EP2785896B1 - Method for producing electrically conductive structures on non-conductive substrates and structures made in this manner - Google Patents

Method for producing electrically conductive structures on non-conductive substrates and structures made in this manner Download PDF

Info

Publication number
EP2785896B1
EP2785896B1 EP12798611.5A EP12798611A EP2785896B1 EP 2785896 B1 EP2785896 B1 EP 2785896B1 EP 12798611 A EP12798611 A EP 12798611A EP 2785896 B1 EP2785896 B1 EP 2785896B1
Authority
EP
European Patent Office
Prior art keywords
dispersion
electrically conductive
solubilizate
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12798611.5A
Other languages
German (de)
French (fr)
Other versions
EP2785896A1 (en
Inventor
Michael Berkei
Tobias TINTHOFF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altana AG
Original Assignee
Altana AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Altana AG filed Critical Altana AG
Priority to EP12798611.5A priority Critical patent/EP2785896B1/en
Publication of EP2785896A1 publication Critical patent/EP2785896A1/en
Application granted granted Critical
Publication of EP2785896B1 publication Critical patent/EP2785896B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to the technical field of producing electrically conductive structures.
  • the invention relates to a method for producing electrically conductive structures on electrically non-conductive substrates, in particular a method for the electrochemical deposition of metals on substrates.
  • the method according to the invention is suitable for producing conductive structures, in particular conductive metallic structures and / or galvanoplastics.
  • the present invention relates to the conductive structures obtainable by the process according to the invention, in particular conductive metallic structures, as well as their use.
  • conductive structures such as, for example, conductive coatings, and miniaturized objects or workpieces, in particular electro-technical and precision mechanical components
  • material-removing methods include, for example, etching, milling, grinding, etc.
  • material-applying methods include printing, casting, sputtering, etc.
  • material is applied to a substrate or introduced into a mold, wherein, if possible, only the amount of material is used, which is also necessary for the production of the desired article or the desired structure.
  • Material applying processes thus allow efficient use of resources and starting materials to produce coatings and microstructures.
  • fine printed conductors can be produced by printing of silver pastes, but due to the size of the silver particles and the high viscosity of the pastes most printing processes, especially the sophisticated and inexpensive ink jet printing process can not be performed. If, on the other hand, inks containing silver nanoparticles are used, the printed conductor must first be sintered before sufficient conductivity is achieved.
  • microstructured objects and components by conventional material applying methods, such as casting techniques, also designed difficult.
  • casting processes are only of limited use for the production of uniform coatings and microstructured articles, since the surface tension of the casting compound often precludes even wetting of the casting mold, in particular in the case of very fine structures.
  • the electrolytic or galvanic deposition of metals onto substrates for the production of electrically conductive coatings is also used as the material-applying process.
  • the galvanization is used in particular as a reproducing method or for the production of electroforming.
  • a non-conductive form of the object to be imaged which is in the Generally later destroyed, and then coated with an electrically conductive layer.
  • techniques such as graphitization are used, for example, in which the finest graphitic dust is scattered onto the mold and then distributed with brushes or brushes, so that a coherent conductive layer is formed.
  • the application of metal powders is used.
  • the concerns EP 0 200 398 B1 a method of electroplating a conductive metal layer onto the surface of a nonconductive material, wherein a carbon black dispersion is applied to the nonconductive material, and then the surface of the substrate is electroplated or electroplated.
  • the DE 198 06 360 A1 relates to a method for electrolytically depositing a smooth surface metal layer on a substrate using a graphite dispersion, wherein a substrate is contacted with a dispersion containing graphite particles, and then a metal layer is electrolytically deposited on the graphite layer.
  • the EP 0 799 911 A1 relates to a method and composition for electroplating a non-conductive substrate comprising forming a layer of conductive polymer on the surface of the non-conductive substrate and electrochemically depositing a metal thereon.
  • the conductive layer is formed by the application of a conductive polymer to the surface, wherein the polymer is in the form of an aqueous suspension of the polymer comprising a polymeric stabilizer having repeating alkylene oxide units and a hydrophilic-lipophilic balance (HLB) of at least 12, is applied to the surface.
  • HLB hydrophilic-lipophilic balance
  • the concerns EP 1 897 975 A1 a method of metallizing the surface of a dielectric substrate by electroplating, the method comprising immersing the substrate in a composition comprising a precursor to form the electrically conductive polymer, a copper ion source, and an acid to form an electrically conductive polymer on the surface of the dielectric substrate and the provision of an external voltage source for the electrochemical deposition of copper on the electrically conductive polymer.
  • the concerns EP 0 616 558 B1 a method for coating surfaces with finely divided solid particles, wherein the substrate to be coated is pretreated in a bath with polyelectrolytes and then the substrate thus treated is immersed in a second bath with a solid dispersion.
  • the solid particles remain adhering to the substrate surface by coagulation, which should in particular make conductive layers accessible.
  • the abovementioned starting materials and processes generally can not be combined with cost-effective printing processes and are limited in their applicability to special process parameters and materials and consequently can not be used flexibly.
  • the present invention is therefore based on the object to provide a method for producing conductive structures on non-conductive substrates, wherein the previously described, occurring in connection with the prior art problems and disadvantages should be at least largely avoided or at least mitigated.
  • the order should be regioselective or site-specific and local by simple methods.
  • Another object of the present invention are electrically conductive metallic structures according to claim 16 or 17.
  • Yet another subject of the present invention is the use of the electrically conductive structures according to claim 18 or 19.
  • Another object of the present invention are products or articles according to claim 20, which contain the electrically conductive structures according to the invention.
  • a process step (a) at least one solubilizate or a dispersion based on electrically conductive materials which are selected from the group of electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides is applied to an electrically non-conductive substrate.
  • a subsequent process step (b) of drying and / or curing of the solubilizate applied in this manner or the dispersion applied in this way is carried out.
  • electrical conductivity is in the context of the present invention, in particular the ability to conduct electrical current to understand.
  • the electrical conductivity of the conductive structures obtainable by the process according to the invention are generally within the values for typical conductors and semiconductors, ie generally in the range from 10 -7 to 10 7 S / m.
  • solubilizate is to be understood in the broadest sense as meaning solutions of substances or compounds, in particular of macromolecules, which are generally not soluble in the solvent concerned without the addition of auxiliaries or additives.
  • a solubilizer which influences the dissolving properties of the solvent and / or, for example, increases the solubility of the relevant chemical substance or of the relevant chemical compound, as in the case of micelle formation by surfactants.
  • a dispersion is to be understood as meaning a mixture of at least two clearly delimited phases which do not dissolve or at least substantially do not dissolve with one another.
  • at least one phase namely the dispersed or discontinuous phase
  • Dispersions can be mixtures of solid phases (solid / solid), solid and liquid phases (solid / liquid and liquid / solid) and mixtures of gaseous phases with solid or liquid phases (liquid / gaseous, gaseous / liquid or solid / gaseous), be educated.
  • solid / liquid systems are generally used, wherein a solid phase is dispersed in a liquid dispersion medium; however, the use of solid / solid dispersions, such as powder coatings, is also possible.
  • the method according to the invention is distinguished, in particular, by the fact that the application of the solubilizate or the dispersion to the electrically nonconductive substrate is locally limited and / or site-specific or regioselective.
  • a locally limited and / or site-specific or regioselective order is to be understood in particular as meaning that the solubilizate or the dispersion is applied to the substrate only at very specific, preferably desired or defined points, so that only a partial or incomplete one or partial coating of the substrate or the carrier takes place.
  • non-conductive substrates in a manner with conductive non-metallic structures, so that in a subsequent process steps metals electrolytically, in particular by galvanization, in particular according to a predetermined or defined pattern, can be deposited on the substrate.
  • metals electrolytically in particular by galvanization, in particular according to a predetermined or defined pattern, can be deposited on the substrate.
  • the method according to the invention it is equally possible with the method according to the invention to obtain three-dimensional objects, such as precision mechanical or electrotechnical components, by electroforming or in the form of electroforming.
  • electroforming is a so-called primary molding process, which can be used primarily for the production of metallic coatings or self-supporting metallic objects or workpieces.
  • microstructured or miniaturized three-dimensional objects and workpieces are accessible in the process of the invention with a wealth of detail or resolution, which are not yet known in the art.
  • electrically conductive structures which are accessible in accordance with the method according to the invention are solubilizates or dispersions based on electrically conductive materials, in particular non-metallic electrically conductive materials.
  • solubilizates or dispersions based on electrically conductive materials, in particular non-metallic electrically conductive materials.
  • soldubilizate and / or dispersion based on electrically conductive materials is to be understood in the context of the present invention such that the solubilizate or the dispersion contains at least one electrically conductive material.
  • At least one metal is electrochemically deposited on the electrically conductive structure, in particular on the optionally dried or cured one Solubilisat and / or on the optionally dried or cured dispersion deposited.
  • metal-conductive structures and miniaturized or microstructured three-dimensional objects and workpieces made of metal are accessible in the context of electroforming or as electroforming by electrolytic deposition of metals or electroplating in the context of process step (c).
  • the electrically conductive structures applied to the electrically nonconducting substrate are used as cathodes, at which the reduction of metal ions and thus a deposition of the elemental metals takes place.
  • the structure or the three-dimensional metallic object or workpiece obtained by electrochemical deposition of metals may moreover be provided for the structure or the three-dimensional metallic object or workpiece obtained by electrochemical deposition of metals to be detached again from the substrate.
  • the method according to the invention is thus also suitable for the efficient and time-saving production of, for example, prototypes and can therefore also be used in the context of rapid prototyping methods.
  • inventive method can thus be used for the production of conductive structures, wherein in carrying out the method according to the invention with the method steps (a), (b) and (c) or with the method steps (a) and (c) result in metallically conductive structures.
  • solubilizates or dispersions based on electrically conductive materials are used as the starting material in the process according to the invention, wherein the electrically conductive materials can be selected from the group of electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides.
  • electrically conductive carbon allotropes are used as electrically conductive materials in the context of the process according to the invention, graphite, fullerenes and / or carbon nanotubes (CNTs), in particular carbon nanotubes (CNTs), are generally used in the context of the present invention as electrically conductive carbon allotropes.
  • CNTs carbon nanotubes
  • SWCNTs single-walled and multi-walled carbon nanotubes
  • MWCNTs M ulti W all carbon nanotubes
  • Dispersions of carbon nanotubes which are preferably used in the context of the present invention, can, for example, according to the in the DE 10 2006 055 106 A1 , of the WO 2008/058589 A2 , of the US 2010/0059720 A1 and the CA 2,668,489 A1 obtained, the respective disclosure of which is incorporated by reference in its entirety.
  • the above-mentioned documents relate to a process for dispersing carbon nanotubes (CNTs) in a continuous phase, in particular in at least one dispersant, wherein the carbon nanotubes (CNTs), in particular without prior pre-treatment, in a continuous phase, in particular in at least one dispersant, in the presence at least a dispersant (dispersant) are dispersed while introducing an energy input sufficient for the dispersion.
  • CNTs carbon nanotubes
  • the amount of energy introduced during the dispersing process calculated as the registered energy per amount of carbon nanotubes (CNTs) to be dispersed, can be in particular 15,000 to 100,000 kJ / kg;
  • Dispersants which can be used are, in particular, polymeric dispersants, preferably based on functionalized polymers, in particular with number-average molecular masses of at least 500 g / mol. With this dispersion method, stable dispersions of carbon nanotubes (CNTs) with a weight fraction of up to 30% by weight of carbon nanotubes (CNTs) can be obtained.
  • electrically conductive polymers in particular polyacetylenes, polyanilines, polyparaphenylenes, polypyrroles and / or polythiophenes, can be used as electrically conductive materials.
  • the electrically conductive polymers can be used alternatively or in combination with the electrically conductive carbon allotropes and / or with the electrically conductive inorganic oxides described below.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • AZO aluminum zinc oxide
  • ATO antimony tin oxide
  • FTO fluorotinc oxide
  • electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides described above can each be used individually or in combination with one another in the solubilizates or dispersions used according to the invention.
  • the respective use of the materials, in particular in combinations, the expert can thereby on the basis of external conditions, such as deposition condition of the metal, substrate materials, intended use of the product, etc., select, with the use of carbon nanotubes, especially as the sole electrically conductive material is preferred ,
  • solubilizate and / or the dispersion is water-based and / or solvent-based in the context of the present invention. It may be provided that the solvent of the solubilizate and / or the continuous phase of the dispersion is an aqueous-based, organically based or organic-aqueous-based solvent and / or Dipersionsmedium.
  • Solubilisates or dispersions of solids in liquid dispersion media are therefore preferably used in the context of the present invention.
  • Commercially available organic solvents, if appropriate in mixtures, and / or water are used in particular as dispersion media or solvents.
  • liquid polymers it is also possible for liquid polymers to be used as the dispersion medium under application conditions.
  • the solvent or the dispersing agent can be removed after the order has been applied (for example by drying according to process step (b)), as a result of which the conductive materials and any additives present in the solubilizate or in the dispersion remain on the substrate. If the solubilizate or the dispersion has sufficiently high viscosities or is at least partially curable, removal of the solvent or dispersion medium may optionally be omitted; In this case, the solvent or the dispersion medium influences the mechanical and electrical properties of the conductive structures.
  • the dispersion used in the context of the present invention is a mixture of solids, which is not liquid under the process conditions of application to the substrate. Such conditions are present, for example, when the dispersion according to the invention is used in the form of a powder coating.
  • the solubilizate and / or the dispersion is curable, in particular radiation-curable and / or thermally curable, preferably radiation-curable.
  • the hardenability of the dispersion or of the solubilizate used according to the invention means that the dispersion or the solubilizate is cured immediately after application under controlled and determinable or defined conditions and the electrically conductive structure is thus spatially fixed on the substrate and prevented from "bleeding "can be secured.
  • the term radiation-curable is to be understood in particular as meaning that the solubilizate or the dispersion cures by irradiation with actinic radiation, in particular UV radiation, ie. H. from the liquid to the solid state, in particular, a uniform closed layer is obtained.
  • An exception here are solid dispersions, such as powder coatings, which crosslink by irradiation and form a closed layer, in particular a film or coating.
  • the solubilizate or the dispersion may generally have at least one curable, in particular radiation-curable and / or thermally curable, preferably radiation-curable, component in the context of the present invention. Particularly good results are obtained in particular when the solubilizate or the dispersion has a reactive diluent as the curable component.
  • a reactive diluent is in the context of the present invention, in particular a substance or a compound to understand, which is added to the solubilizate or the dispersion in addition to the actual solvent or the dispersion medium and having chemical functionalities which under the conditions of curing with other reactive diluent molecules and / or components of the solubilizate or the dispersion chemically react.
  • the chemical reaction in particular builds up a three-dimensional network which leads to a hardening of the dispersion or of the solvent.
  • Suitable reactive diluents are, for example, acrylates, polyurethane prepolymers, phenol / formaldehyde resins, unsaturated polyesters, etc.
  • the solvent of the solubilizate or the continuous phase of the dispersion curable in particular radiation-curable and / or thermally curable, preferably radiation-curable, is formed.
  • the curable component is the solvent of the solubilizate or the continuous phase of the dispersion, which are synonymously also referred to as binders.
  • radiation-curable binders for example, acrylates and / or methacrylates, polyurethane prepolymers, phenol / formaldehyde resins, melamine / formaldehyde resins or unsaturated polyesters can be used, whereas as thermally curable binders or components, for example, preferably film-forming polyurethanes or polyvinylidene chloride (PVDC) can be used.
  • PVDC polyvinylidene chloride
  • the solubilizate or the dispersion may contain the electrically conductive materials in amounts of from 0.001 to 90% by weight, in particular from 0.005 to 80% by weight, preferably from 0.01 to 50% by weight, preferably from 0.01 to 30% by weight. -%, particularly preferably 0.01 to 20 wt .-%, based on the solubilizate and / or the dispersion.
  • the amount of electrically conductive materials each contained in the dispersions is dependent on the particular application, the application conditions and the materials used.
  • the solubilizate and / or the dispersion may comprise at least one additive. It has proven to be advantageous if the solubilizate and / or the dispersion, the at least one additive in amounts of 0.01 to 60 wt .-%, in particular 0.05 to 50 wt .-%, preferably 0.01 to 40 Wt .-%, preferably 0.05 to 30 wt .-%, most preferably 0.1 to 20 wt .-%, based on the solubilizate and / or the dispersion having.
  • the additive or additives may be selected in particular from the group of dispersing agents (dispersants), surfactants or surface-active substances, defoamers, rheology modifiers, binders, film formers, biocides, marker substances, pigments, fillers, adhesion promoters, flow control additives, co-solvents, skin formation inhibiting agents , UV absorbers, anticlogging agents and / or stabilizers.
  • the solubilizate or the dispersion has at least one wetting and / or dispersing agent.
  • wetting or dispersing agents considerably increases the compatibility of the substance to be solubilized or the dispersing agent and the solvent or dispersion medium, and thus makes it possible to use dispersions having a significantly higher content of dissolved or dispersed substances.
  • the solubilizate or the dispersion has at least one surface-active additive. It has proven useful if the surfactant additive from the group of lubricants and / or slip additives; Leveling agents; Surface additives, in particular crosslinkable surface additives; Adhesion promoters and / or substrate wetting additives; Hydrophobizing agents and antiblocking agents is selected.
  • the surface-active additives increase the compatibility of the dispersion or of the solubilizate with the substrate and thus lead to improved adhesion of the dispersion or of the solubilizate to the substrate and to improved abrasion resistance; on the other hand, the surface-active additives further increase the compatibility of solvent / dispersion medium and dissolved or dispersed substance.
  • the solubilizate and / or the dispersion has at least one rheology-controlling additive.
  • the rheology-controlling additives influence the consistency and viscosity of the solubilizate or of the dispersion and thus likewise ensure that the solubilizate or the dispersion can be optimally adapted to the particular application method and that the solubilisate or dispersion applied to the substrate is leveled is prevented.
  • Particularly good results are obtained when the rheology controlling additive from the group of rheology additives, in particular thickeners and / or thixotropic agents; defoamers; Dehydrators; Structuring agents and plasticizers and / or plasticizers is selected.
  • the solubilizate and / or the dispersion contains at least one additive which may be selected from the group of corrosion inhibitors; Light stabilizers, in particular UV absorbers, radical scavengers, quenchers and / or hydroperoxide decomposers; Driers; Skinning prevention means; catalysts; accelerators; biocides; Preservatives; Scratch resistance additives; antistatic agents; Driers; To grow; Fillers and pigments.
  • these further additives or adjuvants optionally round off the properties of the solubilizate or of the dispersion with regard to the application and the further use.
  • solubilizate or the dispersion fillers such as barium sulfate or talc, and / or conductive pigments, which also increase the conductivity of the solubilizate or the dispersion.
  • the substrate is an inorganic and / or organic substrate.
  • the substrate is selected from the group of glass, ceramics, silicones, clays, waxes, plastics and composite materials.
  • the solubilizate or the dispersion is applied to the substrates used according to the invention on the basis of electrically conductive materials, and subsequently (if appropriate after a Intermediate drying or curing step) optional metals can be electrochemically deposited on the conductive structures. After deposition of the metals, it may be provided that the substrate is separated from the objects obtained by electroforming, in particular the galvanoplastics.
  • the substrates can be either sustainably separated or, as in the case of classical Galvanoplastik, destroyed, for example by dissolution in solvents or melting of wax-based substrates.
  • the substrate used according to the invention may be a two-dimensional, in particular planar, substrate or a three-dimensional substrate.
  • Two-dimensional substrates are used, for example, in the production of printed conductors, whereas three-dimensional substrates are used to produce fine-mechanical components or workpieces.
  • the solubilizate and / or the dispersion is applied to the substrate by means of printing processes.
  • printing processes allows a high throughput and excellent precision in the production of the electrically conductive structures according to the invention and a simple and flexibly applicable application of the solubilizate or dispersion in a locally limited or regioselective manner.
  • a classical printing process such as, for example, intaglio printing, flexographic printing or offset printing, can be used, which ensures a very high throughput in the printing of preferably two-dimensional substrates.
  • electronic printing methods such as, for example, ink-jet printing methods and toner-based printing methods (for example by means of laser printers) can also be used.
  • ink-jet printing methods as well as three-dimensional substrates can be printed reproducibly with this method in a simple and flexible manner.
  • the particular printing method used depends on the type of substrate and the particular application. However, common to all printing processes is that the solubilizate or the dispersion at least during the application or order passes through the liquid state of matter, d. H. even with the use of tough pastes and toners they are as it were melted during the printing process and applied in liquid form to the substrate.
  • the solubilizate or the dispersion is applied at temperatures in the range from 0 to 300.degree. C., in particular 0 to 200.degree. C., preferably 5 to 200.degree. C., preferably 10 to 100.degree. C., particularly preferably 15 to 80.degree .
  • the specific application temperature depends in particular on the temperature sensitivity of the substrate, the applied application method, in particular printing method, as well as the properties of the solubilizate or dispersion, in particular pasty and solid dispersions should generally go through the liquid state to a uniform and thin Order to ensure.
  • the dynamic viscosity determined according to DIN EN ISO 2431 can be in the range of 5 to 1100,000 mPas, in particular in the range of 5 to 100,000 mPas, preferably in the range of 5 to 50,000 mPas, preferably in the range of 7 to 1,000 mPas, particularly preferred in the range of 7 to 500 mPas, very particularly preferably in the range of 7 to 300 mPas.
  • the exact value for the viscosity of the solubilizate or the dispersion depends primarily on the application method used, in particular printing method: Thus, for example, for the offset printing process dynamic viscosities in the range of about 1,000,000 mPas for the dispersion or the Solubilisate needed, whereas solubilisates and dispersions, as can be used for ink jet printing process, dynamic densities of 10 mPas or less may have.
  • solubilizates or dispersions having a layer thickness of 0.5 to 30 .mu.m, preferably 1 to 20 .mu.m, particularly preferably 2 to 15 .mu.m, are applied to the substrate.
  • the electrically conductive structure after carrying out the process step (a) and / or (b) has a layer thickness of 0.01 to 100 .mu.m, in particular 0.05 to 50 .mu.m, preferably 0 , 1 to 30 ā‡ m, preferably 0.2 to 20 ā‡ m, more preferably 0.3 to 10 ā‡ m, most preferably 0.4 to 5 ā‡ m, even more preferably 0.5 to 3 ā‡ m, even more preferably 0.6 to 2 ā‡ m.
  • the electrically conductive structures are distinguished, in particular, by a high abrasion resistance.
  • the electrically conductive structure may have an abrasion resistance according to Taber according to DIN EN ISO 438 of at least the characteristic number 2, in particular at least the characteristic number 3, preferably at least the characteristic number 4 , exhibit.
  • the electrically conductive structure after carrying out the method step (a) and / or (b) a wet abrasion resistance according to EN 13300 at least Class 4, in particular at least Class 3, preferably Class 1 or 2, has.
  • the electrically conductive structures according to the invention can thus have abrasion resistance, as they occur, for example, in highly resistant and resistant paints.
  • the electrical conductivity of the electrically conductive structures can also vary within the scope of the present invention in a wide range, in particular between the conductivities of the structures based on Non-metal-based solubilizates or dispersions on the one hand and the electrical conductivities of the structures after the electrochemical deposition of metals must be distinguished.
  • the electrically conductive structures after carrying out process step (a) and / or (b) have a specific resistance p in the range from 10 -7 ā‡ m to 10 10 ā‡ m, in particular in the range from 10 -6 ā‡ m to 10 5 ā‡ m, preferably in the range of 10 -5 ā‡ m to 10 3 ā‡ m.
  • the electrically conductive structure can have a resistivity p in the range from 10 -9 ā‡ m to 10 -1 ā‡ m, in particular in the range from 10 -8 ā‡ m to 10 -2 ā‡ m, preferably in the range of 10 -7 ā‡ m to 10 -3 ā‡ m.
  • the metal to be deposited generally comprises at least one transition metal, in particular a noble metal or a metal from the lanthanide group.
  • the metal to be deposited can expressly also take place, as a result of which alloys with specific properties are accessible.
  • metal or metals are selected from subgroups I, V, VI and VIII of the Periodic Table of the Elements. It is preferred if one or more metals from the group of Cu, Ag, Au, Pd, Pt, Rh, Co, Ni, Cr, V and Nb are electrochemically deposited on the substrate.
  • the metal is deposited from a solution of the metal.
  • the solutions of the metals are usually in particular aqueous solutions of metal salts, but also solutions containing metal ions based on aqueous-organic or organic solvents or salt melts, such as ionic liquids, can be used.
  • the metal is generally deposited by applying an external electrical voltage, in particular by electrolysis, in particular galvanically deposited.
  • the metal In the deposition of the metal, it has also proven to be advantageous if the metal with current densities in the range of 1 to 10 mA / cm 2 , in particular 2 to 8 mA / cm 2 , preferably 3 to 6 mA / cm 2 , deposited ,
  • the metal flexible and adapted to the particular application with a layer thickness of 1 nm to 8,000 .mu.m, in particular 2 nm to 4,000 .mu.m, preferably 5 nm to 2,500 microns, preferably 10 nm to 2,000 microns, more preferably 50 nm to 1,000 microns, to be deposited.
  • a layer thickness of 1 nm to 8,000 .mu.m, in particular 2 nm to 4,000 .mu.m, preferably 5 nm to 2,500 microns, preferably 10 nm to 2,000 microns, more preferably 50 nm to 1,000 microns, to be deposited.
  • the metallic structure obtained by electrochemical deposition in particular in process step (c) is subjected to a final treatment, in particular in a process step (d).
  • a final treatment in particular in a process step (d).
  • the final treatment has the purpose of optimizing the resulting metallic structures in terms of their property profile or to prepare for any subsequent operations.
  • smaller irregularities that occur during electroplating at the connection points of the electrodes balanced or, for example, electrical components to protect against mechanical stress and environmental influences in a resin, such as an epoxy resin, are cast.
  • the conductive structures obtainable by the process according to the invention are distinguished from the structures and objects or workpieces obtainable hitherto by the prior art by a particular regularity of the layer application. This applies in particular both with regard to the non-metallic conductive structures according to the invention and with regard to the metallic conductive structures according to the invention.
  • the conductive structures obtainable by the process according to the invention have an increased abrasion resistance compared to the conductive structures hitherto known in the prior art, which is due in particular to an improved adhesion or adhesion of the solubilizate used according to the invention or the dispersion used according to the invention.
  • the conductive structures obtainable according to the present invention are not only more stable, d. H. more abrasion-resistant and scratch-resistant, than the structures known in the prior art, but also characterized by an increased elasticity, which is reflected in significantly improved flexural strengths.
  • Another object of the present invention - according to a second aspect of the present invention - are consequently electrically conductive (ie electrically conductive metallic) structures, which are obtainable by the method described above.
  • the electrically conductive metallic structures comprise a non-conductive substrate to which at least partially an electrically conductive material, which is selected from the group of electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides, is applied by means of printing processes electrically conductive material in turn, at least one metal is electrochemically deposited.
  • an electrically conductive material which is selected from the group of electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides
  • the conductive metallic structures according to the invention are distinguished by particularly low layer thicknesses and high regularity combined with excellent conductivity and excellent mechanical properties.
  • Yet another object of the present invention is - according to a third aspect of the present invention - the use of the previously described electrically conductive structures in electronics or electrical engineering.
  • the conductive structures according to the invention can be used in the computer and semiconductor industry as well as in metrology.
  • Yet another object of the present invention - according to a fourth aspect of the present invention - is the use of the previously described conductive structures for the production of metallic structures.
  • the conductive structures according to the invention are particularly suitable for the production of two-dimensional and / or three-dimensional metallic structures, in particular for electroforming.
  • the conductive structures according to the invention can be used especially for the production of electroforming and / or for the production of decorative elements.
  • Another object of the present invention - according to a fifth aspect of the present invention - printed conductors, microstructured components, precision mechanical components, electronic or electrical components, microstructures, decorative elements or electroplating, comprising an electrically conductive structure according to the invention.
  • Example 1 Using a CNT dispersion for the manufacture of electroplating
  • a wax positive of a key fob was coated thinly with a wet film thickness of about 30 to 40 microns with a CNT dispersion (2 wt .-% CNTs in methoxypropyl acetate (PMA)) and subsequently dried.
  • the contacting of the specimen to the power source was carried out by an insulated copper cable, which was inserted into the wax body and had contact with the conductive CNT dispersion.
  • the thus prepared specimen was completely immersed in a copper sulfate solution.
  • the anode was a piece of pure copper. Even at a low current (0.5 A, constant voltage), a thin layer of copper formed on the specimen after a short time, which increased in weight as a function of time and current.
  • the specimen was placed in the oven at about 100 Ā° C to remove the wax. By carefully removing the oxide layer, the underlying shiny metallic copper could be made visible. With this technique it is possible to image even fine three-dimensional structures.
  • Example 2 Use of an aqueous stoving lacquer for producing metallically conductive layers and conductor tracks
  • An aqueous stoving lacquer of the type Bayhydrol Ā® E 155 has been functionalized with a dispersion of 8 wt .-% CNTs in methoxypropyl acetate (PMA) and made electrically conductive.
  • An electrical circuit diagram was applied with the functionalized Bayhydrol E 155 to a thin PET film by means of an ink-jet process. Analogously to Example 1, a thin layer of copper was deposited on the coated areas of the film. On the uncoated areas, no copper separated and remained electrically insulating.
  • Example 3 Use of a solvent-based CNT dispersion for producing metallic shaped bodies (including detachment of the shaped bodies from the foil / glass)
  • a dispersion of 2 parts by weight of CNTs in 98 parts by weight of methoxypropyl acetate (PMA) was used to image a tensile test specimen on a polyethylene (PE) substrate.
  • PMA methoxypropyl acetate
  • the adhesion to the PE substrate is in the pure dispersion worse than z.
  • This circumstance can be used so that the sample body can be easily detached from the substrate after the deposition of the copper on the coated areas.
  • Example 4 Comparison of abrasion resistance and resistivity of conductive non-metallic structures
  • MWCNTs graphite or carbon nanotubes
  • ITO indium-tin oxide
  • PMA methoxypropyl acetate
  • the dispersions were applied to a glass plate by means of ink-jet processes with a layer thickness of 25 to 30 ā‡ m, and the dispersion medium was then removed. For comparison, another glass plate was dusted with elemental powdered graphite. Subsequently, the resistivity of the coating as well as the abrasion resistance according to Taber according to DIN EN ISO 438 were determined on all samples. The results are summarized in Table 1 below.
  • Table 1 show that although the application of elemental powdered graphite to a substrate results in comparable conductivities as the application of a graphite dispersion, the graphite dispersion according to the invention has a significantly higher abrasion resistance.
  • the values in Table 1 show that with carbon nanotubes significantly lower values for the resistivity and thus significantly higher specific conductivities at the same time significantly improved Abrasion resistance - which is comparable to that of mechanically resistant paints - can be obtained.

Description

Die vorliegende Erfindung betrifft das technische Gebiet der Herstellung elektrisch leitfƤhiger Strukturen.The present invention relates to the technical field of producing electrically conductive structures.

Insbesondere betrifft die Erfindung ein Verfahren zur Herstellung elektrisch leitfƤhiger Strukturen auf elektrisch nichtleitende Substraten, insbesondere ein Verfahren zur elektrochemischen Abscheidung von Metallen auf Substraten. Das erfindungsgemƤƟe Verfahren eignet sich zur Herstellung leitfƤhiger Strukturen, insbesondere leitfƤhiger metallischer Strukturen und/oder von Galvanoplastiken.In particular, the invention relates to a method for producing electrically conductive structures on electrically non-conductive substrates, in particular a method for the electrochemical deposition of metals on substrates. The method according to the invention is suitable for producing conductive structures, in particular conductive metallic structures and / or galvanoplastics.

Des Weiteren betrifft die vorliegende Erfindung die nach dem erfindungsgemƤƟen Verfahren erhƤltlichen leitfƤhigen Strukturen, insbesondere leitfƤhige metallische Strukturen, sowie deren Verwendung.Furthermore, the present invention relates to the conductive structures obtainable by the process according to the invention, in particular conductive metallic structures, as well as their use.

Bei der Herstellung leitfƤhiger Strukturen, wie beispielsweise leitfƤhiger Beschichtungen, und miniaturisierter Objekte bzw. WerkstĆ¼cke, insbesondere elektrotechnischer und feinmechanischer Bauteile, stehen dem Fachmann vornehmlich materialabtragende und materialauftragende Verfahren zur VerfĆ¼gung. Zu den materialabtragenden Methoden zƤhlen beispielsweise Ƅtzen, FrƤsen, Schleifen etc., wƤhrend als Beispiele fĆ¼r materialauftragende Verfahren Drucken, GieƟen, Sputtern etc. zu nennen sind.In the production of conductive structures, such as, for example, conductive coatings, and miniaturized objects or workpieces, in particular electro-technical and precision mechanical components, the skilled person is primarily provided with material-removing and material-applying processes. The material-removing methods include, for example, etching, milling, grinding, etc., while examples of material-applying methods include printing, casting, sputtering, etc.

Bei den materialabtragenden Verfahren werden zunƤchst grĆ¶ĆŸere Materialmengen vorgelegt, als zur Herstellung der Produkte benƶtigt werden. Durch die Abtragung des Ć¼berschĆ¼ssigen Materials wird dann die gewĆ¼nschte Form bzw. das gewĆ¼nschte Produkt erhalten. Der abgetragene Teil des Materials muss anschlieƟend in aufwendigen Prozessen zurĆ¼ckgewonnen oder erneut umgeformt werden. Hierbei entstehen unnƶtige Verfahrens- und Materialkosten, was insbesondere aufgrund stƤndig steigender Rohstoff- und Energiepreise sowie unter Umweltschutzaspekten nachteilig ist. DarĆ¼ber hinaus erhƶhen sich bei komplexen Geometrien die Verfahrenskosten derart, dass eine industrielle Produktion wirtschaftlich nicht sinnvoll durchfĆ¼hrbar ist.In the material-removing process initially larger amounts of material are submitted, as needed for the production of the products. By removing the excess material then the desired shape or the desired product is obtained. The eroded part of the material must then be recovered in complex processes or reshaped. This creates unnecessary process and material costs, which is disadvantageous in particular due to constantly rising raw material and energy prices and environmental aspects. In addition, in the case of complex geometries, the process costs increase in such a way that industrial production can not be carried out economically in a meaningful manner.

Bei den materialauftragenden Verfahren wird hingegen Material auf ein Substrat aufgetragen oder in eine Form eingebracht, wobei nach Mƶglichkeit lediglich die Materialmenge eingesetzt wird, welche auch zur Produktion des erwĆ¼nschten Gegenstands bzw. der gewĆ¼nschten Struktur notwendig ist. Materialauftragende Verfahren erlauben somit eine bezĆ¼glich des Einsatzes von Ressourcen und Ausgangsmaterialien effiziente Herstellung von Beschichtungen und Mikrostrukturen. So kƶnnen beispielsweise feine Leiterbahnen durch Druckauftrag von Silberpasten erzeugt werden, wobei jedoch aufgrund der GrĆ¶ĆŸe der Silberpartikel sowie der hohen ViskositƤt der Pasten die meisten Druckverfahren, insbesondere das technisch ausgereifte und kostengĆ¼nstige Tintenstrahldruckverfahren, nicht durchgefĆ¼hrt werden kƶnnen. Werden hingegen Silbernanopartikel enthaltende Tinten eingesetzt, so muss die gedruckte Leiterbahn erst gesintert werden, ehe eine ausreichende LeitfƤhigkeit erreicht wird. Der Sinterprozess schrƤnkt jedoch die Wahlmƶglichkeiten bei der Auswahl des Substratmaterials, auf welche die Leiterbahn gedruckt wird, stark ein, da die insbesondere in der Elektrotechnik bevorzugt eingesetzten Substrate auf Basis von Kunststoffen durch Einwirkung hƶherer Temperaturen zerstƶrt werden. Auch die praktizierte Herstellung von Leiterbahnen durch chemische Abscheidung Ć¼ber die Gasphase, insbesondere mittels CVD-Verfahren ( C hemical V apour D eposition), ist in der Regel sehr aufwendig und kostenintensiv.In the material-applying method, however, material is applied to a substrate or introduced into a mold, wherein, if possible, only the amount of material is used, which is also necessary for the production of the desired article or the desired structure. Material applying processes thus allow efficient use of resources and starting materials to produce coatings and microstructures. For example, fine printed conductors can be produced by printing of silver pastes, but due to the size of the silver particles and the high viscosity of the pastes most printing processes, especially the sophisticated and inexpensive ink jet printing process can not be performed. If, on the other hand, inks containing silver nanoparticles are used, the printed conductor must first be sintered before sufficient conductivity is achieved. However, the sintering process severely restricts the choices in the selection of the substrate material on which the printed conductor is printed, since the substrates based on plastics, which are preferably used in particular in electrical engineering, are destroyed by the action of higher temperatures. The practiced production of printed conductors by chemical deposition via the gas phase, in particular by means of CVD method ( C hemical V apour D eposition), is usually very complicated and costly.

Die Herstellung von mikrostrukturierten GegenstƤnden und Bauteilen durch Ć¼bliche materialauftragende Verfahren, wie beispielsweise Gusstechniken, gestaltet sich gleichfalls schwierig. Insbesondere Gussverfahren eignen sich nur ƤuƟerst eingeschrƤnkt zur Herstellung gleichmƤƟiger Beschichtungen und mikrostrukturierter GegenstƤnde, da die OberflƤchenspannung der Gussmasse einer gleichmƤƟigen Benetzung der Gussform, insbesondere bei sehr feinen Strukturen, oftmals entgegensteht.The production of microstructured objects and components by conventional material applying methods, such as casting techniques, also designed difficult. In particular, casting processes are only of limited use for the production of uniform coatings and microstructured articles, since the surface tension of the casting compound often precludes even wetting of the casting mold, in particular in the case of very fine structures.

Als materialauftragendes Verfahren wird insbesondere auch die elektrolytische bzw. galvanische Abscheidung von Metallen auf Substrate zur Herstellung von elektrisch leitfƤhigen ƜberzĆ¼gen genutzt. Die Galvanisierung wird insbesondere als reproduzierendes Verfahren oder zur Herstellung von Galvanoplastiken eingesetzt. Bei der Herstellung von Galvanoplastiken wird zuerst eine nichtleitende Form des abzubildenden Gegenstandes, welche im Allgemeinen spƤter zerstƶrt wird, hergestellt und anschlieƟend mit einer elektrisch leitfƤhigen Schicht Ć¼berzogen. Zur Erzeugung der elektrisch leitfƤhigen Schicht werden beispielsweise Techniken wie das Graphitieren verwendet, bei welchem feinster Graphitstaub auf die Form gestreut und anschlieƟend mit Pinseln oder BĆ¼rsten verteilt wird, so dass eine zusammenhƤngende leitfƤhige Schicht entsteht. DarĆ¼ber hinaus wird in Analogie zum Graphitieren der Auftrag von Metallpulvern angewendet.In particular, the electrolytic or galvanic deposition of metals onto substrates for the production of electrically conductive coatings is also used as the material-applying process. The galvanization is used in particular as a reproducing method or for the production of electroforming. In the manufacture of electroplating machines, first a non-conductive form of the object to be imaged, which is in the Generally later destroyed, and then coated with an electrically conductive layer. To produce the electrically conductive layer, techniques such as graphitization are used, for example, in which the finest graphitic dust is scattered onto the mold and then distributed with brushes or brushes, so that a coherent conductive layer is formed. In addition, in analogy to graphitization, the application of metal powders is used.

Weitere Verfahren zur Erzeugung von elektrisch leitfƤhigen ƜberzĆ¼gen fĆ¼r die Galvanisierung sind beispielsweise die Aufbringung von Silberlƶsungen mit anschlieƟender Reduktion des gelƶsten Silbers zu elementarem Silber sowie das Beschichten mit elementaren Metallen. Die vorgenannten Methoden weisen jedoch allesamt den Nachteil auf, dass die Haftung des leitfƤhigen Mediums auf der nichtleitenden Form oftmals nur unzureichend ist, relativ hohe Schichtdicken nƶtig sind, um ausreichende LeitfƤhigkeiten zu erzielen, oder die Verfahren nur mit erheblichem apparativem Aufwand und kostenintensiv durchgefĆ¼hrt werden kƶnnen.Other methods for producing electroconductive coatings for electroplating are, for example, the application of silver solutions with subsequent reduction of the dissolved silver to elemental silver and the coating with elemental metals. However, all of the abovementioned methods have the disadvantage that the adhesion of the conductive medium to the non-conductive form is often insufficient, relatively high layer thicknesses are required in order to achieve adequate conductivities, or the processes can only be carried out with considerable equipment complexity and cost-intensive ,

Im Stand der Technik hat es daher nicht an Versuchen gefehlt, die Effizienz von Galvanisierungsverfahren zu verbessern:

  • So offenbaren die EP 0 698 132 B1 bzw. die US 5,389,270 A ein Verfahren bzw. eine Zusammensetzung zur elektrochemischen Beschichtung des Substrates einer Leiterplatte mit einer leitenden Metallschicht, wobei eine Dispersion von elektrisch leitendem Graphit auf die leitenden und nichtleitenden OberflƤchenbereiche der Leiterplatte aufgebracht werden, die Leiterplatte geƤtzt wird und anschlieƟend das Substrat elektrochemisch beschichtet wird.
There has therefore been no lack of attempts in the prior art to improve the efficiency of electroplating processes:
  • This is what the EP 0 698 132 B1 or the US 5,389,270 A a method and composition for electrochemically coating the substrate of a circuit board with a conductive metal layer, wherein a dispersion of electrically conductive graphite are applied to the conductive and non-conductive surface areas of the circuit board, the circuit board is etched and then the substrate is electrochemically coated.

Weiterhin betrifft die EP 0 200 398 B1 ein Verfahren zum Elektroplattieren einer leitenden Metallschicht auf die OberflƤche eines nichtleitenden Materials, wobei eine RuƟdispersion auf das nichtleitende Material aufgetragen und anschlieƟend die OberflƤche des Substrats elektrochemisch beschichtet bzw. elektroplattiert wird.Furthermore, the concerns EP 0 200 398 B1 a method of electroplating a conductive metal layer onto the surface of a nonconductive material, wherein a carbon black dispersion is applied to the nonconductive material, and then the surface of the substrate is electroplated or electroplated.

Die DE 198 06 360 A1 betrifft ein Verfahren zum elektrolytischen Abscheiden einer Metallschicht mit glatter OberflƤche auf einem Substrat unter Verwendung einer Graphitdispersion, wobei ein Substrat mit einer Graphitpartikel enthaltenden Dispersion in Kontakt gebracht wird und anschlieƟend elektrolytisch eine Metallschicht auf der Graphitschicht abgeschieden wird.The DE 198 06 360 A1 relates to a method for electrolytically depositing a smooth surface metal layer on a substrate using a graphite dispersion, wherein a substrate is contacted with a dispersion containing graphite particles, and then a metal layer is electrolytically deposited on the graphite layer.

Die EP 0 799 911 A1 betrifft ein Verfahren sowie eine Zusammensetzung zur Elektroplattierung eines nicht leitenden Substrates, umfassend die Bildung einer Schicht eines leitfƤhigen Polymers auf der OberflƤche des nicht leitenden Substrats und elektrochemische Abscheidung eines Metalls darauf. Die leitfƤhige Schicht wird durch Aufbringung eines leitfƤhigen Polymers auf die OberflƤche erzeugt, wobei das Polymer in Form einer wƤssrigen Suspension des Polymers, welche einen polymeren Stabilisator mit sich wiederholenden Alkylenoxideinheiten und einem HLB-Wert (hydrophilic-lipophilic-balance) von wenigstens 12 aufweist, auf die OberflƤche aufgebracht wird.The EP 0 799 911 A1 relates to a method and composition for electroplating a non-conductive substrate comprising forming a layer of conductive polymer on the surface of the non-conductive substrate and electrochemically depositing a metal thereon. The conductive layer is formed by the application of a conductive polymer to the surface, wherein the polymer is in the form of an aqueous suspension of the polymer comprising a polymeric stabilizer having repeating alkylene oxide units and a hydrophilic-lipophilic balance (HLB) of at least 12, is applied to the surface.

Weiterhin betrifft die EP 1 897 975 A1 ein Verfahren zur Metallisierung der OberflƤche eines dielektrischen Substrates durch Elektroplattierung, wobei das Verfahren ein Eintauchen des Substrates in eine Zusammensetzung, welche einen PrƤkursor zur Bildung des elektrisch leitfƤhigen Polymers, eine Kupferionenquelle und eine SƤure zur Bildung eines elektrisch leitfƤhigen Polymers auf der OberflƤche des dielektrischen Substrates aufweist, sowie das Bereitstellen einer externen Spannungsquelle zur elektrochemischen Abscheidung von Kupfer auf dem elektrisch leitfƤhigen Polymer umfasst.Furthermore, the concerns EP 1 897 975 A1 a method of metallizing the surface of a dielectric substrate by electroplating, the method comprising immersing the substrate in a composition comprising a precursor to form the electrically conductive polymer, a copper ion source, and an acid to form an electrically conductive polymer on the surface of the dielectric substrate and the provision of an external voltage source for the electrochemical deposition of copper on the electrically conductive polymer.

SchlieƟlich betrifft die EP 0 616 558 B1 ein Verfahren zur Beschichtung von OberflƤchen mit feinteiligen Feststoffpartikeln, wobei das zu beschichtende Substrat in einem Bad mit Polyelektrolyten vorbehandelt wird und anschlieƟend das derart behandelte Substrat in ein zweites Bad mit einer Feststoffdispersion eingetaucht wird. Hierbei bleiben die Feststoffpartikel durch Koagulation auf der SubstratoberflƤche haften, wodurch auch insbesondere leitfƤhige Schichten zugƤnglich sein sollen.Finally, the concerns EP 0 616 558 B1 a method for coating surfaces with finely divided solid particles, wherein the substrate to be coated is pretreated in a bath with polyelectrolytes and then the substrate thus treated is immersed in a second bath with a solid dispersion. In this case, the solid particles remain adhering to the substrate surface by coagulation, which should in particular make conductive layers accessible.

Allen diesen Verfahren ist jedoch gemein, dass sie die Haftung der elektrisch leitfƤhigen Schicht auf dem Substrat bzw. deren Abriebfestigkeit nicht signifikant verbessern und im Allgemeinen lediglich eine vollflƤchige Benetzung des Substrats erlauben. Eine regioselektive bzw. lokal begrenzte Beschichtung von nichtleitenden Substraten ist mit diesen Verfahren daher nicht oder nur schwer zugƤnglich.However, all these methods have in common that they do not significantly improve the adhesion of the electrically conductive layer to the substrate or its abrasion resistance, and generally only a full-surface wetting allow the substrate. A regioselective or locally limited coating of non-conductive substrates is therefore difficult or impossible to access using these methods.

Insbesondere kƶnnen die vorgenannten Ausgangsmaterialien und Verfahren im Allgemeinen nicht mit kostengĆ¼nstigen Druckverfahren kombiniert werden und sind in ihrer Anwendbarkeit auf spezielle Verfahrensparameter und Materialien beschrƤnkt und folglich nicht flexibel einsetzbar.In particular, the abovementioned starting materials and processes generally can not be combined with cost-effective printing processes and are limited in their applicability to special process parameters and materials and consequently can not be used flexibly.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Herstellung leitfƤhiger Strukturen auf nichtleitenden Substraten bereitzustellen, wobei die zuvor geschilderten, im Zusammenhang mit dem Stand der Technik auftretenden Probleme und Nachteile zumindest weitgehend vermieden oder aber wenigstens abgeschwƤcht werden sollen.The present invention is therefore based on the object to provide a method for producing conductive structures on non-conductive substrates, wherein the previously described, occurring in connection with the prior art problems and disadvantages should be at least largely avoided or at least mitigated.

Insbesondere ist eine Aufgabe der vorliegenden Erfindung darin zu sehen, Solubilisate oder Dispersionen von nichtmetallischen leitfƤhigen Materialien derart auf nichtleitende Substrate aufzutragen, dass hochleitfƤhige Schichten ƤuƟerst geringer Schichtdicke erhalten werden. Insbesondere sollte dabei der Auftrag durch einfache Verfahren regioselektiv oder ortsspezifisch und lokal begrenzt sein.In particular, it is an object of the present invention to apply solubilizates or dispersions of non-metallic conductive materials to non-conductive substrates in such a way that highly conductive layers of extremely small layer thickness are obtained. In particular, the order should be regioselective or site-specific and local by simple methods.

Weiterhin besteht eine Aufgabe der vorliegenden Erfindung darin, durch elektrochemische Abscheidung von Metallen auf nichtmetallische Substrate in einfacher und effizienter Weise zwei- und dreidimensionale Strukturen und Objekte insbesondere mikrostrukturierte bzw. miniaturisierte Bauteile und WerkstĆ¼cke, zur VerfĆ¼gung zu stellen.Furthermore, it is an object of the present invention to provide by electrochemical deposition of metals on non-metallic substrates in a simple and efficient manner two- and three-dimensional structures and objects, in particular microstructured or miniaturized components and workpieces.

Die zuvor geschilderte Aufgabenstellung wird erfindungsgemƤƟ durch ein Verfahren nach Anspruch 1 gelƶst; weitere, vorteilhafte Weiterbildungen und Ausgestaltungen des erfindungsgemƤƟen Verfahrens sind Gegenstand der diesbezĆ¼glichen UnteransprĆ¼che.The above-described task is inventively achieved by a method according to claim 1; Further, advantageous developments and refinements of the method according to the invention are the subject of the relevant subclaims.

Weiterer Gegenstand der vorliegenden Erfindung sind elektrisch leitfƤhige metallische Strukturen nach Anspruch 16 oder 17.Another object of the present invention are electrically conductive metallic structures according to claim 16 or 17.

Wiederum weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der elektrisch leitfƤhigen Strukturen nach Anspruch 18 oder 19.Yet another subject of the present invention is the use of the electrically conductive structures according to claim 18 or 19.

SchlieƟlich sind weiterer Gegenstand der vorliegenden Erfindung Produkte bzw. GegenstƤnde gemƤƟ Anspruch 20, welche die elektrisch leitfƤhige Strukturen nach der Erfindung enthalten.Finally, another object of the present invention are products or articles according to claim 20, which contain the electrically conductive structures according to the invention.

Es versteht sich von selbst, dass Ausgestaltungen, AusfĆ¼hrungsformen, Vorteile oder dergleichen, welche nachfolgend zu Zwecken der Vermeidung von unnƶtigen Wiederholungen nur zu einem Erfindungsaspekt ausgefĆ¼hrt werden, selbstverstƤndlich auch in Bezug auf die Ć¼brigen Erfindungsaspekte entsprechend gelten.It goes without saying that embodiments, embodiments, advantages or the like, which are subsequently carried out for the purpose of avoiding unnecessary repetition only for one aspect of the invention, naturally also apply correspondingly with regard to the other aspects of the invention.

Weiterhin versteht es sich von selbst, dass bei nachfolgenden Angaben von Werten, Zahlen und Bereichen die diesbezĆ¼glichen Werte-, Zahlen- und Bereichsangaben nicht beschrƤnkend zu verstehen sind; es versteht sich fĆ¼r den Fachmann von selbst, dass einzelfallbedingt oder anwendungsbezogen von den angegebenen Bereichen bzw. Angaben abgewichen werden kann, ohne dass der Rahmen der vorliegenden Erfindung verlassen wird.Furthermore, it goes without saying that in the case of subsequent statements of values, numbers and ranges, the values, numbers and ranges given in this context are not to be understood as limiting; it goes without saying for the person skilled in the art that it is possible to deviate from the specified ranges or details on a case-by-case basis or application-related basis without departing from the scope of the present invention.

Zudem gilt, dass alle im Folgenden genannten Werte- bzw. Parameterangaben oder dergleichen grundsƤtzlich mit genormten bzw. standardisierten oder explizit angegebenen Bestimmungsverfahren oder aber mit dem Fachmann auf diesem Gebiet an sich gelƤufigen Bestimmungsmethoden ermittelt bzw. bestimmt werden kƶnnen.In addition, it is true that all the values or parameter information or the like mentioned below can in principle be determined or determined using standardized or explicitly stated determination methods or determination methods which are familiar per se to the person skilled in the art.

Des Weiteren sind bei der prozentualen Angabe von Mengen eingesetzter Inhaltsstoffe die mengenmƤƟigen Anteile derart zu kombinieren, dass insgesamt 100 % bzw. 100 Gew.-% resultiert.Furthermore, in the percentage indication of quantities of ingredients used, the quantitative proportions are to be combined in such a way that a total of 100% or 100% by weight results.

Dies vorausgeschickt, wird im Folgenden die vorliegende Erfindung nƤher beschrieben.Having said that, the present invention will be described in more detail below.

Gegenstand der vorliegenden Erfindung - gemƤƟ einem ersten Aspekt der vorliegenden Erfindung - ist somit ein Verfahren zur elektrochemischen Abscheidung von Metallen auf Substraten zur Herstellung von metallischen Strukturen und/oder von Galvanoplastiken,

  1. (a) wobei in einem ersten Verfahrensschritt mindestens ein Solubilisat und/oder eine Dispersion auf Basis elektrisch leitfƤhiger Materialien, ausgewƤhlt aus der Gruppe von elektrisch leitfƤhigen Kohlenstoffallotropen, elektrisch leitfƤhigen Polymeren und elektrisch leitfƤhigen anorganischen Oxiden, auf ein elektrisch nichtleitendes Substrat aufgebracht wird, wobei der Auftrag des Solubilisats und/oder der Dispersion lokal begrenzt und/oder ortsspezifisch mittels Druckverfahren, durchgefĆ¼hrt wird, wobei das Solubilisat und/oder die Dispersion mit einer Schichtdicke von 0,5 bis 30 Āµm auf das Substrat aufgetragen wird,
  2. (b) wobei gegebenenfalls ein nachfolgender Verfahrensschritt der Trocknung oder HƤrtung des Solubilisats und/oder der Dispersion durchgefĆ¼hrt wird und
  3. (c) wobei in einem nachfolgenden Verfahrensschritt mindestens ein Metall elektrochemisch auf dem gegebenenfalls getrockneten oder gehƤrteten Solubilisat und/oder auf der gegebenenfalls getrockneten oder gehƤrteten Dispersion abgeschieden wird.
The subject of the present invention, according to a first aspect of the present invention, is thus a process for the electrochemical deposition of metals on substrates for the production of metallic structures and / or galvanoplastics,
  1. (A) wherein in a first process step at least one solubilizate and / or a dispersion based on electrically conductive materials selected from the group of electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides is applied to an electrically non-conductive substrate, wherein the Application of the solubilizate and / or the dispersion locally limited and / or site-specific by means of printing process is carried out, wherein the solubilizate and / or the dispersion is applied to the substrate with a layer thickness of 0.5 to 30 microns,
  2. (b) optionally carrying out a subsequent process step of drying or curing the solubilisate and / or the dispersion, and
  3. (C) wherein in a subsequent process step at least one metal is deposited electrochemically on the optionally dried or cured solubilizate and / or on the optionally dried or cured dispersion.

Wie zuvor beschrieben wird in einem Verfahrensschritt (a) mindestens ein Solubilisat bzw. eine Dispersion auf Basis elektrisch leitfƤhiger Materialien, welche ausgewƤhlt sind aus der Gruppe von elektrisch leitfƤhigen Kohlenstoffallotropen, elektrisch leitfƤhigen Polymeren und elektrisch leitfƤhigen anorganischen Oxiden, auf ein elektrisch nichtleitendes Substrat aufgebracht.As described above, in a process step (a) at least one solubilizate or a dispersion based on electrically conductive materials which are selected from the group of electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides is applied to an electrically non-conductive substrate.

In diesem Zusammenhang hat es sich als vorteilhaft erwiesen, wenn der Auftrag des Solubilisats und/oder der Dispersion lokal begrenzt bzw. ortsspezifisch bzw. regioselektiv mittels Druckverfahren (d. h. mittels Bedruckung), durchgefĆ¼hrt wird.In this context, it has proven to be advantageous if the application of the solubilizate and / or the dispersion locally limited or site-specific or regioselectively by printing (ie by means of printing) is performed.

Gegebenenfalls wird im Anschluss an Verfahrensschritt (a) ein nachfolgender Verfahrensschritt (b) der Trocknung und/oder HƤrtung des auf diese Weise aufgebrachten Solubilisats bzw. der auf diese Weise aufgebrachten Dispersion durchgefĆ¼hrt.Optionally, following process step (a), a subsequent process step (b) of drying and / or curing of the solubilizate applied in this manner or the dispersion applied in this way is carried out.

Unter elektrischer LeitfƤhigkeit ist dabei im Rahmen der vorliegenden Erfindung insbesondere die FƤhigkeit, elektrischen Strom zu leiten, zu verstehen. Die elektrische LeitfƤhigkeit der nach dem erfindungsgemƤƟen Verfahren erhƤltlichen leitfƤhigen Strukturen liegen dabei im Allgemeinen innerhalb der Werte fĆ¼r typischen Leiter und Halbleiter, d. h. im Allgemeinen im Bereich von 10-7 bis 107 S/m.Under electrical conductivity is in the context of the present invention, in particular the ability to conduct electrical current to understand. The electrical conductivity of the conductive structures obtainable by the process according to the invention are generally within the values for typical conductors and semiconductors, ie generally in the range from 10 -7 to 10 7 S / m.

Unter dem Begriff des Solubilisats sind im Rahmen der vorliegenden Erfindung im weitesten Sinne Lƶsungen von Stoffen bzw. Verbindungen, insbesondere von MakromolekĆ¼len, zu verstehen, welche im Allgemeinen ohne den Zusatz von Hilfsstoffen bzw. Additiven nicht in dem betreffenden Lƶsemittel lƶslich sind. Zum Lƶsen bzw. Solubilisieren dieser Stoffe ist insbesondere die Verwendung eines Lƶsungsvermittlers vorteilhaft, welcher die Lƶseeigenschaften des Lƶsemittels beeinflusst und/oder beispielsweise die Lƶslichkeit des betreffenden chemischen Stoffes bzw. der betreffenden chemischen Verbindung - wie im Fall einer Mizellenbildung durch Tenside - erhƶht.For the purposes of the present invention, the term solubilizate is to be understood in the broadest sense as meaning solutions of substances or compounds, in particular of macromolecules, which are generally not soluble in the solvent concerned without the addition of auxiliaries or additives. To dissolve or solubilize these substances, it is particularly advantageous to use a solubilizer which influences the dissolving properties of the solvent and / or, for example, increases the solubility of the relevant chemical substance or of the relevant chemical compound, as in the case of micelle formation by surfactants.

Unter einer Dispersion ist im Rahmen der vorliegenden Erfindung ein Gemisch von mindestens zwei deutlich voneinander abgegrenzten Phasen zu verstehen, welche sich nicht oder aber zumindest im Wesentlich nicht ineinander lƶsen. Insbesondere ist in Dispersionen mindestens eine Phase, nƤmlich die dispergierte oder diskontinuierliche Phase, mƶglichst fein in einer anderen Phase, d. h. der kontinuierlichen Phase bzw. dem Dispersionsmittel, verteilt. Dispersionen kƶnnen als Mischungen von festen Phasen (fest/fest), festen und flĆ¼ssigen Phasen (fest/flĆ¼ssig und flĆ¼ssig/fest) sowie Mischungen von gasfƶrmigen Phasen mit festen oder flĆ¼ssigen Phasen (flĆ¼ssig/gasfƶrmig, gasfƶrmig/flĆ¼ssig oder fest/gasfƶrmig), ausgebildet sein. Im Rahmen der vorliegenden Erfindung werden im Allgemeinen Fest/FlĆ¼ssig-Systeme eingesetzt, wobei eine feste Phase in einem flĆ¼ssigen Dispersionsmedium dispergiert ist; jedoch ist auch die Verwendung von Fest/Fest-Dispersionen, wie beispielsweise Pulverlacken, mƶglich.For the purposes of the present invention, a dispersion is to be understood as meaning a mixture of at least two clearly delimited phases which do not dissolve or at least substantially do not dissolve with one another. In particular, in dispersions at least one phase, namely the dispersed or discontinuous phase, is dispersed as finely as possible in another phase, ie the continuous phase or the dispersing agent. Dispersions can be mixtures of solid phases (solid / solid), solid and liquid phases (solid / liquid and liquid / solid) and mixtures of gaseous phases with solid or liquid phases (liquid / gaseous, gaseous / liquid or solid / gaseous), be educated. In the context of the present invention, solid / liquid systems are generally used, wherein a solid phase is dispersed in a liquid dispersion medium; however, the use of solid / solid dispersions, such as powder coatings, is also possible.

Das erfindungsgemƤƟe Verfahren zeichnet sich insbesondere dadurch aus, dass der Auftrag des Solubilisats bzw. der Dispersion auf das elektrisch nichtleitende Substrat lokal begrenzt und/oder ortsspezifisch bzw. regioselektiv erfolgt. Unter einem lokal begrenzten und/oder ortsspezifischen bzw. regioselektiven Auftrag ist dabei insbesondere zu verstehen, dass das Solubilisat bzw. die Dispersion nur an ganz bestimmten, vorzugsweise gewĆ¼nschten bzw. definierten Stellen auf das Substrat aufgetragen wird, so dass eine lediglich abschnittsweise bzw. unvollstƤndige bzw. partielle Beschichtung des Substrats bzw. des TrƤgers erfolgt.The method according to the invention is distinguished, in particular, by the fact that the application of the solubilizate or the dispersion to the electrically nonconductive substrate is locally limited and / or site-specific or regioselective. A locally limited and / or site-specific or regioselective order is to be understood in particular as meaning that the solubilizate or the dispersion is applied to the substrate only at very specific, preferably desired or defined points, so that only a partial or incomplete one or partial coating of the substrate or the carrier takes place.

Auf diese Weise ist es mƶglich, beispielsweise Leiterbahnen aus nichtmetallischen leitfƤhigen Materialien direkt auf nichtleitende Substrate aufzubringen, insbesondere mittels Druckverfahren, wie im Folgenden ausfĆ¼hrlich ausgefĆ¼hrt wird. Die nach dem erfindungsgemƤƟen Verfahren erhƤltlichen leitfƤhigen Strukturen zeichnen sich dabei gegenĆ¼ber dem Stand der Technik durch eine geringe Schichtdicke bei gleichzeitig guter elektrischer LeitfƤhigkeit und hervorragender mechanischer Belastbarkeit und Abriebfestigkeit aus.In this way it is possible, for example, to apply printed conductors made of non-metallic conductive materials directly to non-conductive substrates, in particular by means of printing processes, as will be explained in detail below. The conductive structures obtainable by the process according to the invention are distinguished from the prior art by a small layer thickness with simultaneously good electrical conductivity and outstanding mechanical strength and abrasion resistance.

Gleichfalls ist es mit dem erfindungsgemƤƟen Verfahren mƶglich, nichtleitende Substrate in einer Weise mit leitfƤhigen nichtmetallischen Strukturen zu versehen, so dass in einem nachfolgenden Verfahrensschritt Metalle elektrolytisch, insbesondere mittels Galvanisierung, insbesondere nach einem vorgegebenen bzw. definierten Muster, auf dem Substrat abgeschieden werden kƶnnen. Mit dem erfindungsgemƤƟen Verfahren kƶnnen somit in einfacher und effizienter Weise auch metallische Leiterbahnen auf elektrisch nichtleitenden Substraten ohne verfahrenstechnisch aufwendige Schritte, wie beispielsweise Ƅtzen oder Sinterprozesse, erzeugt werden.Likewise, it is possible with the inventive method to provide non-conductive substrates in a manner with conductive non-metallic structures, so that in a subsequent process steps metals electrolytically, in particular by galvanization, in particular according to a predetermined or defined pattern, can be deposited on the substrate. Thus, with the method according to the invention, it is also possible in a simple and efficient manner to produce metallic conductor tracks on electrically nonconducting substrates without procedurally complicated steps, such as, for example, etching or sintering processes.

DarĆ¼ber hinaus ist es mit dem erfindungsgemƤƟen Verfahren gleichermaƟen mƶglich, dreidimensionale GegenstƤnde, wie beispielsweise feinmechanische oder elektrotechnische Bauteile, durch Galvanoformung oder in Form von Galvanoplastiken zu erhalten. Bei der Galvanoformung handelt es sich um ein sogenanntes Urformverfahren, welches vornehmlich zur Erzeugung metallischer ƜberzĆ¼ge oder selbstragender metallischer Objekte bzw. WerkstĆ¼cke verwendet werden kann.In addition, it is equally possible with the method according to the invention to obtain three-dimensional objects, such as precision mechanical or electrotechnical components, by electroforming or in the form of electroforming. In the electroforming is a so-called primary molding process, which can be used primarily for the production of metallic coatings or self-supporting metallic objects or workpieces.

Aufgrund der geringen Schichtdicke und der guten LeitfƤhigkeit der erfindungsgemƤƟen leitfƤhigen Strukturen sind im Rahmen des erfindungsgemƤƟen Verfahrens mikrostrukturierte bzw. miniaturisierte dreidimensionale Objekte und WerkstĆ¼cke mit einem Detailreichtum bzw. einer Auflƶsung zugƤnglich, welche im Stand der Technik bislang nicht bekannt sind.Due to the small layer thickness and the good conductivity of the conductive structures according to the invention microstructured or miniaturized three-dimensional objects and workpieces are accessible in the process of the invention with a wealth of detail or resolution, which are not yet known in the art.

Die Basis fĆ¼r die elektrisch leitfƤhigen Strukturen, welche gemƤƟ dem erfindungsgemƤƟen Verfahren zugƤnglich sind, sind Solubilisate bzw. Dispersionen auf Basis elektrisch leitfƤhiger Materialien, insbesondere nichtmetallische elektrisch leitfƤhige Materialien. Der Ausdruck "Solubilisat und/oder Dispersion auf Basis elektrisch leitfƤhiger Materialien" ist dabei im Rahmen der vorliegenden Erfindung derart zu verstehen, dass das Solubilisat bzw. die Dispersion mindestens ein elektrisch leitfƤhiges Material enthƤlt.The basis for the electrically conductive structures which are accessible in accordance with the method according to the invention are solubilizates or dispersions based on electrically conductive materials, in particular non-metallic electrically conductive materials. The term "solubilizate and / or dispersion based on electrically conductive materials" is to be understood in the context of the present invention such that the solubilizate or the dispersion contains at least one electrically conductive material.

Im Rahmen der vorliegenden Erfindung wird - wie zuvor beschrieben - in einem nachfolgenden, insbesondere dem Verfahrensschritt (a) oder dem optionalen Verfahrensschritt (b) nachfolgenden Verfahrensschritt (c) mindestens ein Metall elektrochemisch auf der elektrisch leitfƤhigen Struktur, insbesondere auf dem gegebenenfalls getrockneten oder gehƤrteten Solubilisat und/oder auf der gegebenenfalls getrockneten oder gehƤrteten Dispersion, abgeschieden.In the context of the present invention, as described above, in a subsequent process step (c) following process step (a) or optional process step (b), at least one metal is electrochemically deposited on the electrically conductive structure, in particular on the optionally dried or cured one Solubilisat and / or on the optionally dried or cured dispersion deposited.

Durch die insbesondere elektrolytische Abscheidung von Metallen bzw. die Galvanisierung im Rahmen des Verfahrensschritts (c) sind im Rahmen der vorliegenden Erfindung metallisch leitfƤhige Strukturen sowie miniaturisierte bzw. mikrostrukturierte dreidimensionale Objekte und WerkstĆ¼cke aus Metall im Rahmen der Galvanoformung bzw. als Galvanoplastik zugƤnglich.In the context of the present invention, metal-conductive structures and miniaturized or microstructured three-dimensional objects and workpieces made of metal are accessible in the context of electroforming or as electroforming by electrolytic deposition of metals or electroplating in the context of process step (c).

Bei der elektrolytischen Abscheidung der Metalle bzw. bei der Galvanisierung werden die auf das elektrisch nichtleitende Substrat aufgebrachten elektrisch leitfƤhigen Strukturen als Kathode verwendet, an welcher sich die Reduktion von Metallionen und somit eine Abscheidung der elementaren Metalle vollzieht.In the electrolytic deposition of the metals or in electroplating, the electrically conductive structures applied to the electrically nonconducting substrate are used as cathodes, at which the reduction of metal ions and thus a deposition of the elemental metals takes place.

Im Rahmen der vorliegenden Erfindung kann es darĆ¼ber hinaus vorgesehen sein, dass die durch elektrochemische Abscheidung von Metallen erhaltene Struktur bzw. das dreidimensionale metallische Objekt bzw. WerkstĆ¼ck wieder von dem Substrat abgelƶst wird. Das erfindungsgemƤƟe Verfahren eignet sich somit auch zur effizienten und zeitsparenden Herstellung beispielsweise von Prototypen und kann daher auch im Rahmen von Rapid-Prototyping-Verfahren eingesetzt werden.In the context of the present invention, it may moreover be provided for the structure or the three-dimensional metallic object or workpiece obtained by electrochemical deposition of metals to be detached again from the substrate. The method according to the invention is thus also suitable for the efficient and time-saving production of, for example, prototypes and can therefore also be used in the context of rapid prototyping methods.

Das erfindungsgemƤƟe Verfahren kann somit zur Herstellung von leitfƤhigen Strukturen eingesetzt werden, wobei bei DurchfĆ¼hrung des erfindungsgemƤƟen Verfahrens mit den Verfahrensschritten (a), (b) und (c) bzw. mit den Verfahrensschritten (a) und (c) metallisch leitfƤhige Strukturen resultieren.The inventive method can thus be used for the production of conductive structures, wherein in carrying out the method according to the invention with the method steps (a), (b) and (c) or with the method steps (a) and (c) result in metallically conductive structures.

Wie zuvor beschrieben, werden im Rahmen des erfindungsgemƤƟen Verfahrens Solubilisate bzw. Dispersionen auf Basis elektrisch leitfƤhiger Materialien als Ausgangsmaterial eingesetzt, wobei die elektrisch leitfƤhigen Materialien aus der Gruppe von elektrisch leitfƤhigen Kohlenstoffallotropen, elektrisch leitfƤhigen Polymeren und elektrisch leitfƤhigen anorganischen Oxiden ausgewƤhlt sein kƶnnen.As described above, solubilizates or dispersions based on electrically conductive materials are used as the starting material in the process according to the invention, wherein the electrically conductive materials can be selected from the group of electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides.

Sofern als elektrisch leitfƤhige Materialien im Rahmen des erfindungsgemƤƟen Verfahrens elektrisch leitfƤhige Kohlenstoffallotrope eingesetzt werden, so werden im Allgemeinen im Rahmen der vorliegenden Erfindung als elektrisch leitfƤhige Kohlenstoffallotrope Graphit, Graphene, Fullerene und/oder Kohlenstoffnanorƶhren (CNTs), insbesondere Kohlenstoffnanorƶhren (CNTs), eingesetzt.If electrically conductive carbon allotropes are used as electrically conductive materials in the context of the process according to the invention, graphite, fullerenes and / or carbon nanotubes (CNTs), in particular carbon nanotubes (CNTs), are generally used in the context of the present invention as electrically conductive carbon allotropes.

Durch den Einsatz von elektrisch leitfƤhigen Kohlenstoffallotropen in den erfindungsgemƤƟ verwendeten Solubilisaten bzw. Dispersionen kƶnnen im Vergleich zum Stand der Technik dĆ¼nnere Schichtdicken bei gleichzeitig guter LeitfƤhigkeit und eine erhƶhte Abriebfestigkeit der gegebenenfalls getrockneten oder gehƤrteten Solubilisaten und Dispersion erhalten werden.By using electrically conductive carbon allotropes in the solubilisates or dispersions used according to the invention, thinner layer thicknesses with simultaneously good conductivity and increased abrasion resistance of the optionally dried or cured solubilisates and dispersion can be obtained in comparison with the prior art.

Besonders gute Ergebnisse werden fĆ¼r die Verwendung von Kohlenstoffnanorƶhren (CNTs) erhalten, wobei sowohl einwandige als auch mehrwandige Kohlenstoffnanorƶhren ( S ingle- W all C arbon Nanotubes (SWCNTs) bzw. M ulti- W all C arbon Nanotubes (MWCNTs)) eingesetzt werden kƶnnen. Kohlenstoffnanorƶhren weisen im Vergleich zu den Ć¼brigen Kohlenstoffallotropen eine nochmals deutlich erhƶhte elektrische LeitfƤhigkeit und mechanische Belastbarkeit auf, weshalb durch den Einsatz von Kohlenstoffnanorƶhren besonders dĆ¼nnschichtige und gleichzeitig leitfƤhige, abriebfeste und mechanisch belastbare Strukturen erhalten werden.Particularly good results are obtained for the use of carbon nanotubes (CNTs), both single-walled and multi-walled carbon nanotubes (S ingle- W all C arbon N anotubes (SWCNTs) or M ulti W all carbon nanotubes (MWCNTs)) can be used. Carbon nanotubes have in comparison to the other carbon allotropes again a significantly increased electrical conductivity and mechanical strength, which is why the use of carbon nanotubes particularly thin-layer and at the same time conductive, abrasion-resistant and mechanically strong structures are obtained.

Dispersionen von Kohlenstoffnanorƶhren, welche im Rahmen der vorliegenden Erfindung bevorzugt eingesetzt werden, kƶnnen beispielsweise nach dem in der DE 10 2006 055 106 A1 , der WO 2008/058589 A2 , der US 2010/0059720 A1 und der CA 2,668,489 A1 beschriebenen Verfahren erhalten werden, deren jeweiliger Offenbarungsgehalt durch Bezugnahme vollumfƤnglich eingeschlossen ist. Die vorgenannten Dokumente betreffen ein Verfahren zum Dispergieren von Kohlenstoffnanorƶhren (CNTs) in einer kontinuierlichen Phase, insbesondere in mindestens einem Dispersionsmittel, wobei die Kohlenstoffnanorƶhren (CNTs), insbesondere ohne vorangehende Vorbehandlung, in einer kontinuierlichen Phase, insbesondere in mindestens einem Dispersionsmittel, in Gegenwart mindestens eines Dispergiermittels (Dispergators) unter Einbringung eines fĆ¼r die Dispergierung ausreichenden Energieeintrages dispergiert werden. Die wƤhrend des Dispergiervorgangs eingetragene Energiemenge, berechnet als eingetragene Energie pro Menge an zu dispergierenden Kohlenstoffnanorƶhren (CNTs), kann dabei insbesondere 15.000 bis 100.000 kJ/kg betragen; als Dispergiermittel kƶnnen insbesondere polymere Dispergiermittel, vorzugsweise auf Basis funktionalisierter Polymere, insbesondere mit zahlenmittleren Molekularmassen von mindestens 500 g/mol, eingesetzt werden. Mit diesem Dispergierverfahren kƶnnen stabile Dispersionen von Kohlenstoffnanorƶhren (CNTs) mit einem Gewichtsanteil von bis zu 30 Gew.-% an Kohlenstoffnanorƶhren (CNTs) erhalten werden.Dispersions of carbon nanotubes, which are preferably used in the context of the present invention, can, for example, according to the in the DE 10 2006 055 106 A1 , of the WO 2008/058589 A2 , of the US 2010/0059720 A1 and the CA 2,668,489 A1 obtained, the respective disclosure of which is incorporated by reference in its entirety. The above-mentioned documents relate to a process for dispersing carbon nanotubes (CNTs) in a continuous phase, in particular in at least one dispersant, wherein the carbon nanotubes (CNTs), in particular without prior pre-treatment, in a continuous phase, in particular in at least one dispersant, in the presence at least a dispersant (dispersant) are dispersed while introducing an energy input sufficient for the dispersion. The amount of energy introduced during the dispersing process, calculated as the registered energy per amount of carbon nanotubes (CNTs) to be dispersed, can be in particular 15,000 to 100,000 kJ / kg; Dispersants which can be used are, in particular, polymeric dispersants, preferably based on functionalized polymers, in particular with number-average molecular masses of at least 500 g / mol. With this dispersion method, stable dispersions of carbon nanotubes (CNTs) with a weight fraction of up to 30% by weight of carbon nanotubes (CNTs) can be obtained.

Des Weiteren kann es vorgesehen sein, dass als elektrisch leitfƤhige Materialien elektrisch leitfƤhige Polymere, insbesondere Polyacetylene, Polyaniline, Polyparaphenylene, Polypyrrole und/oder Polythiophene, eingesetzt werden kƶnnen. Die elektrisch leitfƤhigen Polymere kƶnnen alternativ oder in Kombination mit den elektrisch leitfƤhigen Kohlenstoffallotropen und/oder mit den nachfolgend beschriebenen elektrisch leitfƤhige anorganischen Oxiden eingesetzt werden.Furthermore, it can be provided that electrically conductive polymers, in particular polyacetylenes, polyanilines, polyparaphenylenes, polypyrroles and / or polythiophenes, can be used as electrically conductive materials. The electrically conductive polymers can be used alternatively or in combination with the electrically conductive carbon allotropes and / or with the electrically conductive inorganic oxides described below.

Im Rahmen der vorliegenden Erfindung werden gleichfalls gute Ergebnisse erhalten, wenn als elektrisch leitfƤhige Materialien elektrisch leitfƤhige anorganische Oxide, insbesondere Indiumzinnoxid (ITO), Indiumzinkoxid (IZO), Aluminiumzinkoxid (AZO), Antimonzinnoxid (ATO) und/oder Fluorzinnoxid (FTO), eingesetzt werden.In the context of the present invention, good results are likewise obtained if electrically conductive inorganic oxides, in particular indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), antimony tin oxide (ATO) and / or fluorotinc oxide (FTO) are used as electrically conductive materials become.

Die zuvor beschriebenen elektrisch leitfƤhigen Kohlenstoffallotrope, elektrisch leitfƤhigen Polymere und elektrisch leitfƤhigen anorganischen Oxide kƶnnen jeweils einzeln oder aber in Kombination miteinander in den erfindungsgemƤƟ eingesetzten Solubilisaten bzw. Dispersionen verwendet werden. Den jeweiligen Einsatz der Materialien, insbesondere bei Kombinationen, kann der Fachmann dabei anhand der ƤuƟeren Bedingungen, wie beispielsweise Abscheidebedingung des Metalls, Substratmaterialien, Verwendungszweck des Produkts etc., auswƤhlen, wobei der Einsatz von Kohlenstoffnanorƶhren, insbesondere als alleiniges elektrisch leitfƤhiges Material, bevorzugt ist.The electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides described above can each be used individually or in combination with one another in the solubilizates or dispersions used according to the invention. The respective use of the materials, in particular in combinations, the expert can thereby on the basis of external conditions, such as deposition condition of the metal, substrate materials, intended use of the product, etc., select, with the use of carbon nanotubes, especially as the sole electrically conductive material is preferred ,

Im Allgemeinen ist im Rahmen der vorliegenden Erfindung das Solubilisat und/oder die Dispersion wasserbasiert und/oder lƶsemittelbasiert ausgebildet. Dabei kann es vorgesehen sein, dass das Lƶsemittel des Solubilisats und/oder die kontinuierliche Phase der Dispersion ein wƤssrig basiertes, organisch basiertes oder organisch-wƤssrig basiertes Lƶsemittel und/oder Dipersionsmedium ist.In general, the solubilizate and / or the dispersion is water-based and / or solvent-based in the context of the present invention. It may be provided that the solvent of the solubilizate and / or the continuous phase of the dispersion is an aqueous-based, organically based or organic-aqueous-based solvent and / or Dipersionsmedium.

Im Rahmen der vorliegenden Erfindung werden somit bevorzugt Solubilisate oder Dispersionen von festen Stoffen in flĆ¼ssigen Dispersionsmedien verwendet. Als Dispersionsmedien bzw. Lƶsemittel werden dabei insbesondere handelsĆ¼bliche organische Lƶsemittel, gegebenenfalls in Mischungen, und/oder Wasser eingesetzt. Gleichfalls ist es jedoch auch mƶglich, dass unter Auftragsbedingungen flĆ¼ssige Polymere als Dispersionsmedium verwendet werden.Solubilisates or dispersions of solids in liquid dispersion media are therefore preferably used in the context of the present invention. Commercially available organic solvents, if appropriate in mixtures, and / or water are used in particular as dispersion media or solvents. Likewise, however, it is also possible for liquid polymers to be used as the dispersion medium under application conditions.

Das Lƶsemittel bzw. das Dispersionsmittel kann nach erfolgtem Auftrag entfernt werden (z. B. durch Trocknung gemƤƟ Verfahrensschritt (b)), wodurch die leitfƤhigen Materialien sowie in dem Solubilisat bzw. in der Dispersion gegebenenfalls vorhandene Additive auf dem Substrat zurĆ¼ckbleiben. Wenn das Solubilisat bzw. die Dispersion ausreichend hohe ViskositƤten aufweist oder zumindest teilweise hƤrtbar ausgebildet ist, kann eine Entfernung des Lƶsemittels bzw. Dispersionsmediums gegebenenfalls ausbleiben; in diesem Fall beeinflusst das Lƶsemittel bzw. das Dispersionsmedium die mechanischen und elektrischen Eigenschaften der leitfƤhigen Strukturen.The solvent or the dispersing agent can be removed after the order has been applied (for example by drying according to process step (b)), as a result of which the conductive materials and any additives present in the solubilizate or in the dispersion remain on the substrate. If the solubilizate or the dispersion has sufficiently high viscosities or is at least partially curable, removal of the solvent or dispersion medium may optionally be omitted; In this case, the solvent or the dispersion medium influences the mechanical and electrical properties of the conductive structures.

Alternativ ist es jedoch auch mƶglich, dass die im Rahmen der vorliegenden Erfindung eingesetzte Dispersion ein Gemenge von Feststoffen ist, welches insbesondere unter den Verfahrensbedingungen der Aufbringung auf das Substrat nicht flĆ¼ssig ist. Solche Bedingungen liegen beispielsweise vor, wenn die erfindungsgemƤƟe Dispersion in Form eines Pulverlacks eingesetzt wird.Alternatively, however, it is also possible that the dispersion used in the context of the present invention is a mixture of solids, which is not liquid under the process conditions of application to the substrate. Such conditions are present, for example, when the dispersion according to the invention is used in the form of a powder coating.

GemƤƟ einer bevorzugten AusfĆ¼hrungsform der vorliegenden Erfindung ist es vorgesehen, dass das Solubilisat und/oder die Dispersion hƤrtbar, insbesondere strahlenhƤrtbar und/oder thermisch hƤrtbar, vorzugsweise strahlenhƤrtbar, ausgebildet ist. Die HƤrtbarkeit der erfindungsgemƤƟ eingesetzten Dispersion bzw. des Solubilisats fĆ¼hrt dazu, dass die Dispersion bzw. das Solubilisat unmittelbar nach dem Auftrag unter kontrollierten und bestimmbaren bzw. definierten Bedingungen ausgehƤrtet wird und die elektrisch leitfƤhige Struktur somit auf dem Substrat rƤumlich fixiert und gegen ein "Verlaufen" gesichert werden kann. Unter dem Begriff strahlenhƤrtbar ist dabei im Rahmen der vorliegenden Erfindung insbesondere zu verstehen, dass das Solubilisat bzw. die Dispersion durch Bestrahlung mit aktinischer Strahlung, insbesondere UV-Strahlung, aushƤrtet, d. h. vom flĆ¼ssigen in den festen Aggregatzustand Ć¼bergeht, wobei insbesondere eine gleichmƤƟige geschlossene Schicht erhalten wird. Eine Ausnahme bilden hierbei feste Dispersionen, wie beispielsweise Pulverlacke, welche durch Bestrahlung vernetzen und eine geschlossene Schicht, insbesondere einen Film oder Ɯberzug, bilden.According to a preferred embodiment of the present invention, it is provided that the solubilizate and / or the dispersion is curable, in particular radiation-curable and / or thermally curable, preferably radiation-curable. The hardenability of the dispersion or of the solubilizate used according to the invention means that the dispersion or the solubilizate is cured immediately after application under controlled and determinable or defined conditions and the electrically conductive structure is thus spatially fixed on the substrate and prevented from "bleeding "can be secured. In the context of the present invention, the term radiation-curable is to be understood in particular as meaning that the solubilizate or the dispersion cures by irradiation with actinic radiation, in particular UV radiation, ie. H. from the liquid to the solid state, in particular, a uniform closed layer is obtained. An exception here are solid dispersions, such as powder coatings, which crosslink by irradiation and form a closed layer, in particular a film or coating.

Um eine HƤrtbarkeit des erfindungsgemƤƟ eingesetzten Solubilisats bzw. der Dispersion zu erhalten, kann im Rahmen der vorliegenden Erfindung das Solubilisat bzw. die Dispersion im Allgemeinen mindestens eine hƤrtbare, insbesondere strahlenhƤrtbare und/oder thermisch hƤrtbare, vorzugsweise strahlenhƤrtbare, Komponente aufweisen. Dabei werden besonders gute Ergebnisse insbesondere erhalten, wenn das Solubilisat bzw. die Dispersion einen ReaktivverdĆ¼nner als hƤrtbare Komponente aufweist. Unter einem ReaktivverdĆ¼nner ist dabei im Rahmen der vorliegenden Erfindung insbesondere ein Stoff bzw. eine Verbindung zu verstehen, welche zusƤtzlich zu dem eigentlichen Lƶsemittel bzw. dem Dispersionsmedium dem Solubilisat bzw. der Dispersion zugesetzt wird und chemische FunktionalitƤten aufweist, welche unter den Bedingungen der AushƤrtung mit weiteren ReaktivverdĆ¼nnermolekĆ¼len und/oder Bestandteilen des Solubilisats bzw. der Dispersion chemisch reagieren. Durch die chemische Reaktion wird insbesondere ein dreidimensionales Netzwerk aufgebaut, welches zu einer AushƤrtung der Dispersion bzw. des Lƶsemittels fĆ¼hrt. Als ReaktivverdĆ¼nner kommen beispielsweise Acrylate, PolyurethanprƤpolymere, Phenol/Formaldehyd-Harze, ungesƤttigte Polyester etc. in Betracht.In order to obtain a hardenability of the solubilizate or dispersion used according to the invention, the solubilizate or the dispersion may generally have at least one curable, in particular radiation-curable and / or thermally curable, preferably radiation-curable, component in the context of the present invention. Particularly good results are obtained in particular when the solubilizate or the dispersion has a reactive diluent as the curable component. Under a reactive diluent is in the context of the present invention, in particular a substance or a compound to understand, which is added to the solubilizate or the dispersion in addition to the actual solvent or the dispersion medium and having chemical functionalities which under the conditions of curing with other reactive diluent molecules and / or components of the solubilizate or the dispersion chemically react. The chemical reaction in particular builds up a three-dimensional network which leads to a hardening of the dispersion or of the solvent. Suitable reactive diluents are, for example, acrylates, polyurethane prepolymers, phenol / formaldehyde resins, unsaturated polyesters, etc.

Weiterhin kann es im Rahmen der vorliegenden Erfindung gemƤƟ einer bevorzugten AusfĆ¼hrungsform vorgesehen sein, dass das Lƶsemittel des Solubilisats bzw. die kontinuierliche Phase der Dispersion hƤrtbar, insbesondere strahlenhƤrtbar und/oder thermisch hƤrtbar, vorzugsweise strahlenhƤrtbar, ausgebildet ist. In diesem Fall ist die hƤrtbare Komponente das Lƶsemittel des Solubilisats bzw. die kontinuierliche Phase der Dispersion, welche synonym auch als Bindemittel bezeichnet werden. Als strahlenhƤrtbare Bindemittel kƶnnen beispielsweise Acrylate und/oder Methacrylate, PolyurethanprƤpolymere, Phenol/Formaldehyd-Harze, Melamin/Formaldehyd-Harze oder ungesƤttigte Polyester eingesetzt werden, wohingegen als thermisch hƤrtbare Bindemittel oder Komponenten beispielsweise vorzugsweise filmbildende Polyurethane oder Polyvinylidenchlorid (PVDC) eingesetzt werden kƶnnen.Furthermore, it can be provided in the context of the present invention according to a preferred embodiment that the solvent of the solubilizate or the continuous phase of the dispersion curable, in particular radiation-curable and / or thermally curable, preferably radiation-curable, is formed. In this case, the curable component is the solvent of the solubilizate or the continuous phase of the dispersion, which are synonymously also referred to as binders. As radiation-curable binders, for example, acrylates and / or methacrylates, polyurethane prepolymers, phenol / formaldehyde resins, melamine / formaldehyde resins or unsaturated polyesters can be used, whereas as thermally curable binders or components, for example, preferably film-forming polyurethanes or polyvinylidene chloride (PVDC) can be used.

Das Solubilisat bzw. die Dispersion kann die elektrisch leitfƤhigen Materialien in Mengen von 0,001 bis 90 Gew.-%, insbesondere 0,005 bis 80 Gew.-%, vorzugsweise 0,01 bis 50 Gew.-%, bevorzugt 0,01 bis 30 Gew.-%, besonders bevorzugt 0,01 bis 20 Gew.-%, bezogen auf das Solubilisat und/oder die Dispersion, enthalten. Die jeweils in den Dispersionen enthaltene Menge an elektrisch leitfƤhigen Materialien ist dabei vom jeweiligen Anwendungszweck, den Auftragungsbedingungen und den verwendeten Materialien abhƤngig.The solubilizate or the dispersion may contain the electrically conductive materials in amounts of from 0.001 to 90% by weight, in particular from 0.005 to 80% by weight, preferably from 0.01 to 50% by weight, preferably from 0.01 to 30% by weight. -%, particularly preferably 0.01 to 20 wt .-%, based on the solubilizate and / or the dispersion. The amount of electrically conductive materials each contained in the dispersions is dependent on the particular application, the application conditions and the materials used.

Des Weiteren kann im Rahmen der vorliegenden Erfindung das Solubilisat und/oder die Dispersion mindestens ein Additiv aufweisen. Dabei hat es sich als vorteilhaft erwiesen, wenn das Solubilisat und/oder die Dispersion das mindestens eine Additiv in Mengen von 0,01 bis 60 Gew.-%, insbesondere 0,05 bis 50 Gew.-%, vorzugsweise 0,01 bis 40 Gew.-%, bevorzugt 0,05 bis 30 Gew.-%, ganz besonders bevorzugt 0,1 bis 20 Gew.-%, bezogen auf das Solubilisat und/oder die Dispersion, aufweist.Furthermore, in the context of the present invention, the solubilizate and / or the dispersion may comprise at least one additive. It has proven to be advantageous if the solubilizate and / or the dispersion, the at least one additive in amounts of 0.01 to 60 wt .-%, in particular 0.05 to 50 wt .-%, preferably 0.01 to 40 Wt .-%, preferably 0.05 to 30 wt .-%, most preferably 0.1 to 20 wt .-%, based on the solubilizate and / or the dispersion having.

Das Additiv bzw. die Additive kƶnnen dabei insbesondere ausgewƤhlt sein aus der Gruppe von Dispergierhilfsmitteln (Dispergatoren), Tensiden oder oberflƤchenaktiven Stoffen, EntschƤumern, Rheologiemodifizierern, Bindemitteln, Filmbildnern, Bioziden, Markerstoffen, Pigmenten, FĆ¼llstoffen, Haftvermittlern, Verlaufsadditiven, Co-Lƶsemitteln, Hautbildungsverhinderungsmitteln, UV-Absorbern, Anticloggingmitteln und/oder Stabilisatoren.The additive or additives may be selected in particular from the group of dispersing agents (dispersants), surfactants or surface-active substances, defoamers, rheology modifiers, binders, film formers, biocides, marker substances, pigments, fillers, adhesion promoters, flow control additives, co-solvents, skin formation inhibiting agents , UV absorbers, anticlogging agents and / or stabilizers.

Besonders gute Ergebnisse werden im Rahmen der vorliegenden Erfindung erhalten, wenn das Solubilisat bzw. die Dispersion mindestens ein Netz- und/oder Dispergiermittel aufweist. Die Verwendung von Netz- bzw. Dispergiermitteln erhƶht die KompatibilitƤt von zu solubilisierendem bzw. zu dispergierendem Stoff und Lƶsemittel bzw. Dispersionsmedium erheblich und ermƶglicht es somit, Dispersionen mit einem deutlich hƶheren Gehalt an gelƶsten bzw. dispergierten Stoffen einzusetzen.Particularly good results are obtained in the context of the present invention if the solubilizate or the dispersion has at least one wetting and / or dispersing agent. The use of wetting or dispersing agents considerably increases the compatibility of the substance to be solubilized or the dispersing agent and the solvent or dispersion medium, and thus makes it possible to use dispersions having a significantly higher content of dissolved or dispersed substances.

DarĆ¼ber hinaus werden im Rahmen der vorliegenden Erfindung gute Ergebnisse erhalten, wenn das Solubilisat bzw. die Dispersion mindestens ein grenzflƤchenaktives Additiv aufweist. Dabei hat es sich bewƤhrt, wenn das grenzflƤchenaktive Additiv aus der Gruppe von Gleit- und/oder Slipadditiven; Verlaufsmitteln; OberflƤchenadditiven, insbesondere vernetzbaren OberflƤchenadditiven; Haftvermittlern und/oder Substratnetzadditiven; Hydrophobierungsmitteln und Antiblockmitteln ausgewƤhlt ist. Die grenzflƤchenaktiven Additive erhƶhen zum einen die KompatibilitƤt der Dispersion bzw. des Solubilisats mit dem Substrat und fĆ¼hren somit zu einer verbesserten Haftung der Dispersion bzw. des Solubilisats auf dem Substrat sowie zu einer verbesserten Abriebfestigkeit; zum anderen wird durch die grenzflƤchenaktiven Additive die KompatibilitƤt von Lƶsemittel/Dispersionsmedium und gelƶstem bzw. dispergiertem Stoff weiter erhƶht.Moreover, good results are obtained in the context of the present invention if the solubilizate or the dispersion has at least one surface-active additive. It has proven useful if the surfactant additive from the group of lubricants and / or slip additives; Leveling agents; Surface additives, in particular crosslinkable surface additives; Adhesion promoters and / or substrate wetting additives; Hydrophobizing agents and antiblocking agents is selected. On the one hand, the surface-active additives increase the compatibility of the dispersion or of the solubilizate with the substrate and thus lead to improved adhesion of the dispersion or of the solubilizate to the substrate and to improved abrasion resistance; on the other hand, the surface-active additives further increase the compatibility of solvent / dispersion medium and dissolved or dispersed substance.

Weiterhin kann es vorgesehen sein, dass das Solubilisat und/oder die Dispersion mindestens ein die Rheologie steuerndes Additiv aufweist. Die Rheologie steuernden Additive beeinflussen insbesondere die Konsistenz und ViskositƤt des Solubilisats bzw. der Dispersion und sorgen somit gleichfalls dafĆ¼r, dass das Solubilisat bzw. die Dispersion optimal an das jeweilige Auftragungsverfahren angepasst werden kann und ein Verlaufen des auf das Substrat aufgebrachten Solubilisats bzw. der Dispersion verhindert wird. Besonders gute Ergebnisse werden dabei erhalten, wenn das die Rheologie steuernde Additiv aus der Gruppe von Rheologieadditiven, insbesondere Verdickern und/oder Thixotropierungsmitteln; EntschƤumern; EntwƤsserungsmitteln; Strukturierungsmitteln sowie Plastifizierungsmitteln und/oder Weichmachern ausgewƤhlt ist.Furthermore, it can be provided that the solubilizate and / or the dispersion has at least one rheology-controlling additive. In particular, the rheology-controlling additives influence the consistency and viscosity of the solubilizate or of the dispersion and thus likewise ensure that the solubilizate or the dispersion can be optimally adapted to the particular application method and that the solubilisate or dispersion applied to the substrate is leveled is prevented. Particularly good results are obtained when the rheology controlling additive from the group of rheology additives, in particular thickeners and / or thixotropic agents; defoamers; Dehydrators; Structuring agents and plasticizers and / or plasticizers is selected.

SchlieƟlich kann es auch vorgesehen sein, dass das Solubilisat und/oder die Dispersion mindestens ein Additiv enthƤlt, welches ausgewƤhlt sein kann aus der Gruppe von Korrosionsinhibitoren; Lichtschutzmitteln, insbesondere UV-Absorbern, RadikalfƤngern, Quenchern und/oder Hydroperoxidzersetzern; Trockenstoffen; Hautbildungsverhinderungsmitteln; Katalysatoren; Beschleunigern; Bioziden; Konservierungsmitteln; Kratzfestigkeitsadditiven; Antistatika; Trockenstoffen; Wachsen; FĆ¼llstoffen und Pigmenten. Diese weiteren Additive bzw. Hilfsstoffe runden gegebenenfalls die Eigenschaften des Solubilisats bzw. der Dispersion im Hinblick auf den Auftrag sowie die weitere Verwendung ab.Finally, it may also be provided that the solubilizate and / or the dispersion contains at least one additive which may be selected from the group of corrosion inhibitors; Light stabilizers, in particular UV absorbers, radical scavengers, quenchers and / or hydroperoxide decomposers; Driers; Skinning prevention means; catalysts; accelerators; biocides; Preservatives; Scratch resistance additives; antistatic agents; Driers; To grow; Fillers and pigments. These further additives or adjuvants optionally round off the properties of the solubilizate or of the dispersion with regard to the application and the further use.

Dabei kann es insbesondere vorgesehen sein, dass das Solubilisat bzw. die Dispersion FĆ¼llstoffe, wie beispielsweise Bariumsulfat oder Talkum, und/oder leitfƤhige Pigmente, welche gleichfalls die LeitfƤhigkeit des Solubilisats bzw. der Dispersion erhƶhen, enthalten.It may be provided in particular that the solubilizate or the dispersion fillers, such as barium sulfate or talc, and / or conductive pigments, which also increase the conductivity of the solubilizate or the dispersion.

Im Allgemeinen ist das Substrat ein anorganisches und/oder organisches Substrat. Dabei werden besonders gute Ergebnisse erhalten, wenn das Substrat aus der Gruppe von Glas, Keramik, Silikonen, Tonen, Wachsen, Kunststoffen und Kompositmaterialien ausgewƤhlt ist. Auf die erfindungsgemƤƟ eingesetzten Substrate wird das Solubilisat bzw. die Dispersion auf Basis elektrisch leitfƤhiger Materialien aufgetragen, wobei anschlieƟend (gegebenenfalls nach einem zwischengeschalteten Trocknungs- bzw. HƤrtungsschritt) optional Metalle elektrochemisch auf den leitfƤhigen Strukturen abgeschieden werden kƶnnen. Nach erfolgter Abscheidung der Metalle kann es vorgesehen sein, dass das Substrat von dem durch Galvanoformung erhaltenen Objekten, insbesondere den Galvanoplastiken, getrennt wird. Die Substrate kƶnnen dabei entweder erhaltend abgetrennt werden oder aber, wie im Fall der klassischen Galvanoplastik, zerstƶrt werden, beispielsweise durch Auflƶsen in Lƶsemitteln oder Schmelzen von Substraten auf Wachsbasis.In general, the substrate is an inorganic and / or organic substrate. In this case, particularly good results are obtained when the substrate is selected from the group of glass, ceramics, silicones, clays, waxes, plastics and composite materials. The solubilizate or the dispersion is applied to the substrates used according to the invention on the basis of electrically conductive materials, and subsequently (if appropriate after a Intermediate drying or curing step) optional metals can be electrochemically deposited on the conductive structures. After deposition of the metals, it may be provided that the substrate is separated from the objects obtained by electroforming, in particular the galvanoplastics. The substrates can be either sustainably separated or, as in the case of classical Galvanoplastik, destroyed, for example by dissolution in solvents or melting of wax-based substrates.

Bei dem erfindungsgemƤƟ eingesetzten Substrat kann es sich um ein zweidimensionales, insbesondere flƤchiges Substrat oder aber um ein dreidimensionales Substrat handeln. Zweidimensionale Substrate werden beispielsweise bei der Herstellung von Leiterbahnen verwendet, wohingegen zur Herstellung feinmechanischer Bauteile bzw. WerkstĆ¼cke dreidimensionale Substrate eingesetzt werden.The substrate used according to the invention may be a two-dimensional, in particular planar, substrate or a three-dimensional substrate. Two-dimensional substrates are used, for example, in the production of printed conductors, whereas three-dimensional substrates are used to produce fine-mechanical components or workpieces.

Im Rahmen der vorliegenden Erfindung wird das Solubilisat und/oder die Dispersion mittels Druckverfahren auf das Substrat aufgetragen. Die Verwendung von Druckverfahren erlaubt einen hohen Durchsatz und eine hervorragende PrƤzision bei der Herstellung der elektrisch leitfƤhigen Strukturen nach der Erfindung sowie eine einfache und flexibel anwendbare Aufbringung des Solubilisats bzw. der Dispersion in lokal begrenzter bzw. regioselektiver Weise. Zur Auftragung des Solubilisats bzw. der Dispersion kann dabei erfindungsgemƤƟ ein klassisches Druckverfahren, wie beispielsweise Tiefdruckverfahren, Flexodruckverfahren oder Offsetdruckverfahren, zum Einsatz kommen, welches einen sehr hohen Durchsatz bei der Bedruckung von vorzugsweise zweidimensionalen Substraten gewƤhrleistet. Daneben kƶnnen jedoch auch elektronische Druckverfahren, wie beispielsweise Tintenstrahldruckverfahren und tonerbasierten Druckverfahren (z. B. mittels Laserdrucker), zum Einsatz kommen. Besonders bevorzugt wird hierbei das Tintenstrahldruckverfahren, da mit diesem Verfahren in einfacher und flexibler Art und Weise auch dreidimensionale Substrate reproduzierbar bedruckt werden kƶnnen.In the context of the present invention, the solubilizate and / or the dispersion is applied to the substrate by means of printing processes. The use of printing processes allows a high throughput and excellent precision in the production of the electrically conductive structures according to the invention and a simple and flexibly applicable application of the solubilizate or dispersion in a locally limited or regioselective manner. For the application of the solubilizate or the dispersion, according to the invention, a classical printing process, such as, for example, intaglio printing, flexographic printing or offset printing, can be used, which ensures a very high throughput in the printing of preferably two-dimensional substrates. In addition, however, electronic printing methods, such as, for example, ink-jet printing methods and toner-based printing methods (for example by means of laser printers) can also be used. Particularly preferred in this case is the ink-jet printing method, as well as three-dimensional substrates can be printed reproducibly with this method in a simple and flexible manner.

Das jeweilige verwendete Druckverfahren ist dabei von der Art des Substrats und dem jeweiligen Anwendungszweck abhƤngig. Gemein ist jedoch allen Druckverfahren, dass das Solubilisat bzw. die Dispersion zumindest wƤhrend der Aufbringung bzw. des Auftrags den flĆ¼ssigen Aggregatzustand durchlƤuft, d. h. auch bei der Verwendung von zƤhen Pasten und Tonern werden diese gleichsam wƤhrend des Druckprozesses aufgeschmolzen und in flĆ¼ssiger Form auf das Substrat aufgebracht.The particular printing method used depends on the type of substrate and the particular application. However, common to all printing processes is that the solubilizate or the dispersion at least during the application or order passes through the liquid state of matter, d. H. even with the use of tough pastes and toners they are as it were melted during the printing process and applied in liquid form to the substrate.

Was die Temperatur anbelangt, bei welcher das Solubilisat bzw. die Dispersion im Rahmen der vorliegenden Erfindung aufgetragen wird, so kann diese in weiten Bereichen variieren. Im Allgemeinen wird das Solubilisat bzw. die Dispersion bei Temperaturen im Bereich von 0 bis 300 Ā°C, insbesondere 0 bis 200 Ā°C, vorzugsweise 5 bis 200 Ā°C, bevorzugt 10 bis 100 Ā°C, besonders bevorzugt 15 bis 80 Ā°C, aufgetragen. Die spezielle Auftragtemperatur richtet sich dabei insbesondere nach der Temperaturempfindlichkeit des Substrats, dem angewendeten Auftragungsverfahren, insbesondere Druckverfahren, sowie den Eigenschaften des Solubilisats bzw. der Dispersion, wobei insbesondere auch pastƶse und feste Dispersionen im Allgemeinen den flĆ¼ssigem Aggregatzustand durchlaufen sollten, um einen gleichmƤƟigen und dĆ¼nnen Auftrag zu gewƤhrleisten.As regards the temperature at which the solubilizate or the dispersion is applied in the context of the present invention, this can vary within wide ranges. In general, the solubilizate or dispersion is applied at temperatures in the range from 0 to 300.degree. C., in particular 0 to 200.degree. C., preferably 5 to 200.degree. C., preferably 10 to 100.degree. C., particularly preferably 15 to 80.degree , The specific application temperature depends in particular on the temperature sensitivity of the substrate, the applied application method, in particular printing method, as well as the properties of the solubilizate or dispersion, in particular pasty and solid dispersions should generally go through the liquid state to a uniform and thin Order to ensure.

Was die ViskositƤt des Solubilisats bzw. der Dispersion anbelangt, so kann diese gleichfalls in weiten Bereichen variieren. Die nach DIN EN ISO 2431 bestimmte dynamische ViskositƤt kann dabei im Bereich von 5 bis 1.100.000 mPas, insbesondere im Bereich von 5 bis 100.000 mPas, vorzugsweise im Bereich von 5 bis 50.000 mPas, bevorzugt im Bereich von 7 bis 1.000 mPas, besonders bevorzugt im Bereich von 7 bis 500 mPas, ganz besonders bevorzugt im Bereich von 7 bis 300 mPas, liegen. Der genaue Wert fĆ¼r die ViskositƤt des Solubilisats bzw. der Dispersion richtet sich dabei vornehmlich nach den verwendeten Auftragungsverfahren, insbesondere Druckverfahren: So werden beispielsweise fĆ¼r das Offset-Druckverfahren dynamische ViskositƤten im Bereich von ca. 1.000.000 mPas fĆ¼r die aufzutragende Dispersion bzw. das Solubilisat benƶtigt, wohingegen Solubilisate und Dispersionen, wie sie fĆ¼r Tintenstrahldruckverfahren eingesetzt werden kƶnnen, dynamische ViskositƤten von 10 mPas oder weniger aufweisen kƶnnen.As far as the viscosity of the solubilizate or the dispersion is concerned, this may likewise vary within wide ranges. The dynamic viscosity determined according to DIN EN ISO 2431 can be in the range of 5 to 1100,000 mPas, in particular in the range of 5 to 100,000 mPas, preferably in the range of 5 to 50,000 mPas, preferably in the range of 7 to 1,000 mPas, particularly preferred in the range of 7 to 500 mPas, very particularly preferably in the range of 7 to 300 mPas. The exact value for the viscosity of the solubilizate or the dispersion depends primarily on the application method used, in particular printing method: Thus, for example, for the offset printing process dynamic viscosities in the range of about 1,000,000 mPas for the dispersion or the Solubilisate needed, whereas solubilisates and dispersions, as can be used for ink jet printing process, dynamic densities of 10 mPas or less may have.

Im Rahmen der vorliegenden Erfindung werden die Solubilisate bzw. Dispersionen mit einer Schichtdicke von 0,5 bis 30 Āµm, bevorzugt 1 bis 20 Āµm, besonders bevorzugt 2 bis 15 Āµm, auf das Substrat aufgetragen.In the context of the present invention, the solubilizates or dispersions having a layer thickness of 0.5 to 30 .mu.m, preferably 1 to 20 .mu.m, particularly preferably 2 to 15 .mu.m, are applied to the substrate.

GleichermaƟen kann es erfindungsgemƤƟ vorgesehen sein, dass im Rahmen der vorliegenden Erfindung die elektrisch leitfƤhige Struktur nach DurchfĆ¼hrung des Verfahrensschritts (a) und/oder (b) eine Schichtdicke von 0,01 bis 100 Āµm, insbesondere 0,05 bis 50 Āµm, vorzugsweise 0,1 bis 30 Āµm, bevorzugt 0,2 bis 20 Āµm, besonders bevorzugt 0,3 bis 10 Āµm, ganz besonders bevorzugt 0,4 bis 5 Āµm, noch mehr bevorzugt 0,5 bis 3 Āµm, noch bevorzugter 0,6 bis 2 Āµm, aufweist. Im Rahmen der vorliegenden Erfindung kƶnnen somit ƤuƟerst dĆ¼nne Schichten aus leitfƤhigen Materialien auf Substraten realisiert werden, welche trotzdem Ć¼ber eine hervorragende mechanische Belastbarkeit, insbesondere Abriebfestigkeit, sowie eine ausgezeichnete elektrische LeitfƤhigkeit verfĆ¼gen.Similarly, it can be provided according to the invention that in the context of the present invention, the electrically conductive structure after carrying out the process step (a) and / or (b) has a layer thickness of 0.01 to 100 .mu.m, in particular 0.05 to 50 .mu.m, preferably 0 , 1 to 30 Ī¼m, preferably 0.2 to 20 Ī¼m, more preferably 0.3 to 10 Ī¼m, most preferably 0.4 to 5 Ī¼m, even more preferably 0.5 to 3 Ī¼m, even more preferably 0.6 to 2 Ī¼m. In the context of the present invention, it is thus possible to realize extremely thin layers of conductive materials on substrates, which nevertheless have excellent mechanical strength, in particular abrasion resistance, as well as excellent electrical conductivity.

Was die mechanische Belastbarkeit der nach dem erfindungsgemƤƟen Verfahren erhƤltlichen elektrisch leitfƤhigen Strukturen anbelangt, so zeichnen diese sich insbesondere durch eine hohe Abriebfestigkeit aus. So kann die elektrisch leitfƤhige Struktur nach DurchfĆ¼hrung des Verfahrensschritts (a) und/oder (b) und/oder (c) eine Abriebfestigkeit nach Taber gemƤƟ DIN EN ISO 438 mindestens der Kennzahl 2, insbesondere mindestens der Kennzahl 3, vorzugsweise mindestens der Kennzahl 4, aufweisen.As regards the mechanical strength of the electrically conductive structures obtainable by the process according to the invention, they are distinguished, in particular, by a high abrasion resistance. Thus, after carrying out process step (a) and / or (b) and / or (c), the electrically conductive structure may have an abrasion resistance according to Taber according to DIN EN ISO 438 of at least the characteristic number 2, in particular at least the characteristic number 3, preferably at least the characteristic number 4 , exhibit.

GleichermaƟen kann es vorgesehen sein, dass die elektrisch leitfƤhige Struktur nach DurchfĆ¼hrung des Verfahrensschritts (a) und/oder (b) eine Nassabriebfestigkeit gemƤƟ EN 13300 mindestens der Klasse 4, insbesondere mindestens der Klasse 3, vorzugsweise der Klasse 1 oder 2, aufweist.Similarly, it may be provided that the electrically conductive structure after carrying out the method step (a) and / or (b) a wet abrasion resistance according to EN 13300 at least Class 4, in particular at least Class 3, preferably Class 1 or 2, has.

Die elektrisch leitfƤhigen Strukturen nach der Erfindung kƶnnen somit Abriebfestigkeiten aufweisen, wie sie beispielsweise in hochbestƤndigen und widerstandsfƤhigen Lacken auftreten.The electrically conductive structures according to the invention can thus have abrasion resistance, as they occur, for example, in highly resistant and resistant paints.

Die elektrische LeitfƤhigkeit der elektrisch leitfƤhigen Strukturen kann im Rahmen der vorliegenden Erfindung gleichfalls in weiten Bereichen variieren, wobei insbesondere zwischen den LeitfƤhigkeiten der Strukturen auf Basis der nichtmetallbasierten Solubilisate bzw. Dispersionen einerseits und den elektrischen LeitfƤhigkeiten der Strukturen nach der elektrochemischen Abscheidung von Metallen unterschieden werden muss.The electrical conductivity of the electrically conductive structures can also vary within the scope of the present invention in a wide range, in particular between the conductivities of the structures based on Non-metal-based solubilizates or dispersions on the one hand and the electrical conductivities of the structures after the electrochemical deposition of metals must be distinguished.

Alle nachfolgend angegebenen Werte fĆ¼r den spezifischen Widerstand beziehen sich insbesondere auf eine Mess- bzw. Bestimmungstemperatur von 20 Ā°C. Die Bestimmung kann beispielsweise nach dem sogenannten Vier-Pol-Verfahren bzw. Vier-Punkt-Verfahren und/oder entsprechend DIN EN ISO 3915 erfolgen.All values given below for the specific resistance relate in particular to a measurement or determination temperature of 20 Ā° C. The determination can be carried out, for example, according to the so-called four-pole method or four-point method and / or according to DIN EN ISO 3915.

So kƶnnen im Rahmen der vorliegenden Erfindung die elektrisch leitfƤhigen Strukturen nach DurchfĆ¼hrung des Verfahrensschritts (a) und/oder (b) einen spezifischen Widerstand p im Bereich von 10-7 Ī©m bis 1010 Ī©m, insbesondere im Bereich von 10-6 Ī©m bis 105 Ī©m, vorzugsweise im Bereich von 10-5 Ī©m bis 103 Ī©m, aufweisen.Thus, in the context of the present invention, the electrically conductive structures after carrying out process step (a) and / or (b) have a specific resistance p in the range from 10 -7 Ī©m to 10 10 Ī©m, in particular in the range from 10 -6 Ī©m to 10 5 Ī©m, preferably in the range of 10 -5 Ī©m to 10 3 Ī©m.

Nach dem gegebenenfalls durchgefĆ¼hrten Verfahrensschritt (c) der elektrochemischen Abscheidungen von Metallen kann die elektrisch leitfƤhige Struktur hingegen einen spezifischen Widerstand p im Bereich von 10-9 Ī©m bis 10-1 Ī©m, insbesondere im Bereich von 10-8 Ī©m bis 10-2 Ī©m, vorzugsweise im Bereich von 10-7 Ī©m bis 10-3 Ī©m, aufweisen.On the other hand, after the optionally performed process step (c) of the electrochemical deposition of metals, the electrically conductive structure can have a resistivity p in the range from 10 -9 Ī©m to 10 -1 Ī©m, in particular in the range from 10 -8 Ī©m to 10 -2 Ī©m, preferably in the range of 10 -7 Ī©m to 10 -3 Ī©m.

Was die Abscheidung des Metalls in Verfahrensschritt (c) anbelangt, so umfasst das abzuscheidende Metall im Allgemeinen mindestens ein Ɯbergangsmetall, insbesondere ein Edelmetall oder ein Metall aus der Gruppe der Lanthaniden. Im Rahmen der vorliegenden Erfindung kann ausdrĆ¼cklich auch eine Co-Abscheidung von zwei oder mehreren Metallen erfolgen, wodurch Legierungen mit spezifischen Eigenschaften zugƤnglich sind.As far as the deposition of the metal in process step (c) is concerned, the metal to be deposited generally comprises at least one transition metal, in particular a noble metal or a metal from the lanthanide group. In the context of the present invention, co-deposition of two or more metals can expressly also take place, as a result of which alloys with specific properties are accessible.

Im Rahmen der vorliegenden Erfindung werden besonders gute Ergebnisse erhalten, wenn das Metall bzw. die Metalle aus den Nebengruppen I, V, VI und VIII des Periodensystems der Elemente ausgewƤhlt werden. Bevorzugt wird dabei, wenn ein Metall bzw. mehrere Metalle aus der Gruppe von Cu, Ag, Au, Pd, Pt, Rh, Co, Ni, Cr, V und Nb elektrochemisch auf dem Substrat abgeschieden werden.In the context of the present invention, particularly good results are obtained when the metal or metals are selected from subgroups I, V, VI and VIII of the Periodic Table of the Elements. It is preferred if one or more metals from the group of Cu, Ag, Au, Pd, Pt, Rh, Co, Ni, Cr, V and Nb are electrochemically deposited on the substrate.

Im Allgemeinen wird, insbesondere in Verfahrensschritt (c), das Metall aus einer Lƶsung des Metalls abgeschieden. Bei den Lƶsungen der Metalle handelt es sich Ć¼blicherweise um insbesondere wƤssrige Lƶsungen von Metallsalzen, wobei jedoch auch Metallionen enthaltende Lƶsungen auf Basis wƤssrigorganischer oder organischer Lƶsemittel oder aber auch Salzschmelzen, wie beispielsweise ionische FlĆ¼ssigkeiten, eingesetzt werden kƶnnen.In general, especially in process step (c), the metal is deposited from a solution of the metal. The solutions of the metals are usually in particular aqueous solutions of metal salts, but also solutions containing metal ions based on aqueous-organic or organic solvents or salt melts, such as ionic liquids, can be used.

Weiterhin wird im Rahmen der vorliegenden Erfindung das Metall im Allgemeinen durch Anlegen einer ƤuƟeren elektrischen Spannung, insbesondere durch Elektrolyse, abgeschieden, insbesondere galvanisch abgeschieden.Furthermore, in the context of the present invention, the metal is generally deposited by applying an external electrical voltage, in particular by electrolysis, in particular galvanically deposited.

Bei der Abscheidung des Metalls hat es sich darĆ¼ber hinaus als vorteilhaft erwiesen, wenn das Metall mit Stromdichten im Bereich von 1 bis 10 mA/cm2, insbesondere 2 bis 8 mA/cm2, vorzugsweise 3 bis 6 mA/cm2, abgeschieden wird.In the deposition of the metal, it has also proven to be advantageous if the metal with current densities in the range of 1 to 10 mA / cm 2 , in particular 2 to 8 mA / cm 2 , preferably 3 to 6 mA / cm 2 , deposited ,

Durch die erfindungsgemƤƟe Verfahrensweise ist es mƶglich, das Metall flexibel und auf den jeweiligen Anwendungszweck angepasst mit einer Schichtdicke von 1 nm bis 8.000 Āµm, insbesondere 2 nm bis 4.000 Āµm, vorzugsweise 5 nm bis 2.500 Āµm, bevorzugt 10 nm bis 2.000 Āµm, besonders bevorzugt 50 nm bis 1.000 Āµm, abzuscheiden. Auf diese Weise sind zum einen ƤuƟerst dĆ¼nne Leiterbahnen und Mikrostrukturen zugƤnglich; zum anderen kƶnnen jedoch auch feinmechanische Bauteile mit ausreichender StabilitƤt erhalten werden.The inventive method, it is possible, the metal flexible and adapted to the particular application with a layer thickness of 1 nm to 8,000 .mu.m, in particular 2 nm to 4,000 .mu.m, preferably 5 nm to 2,500 microns, preferably 10 nm to 2,000 microns, more preferably 50 nm to 1,000 microns, to be deposited. In this way, on the one hand extremely thin strip conductors and microstructures are accessible; On the other hand, however, fine mechanical components can be obtained with sufficient stability.

Weiterhin ist es im Rahmen der vorliegenden Erfindung mƶglich, dass die durch elektrochemische Abscheidung, insbesondere im Verfahrensschritt (c), erhaltene metallische Struktur einer Abschlussbehandlung, insbesondere in einem Verfahrensschritt (d), unterzogen wird. Besonders gute Ergebnisse werden dabei erhalten, wenn die Abschlussbehandlung durch Ƅtzen, Polieren, Sputtern, VergieƟen, VerfĆ¼llen oder Beschichten erfolgt. Die Abschlussbehandlung, insbesondere in Verfahrensschritt (d), hat den Zweck, die erhaltenen metallischen Strukturen im Hinblick auf ihr Eigenschaftsprofil zu optimieren bzw. auf eventuell nachfolgende ArbeitsgƤnge vorzubereiten. Insbesondere kƶnnen beispielsweise kleinere UnregelmƤƟigkeiten, welche wƤhrend des Galvanisierens an den Anschlussstellen der Elektroden entstehen, ausgeglichen werden oder beispielsweise elektrische Bauteile zum Schutz vor mechanischer Belastung und UmwelteinflĆ¼ssen in einem Harz, beispielsweise einem Epoxidharz, vergossen werden.Furthermore, it is possible within the scope of the present invention that the metallic structure obtained by electrochemical deposition, in particular in process step (c), is subjected to a final treatment, in particular in a process step (d). Particularly good results are obtained when the final treatment by etching, polishing, sputtering, potting, filling or coating takes place. The final treatment, in particular in process step (d), has the purpose of optimizing the resulting metallic structures in terms of their property profile or to prepare for any subsequent operations. In particular, for example, smaller irregularities that occur during electroplating at the connection points of the electrodes, balanced or, for example, electrical components to protect against mechanical stress and environmental influences in a resin, such as an epoxy resin, are cast.

Die nach dem erfindungsgemƤƟen Verfahren erhƤltlichen leitfƤhigen Strukturen, insbesondere metallischen Strukturen, zeichnen sich gegenĆ¼ber den bislang nach dem Stand der Technik erhƤltlichen Strukturen und Objekten bzw. WerkstĆ¼cke durch eine besondere RegelmƤƟigkeit des Schichtauftrags aus. Dies gilt insbesondere sowohl im Hinblick auf die erfindungsgemƤƟen nichtmetallischen leitfƤhigen Strukturen als auch im Hinblick auf die erfindungsgemƤƟen metallischen leitfƤhigen Strukturen.The conductive structures obtainable by the process according to the invention, in particular metallic structures, are distinguished from the structures and objects or workpieces obtainable hitherto by the prior art by a particular regularity of the layer application. This applies in particular both with regard to the non-metallic conductive structures according to the invention and with regard to the metallic conductive structures according to the invention.

DarĆ¼ber hinaus besitzen die nach dem erfindungsgemƤƟen Verfahren erhƤltlichen leitfƤhigen Strukturen eine erhƶhte Abriebfestigkeit gegenĆ¼ber den bislang im Stand der Technik bekannten leitfƤhigen Strukturen, was insbesondere auf eine verbesserte AdhƤsion bzw. Haftung des erfindungsgemƤƟ eingesetzten Solubilisats bzw. der erfindungsgemƤƟ eingesetzten Dispersion zurĆ¼ckzufĆ¼hren ist.In addition, the conductive structures obtainable by the process according to the invention have an increased abrasion resistance compared to the conductive structures hitherto known in the prior art, which is due in particular to an improved adhesion or adhesion of the solubilizate used according to the invention or the dispersion used according to the invention.

Gleichfalls sind die erfindungsgemƤƟ erhƤltlichen leitfƤhigen Strukturen nicht nur stabiler, d. h. abriebfester und kratzfester, als die bislang im Stand der Technik bekannten Strukturen, sondern zeichnen sich darĆ¼ber hinaus auch durch eine erhƶhte ElastizitƤt aus, was sich in deutlich verbesserten Biegefestigkeiten niederschlƤgt.Likewise, the conductive structures obtainable according to the present invention are not only more stable, d. H. more abrasion-resistant and scratch-resistant, than the structures known in the prior art, but also characterized by an increased elasticity, which is reflected in significantly improved flexural strengths.

Aufgrund des dĆ¼nnschichtigen Auftrags des Solubilisats bzw. der Dispersion kƶnnen mit dem erfindungsgemƤƟen Verfahren besonders fein strukturierte, insbesondere mikrostrukturierte, und miniaturisierte Strukturen und Objekte bzw. WerkstĆ¼cke mit einem hohen Detailreichtum durch Galvanoformung hergestellt bzw. reproduziert werden. Dies gilt insbesondere fĆ¼r die Verwendung von Kohlenstoffnanorƶhren (CNTs) als elektrisch leitfƤhige Ausgangsmaterialien, welche aufgrund ihrer hohen LeitfƤhigkeit und des groƟen AspektenverhƤltnisses (d. h. des VerhƤltnisses von LƤnge zu Durchmesser) nur in ƤuƟerst geringen Konzentrationen und Schichtdicken aufgetragen werden zu brauchen, damit eine Perkolation und somit eine durchgehende LeitfƤhigkeit erreicht wird.Owing to the thin-layer application of the solubilizate or the dispersion, particularly finely structured, in particular microstructured, and miniaturized structures and objects or workpieces can be manufactured or reproduced with high detail by electroforming with the method according to the invention. This applies in particular to the use of carbon nanotubes (CNTs) as electrically conductive starting materials which, owing to their high conductivity and the large aspect ratio (ie the ratio of length to diameter), need only be applied in extremely low concentrations and layer thicknesses, so that percolation and thus a continuous conductivity is achieved.

Ein weiterer Gegenstand der vorliegenden Erfindung - gemƤƟ einem zweiten Aspekt der vorliegenden Erfindung - sind folglich elektrisch leitfƤhige (d. h. elektrisch leitfƤhige metallische) Strukturen, welche nach dem zuvor beschriebenen Verfahren erhƤltlich sind.Another object of the present invention - according to a second aspect of the present invention - are consequently electrically conductive (ie electrically conductive metallic) structures, which are obtainable by the method described above.

Im Allgemeinen umfassen die elektrisch leitfƤhigen metallischen Strukturen ein nichtleitendes Substrat, auf welches wenigstens teilweise mindestens ein elektrisch leitfƤhiges Material, welches ausgewƤhlt ist aus der Gruppe von elektrisch leitfƤhigen Kohlenstoffallotropen, elektrisch leitfƤhigen Polymeren und elektrisch leitfƤhigen anorganischen Oxiden, mittels Druckverfahren aufgebracht ist, wobei auf das elektrisch leitfƤhige Material wiederum mindestens ein Metall elektrochemisch abgeschieden ist.In general, the electrically conductive metallic structures comprise a non-conductive substrate to which at least partially an electrically conductive material, which is selected from the group of electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides, is applied by means of printing processes electrically conductive material in turn, at least one metal is electrochemically deposited.

Wie bereits zuvor ausgefĆ¼hrt, zeichnen sich auch die erfindungsgemƤƟen leitfƤhigen metallischen Strukturen durch besonders geringe Schichtdicken und eine hohe RegelmƤƟigkeit bei gleichzeitig exzellenter LeitfƤhigkeit sowie hervorragenden mechanischen Eigenschaften aus.As already stated above, the conductive metallic structures according to the invention are distinguished by particularly low layer thicknesses and high regularity combined with excellent conductivity and excellent mechanical properties.

FĆ¼r weiterfĆ¼hrende Einzelheiten zu diesem Erfindungsaspekt kann auf die AusfĆ¼hrungen zu dem erfindungsgemƤƟen Verfahren verwiesen werden, welche diesbezĆ¼glich entsprechend gelten.For further details of this aspect of the invention, reference may be made to the statements on the method according to the invention, which apply accordingly in this regard.

Ein wiederum weiterer Gegenstand der vorliegenden Erfindung ist - gemƤƟ einem dritten Aspekt der vorliegenden Erfindung - die Verwendung der zuvor beschriebenen elektrisch leitfƤhigen Strukturen in der Elektronik oder Elektrotechnik.Yet another object of the present invention is - according to a third aspect of the present invention - the use of the previously described electrically conductive structures in electronics or electrical engineering.

Im Allgemeinen kƶnnen die erfindungsgemƤƟen leitfƤhigen Strukturen in der Computer- und Halbleiterindustrie sowie in der Messtechnik eingesetzt werden.In general, the conductive structures according to the invention can be used in the computer and semiconductor industry as well as in metrology.

Besonders gute Ergebnisse werden dabei erhalten, wenn die erfindungsgemƤƟen leitfƤhigen Strukturen zur Herstellung von Leiterbahnen, mikrostrukturierten Bauteilen, feinmechanischen Bauteilen und elektronischen oder elektrotechnischen Bauteilen verwendet werden.Particularly good results are obtained when the conductive structures of the invention are used for the production of printed conductors, microstructured components, precision mechanical components and electronic or electrical components.

FĆ¼r weitergehende Einzelheiten zu diesem Aspekt der vorliegenden Erfindung kann auf die obigen AusfĆ¼hrungen zu den Ć¼brigen Erfindungsaspekten verwiesen werden, welche in Bezug auf diese erfindungsgemƤƟe Verwendung entsprechend gelten.For further details of this aspect of the present invention, reference may be made to the above remarks on the remaining aspects of the invention, which shall apply mutatis mutandis with respect to this inventive use.

Wiederum weiterer Gegenstand der vorliegenden Erfindung - gemƤƟ einem vierten Aspekt der vorliegenden Erfindung - ist die Verwendung der zuvor beschriebenen leitfƤhigen Strukturen zur Herstellung metallischer Strukturen.Yet another object of the present invention - according to a fourth aspect of the present invention - is the use of the previously described conductive structures for the production of metallic structures.

Die erfindungsgemƤƟen leitfƤhigen Strukturen eignen sich insbesondere zur Herstellung von zweidimensionalen und/oder dreidimensionalen metallischen Strukturen, insbesondere zur Galvanoformung.The conductive structures according to the invention are particularly suitable for the production of two-dimensional and / or three-dimensional metallic structures, in particular for electroforming.

DarĆ¼ber hinaus kƶnnen die erfindungsgemƤƟen leitfƤhigen Strukturen speziell zur Herstellung von Galvanoplastiken und/oder zur Herstellung von dekorativen Elementen verwendet werden.In addition, the conductive structures according to the invention can be used especially for the production of electroforming and / or for the production of decorative elements.

FĆ¼r weitergehende Einzelheiten zu diesem Erfindungsaspekt kann auf die obigen AusfĆ¼hrungen zu den Ć¼brigen Erfindungsaspekten verwiesen werden, welche diesbezĆ¼glich entsprechend gelten.For further details of this aspect of the invention, reference may be made to the above remarks on the other aspects of the invention, which apply accordingly in this respect.

SchlieƟlich sind weiterer Gegenstand der vorliegenden Erfindung - gemƤƟ einem fĆ¼nften Aspekt der vorliegenden Erfindung - Leiterbahnen, mikrostrukturierte Bauteile, feinmechanische Bauteile, elektronische oder elektrotechnische Bauteile, Mikrostrukturen, dekorative Elemente oder Galvanoplastiken, welche eine elektrisch leitfƤhige Struktur nach der Erfindung umfassen.Finally, another object of the present invention - according to a fifth aspect of the present invention - printed conductors, microstructured components, precision mechanical components, electronic or electrical components, microstructures, decorative elements or electroplating, comprising an electrically conductive structure according to the invention.

FĆ¼r weitergehende Einzelheiten zu diesem Erfindungsaspekt kann auf die obigen AusfĆ¼hrungen zu den Ć¼brigen Erfindungsaspekten verwiesen werden, welche diesbezĆ¼glich entsprechend gelten.For further details of this aspect of the invention, reference may be made to the above remarks on the other aspects of the invention, which apply accordingly in this respect.

Weitere Ausgestaltungen, Abwandlungen, Variationen der vorliegenden Erfindung sind fĆ¼r den Fachmann beim Lesen der Beschreibung ohne Weiteres erkennbar und realisierbar, ohne dass der Rahmen der vorliegenden Erfindung verlassen wird.Other embodiments, modifications, variations of the present invention will be readily apparent to those skilled in the art upon reading the description recognizable and realizable, without departing from the scope of the present invention.

Die vorliegende Erfindung wird anhand der folgenden AusfĆ¼hrungsbeispiele veranschaulicht.The present invention will be illustrated by the following embodiments.

AUSFƜHRUNGSBEISPIELE:WORKING EXAMPLES Beispiel 1: Verwenden einer CNT-Dispersion zur Herstellung von GalvanoplastikenExample 1: Using a CNT dispersion for the manufacture of electroplating

Ein Wachspositiv eines SchlĆ¼sselanhƤngers wurde dĆ¼nn mit einer Nassschichtdicke von ca. 30 bis 40 Āµm mit einer CNT-Dispersion (2 Gew.-% CNTs in Methoxypropylacetat (PMA)) bestrichen und nachfolgend getrocknet. Die Kontaktierung des Probekƶrpers zur Stromquelle erfolgte durch ein isoliertes Kupferkabel, welches in den Wachskƶrper gesteckt wurde und Kontakt zur leitfƤhigen CNT-Dispersion hatte. Der so prƤparierte Probenkƶrper wurde vollstƤndig in eine Kupfersulfatlƶsung getaucht. Als Anode diente ein StĆ¼ck reines Kupfer. Schon bei einer geringen StromstƤrke (0,5 A; konstante Spannung) bildete sich nach kurzer Zeit eine dĆ¼nne Kupferschicht auf dem Probenkƶrper, die in AbhƤngigkeit von Zeit und StromstƤrke an Gewicht zunahm. Nach Beendigung des Galvanisierungsprozesses wurde der Probenkƶrper bei ca. 100 Ā°C in den Ofen gelegt, um das Wachs zu entfernen. Durch vorsichtiges Abtragen der Oxidschicht konnte das darunterliegende metallisch glƤnzende Kupfer sichtbar gemacht werden. Mit dieser Technik ist es mƶglich, selbst feine dreidimensionale Strukturen abzubilden.A wax positive of a key fob was coated thinly with a wet film thickness of about 30 to 40 microns with a CNT dispersion (2 wt .-% CNTs in methoxypropyl acetate (PMA)) and subsequently dried. The contacting of the specimen to the power source was carried out by an insulated copper cable, which was inserted into the wax body and had contact with the conductive CNT dispersion. The thus prepared specimen was completely immersed in a copper sulfate solution. The anode was a piece of pure copper. Even at a low current (0.5 A, constant voltage), a thin layer of copper formed on the specimen after a short time, which increased in weight as a function of time and current. After completion of the plating process, the specimen was placed in the oven at about 100 Ā° C to remove the wax. By carefully removing the oxide layer, the underlying shiny metallic copper could be made visible. With this technique it is possible to image even fine three-dimensional structures.

Beispiel 2: Verwenden eines wƤssrigen Einbrennlacks zur Herstellung metallisch leitfƤhiger Schichten und LeiterbahnenExample 2: Use of an aqueous stoving lacquer for producing metallically conductive layers and conductor tracks

Ein wƤssriger Einbrennlack vom Typ BayhydrolĀ® E 155 wurde mit einer Dispersion von 8 Gew.-% CNTs in Methoxypropylacetat (PMA) funktionalisiert und elektrisch leitfƤhig gemacht. Ein elektrischer Schaltplan wurde mit dem funktionalisierten Bayhydrol E 155 auf eine dĆ¼nne PET-Folie mittels Ink-Jet-Verfahren aufgetragen. Analog zu Beispiel 1 wurde auf den beschichteten Stellen der Folie eine dĆ¼nne Schicht Kupfer abgeschieden. Auf den unbeschichteten Stellen schied sich kein Kupfer ab und blieb dadurch elektrisch isolierend.An aqueous stoving lacquer of the type Bayhydrol Ā® E 155 has been functionalized with a dispersion of 8 wt .-% CNTs in methoxypropyl acetate (PMA) and made electrically conductive. An electrical circuit diagram was applied with the functionalized Bayhydrol E 155 to a thin PET film by means of an ink-jet process. Analogously to Example 1, a thin layer of copper was deposited on the coated areas of the film. On the uncoated areas, no copper separated and remained electrically insulating.

Beispiel 3: Verwenden einer lƶsemittelbasierten CNT-Dispersion zur Herstellung metallischer Formkƶrper (einschlieƟlich Ablƶsen der Formkƶrper von der Folie/Glas)Example 3: Use of a solvent-based CNT dispersion for producing metallic shaped bodies (including detachment of the shaped bodies from the foil / glass)

Eine Dispersion von 2 Gewichtsteilen CNTs in 98 Gewichtsteilen Methoxypropylacetat (PMA) wurde dazu verwendet, auf einem Polyethylensubstrat (PE-Substrat) einen PrĆ¼fkƶrper fĆ¼r einen Zugversuch abzubilden.A dispersion of 2 parts by weight of CNTs in 98 parts by weight of methoxypropyl acetate (PMA) was used to image a tensile test specimen on a polyethylene (PE) substrate.

Die Haftung auf dem PE-Substrat ist bei der reinen Dispersion schlechter als z. B. die Haftung des funktionalisierten Einbrennlacks. Dieser Umstand kann dazu verwendet werden, dass sich nach der Abscheidung des Kupfers auf den beschichteten Stellen der Probenkƶrper leicht vom Substrat lƶsen lƤsst.The adhesion to the PE substrate is in the pure dispersion worse than z. As the liability of the functionalized stoving. This circumstance can be used so that the sample body can be easily detached from the substrate after the deposition of the copper on the coated areas.

Beispiel 4: Vergleich der Abriebfestigkeit und des spezifischen Widerstands leitfƤhiger nichtmetallischer StrukturenExample 4: Comparison of abrasion resistance and resistivity of conductive non-metallic structures

Um die Abriebfestigkeit und den spezifischen Widerstand verschiedener nichtmetallischer leitfƤhiger Materialien zu vergleichen, wurden jeweils 2 Gewichtsteile Graphit bzw. Kohlenstoffnanorƶhren (mehrwandige Kohlenstoffnanorƶhren (MWCNTs)) bzw. Indiumzinnoxid (ITO) bzw. Polyanilin in 97 Gewichtsteilen Methoxypropylacetat (PMA) in Gegenwart 1 Gewichtsteils eines polymeren Netz- und Dispergierhilfsmittels mit einem Molekulargewicht von Ć¼ber 2.000 g/mol dispergiert.To compare the abrasion resistance and resistivity of various non-metallic conductive materials, 2 parts by weight of graphite or carbon nanotubes (MWCNTs) and indium-tin oxide (ITO) and polyaniline, respectively, were dissolved in 97 parts by weight of methoxypropyl acetate (PMA) in the presence of 1 part by weight polymeric wetting and dispersing aid having a molecular weight of about 2,000 g / mol dispersed.

Die Dispersionen wurden mittels Ink-Jet-Verfahren mit einer Schichtdicke von 25 bis 30 Āµm auf eine Glasplatte aufgetragen, und das Dispersionsmedium wurde anschlieƟend entfernt. Zum Vergleich wurde eine weitere Glasplatte mit elementarem pulverfƶrmigen Graphit bestƤubt. Im Anschluss wurde an allen Proben der spezifische Widerstand der Beschichtung sowie die Abriebfestigkeit gemƤƟ Taber nach DIN EN ISO 438 bestimmt. Die Ergebnisse sind in der nachfolgenden Tabelle 1 zusammengestellt.The dispersions were applied to a glass plate by means of ink-jet processes with a layer thickness of 25 to 30 Ī¼m, and the dispersion medium was then removed. For comparison, another glass plate was dusted with elemental powdered graphite. Subsequently, the resistivity of the coating as well as the abrasion resistance according to Taber according to DIN EN ISO 438 were determined on all samples. The results are summarized in Table 1 below.

Die Ergebnisse in Tabelle 1 zeigen, dass die Aufbringung von elementarem pulverfƶrmigem Graphit auf ein Substrat zwar in vergleichbaren LeitfƤhigkeiten wie der Auftrag einer Graphitdispersion resultiert, die erfindungsgemƤƟe Graphitdispersion jedoch eine deutlich hƶhere Abriebfestigkeit aufweist. DarĆ¼ber hinaus belegen die Werte in Tabelle 1, dass mit Kohlenstoffnanorƶhren deutlich geringere Werte fĆ¼r den spezifischen Widerstand und somit deutlich hƶhere spezifische LeitfƤhigkeiten bei gleichzeitig deutlich verbesserter Abriebfestigkeit - welche mit der von mechanisch widerstandsfƤhigen Lacken vergleichbar ist - erhalten werden kƶnnen. Tabelle 1: LeitfƤhiges Material Spezifischer Widerstand [Ī© m] Abriebfestigkeit gemƤƟ DIN EN ISO 438 GraphitPulver (Vergleich) 7,0 x 10-4 1 GraphitDispersion (erfindungsgemƤƟ) 6,5 x 10-5 3 CNTsDispersion (erfindungsgemƤƟ) 3,2 x 10-6 5 IndiumzinnoxidDispersion (erfindungsgemƤƟ) 1,2 x 10-2 3 PolyanilinDispersion (erfindungsgemƤƟ) 2 x 10-2 4 The results in Table 1 show that although the application of elemental powdered graphite to a substrate results in comparable conductivities as the application of a graphite dispersion, the graphite dispersion according to the invention has a significantly higher abrasion resistance. In addition, the values in Table 1 show that with carbon nanotubes significantly lower values for the resistivity and thus significantly higher specific conductivities at the same time significantly improved Abrasion resistance - which is comparable to that of mechanically resistant paints - can be obtained. <b> Table 1: </ b> Conductive material Specific resistance [Ī© m] Abrasion resistance according to DIN EN ISO 438 Graphite powder (comparative) 7.0 x 10 -4 1 Graphite dispersion (according to the invention) 6.5x10 -5 3 CNTs dispersion (according to the invention) 3.2x10 -6 5 Indium tin oxide dispersion (according to the invention) 1.2 x 10 -2 3 Polyaniline dispersion (according to the invention) 2 x 10 -2 4

Claims (20)

  1. Method for electrochemical deposition of metals on substrates for the production of metallic structures and/or of galvanoplastics,
    (a) whereby in a first method step at least a solubilizate and/or a dispersion selected on the basis of electrically conductive materials from the group of electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides is applied to an electrically non-conductive substrate, whereby the application of the solubilizate and/or the dispersion is locally limited and/or carried out by means of location-specific printing process, whereby the solubilizate and/or the dispersion is applied to the substrate with a layer thickness of 0.5 to 30 Āµm,
    (b) where appropriate, a subsequent method step of drying or curing of the solubilizate and/or the dispersion is carried out, and
    (c) whereby in a subsequent method step, at least a metal is electro-chemically deposited on the optionally dried or cured solubilizate and/or on the optionally dried or cured dispersion.
  2. Method according to claim 1, characterised in that as electrically conductive carbon allotropes, graphite, graphene, fullerenes and/or carbon nanotubes (CNTs), especially carbon nanotubes (CNTs), are used.
  3. Method of claim 1 or 2, characterised in that as electrically conductive polymers, polyacetylene, polyaniline, polyparaphenylene polypyrrole and/or polythiophene are used.
  4. Method according to any one of the preceding claims, characterised in that as the electrically conductive inorganic oxides, indium tin oxide (ITO), indium zinc oxide (IZO), aluminium zinc oxide (AZO), antimony tin oxide (ATO) and/or fluorine tin oxide (FTO) are used.
  5. Method according to any one of the preceding claims, characterised in that the solubilizate and/or the dispersion is water-based and/or solvent-based, in particular whereby the solvent of the solubilizate and/or the continuous phase of the dispersion, is an aqueous-based, organic-based or organic-aqueous-based solvent and/or dispersion medium, or that the dispersion is a mixture of solids, in particular a powder coating.
  6. Method according to any one of the preceding claims, characterised in that
    - the solubilizate and/or the dispersion is curable, in particular radiation-curable and/or thermally-curable, preferably radiation-curable, and/or
    - the solubilizate and/or dispersion has at least one curable, in particular radiation-curable and/or thermally-curable, preferably radiation-curable, component, in particular at least one reactive diluent, and/or
    - the solvent of the solubilizate and/or the continuous phase of the dispersion is curable, in particular radiation-curable and/or thermally-curable, preferably radiation-curable.
  7. Method according to any one of the preceding claims, characterised in that the solubilizate and/or the dispersion contain the electrically conductive materials in amounts of from 0.001 to 90 wt.-%, in particular from 0.005 to 80 wt.-%, preferably 0.01 to 50 wt.%, more preferably 0.01 to 30 wt.-%, particularly preferably 0.01 to 20 wt.-%, with respect to the solubilizate and/or the dispersion.
  8. Method according to any one of the preceding claims, characterised in that
    - the solubilizate and/or the dispersion comprises at least one additive, in particular in amounts of from 0.001 to 60 wt.-%, in particular 0.005 to 50 wt.-%, preferably 0.01 to 40 wt.-%, more preferably 0.05 to 30 wt.-%, most preferably from 0.1 to 20 wt.-%, with respect to the solubilizate and/or the dispersion, and/or
    - the solubilizate and/or the dispersion comprises at least one additive, in particular selected from the group of dispersion agents (dispersants), tensides or surfactants, defoamers, rheology modifiers, binders, film formers, biocides, marker substances, pigments, fillers, adhesion promoters, flow additives, cosolvents, film formation prevention agents, UV absorbers, anticlogging agents and/or stabilisers, and/or
    - the solubilizate and/or the dispersion comprises at least one wetting and/or dispersing agent, and/or
    - the solubilizate and/or dispersion has at least one surfactant additive selected from the group of slide and/or slip additives: levelling agents; surface additives, especially crosslinkable surface additives; adhesion promoters and/or substrate wetting additives; hydrophobic agents and antiblocking agents, and/or
    - the solubilizate and/or the dispersion has at least one rheology control additive selected from the group consisting of rheology additives, in particular thickeners and/or thixotropic agents; defoamers; diuretics; structuring agents, as well as softening agents and/or plasticisers, and/or
    - the solubilizate and/or dispersion has at least one additive selected from the group of corrosion inhibitors; light stablisers, especially UV absorbers, radical scavengers, quenchers and/or hydrogen peroxide stabilisers; drying agents; film formation prevention agents; catalysts; accelerators; biocides; preservatives; scratch resistance additives; antistatic agents; waxes: fillers and pigments.
  9. Method according to any one of the preceding claims, characterised in that
    - the substrate is an inorganic and/or organic substrate, in particular selected from the group of glass, ceramics, silicones, clays, waxes, plastics, and composite materials, and/or
    - the substrate is a two-dimensional, in particular sheet-like, substrate or a three-dimensional substrate.
  10. Method according to any one of the preceding claims, characterised in that in that the solubilizate and/or the dispersion is applied by means of an ink-jet printing method, gravure printing method, flexographic printing method, offset printing method, toner-based printing process, preferably by means of an inkjet printing process.
  11. Method according to any one of the preceding claims, characterised in that
    - the solubilizate and/or dispersion is applied at temperatures of 0 to 300Ā°C, in particular 0 to 200Ā°C, preferably 5 to 200Ā°C, preferably 10 to 100Ā°C, more preferably 15 to 80Ā°C, and/or
    - in accordance with DIN EN ISO 2431, the dispersion has a dynamic viscosity in the range from 5 to 1,100,000 mPas, in particular in the range from 5 to 100,000 mPas, preferably in the range from 5 to 50,000 mPas, preferably in the range of 7 to 1,000 mPas, especially preferably in the range of 7 to 500 mPas, most preferably in the range from 7 to 300 mPas and/or
    - the dispersion is applied to the substrate with a layer thickness of 0.5 to 30 Āµm, preferably 1 to 20 Āµm, particularly preferably 2 to 15 Āµm.
  12. Method according to any one of the preceding claims, characterised in that.
    - the electrically conductive structure according to the implementation according to method steps (a) and/or (b) has a layer thickness of 0.01 to 100 Āµm, in particular from 0.05 to 50 Āµm, preferably 0.1 to 30 Āµm, more preferably 0.2 to 20 Āµm, even more preferably 0.3 to 10 Āµm, very particularly preferably 0.4 to 5 Āµm, even more particularly preferably 0.5 to 3 Āµm, most preferably 0.6 to 2 Āµm, and/or
    - the electrically conductive structure after implementation of the method step (a) and/or (b) and/or (c) has a Taber abrasion resistance according to DIN EN ISO 438 of at least class 2, in particular at least class 3, preferably at least class 4, and/or
    - the electrically conductive structure according to the implementation according to method steps (a) and/or (b) has a wet abrasion resistance according to EN 13300 of at least class 4, in particular at least class 3, preferably class 1 or 2, and/or
    - the electrically conductive structure according to the implementation according to method steps (a) and/or (b) has a resistivity p in the range of 10-7 Ī©m to 1010 Ī©m, especially in the range of 10-6 Ī©m to 105 Ī©m, preferably in the range of 10-5 Ī©m to 103 Ī©m, and/or
    - the electrically conductive structure according to the implementation according to method step (c) has a resistivity p in the range of 10-9 Ī©m to 10-1 Ī©m, in particular in the range of 10-8 to 10-2 Ī©m, preferably in the range of 10-7 Ī©m to 10-3 Ī©m.
  13. Method according to any one of the preceding claims, characterised in that
    - in method step (c), the metal to be deposited comprises at least one transition metal, in particular a noble metal or a metal from the group of the lanthanides, and/or
    - at least one metal selected from the group of Cu, Ag, Au, Pd, Pt, Rh, Co, Ni, Cr, V and Nb, is electrochemically deposited on the substrate.
  14. Method according to any one of the preceding claims, characterised in that
    - the metal is deposited from a solution of the metal, and/or
    - the metal is deposited by applying an external electrical voltage, in particular by electrolysis, in particular galvanically deposited, and/or
    - the metal is deposited with current densities from 1 to 10 mA/cm2, especially 2 to 8 mA/cm2, preferably 3 to 6 mA/cm2, and/or
    - the metal is deposited with a layer thickness from 1 nm to 8,000 Āµm, preferably from 2 nm to 4000 Āµm, more preferably from 5 nm to 2,500 Āµm, even more preferably from 10 nm to 2,000 Āµm, most preferably from 50 nm to 1,000 Āµm.
  15. Method according to any one of the preceding claims, characterised in that the metallic structure obtained by electro-chemical deposition, in particular in method step (c), is subjected to a final treatment, in particular in a method step (d), in particular by etching, polishing, sputtering, casting, filling or coating.
  16. Electrically conductive metal structures, obtainable by a method according to any one of the preceding claims.
  17. Electrically conductive metal structures according to claim 16, comprising a non-conductive substrate to which is applied at least partially at least one electrically conductive material selected from the group of electrically conductive carbon allotropes, electrically conductive polymers and electrically conductive inorganic oxides, by means of printing processes, whereby at least one metal is in turn electro-chemically deposited on the electrically conductive material.
  18. Use of conductive structures according to claim 16 or 17 in electronics and electrical engineering, particularly in the computer and semiconductor industries and metrology, in particular for the production of conductor tracks, microstructured components, precision mechanical components and electronic or electrical components.
  19. Use of conductive structures according to claim 16 or 17 for the manufacture of metallic structures, in particular two-dimensional and/or three-dimensional metallic structures, preferably for electroforming, and/or for the preparation of galvanoplastics and/or for the production of decorative elements.
  20. Conducting paths, microstructured components, precision mechanical components, electronic or electrical components, microstructures, decorative elements or galvanoplastics comprising an electrically conductive structure according to claim 16 or 17.
EP12798611.5A 2011-12-02 2012-11-30 Method for producing electrically conductive structures on non-conductive substrates and structures made in this manner Active EP2785896B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12798611.5A EP2785896B1 (en) 2011-12-02 2012-11-30 Method for producing electrically conductive structures on non-conductive substrates and structures made in this manner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11009542 2011-12-02
PCT/EP2012/004965 WO2013079219A1 (en) 2011-12-02 2012-11-30 Method for producing electrically conductive structures on non-conductive substrates and structures made in this manner
EP12798611.5A EP2785896B1 (en) 2011-12-02 2012-11-30 Method for producing electrically conductive structures on non-conductive substrates and structures made in this manner

Publications (2)

Publication Number Publication Date
EP2785896A1 EP2785896A1 (en) 2014-10-08
EP2785896B1 true EP2785896B1 (en) 2015-09-23

Family

ID=47326051

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12798611.5A Active EP2785896B1 (en) 2011-12-02 2012-11-30 Method for producing electrically conductive structures on non-conductive substrates and structures made in this manner

Country Status (7)

Country Link
US (1) US20140339092A1 (en)
EP (1) EP2785896B1 (en)
JP (1) JP2014533780A (en)
KR (1) KR20140098229A (en)
CN (1) CN104080956A (en)
IN (1) IN2014KN01179A (en)
WO (1) WO2013079219A1 (en)

Cited By (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016124682A1 (en) 2016-12-16 2018-06-21 Technische UniversitƤt Chemnitz Method for printing on a liquid surface

Families Citing this family (16)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849904B (en) * 2014-04-01 2016-05-04 å±±äøœē†å·„大学 Directly gone out the method on bionical replica surface by the reverse electroforming of crisp fritter type biological surface
WO2017034292A1 (en) * 2015-08-26 2017-03-02 ź¹€ķ˜•ė½ Method of manufacturing pattern of dispersed particles using electric field on nonconductive substrate
GB201604342D0 (en) * 2016-03-14 2016-04-27 Aurubis Belgium Nv Sa Substrate
CN107187143B (en) * 2017-05-11 2019-12-17 ę­Œå°”č‚”ä»½ęœ‰é™å…¬åø Metal and plastic composite and preparation method thereof
KR102036607B1 (en) * 2017-07-06 2019-10-28 ź¹€ķ˜œģ—° Electroplating method of nonconductive objects and ornaments produced thereby
DE102017121228A1 (en) * 2017-09-13 2019-03-14 Helmholtz-Zentrum Berlin FĆ¼r Materialien Und Energie Gmbh A method of surface treating a sample having at least one surface of a metal oxide and treated surface metal oxide
KR102492733B1 (en) 2017-09-29 2023-01-27 ģ‚¼ģ„±ė””ģŠ¤ķ”Œė ˆģ“ ģ£¼ģ‹ķšŒģ‚¬ Copper plasma etching method and manufacturing method of display panel
CN107620096A (en) * 2017-09-29 2018-01-23 佛山åø‚ę˜„ęš–čŠ±å¼€ē§‘ęŠ€ęœ‰é™å…¬åø One kind layering electroplating process
CN107620095A (en) * 2017-09-29 2018-01-23 佛山åø‚ę˜„ęš–čŠ±å¼€ē§‘ęŠ€ęœ‰é™å…¬åø A kind of composite-layer metal electroplating process
CN110158132A (en) * 2018-02-13 2019-08-23 华ē‘žå¢ØēŸ³äø¹é˜³ęœ‰é™å…¬åø A kind of electro-plating method of insulating materials
CN109285635A (en) * 2018-08-09 2019-01-29 č‹å·žåƒå±‚čŒ§å†œäøšē§‘ęŠ€ęœ‰é™å…¬åø A kind of single-faced conductive film roller press type and preparation method thereof
CN108834309B (en) * 2018-08-30 2020-07-31 陈伟元 Graphene metallization solution and preparation method and application thereof
CN109440155A (en) * 2018-10-30 2019-03-08 厦é—Øå»ŗ霖偄åŗ·å®¶å±…č‚”ä»½ęœ‰é™å…¬åø A kind of method of pair of non-metallic substrate surface metalation processing
CN110596986A (en) * 2019-09-03 2019-12-20 ę·±åœ³åø‚åŽę˜Ÿå…‰ē”µęŠ€ęœÆęœ‰é™å…¬åø Preparation method of color film substrate, color film substrate and liquid crystal display panel
CN112791225A (en) * 2019-11-14 2021-05-14 ē¾Žå›½å‘ēŽ°é›†å›¢ęœ‰é™å…¬åø Nano robot for tumor treatment and preparation method thereof
CN113179592A (en) * 2021-04-27 2021-07-27 ę±Ÿé—Øåø‚å¾·ä¼—ę³°å·„ēØ‹å”‘čƒ¶ē§‘ęŠ€ęœ‰é™å…¬åø Circuit board and manufacturing method thereof

Family Cites Families (18)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US4619741A (en) 1985-04-11 1986-10-28 Olin Hunt Specialty Products Inc. Process for preparing a non-conductive substrate for electroplating
DE4141416A1 (en) 1991-12-11 1993-06-17 Schering Ag METHOD FOR COATING SURFACES WITH FINE-PARTICLE SOLID PARTICLES
US5476580A (en) 1993-05-17 1995-12-19 Electrochemicals Inc. Processes for preparing a non-conductive substrate for electroplating
US5389270A (en) 1993-05-17 1995-02-14 Electrochemicals, Inc. Composition and process for preparing a non-conductive substrate for electroplating
US5667662A (en) * 1996-04-01 1997-09-16 Shipley Company, L.L.C. Electroplating process and composition
DE19806360A1 (en) * 1997-03-13 1998-09-17 Juergen Otto Prof Dr Besenhard A method of electrolytically depositing a smooth-surfaced metal layer on a substrate using a graphite dispersion
JP2001267376A (en) * 2000-03-14 2001-09-28 Seiko Instruments Inc Manufacturing method of fpc and display
US20100119789A1 (en) * 2005-04-06 2010-05-13 Grande William J Advanced conductive ink
DE102005043242A1 (en) * 2005-09-09 2007-03-15 Basf Ag Dispersion for applying a metal layer
JP4411289B2 (en) * 2006-03-22 2010-02-10 äø‰äŗ•é‡‘å±žé‰±ę„­ę Ŗ式会ē¤¾ Wiring board
WO2007144322A1 (en) * 2006-06-14 2007-12-21 Basf Se Method for producing electrically conductive surfaces on a carrier
WO2008015168A1 (en) * 2006-08-03 2008-02-07 Basf Se Method for applying a metal layer to a substrate
EP1897975B1 (en) * 2006-09-07 2012-03-14 Enthone, Inc. Deposition of conductive polymer and metallization of non-conductive substrates
EP1897973A1 (en) * 2006-09-07 2008-03-12 Enthone, Inc. Deposition of conductive polymer and metallization of non-conductive substrates
DE102006055106C5 (en) 2006-11-14 2018-08-23 Byk-Chemie Gmbh dispersing
US20100038251A1 (en) * 2008-08-14 2010-02-18 Snu R&Db Foundation Carbon nanotube network-based nano-composites
JP2010076110A (en) * 2008-09-24 2010-04-08 Toshiba Corp Resin molding and method of manufacturing the same
JP2010174084A (en) * 2009-01-28 2010-08-12 Panasonic Corp Ink containing carbon nanotube

Cited By (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016124682A1 (en) 2016-12-16 2018-06-21 Technische UniversitƤt Chemnitz Method for printing on a liquid surface

Also Published As

Publication number Publication date
KR20140098229A (en) 2014-08-07
EP2785896A1 (en) 2014-10-08
IN2014KN01179A (en) 2015-10-16
WO2013079219A1 (en) 2013-06-06
CN104080956A (en) 2014-10-01
US20140339092A1 (en) 2014-11-20
JP2014533780A (en) 2014-12-15

Similar Documents

Publication Publication Date Title
EP2785896B1 (en) Method for producing electrically conductive structures on non-conductive substrates and structures made in this manner
EP2087490B1 (en) Aqueous formulation containing silver, and its use for production of electrically conductive or reflective coatings
EP2119747B1 (en) Printable compound based on silver particles for the creation of electrical conducting coatings
JP6005852B2 (en) Metallic nanoparticle dispersion system
EP2163146A2 (en) Method for the production of polymer-coated metal foils, and use thereof
DE4343509B4 (en) Conductive element and its use
WO2008142064A1 (en) Method for the production of metal-coated base laminates
EP1779392A1 (en) Process for coating fine particles with conductive polymers
EP2265746A2 (en) Method and dispersion for applying a metal layer to a substrate and metallizable thermoplastic molding compound
WO2007144322A1 (en) Method for producing electrically conductive surfaces on a carrier
WO2008087172A1 (en) Method for the production of structured, electrically conductive surfaces
WO2008065069A1 (en) Device and method for electroplating
EP2108239A1 (en) Process for producing electrically conductive surfaces
EP2050321A1 (en) Method for producing structured electrically conductive surfaces
WO2008015167A1 (en) Dispersion for applying a metal layer
EP2287240B1 (en) Method for inserting carbon particles into a polycarbonate surface layer
WO2008101884A2 (en) Method for contacting electrical components
WO2005116298A1 (en) Synthetic based diamond electrode
EP2980167B1 (en) Antifouling coating and its use and method for protecting surfaces from biofouling
TW201120162A (en) Polymer thick film silver electrode composition for use as a plating link
DE102018218861A1 (en) Hydrophobically equipped fuel cell
DE102009045061A1 (en) Producing electrically conductive, structured or fully flat surface, comprises applying base layer on a support using a dispersion, curing and/or drying the material, exposing particle by partial disruption and forming metal- on base layer
CN108055768B (en) Preparation method of high-molecular conductive film
Zhang et al. Selective Metallization of Thermoplastic Elastomers Based on Laserā€Induced Surface Activation
DE3733002A1 (en) Electroconductive pattern metallised additively

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TINTHOFF, TOBIAS

Inventor name: BERKEI, MICHAEL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150703

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 751306

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012004708

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012004708

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

26N No opposition filed

Effective date: 20160624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 751306

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130