JP6906766B2 - ガス処理方法及びガス処理装置 - Google Patents

ガス処理方法及びガス処理装置 Download PDF

Info

Publication number
JP6906766B2
JP6906766B2 JP2017229936A JP2017229936A JP6906766B2 JP 6906766 B2 JP6906766 B2 JP 6906766B2 JP 2017229936 A JP2017229936 A JP 2017229936A JP 2017229936 A JP2017229936 A JP 2017229936A JP 6906766 B2 JP6906766 B2 JP 6906766B2
Authority
JP
Japan
Prior art keywords
gas
treatment liquid
regenerator
absorber
acidic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017229936A
Other languages
English (en)
Other versions
JP2019098226A (ja
Inventor
啓 岸本
啓 岸本
秋山 勝哉
勝哉 秋山
洋 町田
洋 町田
山口 毅
毅 山口
丈裕 江▲崎▼
丈裕 江▲崎▼
行庸 則永
行庸 則永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
Kobe Steel Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66665660&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6906766(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd, Tokai National Higher Education and Research System NUC filed Critical Kobe Steel Ltd
Priority to JP2017229936A priority Critical patent/JP6906766B2/ja
Priority to CN201880075687.1A priority patent/CN111372671B/zh
Priority to US16/766,915 priority patent/US11331625B2/en
Priority to PCT/JP2018/041882 priority patent/WO2019107136A1/ja
Priority to EP18882476.7A priority patent/EP3702015B1/en
Publication of JP2019098226A publication Critical patent/JP2019098226A/ja
Application granted granted Critical
Publication of JP6906766B2 publication Critical patent/JP6906766B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • B01D2252/2023Glycols, diols or their derivatives
    • B01D2252/2026Polyethylene glycol, ethers or esters thereof, e.g. Selexol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20405Monoamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20421Primary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20426Secondary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20431Tertiary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20484Alkanolamines with one hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide

Description

本発明は、ガス処理方法及びガス処理装置に関するものである。
従来、被処理ガスに含まれる酸性化合物を処理液と接触させることによって、酸性化合物を分離させるガス処理方法が知られている。例えば、下記特許文献1に開示されたガス処理方法では、吸収器と再生器とを備えたガス処理装置が用いられる。そして、吸入器において、被処理ガスと処理液とを接触させて、被処理ガス中の酸性化合物を処理液に吸収させ、再生器において、処理液を加熱することにより、処理液から酸性化合物を分離させる。
従来のガス処理方法により、吸収器において二酸化炭素を処理液と接触させて吸収させた後、再生器において処理液を加熱することによって二酸化炭素を回収する際に必要となるエネルギーは、例えば、4GJ/ton−CO2となる。本発明者等は、二酸化炭素吸収時に相分離する吸収剤を用いることにより、従来より低い温度で二酸化炭素の再生を行う技術を開発し、また、ヒートポンプと組み合わせることにより、エネルギーを1.5GJ/ton−CO2まで低減させることができることを確認している。
特開2011−213494号公報
地球環境への関心の高まりから、より少ない消費エネルギーで酸性化合物を分離回収できる技術の開発が求められている。
そこで、本発明は、前記従来技術を鑑みてなされたものであり、その目的とするところは、酸性化合物を分離回収するために必要なエネルギーを低減させることにある。
前記の目的を達成するため、本発明は、酸性化合物を含む被処理ガスと前記酸性化合物を吸収する処理液とを吸収器内で接触させる吸収工程と、前記酸性化合物を吸収した前記処理液を再生器に送り、前記処理液を加熱して当該処理液から酸性化合物を分離する再生工程と、を含み、前記再生工程において、前記処理液にほぼ溶解しないガスであって、メタンガス等の炭化水素ガス、水素ガス、酸素ガスのいずれかからなる分離促進ガスを前記再生器に供給し、前記分離促進ガスと前記処理液とを接触させる、ガス処理方法である。
本発明では、再生工程において、処理液にほぼ溶解しないガスであって、メタンガス等の炭化水素ガス、水素ガス、酸素ガスのいずれかからなる分離促進ガスを処理液に接触させる。これにより、処理液に溶け込んでいる酸性化合物が処理液からより分離しやすくなり、しかも、分離された酸性化合物が当該分離促進ガスに随伴されて処理液から追い出される。したがって、処理液からの酸性化合物の分離が促進される。このため、再生器での再生温度として、より低い温度を設定することができ、かつより低いエネルギーで酸性化合物を分離することが可能となる。
前記ガス処理方法において、前記吸収器で発生する反応熱を前記再生器へ熱輸送する熱輸送手段が用いられてもよい。この態様では、吸収器での反応熱を処理液の再生に利用することが可能になるので、処理液の再生に要するエネルギーをより低減することができる。
前記ガス処理方法において、前記吸収器と前記再生器とが互いに接触して、当該吸収器と当該再生器との間で直接的に熱交換してもよい。処理液にほぼ溶解しないガスの再生器への供給ガス量を増加させることにより、吸収器と再生器の温度を同温度又は再生器の温度を吸収器の温度よりも小さくすることが可能となる。この場合、吸収器で発生する反応熱を再生器へ直接熱交換させることが可能となる。これにより、ポンプ等の動力を利用することなく吸収器での反応熱が処理液の再生に利用することが可能になり、処理液の再生に要するエネルギーをより低減することができる。
前記ガス処理方法において、前記再生器の温度に対する前記吸収器の温度の温度差が−20℃〜30℃であってもよい。
前記ガス処理方法において、前記再生工程において、前記処理液1g当たり0.05リットル以上の前記分離促進ガスを前記再生器に導入してもよい。この態様では、処理液からの酸性化合物の分離促進効果をより有効に発揮させることができる。
前記ガス処理方法において、前記処理液は、前記酸性化合物を吸収することにより、酸性化合物の含有率の異なる相に相分離する処理液であってもよい。この態様では、再生工程において、処理液にほぼ溶解しないガスを処理液に接触させるだけでなく、酸性化合物の含有率の低い相部分を介在させた状態で、処理液から酸性化合物を分離する。このため、より一層、処理液の再生に要するエネルギーを低減することができる。
本発明は、酸性化合物を含む被処理ガスと、前記酸性化合物を吸収する処理液とを用い、前記被処理ガスから酸性化合物を分離するガス処理装置であって、前記処理液に前記被処理ガスを接触させる吸収器と、前記吸収器において前記被処理ガスと接触した前記処理液を加熱して酸性化合物を分離させる再生器と、前記再生器に、前記処理液にほぼ溶解しないガスであって、メタンガス等の炭化水素ガス、水素ガス、酸素ガスのいずれかからなる分離促進ガスを供給するガス供給部と、を備えている、ガス処理装置である。
前記ガス処理装置において、前記吸収器で発生する反応熱を前記再生器へ熱輸送する手段を備えていてもよい。
前記ガス処理装置において、前記吸収器と前記再生器とが互いに接触して、当該吸収器と当該再生器とを直接的に熱交換させるように構成されていてもよい。
前記ガス処理装置において、前記再生器の温度に対する前記吸収器の温度の温度差が−20℃〜30℃であってもよい。
前記ガス処理装置において、前記ガス供給部は、前記処理液1g当たり0.05リットル以上の前記ガスを前記再生器に供給してもよい。
前記ガス処理装置において、前記処理液は、前記酸性化合物を吸収することにより、酸性化合物の含有率の異なる相に相分離する処理液であってもよい。
以上説明したように、本発明によれば、酸性化合物を分離回収するために必要なエネルギーを低減することができる。
第1実施形態に係るガス処理装置の全体構成を概略的に示す図である。 MEAの水溶液を用いて、再生温度を変化させたときの再生率(%)の一覧を示す図である。 MEAの水溶液を用いて、再生温度を変化させたときの再生率(%)の変化を示す図である。 二酸化炭素を吸収すると相分離する処理液を用いて、再生温度を変化させたときの再生率(%)の一覧を示す図である。 二酸化炭素を吸収すると相分離する処理液を用いて、再生温度を変化させたときの再生率(%)の変化を示す図である。 吸収温度及び再生温度が40℃の場合における、相分離する処理液とMEAの水溶液とにおいて再生率(%)の一覧を示す図である。 吸収温度及び再生温度が40℃の場合における、相分離する処理液とMEAの水溶液とにおいて再生率(%)の変化を示す図である。 吸収温度及び再生温度が60℃の場合における、相分離する処理液とMEAの水溶液とにおいて再生率(%)の一覧を示す図である。 吸収温度及び再生温度が60℃の場合における、相分離する処理液とMEAの水溶液とにおいて再生率(%)の変化を示す図である。 第2実施形態に係るガス処理装置の全体構成を概略的に示す図である。 第3実施形態に係るガス処理装置の全体構成を概略的に示す図である。 第4実施形態に係るガス処理装置の全体構成を概略的に示す図である。
以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。
(第1実施形態)
第1実施形態に係るガス処理装置10は、処理液を用いて酸性化合物を含む被処理ガスから酸性化合物を分離するために利用される。図1に示すように、ガス処理装置10は、吸収器12と、再生器14と、循環路16と、熱交換器18とを備えている。循環路16は、吸収器12から処理液を抜き出して再生器14に導入させる第1流路21と、再生器14から処理液を抜き出して吸収液に還流させる第2流路22とを含む。なお、熱交換器18は省略することが可能である。
吸収器12には、プロセスガス等の被処理ガスを供給する導入路24と、処理後のガスを排出するガス排出路26と、処理液を再生器14に送るための第1流路21と、再生器14から処理液を吸収器12に戻すための第2流路22と、が接続されている。導入路24は、吸収器12の下端部に接続され、ガス排出路26は、吸収器12の上端部に接続されている。第1流路21は、吸収器12の下端部又は下端部近傍に接続されている。すなわち、第1流路21は、吸収器12内に溜まった処理液を抜き出すことができる位置に接続されている。第2流路22は、吸収器12の上端部又は上端部近傍に接続されている。すなわち、第2流路22は、再生器14から還流された処理液を上から流下させることができる位置に接続されている。
吸収器12は、被処理ガスと処理液とを接触させることにより、被処理ガス中の酸性化合物を処理液に吸収させ、酸性化合物が除去されたガスを排出する。このような吸収器12としては、被処理ガスと処理液とを連続的に接触させられるものであればよく、例えば被処理ガスの流路に処理液を噴霧するもの、被処理ガスの流路に配置される充填剤を伝って処理液を流下させるもの、被処理ガス及び処理液をそれぞれ多数の微細な流路に導入して被処理ガスの微細流路と処理液の微細流路とをそれぞれ合流させるもの等を用いることができる。なお、吸収器12における酸性化合物の吸収は発熱反応である。酸性化合物が二酸化炭素である場合、二酸化炭素の吸収量1t当たりの発熱量は約1.8GJである。吸収器12において発生するこの反応熱は、被処理ガス及び処理液の温度を上昇させる。
再生器14には、第1流路21と、第2流路22とが接続されている。第1流路21は、再生器14の上部に接続されており、吸収器12から導出された処理液を再生器14内に導入させる。第1流路21には、ポンプ40が設けられている。第2流路22は、再生器14の下端部又は下端部近傍に接続されており、再生器14内に貯留された処理液を導出させる。第2流路22には、ポンプ28が設けられている。
再生器14は、酸性化合物を吸収した処理液が貯留され、この貯留された処理液を加熱することによって、酸性化合物を脱離させる。この処理液からの酸性化合物の脱離は、吸熱反応である。再生器14は、処理液を加熱すると、酸性化合物が脱離するだけでなく、処理液中の水が蒸発する。
再生器14には、供給路30と加熱流路32とが接続されている。供給路30は、再生器14内で得られた酸性化合物を供給先に供給する。供給路30には、処理液から蒸発した酸性化合物のガスと水蒸気との混合気体を冷却するコンデンサ34が設けられている。混合気体は冷却されると、水蒸気が凝縮するので、水蒸気を分離することができる。分離された水蒸気は再生器14に還流される。コンデンサ34としては、川水等の安価な冷却水を用いた熱交換器を用いることができる。
加熱流路32は、一端部が第2流路22に接続されているが、再生器14の下端部又は下端部近傍に接続されていてもよい。加熱流路32の他端部は再生器14の下部に接続されている。加熱流路32には、再生器14に貯留される処理液を加熱するリボイラ36が設けられている。リボイラ36は、再生器14の内部で処理液を加熱するよう配設してもよいが、図示するように、再生器14から外部に抜き出された処理液を加熱するように構成してもよい。この場合、リボイラ36は、加熱後に再生器14に還流させる加熱流路32に配設することができる。なお、リボイラ36としては、例えば電気、蒸気、バーナー等任意の熱源により直接又は間接的に処理液を加熱するものを用いることができる。
熱交換器18は、第1流路21及び第2流路22に接続され、第1流路21を流れる処理液と第2流路22を流れる処理液との間で熱交換させる。熱交換器18は、例えばプレート熱交換器等によって構成されるが、温度差が比較的小さい流体間での熱交換が可能なマイクロチャネル熱交換器によって構成され得る。これにより、エネルギー効率を向上することができる。
ガス処理装置10は、再生器14に、酸性化合物の分離を促進するためのガス(以下、分離促進ガスと称する)を供給するガス供給部42を備えている。ガス供給部42は、再生器14の下端部又は下端部近傍に接続されたガス路42aを備えている。ガス路42aは、例えば、分離促進ガスの供給源42bに接続されている。
ガス供給部42によって再生器14に供給される分離促進ガスは、処理液にほぼ溶解しないガスである。分離促進ガスとして、水素ガス、酸素ガス、メタンガス等を挙げることができる。処理液にほぼ溶解しないガスを再生器14に供給することにより、再生器14における酸性化合物の分離を促進することができる。ここで、処理液に「ほぼ溶解しない」は、処理液への溶解度が所定値以下であることを表していてもよい。分離促進ガスは、例えば、ヘンリーの法則に従うガスであって、0℃、100kPaの条件下において、処理液100gに対する溶解度が1mol以下の溶解度であるガスであればよい。なお、水に対する酸素の溶解度は、1.3×10−4mol/100g、水に対するメタンの溶解度は、8×10−4mol/100g、水に対する水素の溶解度は、9.5×10−5mol/100gである。これに対し、水に対するアンモニアの溶解度は、6mol/100gであるので、該当しない。
ガス処理装置10が分離する酸性化合物としては、水溶液が酸性となるものであれば特に限定されないが、例えば塩化水素、二酸化炭素、二酸化硫黄、二硫化炭素等が挙げられる。酸性化合物を含む被処理ガスとしては、例えば産業排ガス、天然ガス、水素ガス等が挙げられる。つまり、本実施形態に係るガス処理装置10は、大気に排出されるガスから有害物質を除去する目的や、例えば燃料等として使用されるガス中の不純物を除去する目的で使用することができる。
本実施形態においては、ガス処理装置10に用いる処理液(吸収剤)として、酸性化合物を可逆的に吸収脱離することが可能な吸収剤が用いられている。処理液は、例えば、水、アミン化合物及び有機溶剤を含むアルカリ性の吸収剤である。アミン化合物は30wt%、有機溶剤は60wt%、水は10wt%としてもよい。処理液は、水への溶解で酸を生じる酸性化合物の吸収により相分離するのが好ましいが、これに限られるものではない。例えば、有機溶剤を用いないで、アミン化合物の水溶液とした処理液であってもよい。また、処理液は、アミン化合物、有機溶媒、イオン液体やそれらの混合物、水溶液などであってもよい。
アミン化合物としては、例えば、2−アミノエタノール(MEA:溶解度パラメータ=14.3(cal/cm1/2、2−(2−アミノエトキシ)エタノール(AEE:溶解度パラメータ=12.7(cal/cm1/2 )等の1級アミン、例えば2−(メチルアミノ)エタノール(MAE)、2−(エチルアミノ)エタノール(EAE)、2−(ブチルアミノ)エタノール(BAE)等の2級アミン、例えばトリエタノールアミン(TEA)、N−メチルジエタノールアミン(MDEA)、テトラメチルエチレンジアミン(TEMED)、ペンタメチルジエチレントリアミン(PMDETA)、ヘキサメチルトリエチレンテトラミン、ビス(2−ジメチルアミノエチル)エーテル等の3級アミンなどが挙げられる。
有機溶剤としては、例えば1−ブタノール(溶解度パラメータ=11.3(cal/cm1/2)、1−ペンタノール(溶解度パラメータ=11.0(cal/cm1/2)、オクタノール、ジエチレングリコールジエチルエーテル(DEGDEE)、ジエチレングリコールジメチルエーテル(DEGDME)等が挙げられ、複数種を混合して用いてもよい。
アミン化合物及び有機溶剤のそれぞれの溶解度パラメータが所定範囲に収まっている場合、処理液は、酸性化合物の吸収により酸性化合物の含有率が高い相と酸性化合物の含有率が低い相とに二相分離される。ここで、溶解度パラメータは、以下の式(1)で示される。
Figure 0006906766
ΔHはモル蒸発潜熱、Rはガス定数、Tは絶対温度、Vはモル体積である
Figure 0006906766
表1に示すように、水、アミン化合物及び有機溶剤を含む吸収剤において、アミン化合物の溶解度パラメータから有機溶剤の溶解度パラメータを減じた値が1.1(cal/cm1/2以上4.2(cal/cm1/2以下となるように、アミン化合物及び有機溶剤の組合せを選択することによって、酸性化合物の吸収により酸性化合物の含有率が高い相と酸性化合物の含有率が低い相とに二相分離される。溶解度パラメータの差分の値が前記下限値に満たない場合、処理液が酸性化合物を吸収しても二相に分離しないおそれがある。一方、溶解度パラメータの差分の値が前記上限値を超える場合、処理液が酸性化合物を吸収する前から二相に分離し、処理液を酸性化合物を含む被処理ガスに接触させる工程において、処理液と被処理ガスとの接触状態が不均一となり、吸収効率が低下するおそれがある。なお、表1における「良好」とは、二酸化炭素の吸収前は単一液相であり、二酸化炭素の吸収により二液相に分離したことを意味する。また、表1における「混和せず」とは、二酸化炭素の吸収前から二液相状態で単一液相を形成しなかったことを意味する。また、表1における「分離せず」とは、二酸化炭素の吸収後でも単一液相であったことを意味する。
吸収器12における吸収条件を、処理液が二相に分離しながら二酸化炭素が多く溶解する領域に設定し、再生器14における再生条件を、処理液が二相分離をせず二酸化炭素があまり溶解しない領域に設定することが望ましい。すなわち、二酸化炭素の分圧、吸収温度及び再生温度によって吸収条件及び再生条件を調整する。これにより、処理液が相分離し易くなるため、再生温度と吸収温度との温度差を低く抑えることが可能となる。すなわち、温度によって二酸化炭素の吸収度合いが変化して相分離し易さが変わることによって二酸化炭素吸収濃度の平衡がずれることを利用しているため、再生温度と吸収温度との温度差を低く抑えることが可能となる。加えて、再生器14に、処理液に溶解し難いガスを供給するため、さらに、再生温度と吸収温度との温度差を低く抑えることができる。
ここで、第1実施形態に係るガス処理装置10を使用したガス処理方法について説明する。ガス処理方法は、吸収工程と、送液工程と、再生工程とを含む。
吸収工程は、吸収器12において被処理ガスと処理液とを接触させる工程である。吸収器12には、導入路24を通して少なくとも二酸化炭素を含むプロセスガス等の被処理ガスが供給される。また、吸収器12には、循環路16の第2流路22を通して吸収液が導入される。吸収液は、吸収器12内を流下し、被処理ガスに含まれる二酸化炭素と接触して該二酸化炭素を吸収する。吸収器12内には、二酸化炭素を吸収した処理液が貯留される。相分離する処理液が用いられている場合には、二酸化炭素と接触した処理液は、二酸化炭素の含有率が高い第1相部分と二酸化炭素分離の含有率が低い第2相部分とに相分離する。
送液工程は、吸収器12内に貯留された処理液を吸収器12から再生器14に送る工程である。この送液工程では、吸収器12から送り出された処理液の全量を再生器14内に導入させる。このとき、第1流路21を流れる処理液は、熱交換器18において、第2流路22を流れる処理液によって加熱され、その上で再生器14内に導入される。第1流路21にポンプ40が設けられているため、吸収器12内で処理液が相分離した状態となっていたとしても、再生器14に導入されるときには、第1相部分と第2相部分が混合された状態となっている場合もある。
再生工程は、再生器14内に導入された処理液を加熱することにより、処理液から二酸化炭素を分離する工程である。再生器14内では、処理液が流下しながら加熱される。また、供給源42bからガス路42aを通して再生器14内に流入した分離促進ガスは、再生器14内を上昇し、処理液に接触する。すなわち、再生工程では、処理液と分離促進ガスとが互いに対向する方向に流れて接触する。再生器14内において、分離促進ガスを介在させた状態で処理液が加熱されるため、二酸化炭素の再生温度を低く抑えることができる。再生器14内において、処理液が加熱されると処理液から蒸発した水蒸気が得られることがある。処理液から分離された二酸化炭素及び水蒸気は、供給路30を流れる。供給路30において、水蒸気はコンデンサ34で凝縮し、再生器14に戻される。したがって、処理液から分離された二酸化炭素のみが供給先に供給される。再生器14内に貯留された処理液は、第2流路22を流れて吸収器12に還流する。この途中、処理液は、熱交換器18において、第1流路21を流れる処理液を加熱するので、温度が下がる。
次に、分離促進ガスを再生器14内に供給することによって二酸化炭素の再生率が向上することを確認したため、その点について説明する。まず、図2及び図3は、処理液として、アミン化合物の水溶液を用いて、再生温度を変化させたときの再生率(%)を示している。処理液は、モノエタノールアミン(MEA)30重量%、水70重量%の水溶液である。吸収温度は40℃であり、被処理ガスにおける二酸化炭素の分圧は、0.2atmである。分離促進ガスとして、水素ガスを用いた。気液比は、処理液の単位重量(1グラム)当たりの分離促進ガスの体積(リットル)で示している。
分離促進ガスを導入しない場合(気液比=0)に比べ、分離促進ガスを導入した場合には、何れの再生温度の場合においても、二酸化炭素の再生率が向上している。また、再生温度を高く設定すれば再生率が向上し、また、気液比を高くすればやはり再生率が向上する。分離促進ガスを導入しない場合には、再生温度を70℃以上に設定しないと、二酸化炭素を脱離することはできないが、分離促進ガスを導入することにより、再生温度を例えば40℃まで下げても二酸化炭素を脱離することができる。
図4及び図5は、処理液として、二酸化炭素を吸収すると相分離する処理液を用いた場合の結果を示している。処理液に含まれてアミン化合物は、2−(エチルアミノ)エタノール(EAE)であり、有機溶剤は、ジエチレングリコールジエチルエーテル(DEGDEE)である。処理液の組成は、EAEを30重量%、DEGDEEを60重量%、水を10重量%含有している。吸収温度は40℃であり、被処理ガスにおける二酸化炭素の分圧は、0.2atmである。分離促進ガスとして、水素ガスを用いた。
相分離する処理液でも、MEAと同様に、分離促進ガスを導入しない場合(気液比=0)に比べ、分離促進ガスを導入した場合には、何れの再生温度の場合においても、二酸化炭素の再生率が向上している。しかも、再生温度を高く設定すれば再生率が向上し、また、気液比を高くすればやはり再生率が向上する。そして、気液比が0.2以上であれば、再生温度60℃でも100%の再生率が得られている。したがって、相分離する処理液を用いれば、より再生率を向上でき、再生温度を低く抑えることができる。
次に、相分離する処理液とMEAの比較について、説明する。図6及び図7は、吸収温度及び再生温度がそれぞれ40℃であり、被処理ガスにおける二酸化炭素の分圧が0.2atmの場合の再生率を示している。分離促進ガスは水素ガスである。図6及び図7に示すように、気液比が低い場合(0.05程度)には、両者に差異はないが、気液比が高い場合には、MEAに比べて、相分離する処理液の方が、二酸化炭素の再生率が向上する。しかも、その差は、気液比が高くなるほど広がる。この傾向は、図8及び図9に示すように、吸収温度及び再生温度が60℃の場合でも同様である。
以上説明したように、本実施形態によれば、再生工程において、分離促進ガスを処理液に接触させる。これにより、処理液に溶け込んでいる酸性化合物が処理液からより分離しやすくなり、しかも、分離された酸性化合物が当該ガスに随伴されて処理液から追い出される。したがって、処理液からの酸性化合物の分離が促進される。このため、再生器14での再生温度として、より低い温度を設定することができ、かつより低いエネルギーで酸性化合物を分離することが可能となる。
また、二酸化炭素を吸収することによって相分離する処理液が用いられる場合には、再生工程において、分離促進ガスを処理液に接触させるだけでなく、酸性化合物の含有率の低い相部分を介在させた状態で、処理液から二酸化炭素を分離する。このため、より一層、処理液の再生に要するエネルギーを低減することができる。
(第2実施形態)
図10は本発明の第2実施形態を示す。尚、ここでは第1実施形態と同じ構成要素には同じ符号を付し、その詳細な説明を省略する。
第2実施形態に係るガス処理装置10は、吸収器12の反応熱を再生器14へ熱輸送する熱輸送手段(ヒートポンプ)50を備えている。熱輸送手段50は、冷媒が封入された閉ループ状の循環流路50aと、それぞれ循環流路50aに設けられた圧縮機50b、蒸発器50c、膨張機構50d、ポンプ50e及び凝縮器50fと、を備えている。蒸発器50cは、例えば伝熱管によって構成され、吸収器12内に配置されている。吸収器12内では、処理液が二酸化炭素を吸収する発熱反応が生じている。蒸発器50c内を流れる液状の冷媒は、この熱によって加熱されて蒸発する。ガス状の冷媒は圧縮機50bよって圧縮されて凝縮器50f内に流入する。凝縮器50fは、例えば伝熱管によって構成され、再生器14内に配置されている。再生器14内では、処理液から二酸化炭素が脱離する吸熱反応が生じている。凝縮器50f内を流れるガス状の冷媒は、この吸熱反応により凝縮する。この凝縮した液状の冷媒は膨張機構50dによって膨張し、ポンプ50eによって送液されて蒸発器50cに流れ込む。このように、冷媒の循環によって、吸収器12の反応熱が再生器14へ熱輸送される。
第2実施形態によれば、吸収器12での反応熱を処理液の再生に利用することが可能になるので、処理液の再生に要するエネルギーをより低減することができる。
なお、その他の構成、作用及び効果はその説明を省略するが前記第1実施形態と同様である。
(第3実施形態)
第1実施形態で説明したように、分離促進ガスの気液比が高い場合には、再生温度が吸収温度とほぼ同じでも、処理液を再生することができる。そして、さらに気液比を高めた場合には、再生温度を吸収温度よりも低く設定することが可能となる。この場合、吸収器12と再生器14との間で直接的に熱交換することにより、吸収器12の反応熱を再生器14に伝熱させることが可能となる。このプロセスにおいては、エネルギー原単位は0GJ/ton−CO2となる。
図11に示すように、吸収器12と再生器14とは、直接的に互いに接触している。このため、吸収器12及び再生器14において互いに接触する壁面が伝熱面となる。この伝熱面を介して吸収器12の反応熱が再生器14に伝熱される。なお、吸収器12内を加圧することにより、吸収器12内での処理液の温度がより高くなるため、吸収器12から再生器14への伝熱をより効果的に行うことができる。
第3実施形態では、吸収器での反応熱を処理液の再生に利用することが可能になるので、処理液の再生に要するエネルギーをより低減することができる。しかも、ヒートポンプのように熱輸送するための動力が不要であるので、より、再生に要するエネルギーを低減することができる。
なお、その他の構成、作用及び効果はその説明を省略するが前記第1実施形態と同様である。
(第4実施形態)
図12は本発明の第3実施形態を示す。第4実施形態は、第3実施形態と同様に、吸収器12と再生器14との間で直接的に熱交換する構成となっているが、第4実施形態では、二重管構造となっている。すなわち、再生器14が円筒状に形成されるとともに、吸収器12がこの円筒の内側に配置されている。そして、吸収器12の外周面と再生器14の内周面とが互いに接触していて、伝熱面となっている。なお、吸収器12が円筒状に形成されるとともに、再生器14がこの円筒の内側に配置されていてもよい。
なお、その他の構成、作用及び効果はその説明を省略するが前記第3実施形態と同様である。
10 ガス処理装置
12 吸収器
14 再生器
42 ガス供給部
42a ガス路
42b 供給源
50 熱輸送手段

Claims (12)

  1. 酸性化合物を含む被処理ガスと前記酸性化合物を吸収する処理液とを吸収器内で接触させる吸収工程と、
    前記酸性化合物を吸収した前記処理液を再生器に送り、前記処理液を加熱して当該処理液から酸性化合物を分離する再生工程と、を含み、
    前記再生工程において、前記処理液にほぼ溶解しないガスであって、メタンガス等の炭化水素ガス、水素ガス、酸素ガスのいずれかからなる分離促進ガスを前記再生器に供給し、前記分離促進ガスと前記処理液とを接触させる、ガス処理方法。
  2. 請求項1に記載のガス処理方法において、
    前記吸収器で発生する反応熱を前記再生器へ熱輸送する熱輸送手段が用いられる、ガス処理方法。
  3. 請求項1に記載のガス処理方法において、
    前記吸収器と前記再生器とが互いに接触して、当該吸収器と当該再生器との間で直接的に熱交換する、ガス処理方法。
  4. 請求項1から3の何れか1項に記載のガス処理方法において、
    前記再生器の温度に対する前記吸収器の温度の温度差が−20℃〜30℃である、ガス処理方法。
  5. 請求項1から4の何れか1項に記載のガス処理方法において、
    前記再生工程において、前記処理液1g当たり0.05リットル以上の前記分離促進ガスを前記再生器に導入する、ガス処理方法。
  6. 請求項1から5の何れか1項に記載のガス処理方法において、
    前記処理液は、前記酸性化合物を吸収することにより、酸性化合物の含有率の異なる相に相分離する処理液である、ガス処理方法。
  7. 酸性化合物を含む被処理ガスと、前記酸性化合物を吸収する処理液とを用い、前記被処理ガスから酸性化合物を分離するガス処理装置であって、
    前記処理液に前記被処理ガスを接触させる吸収器と、
    前記吸収器において前記被処理ガスと接触した前記処理液を加熱して酸性化合物を分離させる再生器と、
    前記再生器に、前記処理液にほぼ溶解しないガスであって、メタンガス等の炭化水素ガス、水素ガス、酸素ガスのいずれかからなる分離促進ガスを供給するガス供給部と、
    を備えている、ガス処理装置。
  8. 請求項7に記載のガス処理装置において、
    前記吸収器で発生する反応熱を前記再生器へ熱輸送する手段を備えている、ガス処理装置。
  9. 請求項7に記載のガス処理装置において、
    前記吸収器と前記再生器とが互いに接触して、当該吸収器と当該再生器とを直接的に熱交換させるように構成されている、ガス処理装置。
  10. 請求項7から9の何れか1項に記載のガス処理装置において、
    前記再生器の温度に対する前記吸収器の温度の温度差が−20℃〜30℃である、ガス処理装置。
  11. 請求項7から10の何れか1項に記載のガス処理装置において、
    前記ガス供給部は、前記処理液1g当たり0.05リットル以上の前記ガスを前記再生
    器に供給する、ガス処理装置。
  12. 請求項7から11の何れか1項に記載のガス処理装置において、
    前記処理液は、前記酸性化合物を吸収することにより、酸性化合物の含有率の異なる相に相分離する処理液である、ガス処理装置。
JP2017229936A 2017-11-30 2017-11-30 ガス処理方法及びガス処理装置 Active JP6906766B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017229936A JP6906766B2 (ja) 2017-11-30 2017-11-30 ガス処理方法及びガス処理装置
CN201880075687.1A CN111372671B (zh) 2017-11-30 2018-11-12 气体处理方法及气体处理装置
US16/766,915 US11331625B2 (en) 2017-11-30 2018-11-12 Gas treatment method and gas treatment apparatus
PCT/JP2018/041882 WO2019107136A1 (ja) 2017-11-30 2018-11-12 ガス処理方法及びガス処理装置
EP18882476.7A EP3702015B1 (en) 2017-11-30 2018-11-12 Gas treatment method and gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229936A JP6906766B2 (ja) 2017-11-30 2017-11-30 ガス処理方法及びガス処理装置

Publications (2)

Publication Number Publication Date
JP2019098226A JP2019098226A (ja) 2019-06-24
JP6906766B2 true JP6906766B2 (ja) 2021-07-21

Family

ID=66665660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229936A Active JP6906766B2 (ja) 2017-11-30 2017-11-30 ガス処理方法及びガス処理装置

Country Status (5)

Country Link
US (1) US11331625B2 (ja)
EP (1) EP3702015B1 (ja)
JP (1) JP6906766B2 (ja)
CN (1) CN111372671B (ja)
WO (1) WO2019107136A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176572A1 (ja) * 2022-03-16 2023-09-21 三菱重工業株式会社 二酸化炭素回収システム
WO2024034295A1 (ja) * 2022-08-09 2024-02-15 株式会社神戸製鋼所 ガス処理装置及びガス処理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099710B1 (fr) * 2019-08-08 2021-08-06 Ifp Energies Now Procédé de traitement de gaz par absorption utilisant une régénération du solvant par flash chaud optimisée thermiquement
JP2021115553A (ja) * 2020-01-29 2021-08-10 株式会社神戸製鋼所 ガス処理装置およびガス処理方法
CN112705013B (zh) * 2020-12-25 2023-04-07 临沭县华盛化工有限公司 “双串一并”式醇吸收氯化氢气体的工艺

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU501376B2 (en) * 1976-02-23 1979-06-21 Dow Chemical Company, The Liquid desiccants and absorbants when acid gases are present or mixtures thereof
JPS5344651U (ja) * 1976-09-22 1978-04-17
JPS5849222B2 (ja) 1976-09-30 1983-11-02 鐘淵化学工業株式会社 グルテン繊維の製法
US4198378A (en) * 1976-11-12 1980-04-15 Giuseppe Giammarco Process for removing CO2, H2 S and other gaseous impurities from gaseous mixtures
DE4014018A1 (de) 1990-05-01 1991-11-07 Metallgesellschaft Ag Verfahren zum reinigen eines h(pfeil abwaerts)2(pfeil abwaerts)s und co(pfeil abwaerts)2(pfeil abwaerts) enthaltenden gases
CN1137753C (zh) 2000-12-19 2004-02-11 中国冶金建设集团鞍山焦化耐火材料设计研究总院 生物气中co2、h2s的净化工艺
US7597746B2 (en) * 2002-12-17 2009-10-06 Fluor Technologies Corporation Configurations and methods for acid gas and contaminant removal with near zero emission
US7056482B2 (en) * 2003-06-12 2006-06-06 Cansolv Technologies Inc. Method for recovery of CO2 from gas streams
FR2898284B1 (fr) * 2006-03-10 2009-06-05 Inst Francais Du Petrole Procede de desacidification d'un gaz par solution absorbante avec regeneration fractionnee par chauffage.
WO2009016139A1 (en) * 2007-07-31 2009-02-05 Shell Internationale Research Maatschappij B.V. Process for producing purified gas from gas comprising h2s, co2 and hcn and/or cos
US8318117B2 (en) 2008-06-23 2012-11-27 Basf Se Absorption medium and method for removing sour gases from fluid streams, in particular from flue gases
ES2434745T3 (es) 2008-06-23 2013-12-17 Basf Se Agente de absorción y procedimiento para eliminar gases ácidos de flujos de gas, en particular de gases de humo
CA2761895C (en) 2009-05-26 2018-08-28 Basf Se Process for recovery of carbon dioxide from a fluid stream, in particular from syngas
JP5641194B2 (ja) * 2010-03-31 2014-12-17 新日鉄住金エンジニアリング株式会社 二酸化炭素ガス回収装置
DE102011108749A1 (de) * 2011-07-28 2013-01-31 Thyssenkrupp Uhde Gmbh Wärmerückgewinnung bei Absorptions- und Desorptionsprozessen
BR112014008497A2 (pt) * 2011-11-14 2017-04-11 Evonik Degussa Gmbh método e dispositivo para a separação de gases acídicos a partir de uma mistura de gás
WO2013114936A1 (ja) 2012-02-01 2013-08-08 国立大学法人 東京大学 蒸留装置および蒸留方法
JP6173817B2 (ja) * 2013-07-30 2017-08-02 株式会社東芝 酸性ガス吸収剤、酸性ガス除去方法及び酸性ガス除去装置
CN103756734B (zh) * 2014-01-16 2015-03-04 中石化宁波工程有限公司 一种节能型低温甲醇洗h2s浓缩工艺
CN106457125B (zh) * 2014-05-23 2019-03-26 塔明克公司 改进的通过含有胺化合物的吸收剂溶液去除酸性气体的方法
AU2015309015B2 (en) * 2014-08-25 2019-12-19 Basf Se Removal of hydrogen sulphide and carbon dioxide from a stream of fluid
EP3067108A1 (en) * 2015-03-11 2016-09-14 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Acid gas removal with an absorption liquid that separates in two liquid phases
CN106422667B (zh) 2015-08-04 2019-07-30 北京思践通科技发展有限公司 从气体中一步脱除酸性组分和水的方法
JP6656843B2 (ja) * 2015-08-21 2020-03-04 株式会社神戸製鋼所 ガス処理システム及びガス処理方法
CN106474871B (zh) * 2016-11-09 2019-01-11 中石化宁波工程有限公司 配套水煤浆气化的酸性气再吸收工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176572A1 (ja) * 2022-03-16 2023-09-21 三菱重工業株式会社 二酸化炭素回収システム
WO2024034295A1 (ja) * 2022-08-09 2024-02-15 株式会社神戸製鋼所 ガス処理装置及びガス処理方法

Also Published As

Publication number Publication date
US20210016226A1 (en) 2021-01-21
US11331625B2 (en) 2022-05-17
EP3702015A4 (en) 2021-04-28
EP3702015A1 (en) 2020-09-02
CN111372671A (zh) 2020-07-03
WO2019107136A1 (ja) 2019-06-06
CN111372671B (zh) 2022-05-31
JP2019098226A (ja) 2019-06-24
EP3702015B1 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
JP6906766B2 (ja) ガス処理方法及びガス処理装置
JP2009521314A (ja) 二酸化炭素回収でのアミンの再利用
EP3042712B1 (en) Recovery unit for recovering co2 and/or h2s
JP2007222847A (ja) ガスの分離回収方法及びその装置並びにその分離回収に用いられる吸収液
US10449495B2 (en) Gas treatment system and gas treatment method
JP6460974B2 (ja) 吸収剤及びその製造方法並びに二酸化炭素の分離回収方法
US20190329176A1 (en) Compositions and methods for carbon dioxide capture
JP6073088B2 (ja) 高圧二酸化炭素含有ガス流から二酸化炭素を分離回収するための液状吸収剤及び分離回収方法
CN107743416A (zh) 酸性气体收集系统和使用此的酸性气体收集方法
JP6906761B2 (ja) ガス処理方法及びガス処理装置
JP7407417B2 (ja) ガス処理方法、及びガス処理装置
WO2020241089A1 (ja) ガス処理方法、及びガス処理装置
WO2024034295A1 (ja) ガス処理装置及びガス処理方法
JP7407685B2 (ja) ガス処理装置
WO2024053196A1 (ja) ガス処理方法及びガス処理装置
JP2023068907A (ja) 吸収装置、ガス処理装置、吸収方法及びガス処理方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6906766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150