EP2780098A1 - Procédé et dispositif servant à séparer des gaz acides à partir d'un mélange gazeux - Google Patents

Procédé et dispositif servant à séparer des gaz acides à partir d'un mélange gazeux

Info

Publication number
EP2780098A1
EP2780098A1 EP12773311.1A EP12773311A EP2780098A1 EP 2780098 A1 EP2780098 A1 EP 2780098A1 EP 12773311 A EP12773311 A EP 12773311A EP 2780098 A1 EP2780098 A1 EP 2780098A1
Authority
EP
European Patent Office
Prior art keywords
water
liquid phase
phase
absorption medium
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12773311.1A
Other languages
German (de)
English (en)
Inventor
Jörn Rolker
Matthias Seiler
Ralf Meier
Udo Knippenberg
Rolf Schneider
Muhammad Irfan
Hari Prasad MANGALAPALLY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Publication of EP2780098A1 publication Critical patent/EP2780098A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20415Tri- or polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20421Primary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20426Secondary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20431Tertiary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20442Cyclic amines containing a piperidine-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20484Alkanolamines with one hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/50Combinations of absorbents
    • B01D2252/504Mixtures of two or more absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention relates to a method and a device for separating an acidic gas, in particular CO2, from a gas mixture.
  • Alkanolamines used as absorption medium used as absorption medium.
  • loaded absorption medium is regenerated by heating, releasing to a lower pressure or stripping, whereby the carbon dioxide is desorbed.
  • the absorption medium can be reused.
  • These methods are described, for example, in Rolker, J .; Arlt, W .; "Separation of carbon dioxide from flue gases by absorption” in Chemie Ingenieurtechnik 2006, 78, pages 416 to 424 and in Kohl, A.L .; Nielsen, R. B., "Gas Purification", 5th ed., Gulf Publishing,
  • An absorption medium comprising water, a hindered amine and an alkali metal carbonate.
  • composition of the absorption medium is chosen so that the absorption medium after desorption in the evaporator of the desorption by the
  • the invention therefore relates to a process for the separation of acidic gases from a gas mixture which comprises absorbing acid gases by contacting the gas mixture with an absorption medium comprising water and at least one amine in an absorber to obtain a loaded absorption medium and a desorption of acidic gases from the loaded absorption medium by stripping with steam in a desorption column, wherein the absorption medium used in at
  • Heating over a demixing temperature in the range of 0 to 130 ° C shows a separation into two liquid phases.
  • the desorption is carried out at a temperature at which in the
  • the invention also relates to an apparatus for the separation of acidic gases from a gas mixture comprising an absorber (1), a desorption column (2) with a mass transfer zone (3), an evaporator (5) and a
  • Phase separation device (6) for the separation of two liquid phases with a feed point (7) and separate
  • Phase separation device (6) arranged.
  • Phase separation device (6) has removal points (8, 9) for a low-water liquid phase and a water-rich liquid phase.
  • the mass transfer zone (3) has a liquid outlet (4), which is connected to the feed point (7) of the phase separation device.
  • the device according to the invention also has
  • the gas mixture can be any gas mixture.
  • Natural gas a methane-containing biogas from a
  • Combustion exhaust gas an exhaust gas from a
  • Calcination reaction such as the burning of lime or the production of cement
  • the gas mixture is a combustion exhaust gas Natural gas or a biogas, more preferably a
  • Combustion exhaust gas for example, from a power plant.
  • the gas mixture contains at least one acidic gas
  • CO2 preferably one or more acidic gases from the series CO2, COS, H 2 S, CH 3 SH and S O 2 , particularly preferably CO 2 .
  • Combustion exhaust gas is preferably previously desulfurized, i. S O2 is extracted from the gas mixture with a desulfurization process known from the prior art,
  • the gas mixture preferably has a content of CO2 in the atmosphere before being brought into contact with the absorption medium
  • Range of 0.1 to 50% by volume more preferably in the range of 1 to 20% by volume, and most preferably in the range of 10 to 20% by volume.
  • the gas mixture can still be added to acidic gases
  • the gas mixture in an absorber is contacted with an absorption medium comprising water and at least one amine which, when heated above a demixing temperature ranging from 0 to 130 ° C, segregates into two liquid phases ,
  • the demixing temperature refers to the unloaded absorption medium without acidic gases.
  • Demixing temperature in the range of 0 to 130 ° C.
  • amines are used which have a solubility of less than 100 g of amine in 1 l of water at 100 ° C., more preferably less than 60 g of amine in 1 liter of water and most preferably less than 10 g of amine in 1 liter of water.
  • the content of alkali metal salts in the absorption medium is preferably below 10 wt .-%, more preferably below 5 wt .-% and in particular below 2 wt .-%.
  • Absorption medium at least one amine of the formula (I)
  • Carbon atoms are those with amino groups or
  • Alkylamino groups may be substituted.
  • the absorption medium comprises at least one amine of the formula (I), for which the radicals R 1 and R 2 are independently hydrogen or alkyl radicals having 1 to 6 carbon atoms, more preferably R 1 is hydrogen and R 2 is an alkyl radical 1 to 6 carbon atoms.
  • R 1 and R 2 are independently hydrogen or alkyl radicals having 1 to 6 carbon atoms, more preferably R 1 is hydrogen and R 2 is an alkyl radical 1 to 6 carbon atoms.
  • R 1 and R 2 are independently hydrogen or alkyl radicals having 1 to 6 carbon atoms, more preferably R 1 is hydrogen and R 2 is an alkyl radical 1 to 6 carbon atoms.
  • R 1 is hydrogen
  • R 2 is an alkyl radical 1 to 6 carbon atoms.
  • Most preferred are the compounds 4- (n-propylamino) -
  • R 1 is hydrogen and R 2 is n-propyl or n-butyl.
  • R 1 is preferably hydrogen and R 2 is an alkyl radical having 1 to 6 carbon atoms, R 2 particularly preferably n-propyl or n-butyl.
  • the weight ratio of the first amine of the formula (I) to the second amine of the formula (I) is preferably in the range from 10: 1 to 1:10, particularly preferably in the range from 3: 1 to 1: 5 and in particular in the range from 1 : 1 to 1: 3.
  • the absorption medium preferably comprises from 25 to 85% by weight of water and from 15 to 75% by weight of amines of the formula (I), based in each case on unloaded absorption medium without acidic gases.
  • an absorption medium containing amines of formula (I) By using an absorption medium containing amines of formula (I), a high capacity for the absorption of CO 2 can be achieved even at low C0 2 partial pressure. In addition, such absorption media are less corrosive, show good stability against
  • the absorption medium may contain, in addition to water and amines of the formula (I), at least one sterically unhindered primary or secondary amine as activator.
  • a sterically unhindered primary amine in the sense of the invention is a primary amine in which the amino group is attached to a
  • Carbon atom is bound to the at least one
  • a sterically unhindered secondary amine in the sense of the invention is a secondary amine in which the amino group is bonded to carbon atoms to which in each case at least two hydrogen atoms are bonded.
  • the content of sterically unhindered primary or secondary amines is preferably 0.1 to 10 wt .-%, particularly preferably 0.5 to 8 wt .-%.
  • Suitable activators are activators known from the prior art, for example ethanolamine, piperazine and 3- (methylamino) -propylamine. Also suitable is 4-amino-2, 2, 6, 6-tetramethylpiperidine. The addition of an activator leads to an acceleration of the absorption of CO 2 from the gas mixture without loss of absorption capacity.
  • the absorption medium may contain, in addition to water and amines, one or more physical solvents
  • the proportion of physical solvents can be up to 50 wt .-%. As a physical
  • Solvents are sulfolane, aliphatic
  • Acid amides such as N-formylmorpholine, N-acetylmorpholine,
  • N-alkylpyrrolidones in particular N-methyl-2-pyrrolidone, or N-alkylpiperidones, and also diethylene glycol,
  • Alkyl ethers in particular diethylene glycol monobutyl ether.
  • the absorption medium does not contain a physical solvent.
  • the absorption medium may additionally have additives, such as corrosion inhibitors, wetting-requiring additives and defoamers.
  • corrosion inhibitors it is possible in the absorption medium to use all substances which are known to the person skilled in the art for the absorption of CO 2 using alkanolamines as suitable corrosion inhibitors, in particular the corrosion inhibitors described in US Pat. No. 4,714,597.
  • the amount of corrosion inhibitors can be significantly lower when using amines of the formula (I) than in a conventional
  • Ethanolamine-containing absorption medium since absorption media containing amines of formula (I), compared to metallic materials significantly less are corrosive than the commonly used ethanolamine-containing absorption media.
  • the wetting-requiring additive used is preferably the nonionic surfactants known from WO 2010/089257 page 11, line 18 to page 13, line 7, zwitterionic surfactants and cationic surfactants.
  • Defoamers which may be used in the absorption medium are all substances which are suitable for the person skilled in the art for the absorption of CO 2 using alkanolamines
  • the gas mixture is in a
  • Absorption column brought into contact with the absorption medium wherein the absorption column is preferably operated in countercurrent, in order to achieve a low residual content of acidic gases in the gas mixture after absorption.
  • the absorption is preferably carried out at a temperature in the range of 0 ° C to 70 ° C, more preferably 20 ° C to 50 ° C, wherein the temperature of the absorption medium when entering the absorber below the
  • Demixing temperature is. Within the absorber, the temperature can also be above the segregation temperature
  • Absorption column is the temperature of the
  • Absorbent medium preferably 30 to 60 ° C when entering the column and 35 to 70 ° C when exiting the column.
  • the absorption is preferably carried out at a pressure of
  • Separation of CO 2 is the initial partial pressure of CO 2 in the gas mixture preferably 0.01 to 4 bar,
  • the absorption at a total pressure of the gas mixture in the range of 0.8 to 1.5 bar, in particular 0.9 to 1.1 bar, performed. This particularly preferred embodiment is advisable in the absorption of CO 2 from the combustion exhaust gas of a power plant without compression of the combustion exhaust gas.
  • the laden absorption medium obtained in the absorber is a
  • the desorption is carried out at a temperature at which separation takes place in the desorption column into a water-rich liquid phase and a water-poor liquid phase.
  • the temperature in the desorption is preferably in the range of 50 ° C to 200 ° C, more preferably in the range of 80 ° C to 150 ° C.
  • the desorption is preferably carried out at a pressure in the range from 10 mbar to 10 bar, particularly preferably in the range from 100 mbar to 5 bar.
  • the water-rich liquid phase resulting from the desorption and the water-poor liquid phase are separated from each other. Part of the water-rich liquid phase is fed to an evaporator in which water vapor is generated, which is fed into the desorption column and stripped with the in the desorption column of acidic gases.
  • the low-water liquid phase and the remaining part of the water-rich liquid phase are called
  • the low-water liquid phase and the remaining part of the water-rich liquid phase are preferably mixed together at a temperature below the demixing temperature before being returned to the absorber.
  • the proportion of water-rich in the evaporator not evaporated liquid phase can optionally be supplied to the desorption column or the absorber.
  • Absorption and desorption can be achieved because in the process, the desorption can be carried out to a low residual content of acidic gases and absorption media can be used with a high proportion by weight of amines with which a high loading is achieved in the absorption.
  • the thermal and oxidative degradation of the amines used for absorption is low in the inventive method, since only a small part of the amines enters the evaporator and is exposed there to the high temperatures at the heat exchange surfaces.
  • the energy requirement of the method according to the invention is compared to
  • Methods using a single-phase absorption medium are significantly lower.
  • the process according to the invention requires no auxiliary substances in addition to water and amine and can be carried out in simple and inexpensive apparatuses.
  • Figure 1 shows a flow diagram of an embodiment of a device according to the invention, in which the
  • Desorption column (2) is arranged.
  • Figure 2 shows a flow diagram of a preferred embodiment of a device according to the invention, in which the
  • Phase separation device (6) within the desorption column (2) below the mass transfer zone (3) is arranged.
  • the device according to the invention for the separation of acidic gases from a gas mixture comprises an absorber (1) in which the gas mixture (20) containing acidic gases is brought into contact with a liquid absorption medium.
  • absorber all known from the prior art devices for the absorption of a gas from a Gas mixture are used in a liquid.
  • a washing column is preferably used, preferably internals to increase the
  • Suitable internals are, for example, packing, e.g. Raschig rings or Pall rings, structured column packs, e.g.
  • Sheet metal packings as well as column bottoms, e.g. Sieve trays.
  • a membrane contactor a radial flow scrubber, a jet scrubber, a venturi scrubber or a rotary scrubber can be used as the absorber.
  • the absorber used is particularly preferably a scrubbing column for countercurrent operation, in which the gas mixture containing acidic gases in a lower region of the
  • Absorption medium is supplied in an upper region of the wash column.
  • the device according to the invention comprises a
  • the desorption column is laden with the acidic gas
  • Absorption medium supplied from the absorber is preferably fed to the desorption column above the mass transfer zone.
  • a desorption column all known from the prior art columns for the desorption of a gas from a liquid can be used.
  • Mass transfer zone (3) is preferably in the form of
  • Column trays random packings or structured packings are preferably used as internals.
  • column trays for example, bubble trays, sieve trays, tunnel trays, valve trays, slotted trays, sieve slotted trays, sieve bubble trays, nozzle trays or
  • the mass transfer zone (3) has a liquid outlet (4), on which liquid is collected, which emerges at the lower end of the mass transfer zone.
  • the device according to the invention comprises an evaporator (5) in which steam is produced, which is fed to the desorption column (2) to supply heat for the desorption of acidic gas from the loaded absorption medium and with the vapor stream acidic gases from the liquid
  • evaporator all known from the prior art evaporators can be used, for example, natural circulation evaporator,
  • the device according to the invention comprises a
  • Phase separation device (6) for the separation of two liquid phases with a feed point (7) and separate
  • Evaporator (5) and the phase separator (6) are arranged separately.
  • the liquid outlet (4) of the mass transfer zone (3) is connected to the feed point (7) of the phase separation device in order to remove from the
  • Phase separation device can all from the state of
  • settling tanks in which a separation of the Phases are done by gravity.
  • separators may be used in which the phases are separated by centrifugal forces.
  • phase separation device (6) is arranged within the desorption column (2) below the mass transfer zone (3)
  • the device according to the invention comprises a
  • Device also comprises a connecting line (11) from the discharge point (9) for low-water liquid phase to the absorber (1), is returned to the low-water liquid phase in the absorber.
  • the device according to the invention additionally comprises a
  • the phase separation device (6) in this embodiment has a level control (18) for a liquid-liquid phase interface in the phase separation device (6), with which the control valve (17) or the controllable pump is driven.
  • the device according to the invention additionally comprises a
  • Removal point (8) for water-rich liquid phase mixes As a mixing device, all known in the art devices for mixing two liquids can be used. As a mixing device are, for example, stirred containers, containers with a liquid circulation via an external circuit or static mixer.
  • Water-rich liquid phase of the mixing device (19) is supplied, heat exchangers (21, 22) arranged, with which let the two phases to a temperature below the demixing temperature of the absorption medium used in the absorber to cool.
  • the heat exchangers (21, 22) are arranged so that they heat exchange between the loaded
  • Desorption column (2) is supplied, and the liquid phases, which are supplied to the mixing device (19) cause.
  • the mixing device By using the mixing device, a uniform flow can be achieved during operation of the device
  • composition of the absorption medium in the absorber ensure that variations in the control of the device do not affect the effectiveness of the absorption.
  • the device according to the invention preferably additionally comprises a condenser (23), which is connected to the head of the desorption column (2) and connected to the
  • FIG. 1 shows an embodiment of the device according to the invention, in which the phase separation device (6) is arranged separately from the desorption column (2) and is designed as a settling tank with an overflow weir.
  • Mass transfer zone (3) used in the connecting line between the liquid outlet (4) and the inlet point (7) of the phase separation device koaleszenzufde internals can be arranged, such as
  • Coalescing filter to achieve a more complete phase separation in the phase separation device.
  • Figure 2 shows a preferred embodiment
  • phase separation device (6) within the desorption column (2) below the mass transfer zone (3) is arranged.
  • the phase separation device (6) is characterized by a
  • Overflow weir (13) formed in the column sump (12), which separates the column sump in a first zone (14) and a second zone (15), and by a feed point (7) to the first zone (14), wherein the feed point with the
  • Liquid outlet (4) of the mass transfer zone (3) is connected.
  • the liquid drain (4) is preferably formed as a collection tray for liquid with a liquid drain above the first zone.
  • the feed point to the first zone (14) may be above the first zone (14) be arranged as shown in Figure 2, or within the first zone (14) below the upper edge of the overflow weir (13) to be arranged.
  • a removal point (8) is arranged, which via a connecting line (10) connected to the evaporator (5) is and arranged in the second zone (15) has a removal point (9), which has a
  • the device according to the invention may comprise additional pumps, measuring devices, control valves, shut-off valves and buffer containers which are not shown in FIGS. 1 and 2 and which the person skilled in the art has been aware of
  • the device according to the invention has a simple structure and can be carried out with commercially available apparatuses. It enables stable operation without
  • the absorption medium was placed in a pressure-resistant glass vessel and saturated at 20 ° C and atmospheric pressure by the addition of dry ice with CO 2 .
  • the glass jar was then capped and the CO 2 -loaded absorption medium was slowly heated in an oil bath until separation into two liquid phases, that of turbidity of the previously clear mixture
  • Butyl TAD 4- (n-butylamino) -2,2,6,6-tetramethylpiperidine
  • DM-TAD 4- (dimethylamino) -2,2,6,6-tetramethylpiperidine
  • TAT 4- (3-dimethylamino-propylamino) -
  • EAE-TAD 4- (2-ethylamino-ethylamino) -
  • Evaporator is supplied, containing only small amounts of amine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

L'invention concerne un procédé servant à séparer des gaz acides à partir d'un mélange gazeux. Ce mélange gazeux est amené en contact avec un milieu absorbant contenant de l'eau et au moins une amine et présentant une température de séparation comprise dans la plage allant de 0 à 130 °C. A partir du milieu absorbant chargé, les gaz acides sont désorbés dans une colonne de désorption par entraînement à la vapeur d'eau, la désorption s'effectuant à une température à laquelle il se produit dans la colonne de désorption une séparation en une phase liquide riche en eau et en une phase liquide pauvre en eau. La phase liquide riche en eau obtenue et la phase liquide pauvre en eau sont séparées, la phase liquide riche en eau est introduite dans un évaporateur dans lequel on produit de la vapeur d'eau avec laquelle on rectifie les gaz acides dans la colonne de désorption. La phase liquide pauvre en eau et la phase liquide riche en eau sont réintroduites en tant que milieu absorbant dans l'absorbeur. Un dispositif pour ce procédé comprend un absorbeur (1), une colonne de désorption (2) ayant une zone d'échange de substances (3) comportant une évacuation des liquides (4), un évaporateur (5) et un dispositif de séparation de phases (6) ayant un point d'alimentation (7) et des points de prélèvement (8, 9) pour les phases liquides, l'évaporateur (5) étant agencé à l'écart du dispositif de séparation de phases (6), l'évacuation des liquides (4) de la zone d'échange de substances (3) étant reliée au point d'alimentation (7) du dispositif de séparation de phases et le dispositif comportant des conduits de raccordement (10, 11) partant du point de prélèvement (8) pour la phase liquide riche en eau jusqu'à l'évaporateur (5) et du point de prélèvement (9) pour la phase liquide pauvre en eau jusqu'à l'absorbeur (1).
EP12773311.1A 2011-11-14 2012-10-15 Procédé et dispositif servant à séparer des gaz acides à partir d'un mélange gazeux Withdrawn EP2780098A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011086252 2011-11-14
PCT/EP2012/070380 WO2013072147A1 (fr) 2011-11-14 2012-10-15 Procédé et dispositif servant à séparer des gaz acides à partir d'un mélange gazeux

Publications (1)

Publication Number Publication Date
EP2780098A1 true EP2780098A1 (fr) 2014-09-24

Family

ID=47040720

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12773311.1A Withdrawn EP2780098A1 (fr) 2011-11-14 2012-10-15 Procédé et dispositif servant à séparer des gaz acides à partir d'un mélange gazeux

Country Status (10)

Country Link
US (2) US9221007B2 (fr)
EP (1) EP2780098A1 (fr)
AU (1) AU2012339061B2 (fr)
BR (1) BR112014008497A2 (fr)
CA (1) CA2855855A1 (fr)
CO (1) CO6960534A2 (fr)
EA (1) EA025928B1 (fr)
MX (1) MX2014005746A (fr)
TN (1) TN2014000090A1 (fr)
WO (1) WO2013072147A1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088389B1 (fr) * 2008-02-05 2017-05-10 Evonik Degussa GmbH Machine de refroidissement à absorption
EP2087930A1 (fr) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Procédé d'absorption d'une matière volatile dans un produit d'absorption liquide
DE102009000543A1 (de) 2009-02-02 2010-08-12 Evonik Degussa Gmbh Verfahren, Absorptionsmedien und Vorrichtung zur Absorption von CO2 aus Gasmischungen
DE102009047564A1 (de) 2009-12-07 2011-06-09 Evonik Degussa Gmbh Arbeitsmedium für eine Absorptionskältemaschine
EP2433700A1 (fr) * 2010-09-23 2012-03-28 Alstom Technology Ltd Suppression de composant à traces dans les procédés de suppression de CO2 au moyen d'une membrane semi-perméable
DE102011077377A1 (de) 2010-11-12 2012-05-16 Evonik Degussa Gmbh Verfahren zur Absorption von sauren Gasen aus Gasmischungen
DE102012200907A1 (de) 2012-01-23 2013-07-25 Evonik Industries Ag Verfahren und Absorptionsmedium zur Absorption von CO2 aus einer Gasmischung
DE102012207509A1 (de) 2012-05-07 2013-11-07 Evonik Degussa Gmbh Verfahren zur Absorption von CO2 aus einer Gasmischung
WO2015053619A1 (fr) 2013-10-07 2015-04-16 Carbonoro B.V. Procédé pour capturer du co2 à partir d'un flux de gaz contenant du co2 impliquant une séparation de phase d'un absorbant aqueux
JP6121894B2 (ja) * 2013-12-25 2017-04-26 株式会社東芝 酸性ガス除去装置及び酸性ガス除去方法
DE102015212749A1 (de) 2015-07-08 2017-01-12 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
JP6843846B2 (ja) 2015-09-29 2021-03-17 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se 硫化水素を選択的に除去するための環状アミン
EP3257843A1 (fr) 2016-06-14 2017-12-20 Evonik Degussa GmbH Procédé pour préparer un sel tres pur d'imidazolium
DE102016210478A1 (de) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
DE102016210483A1 (de) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren und Absorptionsmittel zur Entfeuchtung von feuchten Gasgemischen
EP3257568B1 (fr) 2016-06-14 2019-09-18 Evonik Degussa GmbH Procede de deshumidification de melanges gazeux humides par des liquides ioniques
DE102016210481B3 (de) 2016-06-14 2017-06-08 Evonik Degussa Gmbh Verfahren zum Reinigen einer ionischen Flüssigkeit
DE102016210484A1 (de) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
JP6906761B2 (ja) * 2017-05-01 2021-07-21 株式会社神戸製鋼所 ガス処理方法及びガス処理装置
JP6906766B2 (ja) * 2017-11-30 2021-07-21 株式会社神戸製鋼所 ガス処理方法及びガス処理装置
CN108176196A (zh) * 2017-12-29 2018-06-19 安徽蓝清源环境科技有限公司 喷淋式废气处理设备
CN108404612A (zh) * 2018-04-25 2018-08-17 青岛海山减碳环保科技有限公司 一种富液多级换热型二氧化碳捕集系统及工艺
CN110038498B (zh) * 2018-04-25 2021-09-28 南京大学 一种连续反应器及其使用方法
CN110327740A (zh) * 2019-07-11 2019-10-15 扬州大学 一种气升式两相分配膜生物反应器
CN110508136B (zh) * 2019-09-11 2021-08-17 南通大学 一种高通量反渗透膜的制备方法
CN111228861B (zh) * 2020-01-15 2022-03-11 萍乡市华星环保工程技术有限公司 真空碳酸钾脱硫设备
EP4157491A4 (fr) * 2020-05-26 2023-11-22 Thiosolv, LLC Procédé pour l'élimination du dioxyde de soufre et de l'ammoniac d'un flux de gaz de ventilation
JP7453890B2 (ja) * 2020-10-05 2024-03-21 株式会社神戸製鋼所 再生装置、ガス処理装置、再生方法及びガス処理方法
CN116600877A (zh) * 2020-12-03 2023-08-15 赢创运营有限公司 捕获二氧化碳的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1656983A1 (fr) * 2004-11-12 2006-05-17 Institut Français du Pétrole Procédé de désacidification d'un gaz avec une solution absorbante à régénération fractionnée
EP2193833A1 (fr) * 2008-11-20 2010-06-09 Ifp Procédé de désacidification d'un gaz par solution absorbante avec démixtion en cours de régénération

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE400488C (de) 1922-10-24 1924-08-11 Hans Hylander Absorptionskaeltemaschine
US1882258A (en) 1930-09-10 1932-10-11 Randel Bo Folke Means and method of refrigeration
DE633146C (de) 1933-06-01 1936-07-20 Sachsenberg Akt Ges Geb Absorptionsapparat
US2516625A (en) 1946-12-02 1950-07-25 Shell Dev Derivatives of dihydropyridine
US2601673A (en) 1951-04-09 1952-06-24 Shell Dev Shortstopping the addition polymerization of unsaturated organic compounds
US2802344A (en) 1953-07-08 1957-08-13 Eureka Williams Corp Electrodialysis of solutions in absorption refrigeration
US3276217A (en) 1965-11-09 1966-10-04 Carrier Corp Maintaining the effectiveness of an additive in absorption refrigeration systems
US4524587A (en) 1967-01-10 1985-06-25 Kantor Frederick W Rotary thermodynamic apparatus and method
US3609087A (en) 1968-02-01 1971-09-28 American Gas Ass Inc The Secondary alcohol additives for lithium bromide-water absorption refrigeration system
US3580759A (en) 1968-06-25 1971-05-25 Borg Warner Heat transfer additives for absorbent solutions
GB1306853A (en) 1970-05-13 1973-02-14 Ici Ltd Process for separating and recovering acid gases from gaseous mixtures
SE409054B (sv) 1975-12-30 1979-07-23 Munters Ab Carl Anordning vid vermepump i vilken ett arbetsmedium vid en sluten process cirkulerar i en krets under olika tryck och temperatur
US4022785A (en) 1976-01-08 1977-05-10 Petrolite Corporation Substituted pyridines and dihydropyridines
US4201721A (en) 1976-10-12 1980-05-06 General Electric Company Catalytic aromatic carbonate process
US4094957A (en) 1976-12-14 1978-06-13 Exxon Research & Engineering Co. Process for removing acid gases with hindered amines and amino acids
US4152900A (en) 1978-04-04 1979-05-08 Kramer Trenton Co. Refrigeration cooling unit with non-uniform heat input for defrost
US4251494A (en) * 1979-12-21 1981-02-17 Exxon Research & Engineering Co. Process for removing acidic compounds from gaseous mixtures using a two liquid phase scrubbing solution
DE3003843A1 (de) 1980-02-02 1981-08-13 Chemische Werke Hüls AG, 4370 Marl Verfahren zur herstellung von 4-amino-2,2,6,6-tetramethylpiperidin
IN163391B (fr) 1981-11-13 1988-09-17 Exxon Research Engineering Co
US4405586A (en) 1981-11-13 1983-09-20 Exxon Research And Engineering Co. N-Secondary butyl glycine promoted acid gas scrubbing process
US4405579A (en) 1981-11-13 1983-09-20 Exxon Research And Engineering Co. Sterically hindered amino acids and tertiary amino acids as promoters in acid gas scrubbing processes
US4360363A (en) 1982-02-16 1982-11-23 Combustion Engineering, Inc. Physical solvent for gas sweetening
US4466915A (en) 1982-09-29 1984-08-21 The B. F. Goodrich Company Non-catalytic ketoform syntheses
NL8403517A (nl) 1984-11-19 1986-06-16 Rendamax Ag Absorptie-resorptie warmtepomp.
HUT41715A (en) 1984-12-28 1987-05-28 Monsanto Co Process for preparing n-substituted alpha-aminoacids and derivatives thereof
JPS61129019U (fr) 1985-01-30 1986-08-13
JPH036759Y2 (fr) 1985-10-28 1991-02-20
US4701530A (en) 1985-11-12 1987-10-20 The Dow Chemical Company Two-stage process for making trimethyl pyridine
US5186010A (en) 1985-11-18 1993-02-16 Darrel H. Williams Absorbent-refrigerant solution
US5016445A (en) 1986-07-07 1991-05-21 Darrell H. Williams Absorption apparatus, method for producing a refrigerant effect, and an absorbent-refrigerant solution
US4714597A (en) 1986-06-26 1987-12-22 Hylsa, S.A. Corrosion inhibitor for CO2 absorption process using alkanolamines
DE3623680A1 (de) 1986-07-12 1988-01-14 Univ Essen Stoffsysteme fuer sorptionsprozesse
US5186009A (en) 1987-04-14 1993-02-16 Gas Research Institute Aqueous absorption fluids
US5126189A (en) 1987-04-21 1992-06-30 Gelman Sciences, Inc. Hydrophobic microporous membrane
IT1222394B (it) 1987-07-30 1990-09-05 Ciba Geigy Spa Processo per la preparazione di 2,2,6,6 tetrametil 4 piperidilammine
JPH07111287B2 (ja) 1987-11-18 1995-11-29 日立電線株式会社 吸収器用伝熱管
JPH02298767A (ja) 1989-05-12 1990-12-11 Nissin Electric Co Ltd 吸収冷凍装置
JP2959141B2 (ja) 1991-02-22 1999-10-06 ダイキン工業株式会社 吸収式冷凍装置
US5390509A (en) 1991-11-27 1995-02-21 Rocky Research Triple effect absorption cycle apparatus
US5255534A (en) 1992-06-25 1993-10-26 Gas Research Institute System and process for operating and absorption cycle around a crystallization curve of the solution
US5303565A (en) 1993-03-11 1994-04-19 Conserve Resources, Inc. Rotary absorption heat pump of improved performance
JP3236402B2 (ja) 1993-04-22 2001-12-10 大阪瓦斯株式会社 吸収式冷凍機
JPH07167521A (ja) 1993-12-15 1995-07-04 Asahi Glass Co Ltd 吸収式冷凍装置
DE19511709A1 (de) 1995-03-30 1996-10-02 Klement Arne Verfahren zur Erzeugung von Kälte und Wärme mit Hilfe einer durch Pervaporation angetriebenen Sorptionskältemaschine
DE29516319U1 (de) 1995-10-14 1996-02-01 Absotech Energiesparsysteme Gm Absorptionswärmetransformationsanlage mit Zusatzkomponenten zur Steigerung der Nutzleistung bzw. Erweiterung der Grenzen für die Antriebs-, Nutz- oder Kühltemperaturen
US6331289B1 (en) 1996-10-28 2001-12-18 Nycomed Imaging As Targeted diagnostic/therapeutic agents having more than one different vectors
US6117963A (en) 1997-03-26 2000-09-12 Th Goldschmidt Ag Tetrahydrofuran-containing silicone polyethers
US5873260A (en) 1997-04-02 1999-02-23 Linhardt; Hans D. Refrigeration apparatus and method
US6184433B1 (en) 1997-04-14 2001-02-06 Nippon Shokubai Co., Ltd. Pressure-resistant absorbent resin, disposable diaper using the resin, and absorbent resin, and method for production thereof
DE19850624A1 (de) 1998-11-03 2000-05-04 Basf Ag Verfahren zur Herstellung von Cyanessigsäureestern
US6155057A (en) 1999-03-01 2000-12-05 Arizona Board Of Regents Refrigerant fluid crystallization control and prevention
WO2000061698A1 (fr) 1999-04-12 2000-10-19 Arizona Board Of Regents Fluide frigorigene diphasique pour appareil frigorifique a absorption et procede de prevention de la corrosion
JP2001074322A (ja) 1999-09-03 2001-03-23 Daikin Ind Ltd 冷凍装置
DE19949347A1 (de) 1999-10-13 2001-04-19 Basf Ag Brennstoffzelle
JP2001219164A (ja) 2000-02-08 2001-08-14 Toyobo Co Ltd 純水製造器および純水製造装置
JP2002047258A (ja) 2000-08-01 2002-02-12 Showa Denko Kk N−イソプロピルグリシンの製造方法
AU2002304855A1 (en) 2001-03-20 2002-10-03 Basf Aktiengesellschaft Ionic liquids as selective additives for the separation of close-boiling or azeotropic mixtures
DE10208822A1 (de) 2002-03-01 2003-09-11 Solvent Innovation Gmbh Halogenfreie ionische Flüssigkeiten
JP2004044945A (ja) 2002-07-12 2004-02-12 Daikin Ind Ltd 吸収式冷凍装置の吸収促進剤
GB0306432D0 (en) 2003-03-20 2003-04-23 Bp Exploration Operating Process
DE10316418A1 (de) 2003-04-10 2004-10-21 Basf Ag Verwendung einer ionischen Flüssigkeit
DE10324300B4 (de) 2003-05-21 2006-06-14 Thomas Dr. Weimer Thermodynamische Maschine und Verfahren zur Aufnahme von Wärme
DE10333546A1 (de) 2003-07-23 2005-02-17 Linde Ag Verfahren zur Olefinabtrennung aus Spaltgasen von Olefinanlagen mittels ionischer Flüssigkeiten
US20050129598A1 (en) 2003-12-16 2005-06-16 Chevron U.S.A. Inc. CO2 removal from gas using ionic liquid absorbents
DE102004011427A1 (de) 2004-03-09 2005-09-29 Basf Ag Absorptionsmittel mit verbesserter Oxidationsbeständigkeit und Verfahren zum Entsäuern von Fluidströmen
DE102004021129A1 (de) 2004-04-29 2005-11-24 Degussa Ag Verfahren zur Isolierung von hochreinem 2-Methoxypropen
DE102004024967A1 (de) 2004-05-21 2005-12-08 Basf Ag Neue Absorptionsmedien für Absorptionswärmepumpen, Absorptionskältemaschinen und Wärmetransformatoren
DE102004053167A1 (de) 2004-11-01 2006-05-04 Degussa Ag Polymere Absorptionsmittel für die Gasabsorption und Absorptionsprozess
US8715521B2 (en) 2005-02-04 2014-05-06 E I Du Pont De Nemours And Company Absorption cycle utilizing ionic liquid as working fluid
JP2006239516A (ja) 2005-03-01 2006-09-14 Shigeo Fujii 揮発性有機溶剤の除去用吸収液組成物およびそれを用いる揮発性有機溶剤の除去方法
DE102005013030A1 (de) 2005-03-22 2006-09-28 Bayer Technology Services Gmbh Verfahren zur destillativen Reinigung schwerflüchtiger Fluide
DE102005028451B4 (de) 2005-06-17 2017-02-16 Evonik Degussa Gmbh Verfahren zum Transport von Wärme
US8506839B2 (en) 2005-12-14 2013-08-13 E I Du Pont De Nemours And Company Absorption cycle utilizing ionic liquids and water as working fluids
FR2895273B1 (fr) 2005-12-22 2008-08-08 Inst Francais Du Petrole Procede de desacidification d'un gaz avec une solution absorbante a regeneration fractionnee avec controle de la teneur en eau de la solution
FR2898284B1 (fr) 2006-03-10 2009-06-05 Inst Francais Du Petrole Procede de desacidification d'un gaz par solution absorbante avec regeneration fractionnee par chauffage.
CN101405146A (zh) 2006-03-20 2009-04-08 巴斯夫欧洲公司 纳米颗粒状金属硼化物组合物以及其用于识别标记塑料部件的用途
FR2900842B1 (fr) 2006-05-10 2009-01-23 Inst Francais Du Petrole Procede de desacidification d'un effluent gazeux avec extraction des produits a regenerer
FR2900841B1 (fr) 2006-05-10 2008-07-04 Inst Francais Du Petrole Procede de desacidification avec extraction des composes reactifs
FR2900843B1 (fr) 2006-05-10 2008-07-04 Inst Francais Du Petrole Procede de desacidification d'un gaz par multiamines partiellement neutralisees
DE102006036228A1 (de) 2006-08-03 2008-02-07 Universität Dortmund Verfahren zum Abtrennen von CO2 aus Gasgemischen
EP2087931A3 (fr) 2008-02-05 2011-08-31 Evonik Goldschmidt GmbH Démoussage de fluides ioniques
EP2088389B1 (fr) 2008-02-05 2017-05-10 Evonik Degussa GmbH Machine de refroidissement à absorption
EP2087930A1 (fr) 2008-02-05 2009-08-12 Evonik Degussa GmbH Procédé d'absorption d'une matière volatile dans un produit d'absorption liquide
EP2093278A1 (fr) 2008-02-05 2009-08-26 Evonik Goldschmidt GmbH Additifs de performance destinés à améliorer les propriétés de mise en réseau de liquides ioniques sur des surfaces solides
ES2541144T3 (es) 2008-06-23 2015-07-16 Basf Se Absorbente y procedimiento para la eliminación de gases ácidos de corrientes de fluido, en particular de gases de humo
FR2934172B1 (fr) 2008-07-28 2011-10-28 Inst Francais Du Petrole Solution absorbante a base de n,n,n'n'-tetramethylhexane -1,6-diamine et procede d'elimination de composes acides d'un effluent gazeux
FR2936165B1 (fr) 2008-09-23 2011-04-08 Inst Francais Du Petrole Procede de desacidification d'un gaz par solution absorbante avec controle de la demixtion
EP2174700A1 (fr) 2008-10-13 2010-04-14 Siemens Aktiengesellschaft Absorbant, procédé de fabrication d'un absorbant et utilisation d'un moyen d'absorbant
DE102009000543A1 (de) 2009-02-02 2010-08-12 Evonik Degussa Gmbh Verfahren, Absorptionsmedien und Vorrichtung zur Absorption von CO2 aus Gasmischungen
FR2942972B1 (fr) * 2009-03-10 2012-04-06 Inst Francais Du Petrole Procede de desacidification d'un gaz par solution absorbante avec vaporisation et/ou purification d'une fraction de la solution absorbante regeneree.
JP2012522873A (ja) 2009-03-31 2012-09-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 臭化リチウム/水中のイオン性化合物、吸収サイクルシステム
ATE547164T1 (de) 2009-06-05 2012-03-15 Evonik Degussa Gmbh Verfahren, absorptionsmedium und vorrichtung zur absorption von co2 aus gasmischungen
DE102009047564A1 (de) 2009-12-07 2011-06-09 Evonik Degussa Gmbh Arbeitsmedium für eine Absorptionskältemaschine
FR2953735B1 (fr) 2009-12-16 2013-03-29 Inst Francais Du Petrole Procede d'elimination de composes acides d'un effluent gazeux avec une solution absorbante a base de diamines i,ii/iii.
FR2953736B1 (fr) 2009-12-16 2012-02-24 Inst Francais Du Petrole Procede d'elimination de composes acides d'un effluent gazeux avec une solution absorbante a base de triamines iii/ii/iii.
US8318114B2 (en) 2010-04-16 2012-11-27 Nalco Company Composition for treating acid gas
EP2380940A1 (fr) 2010-04-20 2011-10-26 Evonik Degussa GmbH Pompe à chaleur à absorption dotée d'un sorbant comprenant du chlorure de lithium et un sel de chlorure organique
EP2380941A1 (fr) 2010-04-20 2011-10-26 Evonik Degussa GmbH Pompe à chaleur à absorption dotée d'un sorbant comprenant un sel de chlorure et un sel organique doté d'un anion équivalent
JP6358799B2 (ja) 2010-11-08 2018-07-18 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 吸収式ヒートポンプのための作動媒体
DE102011077377A1 (de) 2010-11-12 2012-05-16 Evonik Degussa Gmbh Verfahren zur Absorption von sauren Gasen aus Gasmischungen
EP2532413A1 (fr) 2011-06-10 2012-12-12 Evonik Degussa GmbH Procédé destiné à l'absorption de CO2 à partir d'un mélange de gaz
EP2532412A1 (fr) 2011-06-10 2012-12-12 Evonik Degussa GmbH Milieu d'absorption et procédé d'absorption d'un gaz acide à partir d'un mélange de gaz
EP2532414A1 (fr) 2011-06-10 2012-12-12 Evonik Degussa GmbH Procédé destiné à l'absorption de CO2 à partir d'un mélange de gaz
DE102011083974A1 (de) 2011-10-04 2013-04-04 Evonik Degussa Gmbh Arbeitsmedium für Absorptionswärmepumpen
DE102011083976A1 (de) 2011-10-04 2013-04-04 Evonik Degussa Gmbh Sorptionsmittel für Absorptionswärmepumpen
DE102012200566A1 (de) 2012-01-16 2013-07-18 Evonik Degussa Gmbh Verfahren zur Absorption von CO2 aus einer Gasmischung
DE102012200907A1 (de) 2012-01-23 2013-07-25 Evonik Industries Ag Verfahren und Absorptionsmedium zur Absorption von CO2 aus einer Gasmischung
DE102012207509A1 (de) 2012-05-07 2013-11-07 Evonik Degussa Gmbh Verfahren zur Absorption von CO2 aus einer Gasmischung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1656983A1 (fr) * 2004-11-12 2006-05-17 Institut Français du Pétrole Procédé de désacidification d'un gaz avec une solution absorbante à régénération fractionnée
EP2193833A1 (fr) * 2008-11-20 2010-06-09 Ifp Procédé de désacidification d'un gaz par solution absorbante avec démixtion en cours de régénération

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2013072147A1 *

Also Published As

Publication number Publication date
WO2013072147A1 (fr) 2013-05-23
AU2012339061A1 (en) 2014-03-13
BR112014008497A2 (pt) 2017-04-11
TN2014000090A1 (en) 2015-07-01
EA201400577A1 (ru) 2014-10-30
EA025928B1 (ru) 2017-02-28
US9221007B2 (en) 2015-12-29
MX2014005746A (es) 2014-07-09
CO6960534A2 (es) 2014-05-30
US20160045857A1 (en) 2016-02-18
US20130118350A1 (en) 2013-05-16
AU2012339061B2 (en) 2016-10-13
CA2855855A1 (fr) 2013-05-23

Similar Documents

Publication Publication Date Title
WO2013072147A1 (fr) Procédé et dispositif servant à séparer des gaz acides à partir d'un mélange gazeux
EP2391435B1 (fr) Absorbant comprenant des amines cycliques pour l'elimination de gaz acide
EP1303345B1 (fr) Procede de desacidification d'un courant de fluide et liquide de lavage destine a un tel procede
DE102005033837B4 (de) Verfahren zum Entfernen von sauren Gasen und Ammoniak aus einem Fluidstrom
EP2717995B1 (fr) Milieu d'absorption et procédé pour l'absorption d'un gaz acide à partir d'un mélange gazeux
EP2852453B1 (fr) Procédé d'absorption de co2 d'un mélange de gaz
EP2445612A1 (fr) Élimination de gaz acides au moyen d'un absorbant contenant un auxiliaire de stripage
EP1485190B1 (fr) Procede de desacidification d'un courant fluidique et liquide laveur utilise dans ce procede
EP2300127A1 (fr) Agent absorbant et procédé pour éliminer des gaz acides contenus dans des flux de fluide, en particulier des gaz de fumée
WO2009156273A1 (fr) Agent absorbant et procédé pour éliminer des gaz acides contenus dans des flux de fluide, en particulier des gaz de fumée
WO2005087350A1 (fr) Procede d'elimination du dioxyde de carbone dans les gaz de fumee
WO2012168067A1 (fr) Procédé pour l'absorption de co2 à partir d'un mélange gazeux
EP2720778A1 (fr) Procédé pour l'absorption de co2 contenu dans un mélange gazeux
EP1412056B1 (fr) Procede d'elimination de gaz acides dans un courant gazeux
WO2004071624A1 (fr) Agent absorbant et procede pour eliminer des gaz acides presents dans des fluides
WO2014037214A1 (fr) Procédé pour séparer des gaz acides d'un courant de fluide contenant de l'eau
WO2017055087A1 (fr) Agent absorbant et procédé d'élimination sélective d'hydrogène sulfuré
EP3185989B1 (fr) Élimination du sulfure d'hydrogène et du dioxyde de carbone d'un flux de fluide
WO2016030277A1 (fr) Diamine comportant un groupe tert-aalkyamino ou amino primaire destinée à être utilisée dans le lavage de gaz
EP3185990B1 (fr) Extraction du dioxyde de carbone d'un flux de fluide comprenant une tert-butylamine et un activateur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KNIPPENBERG, UDO

Inventor name: SEILER, MATTHIAS

Inventor name: ROLKER, JOERN

Inventor name: IRFAN, MUHAMMAD

Inventor name: MEIER, RALF

Inventor name: SCHNEIDER, ROLF

Inventor name: MANGALAPALLY, HARI, PRASAD

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160919

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170131