靶材,在金膜上溅射沉积一层100~1000nm厚度的金银合金薄膜;
(3)、脱合金:将金银合金薄膜切割成金银合金薄膜电极,并置入摩尔浓度为14.4~15.2mol/L的浓硝酸溶液中,在室温下进行化学脱合金;
(4)、清洗干燥:将脱合金后的薄膜取出,依次使用去离子水、丙酮和酒精浸泡清洗1~2分钟,取出干燥后得到具有纳米孔结构的金电极。
进一步地,所述的步骤(1)中的熔炼为电弧熔炼或感应熔炼。
进一步地,所述的步骤(3)中,金银合金薄膜电极的化学脱合金时间为24小时以上。
进一步地,所制备得到的金电极的孔径为20~50nm。
与现有技术相比,本发明的优点是其工艺简单,耗时较短,对材料没有损伤,且制备得到的金电极的纳米孔均匀、孔径较小、孔隙率高,使得金电极具有足够的韧性,不易损坏;同时,可以通过对腐蚀过程条件和时间的控制等手段实现对纳米孔的形貌、尺寸的连续调控,得到符合要求的金电极;此外,在制备金银合金薄膜时,将铬膜和金膜作为粘结层,可有效防止金银合金薄膜从硅片上脱落,使得金银合金薄膜溅射沉积均匀,进一步保证了金电极的使用性能。
附图说明
图1为本发明所制备得到的金银合金薄膜及化学脱合金后的XRD图谱;
图2为本发明所制备得到的金银合金薄膜及化学脱合金后的EDS图谱;
图3为本发明所制备得到的纳米孔结构金电极的SEM照片。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例一:一种基于磁控溅射的纳米孔结构金电极的制备方法,包括以下具体步骤:
(1)、制备金银合金靶材:将纯金、纯银按原子比65:35进行混合,在氩气气氛中进行熔炼及浇注,待铸模冷却后取出金银合金锭,得到金银合金靶材;
(2)、制备金银合金薄膜:将200μm厚度的硅片置于磁控溅射设备中,先以纯铬为靶材,溅射沉积一层10nm厚度的铬膜,再以纯金为靶材,在铬膜上溅射沉积一层10nm厚度的金膜,最后以金银合金为靶材,在金膜上溅射沉积一层100nm厚度的金银合金薄膜;
(3)、脱合金:将金银合金薄膜切割成金银合金薄膜电极,并置入摩尔浓度为14.4mol/L的浓硝酸溶液中,在室温下进行化学脱合金24小时;
(4)、清洗干燥:将脱合金后的薄膜取出,依次使用去离子水、丙酮和酒精浸泡清洗2分钟,取出干燥后得到具有孔径为20~50nm的纳米孔结构的金电极。
实施例二:一种基于磁控溅射的纳米孔结构金电极的制备方法,包括以下具体步骤:
(1)、制备金银合金靶材:将纯金、纯银按原子比65:35进行混合,在氩气气氛中进行熔炼及浇注,待铸模冷却后取出金银合金锭,得到金银合金靶材;
(2)、制备金银合金薄膜:将300μm厚度的硅片置于磁控溅射设备中,先以纯铬为靶材,溅射沉积一层15nm厚度的铬膜,再以纯金为靶材,在铬膜上溅射沉积一层15nm厚度的金膜,最后以金银合金为靶材,在金膜上溅射沉积一层500nm厚度的金银合金薄膜;
(3)、脱合金:将金银合金薄膜切割成金银合金薄膜电极,并置入摩尔浓度为15mol/L的浓硝酸溶液中,在室温下进行化学脱合金30小时;
(4)、清洗干燥:将脱合金后的薄膜取出,依次使用去离子水、丙酮和酒精浸泡清洗2分钟,取出干燥后得到具有孔径为20~50nm的纳米孔结构的金电极。
实施例三:一种基于磁控溅射的纳米孔结构金电极的制备方法,包括以下具体步骤:
(1)、制备金银合金靶材:将纯金、纯银按原子比65:35进行混合,在氩气气氛中进行熔炼及浇注,待铸模冷却后取出金银合金锭,得到金银合金靶材;
(2)、制备金银合金薄膜:将400μm厚度的硅片置于磁控溅射设备中,先以纯铬为靶材,溅射沉积一层20nm厚度的铬膜,再以纯金为靶材,在铬膜上溅射沉积一层20nm厚度的金膜,最后以金银合金为靶材,在金膜上溅射沉积一层1000nm厚度的金银合金薄膜;
(3)、脱合金:将金银合金薄膜切割成金银合金薄膜电极,并置入摩尔浓度为15.2mol/L的浓硝酸溶液中,在室温下进行化学脱合金40小时;
(4)、清洗干燥:将脱合金后的薄膜取出,依次使用去离子水、丙酮和酒精浸泡清洗2分钟,取出干燥后得到具有孔径为20~50nm的纳米孔结构的金电极。
从附图1可知,脱合金后制备的纳米孔结构金电极由纯金相构成,从附图2可知,金银合金薄膜在脱合金前具有金和银的两个衍射峰,在脱合金之后经检测只剩下金峰,说明通过脱合金之后去除了合金中的银元素,最终得到纯金相的纳米孔结构金电极。而从附图3可看到,该金电极的孔径尺寸约为20~50nm,韧带直径约为60~80nm。

Claims (4)

1.一种基于磁控溅射的纳米孔结构金电极的制备方法,其特征在于包括以下具体步骤:
(1)、制备金银合金靶材:将纯金、纯银按原子比65:35进行混合,在氩气气氛中进行熔炼及浇注,待铸模冷却后取出金银合金锭,得到金银合金靶材;
(2)、制备金银合金薄膜:将200~400μm厚度的硅片置于磁控溅射设备中,先以纯铬为靶材,溅射沉积一层10~20nm厚度的铬膜,再以纯金为靶材,在铬膜上溅射沉积一层10~20nm厚度的金膜,最后以金银合金为靶材,在金膜上溅射沉积一层100~1000nm厚度的金银合金薄膜;
(3)、脱合金:将金银合金薄膜切割成金银合金薄膜电极,并置入摩尔浓度为14.4~15.2mol/L的浓硝酸溶液中,在室温下进行化学脱合金;
(4)、清洗干燥:将脱合金后的薄膜取出,依次使用去离子水、丙酮和酒精浸泡清洗1~2分钟,取出干燥后得到具有纳米孔结构的金电极。
2.如权利要求1所述的一种基于磁控溅射的纳米孔结构金电极的制备方法,其特征在于:所述的步骤(1)中的熔炼为电弧熔炼或感应熔炼。
3.如权利要求1所述的一种基于磁控溅射的纳米孔结构金电极的制备方法,其特征在于:所述的步骤(3)中,金银合金薄膜电极的化学脱合金时间为24小时以上。
4.如权利要求1所述的一种基于磁控溅射的纳米孔结构金电极的制备方法,其特征在于:所制备得到的金电极的孔径为20~50nm。
CN201810675068.8A 2018-06-27 2018-06-27 一种基于磁控溅射的纳米孔结构金电极的制备方法 Pending CN108950500A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810675068.8A CN108950500A (zh) 2018-06-27 2018-06-27 一种基于磁控溅射的纳米孔结构金电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810675068.8A CN108950500A (zh) 2018-06-27 2018-06-27 一种基于磁控溅射的纳米孔结构金电极的制备方法

Publications (1)

Publication Number Publication Date
CN108950500A true CN108950500A (zh) 2018-12-07

Family

ID=64487313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810675068.8A Pending CN108950500A (zh) 2018-06-27 2018-06-27 一种基于磁控溅射的纳米孔结构金电极的制备方法

Country Status (1)

Country Link
CN (1) CN108950500A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110220953A (zh) * 2019-06-21 2019-09-10 宁波大学 过氧化氢电化学传感器电极、制备方法及传感器
CN113088906A (zh) * 2021-03-24 2021-07-09 上海理工大学 一种岛状纳米多孔金基底的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451547A (zh) * 2014-12-05 2015-03-25 国家纳米科学中心 一种磁控溅射制备纳米多孔金属薄膜的方法
CN104789934A (zh) * 2015-04-01 2015-07-22 上海理工大学 一种改进的纳米多孔铜薄膜及其制备方法
CN105543796A (zh) * 2016-02-01 2016-05-04 山东大学 一种由磁控溅射制备纳米多孔铜薄膜材料的方法
CN106995914A (zh) * 2017-05-24 2017-08-01 山东大学 一种制备自支撑多孔金属薄膜的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451547A (zh) * 2014-12-05 2015-03-25 国家纳米科学中心 一种磁控溅射制备纳米多孔金属薄膜的方法
CN104789934A (zh) * 2015-04-01 2015-07-22 上海理工大学 一种改进的纳米多孔铜薄膜及其制备方法
CN105543796A (zh) * 2016-02-01 2016-05-04 山东大学 一种由磁控溅射制备纳米多孔铜薄膜材料的方法
CN106995914A (zh) * 2017-05-24 2017-08-01 山东大学 一种制备自支撑多孔金属薄膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曾志刚 等: ""纳米多孔金薄膜及其微电极结构的制备"", 《真空科学与技术学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110220953A (zh) * 2019-06-21 2019-09-10 宁波大学 过氧化氢电化学传感器电极、制备方法及传感器
CN113088906A (zh) * 2021-03-24 2021-07-09 上海理工大学 一种岛状纳米多孔金基底的制备方法

Similar Documents

Publication Publication Date Title
Van Hieu Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures
CN101319372B (zh) 一种低温可控制备氧化锌纳米线的方法及其应用
Wang et al. AFM study of gold nanowire array electrodeposited within anodic aluminum oxide template
CN103255441A (zh) 一种基于Ag基非晶合金制备纳米多孔银的方法
Premchand et al. Fabrication of self-organized TiO2 nanotubes from columnar titanium thin films sputtered on semiconductor surfaces
CN104085150B (zh) 一种金属石墨烯复合材料及其制备方法
TWI248469B (en) Manufacturing method of zinc oxide nanowires
CN102910573A (zh) 可揭除保护层的多级金属微纳结构阵列sers活性基底的制备方法
Ahmed et al. Effect of electrodeposition duration on the morphological and structural modification of the flower-like nanostructured ZnO
CN103866256A (zh) 金属氧化物多孔纳米结构薄膜的制备方法
CN101740358A (zh) 在玻璃衬底上制备p型多晶硅薄膜的方法
CN108950500A (zh) 一种基于磁控溅射的纳米孔结构金电极的制备方法
JP2015212213A (ja) グラフェンシートとの一体化ZnOナノロッド、およびグラフェンシート上へのZnOナノロッドの製造方法
Dezfoolian et al. Synthesis of copper and zinc oxides nanostructures by brass anodization in alkaline media
Zalnezhad et al. From zirconium nanograins to zirconia nanoneedles
KR101837059B1 (ko) 금속-세라믹 다공성 복합 나노구조체의 제조방법, 이의 방법으로 제조된 금속-세라믹 다공성 복합 나노구조체 및 이를 포함하는 전극
CN104805409B (zh) 采用磁控溅射‑掩模辅助沉积制备Ag纳米线阵列电极的方法
Tai et al. Catalyzed oxidation for nanowire growth
CN104532048A (zh) 一种单步化学脱合金制备Ag-Cu纳米多孔核壳结构方法
CN102676975A (zh) 一种纳米氧化锌薄膜及氧化锌/氧化铜半导体材料的制备方法
Wang et al. Black rhenium coating prepared on graphite substrate by electrodeposition in NaCl-KCl-CsCl-K2ReCl6 molten salts
Zhang et al. Synthesis of copper oxide nanowires and nanoporous copper via environmentally friendly transformation of bulk copper–calcium alloys
CN105734613B (zh) 一种液相电沉积制备纳米银线的方法
Cheng et al. Electroless synthesis of pure nickel metal nanotubes using silicon oxide nanowires as removable templates
Dinan Growth of titania nanowires by thermal oxidation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181207

RJ01 Rejection of invention patent application after publication