WO2023176572A1 - 二酸化炭素回収システム - Google Patents

二酸化炭素回収システム Download PDF

Info

Publication number
WO2023176572A1
WO2023176572A1 PCT/JP2023/008481 JP2023008481W WO2023176572A1 WO 2023176572 A1 WO2023176572 A1 WO 2023176572A1 JP 2023008481 W JP2023008481 W JP 2023008481W WO 2023176572 A1 WO2023176572 A1 WO 2023176572A1
Authority
WO
WIPO (PCT)
Prior art keywords
distillation column
methanol
carbon dioxide
absorption liquid
reboiler
Prior art date
Application number
PCT/JP2023/008481
Other languages
English (en)
French (fr)
Inventor
晋也 立花
正 勝目
香織 吉田
隆仁 米川
勝 長岡
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2023235640A priority Critical patent/AU2023235640A1/en
Publication of WO2023176572A1 publication Critical patent/WO2023176572A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol

Definitions

  • Patent Document 1 describes an absorption tower that brings a gas containing carbon dioxide into gas-liquid contact with an absorption liquid to absorb carbon dioxide into the absorption liquid, and a distillation system that releases carbon dioxide from the absorption liquid that has absorbed carbon dioxide in the absorption tower.
  • a carbon dioxide recovery system is described that includes a column.
  • a gas such as hydrogen which is substantially insoluble in the absorption liquid, is supplied to the distillation column.
  • a distillation column is designed so that the absorption liquid that has absorbed carbon dioxide and the water vapor evaporated from the absorption liquid in the distillation column efficiently come into gas-liquid contact, but the carbon dioxide recovery system described in Patent Document 1
  • hydrogen is supplied into the distillation column from the lower end of the column, there is a problem that the absorption liquid and hydrogen cannot come into efficient gas-liquid contact because the water vapor and hydrogen are not sufficiently mixed.
  • the pressure inside the distillation column is the same when hydrogen is supplied to the distillation column and when hydrogen is not supplied to the distillation column, the absorption liquid will be lower in the former case than in the latter case.
  • the amount of water vapor transferred to the dry hydrogen increases, and the reboiler duty increases by the amount of latent heat of this water vapor, which causes the problem that the water vapor becomes more likely to condense.
  • At least one embodiment of the present disclosure enables efficient gas-liquid contact between an absorption liquid that has absorbed carbon dioxide and hydrogen in a distillation column, and also eliminates the risk of condensation of water vapor evaporated from the absorption liquid.
  • the purpose is to provide a carbon dioxide recovery system that can reduce carbon dioxide emissions.
  • a carbon dioxide recovery system includes a first distillation column that heats an absorption liquid that has absorbed carbon dioxide to diffuse carbon dioxide from the absorption liquid, and a carbon dioxide recovery system that removes carbon dioxide from the first distillation column.
  • a first reboiler that exchanges heat between the discharged absorption liquid and steam, and a hydrogen supply section that supplies hydrogen to the absorption liquid in the first reboiler or the absorption liquid that has flowed out from the first reboiler.
  • the carbon dioxide recovery system of the present disclosure by supplying hydrogen to the absorption liquid in the first reboiler or the absorption liquid flowing out from the first reboiler, the mixture of hydrogen and absorption liquid is supplied to the first distillation column. be returned. Then, a gas containing a good mixture of hydrogen and water vapor evaporated from the absorption liquid rises in the first distillation column, so that the absorption liquid that has absorbed carbon dioxide efficiently comes into gas-liquid contact not only with water vapor but also with hydrogen. be able to.
  • FIG. 1 is a schematic configuration diagram of a carbon dioxide recovery system according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a schematic configuration diagram of a carbon dioxide recovery system according to Embodiment 2 of the present disclosure.
  • FIG. 3 is a schematic configuration diagram of a carbon dioxide recovery system according to Embodiment 3 of the present disclosure.
  • FIG. 4 is a schematic configuration diagram of a carbon dioxide recovery system according to Embodiment 4 of the present disclosure.
  • a carbon dioxide recovery system 1 according to Embodiment 1 of the present disclosure includes a first distillation column 2.
  • the first distillation column 2 communicates with an absorption column (not shown) via an absorption liquid supply line 3, for example, for causing the absorption liquid to absorb carbon dioxide by bringing the gas containing carbon dioxide into gas-liquid contact with the absorption liquid. ing.
  • the first distillation column 2 includes a circulation line 4 for circulating the absorption liquid so that the absorption liquid in the first distillation column 2 is extracted from the bottom of the first distillation column 2 and returned to the first distillation column 2.
  • the circulation line 4 is provided with a first reboiler 5a.
  • the first reboiler 5a is a heat exchanger that heats the absorption liquid by exchanging heat between the absorption liquid flowing through the circulation line 4 and steam (for example, water vapor).
  • the first reboiler 5a is provided with a hydrogen supply section 8 that supplies hydrogen to the absorption liquid in the first reboiler 5a.
  • the hydrogen supply section 8 has one end communicating with the hydrogen supply source 8a and the other end communicating with the hydrogen supply source 8a, and the other end communicating with the hydrogen supply source 8a. It may also include a hydrogen supply line 8b communicating with the liquid flow path.
  • the hydrogen supply source 8a may be, for example, a hydrogen cylinder or a hydrogen tank that stores hydrogen, or a hydrogen production device that produces hydrogen by any method.
  • a compressor may be provided in the hydrogen supply line 8b in order to supply hydrogen from the hydrogen supply source 8a to the absorption liquid flow path in the first reboiler 5a. Further, in order to supply hydrogen in a heated state, a heat exchanger may be provided in the hydrogen supply line 8b.
  • the other end of the hydrogen supply line 8b may be connected to the circulation line 4 between the first reboiler 5a and the first distillation column 2 instead of the absorption liquid distribution path in the first reboiler 5a. In this case, hydrogen will be supplied to the absorption liquid flowing out from the first reboiler 5a.
  • the first distillation column 2 is provided with a condensate liquid obtained by cooling the gas flowing out from the top of the first distillation column 2 (hereinafter referred to as "outflow gas") and returning it to the first distillation column 2.
  • a device 6 is provided.
  • the condensing device 6 includes an outflow gas line 6a through which outflow gas flows, a cooler 6b provided in the outflow gas line 6a, a reflux tank 6c connected to the downstream end of the outflow gas line 6a, and a reflux tank 6c.
  • the condensate line 6d returns the condensate therein to the first distillation column 2.
  • the cooler 6b can be, for example, a heat exchanger that cools the outflow gas by exchanging heat between the outflow gas and an arbitrary cooling fluid.
  • a gas supply line 7 that connects to a device 10 that uses the gas may be connected to the top of the reflux tank 6c.
  • the gas supply line 7 may be provided with a compressor 9 for increasing the pressure of the gas.
  • the absorption liquid that has absorbed carbon dioxide flows into the first distillation column 2 via the absorption liquid supply line 3 .
  • the absorption liquid in the first distillation column 2 is extracted from the bottom of the first distillation column 2 and then circulated through the circulation line 4 and returned to the first distillation column 2.
  • the absorption liquid flows through the first reboiler 5a.
  • hydrogen is supplied to the absorption liquid by the hydrogen supply section 8.
  • a mixed fluid of hydrogen and absorption liquid is heated by exchanging heat with steam.
  • the mixed fluid heated in the first reboiler 5a flows into the first distillation column 2.
  • the temperature of the absorption liquid staying in the first distillation column 2 increases, so that the carbon dioxide absorbed in the absorption liquid is released from the absorption liquid. and rises inside the first distillation column 2.
  • water evaporates from the absorption liquid water vapor also rises inside the first distillation column 2.
  • hydrogen in the mixed fluid heated in the first reboiler 5a is also diffused from the absorption liquid in the first distillation column 2 and rises in the first distillation column 2. That is, within the first distillation column 2, carbon dioxide, water vapor, and hydrogen rise.
  • the absorption liquid that has flowed into the first distillation column 2 via the absorption liquid supply line 3 is mixed with carbon dioxide, water vapor, and hydrogen, which rise in the first distillation column 2, as they fall through the first distillation column 2. It is heated by gas-liquid contact with. On the other hand, since the temperature of carbon dioxide, water vapor, and hydrogen decreases, part of the water vapor condenses and becomes a liquid, which falls inside the first distillation column 2. Therefore, the outflow gas flowing out from the top of the first distillation column 2 contains carbon dioxide, water vapor, and hydrogen.
  • the hydrogen and absorption liquid flow into the first distillation column 2 in a sufficiently mixed state. Then, in the first distillation column 2, water vapor and hydrogen come into gas-liquid contact with the absorption liquid in a sufficiently mixed state, so that the absorption liquid can efficiently come into gas-liquid contact not only with water vapor but also with hydrogen. The same applies when hydrogen is supplied to the absorption liquid flowing out from the first reboiler 5a.
  • hydrogen is directly supplied into the first distillation column 2
  • water vapor and hydrogen do not necessarily mix sufficiently, and a mixing device is required to mix the two sufficiently. Therefore, the hydrogen supply method as in Embodiment 1 is considered to be more advantageous in the configuration of the carbon dioxide recovery system 1 from the viewpoint of bringing the absorption liquid into gas-liquid contact with water vapor and hydrogen.
  • the outflow gas flows through the outflow gas line 6a, the outflow gas is cooled in the cooler 6b. As the effluent gas is cooled to a lower temperature, the lower boiling point components in the effluent gas condense, but most of the carbon dioxide and hydrogen remain gaseous.
  • the cooled outflow gas flows into the reflux tank 6c, the outflow gas is separated into a gas component and a liquid component.
  • a gaseous component containing mainly carbon dioxide and hydrogen is supplied to the device 10 via a gas supply line 7.
  • the liquid component is returned into the first distillation column 2 via the condensate line 6d.
  • the reboiler duty of the first distillation column 2 increases.
  • the temperature inside the first distillation column 2 can be lowered compared to the case where hydrogen is not supplied to the first distillation column 2.
  • Pressure can be increased.
  • the pressure in the reflux tank 6c also increases, so when the compressor 9 supplies carbon dioxide and hydrogen to the device 10, the energy consumption of the compressor 9 can be reduced.
  • the pressure inside the first distillation column 2 increases and the reboiler duty decreases to the same level as when no hydrogen is supplied. Thereby, the operating cost of the entire carbon dioxide recovery system 1 can be reduced.
  • Embodiment 2 Next, a carbon dioxide recovery system according to Embodiment 2 will be described.
  • the carbon dioxide recovery system according to the second embodiment is different from the first embodiment in that a second reboiler for heating the absorption liquid is added in addition to the first reboiler 5a.
  • the same components as those in the first embodiment are given the same reference numerals, and detailed explanation thereof will be omitted.
  • the carbon dioxide recovery system 1 includes, in addition to the first distillation column 2, a second distillation column 20 that is different from the first distillation column 2.
  • the circulation line 4 includes a first line portion 4a and a second line portion 4b, in which the flow of the absorption liquid is divided into two parts and flow in parallel to each other.
  • a first reboiler 5a and a second reboiler 5b are provided in the first line portion 4a and the second line portion 4b, respectively. That is, the first reboiler 5a and the second reboiler 5b are provided in parallel with each other in the flow direction of the absorption liquid.
  • the second reboiler 5b is a heat exchanger that heats the absorption liquid by exchanging heat between the absorption liquid flowing through the second line portion 4b and the fluid supplied from the second distillation column 20.
  • the configuration of the second distillation column 20 is not particularly limited as long as it is different from the first distillation column 2; This will be explained as a distillation column for rectifying crude methanol to obtain a fluid with increased methanol concentration.
  • the second distillation column 20 communicates via a crude methanol supply line 16 with a methanol production device 30 that produces crude methanol.
  • the second distillation column 20 includes a reboiler 11 for heating the crude methanol in the second distillation column 20, and a reboiler 11 for condensing methanol vapor flowing out from the top of the second distillation column 20.
  • a condensing device 12 is provided for this purpose.
  • the reboiler 11 is, for example, a heat exchanger in which steam (for example, water vapor) and crude methanol exchange heat.
  • the condensing device 12 includes, for example, a cooler 12a which is a heat exchanger in which methanol vapor flowing out from the second distillation column 20 and an arbitrary cooling fluid exchange heat, and a fluid (mainly liquid methanol) cooled by the cooler 12a.
  • a methanol supply line 12d is provided.
  • One end of the line 13 through which the methanol vapor flowing out from the second distillation column 20 flows is connected to the top of the second distillation column 20, and the other end of the line 13 is connected to the reflux tank 12b of the condensing device 12.
  • the line 13 is provided so as to pass through the second reboiler 5b, that is, in the second reboiler 5b, the absorption liquid flowing through the second line portion 4b and the methanol vapor flowing through the line 13 exchange heat. . Therefore, in the second embodiment, the aforementioned fluid is methanol vapor flowing out from the top of the second distillation column 20.
  • the other configurations are the same as in the first embodiment.
  • Crude methanol produced in the methanol production apparatus 30 flows into the second distillation column 20 via the crude methanol supply line 16.
  • the crude methanol that has flowed into the second distillation column 20 is heated in the reboiler 11 and its temperature increases.
  • methanol vapor Steam whose main component is methanol (hereinafter referred to as “methanol vapor”) that rises in the second distillation column 20 and flows out from the second distillation column 20 flows through the line 13 .
  • the methanol vapor flowing through the line 13 exchanges heat with the absorption liquid in the second reboiler 5b, and its temperature decreases. Depending on the temperature, at least a portion of the methanol may condense.
  • the methanol vapor that has exchanged heat with the absorption liquid in the second reboiler 5b flows through the line 13 as methanol vapor or in a state containing at least liquid methanol, and in the condensing device 12, it is cooled by the cooler 12a and then sent to a reflux tank. 12b.
  • a part of the condensate (liquid methanol) in the reflux tank 12b is returned to the second distillation column 20 via the return line 12c, while the remaining condensate is used to consume or store methanol via the methanol supply line 12d. It is supplied to a device (not shown) for doing so.
  • the absorption liquid is heated by heat exchange between the steam and the absorption liquid
  • the fluid supplied from the second distillation column 20 and the absorption liquid are heated. Since the absorption liquid is heated by exchanging, the amount of steam used in the first reboiler 5a is reduced, and the amount of heat supplied to the first distillation column 2 from the outside can be reduced.
  • the line 13 acts as a heat pump, so that the energy consumption of the entire carbon dioxide recovery system 1 can be reduced.
  • the inside of the second distillation column 20 may be pressurized.
  • a pump may be provided in the crude methanol supply line 16 to pressurize the crude methanol supplied to the second distillation column 20.
  • the carbon dioxide recovery system according to the third embodiment differs from the second embodiment in that a compressor for compressing methanol vapor supplied from the second distillation column 20 to the second reboiler 5b is added to the line 13.
  • a compressor for compressing methanol vapor supplied from the second distillation column 20 to the second reboiler 5b is added to the line 13.
  • the same components as those in the second embodiment are denoted by the same reference numerals, and detailed explanation thereof will be omitted.
  • a compressor 14 is provided in the line 13 between the second distillation column 20 and the second reboiler 5b, and the second reboiler A regulating valve 15 for regulating pressure is provided between 5b and the condensing device 12.
  • This compressor 14 is for pressurizing the methanol vapor supplied from the second distillation column 20 toward the second reboiler 5b instead of pressurizing the inside of the second distillation column 20 in the second embodiment.
  • Embodiment 3 differs from Embodiment 2 in the operation in which the absorption liquid and methanol vapor exchange heat in the second reboiler 5b. In the following, only operations different from those in the second embodiment will be described.
  • Methanol vapor flowing out from the top of the second distillation column 20 and flowing through the line 13 is compressed by the compressor 14. Compression by the compressor 14 increases the temperature of methanol vapor.
  • the methanol vapor compressed by the compressor 14 exchanges heat with the absorption liquid in the second reboiler 5b, and its temperature decreases. Depending on the temperature, at least a portion of the methanol may condense.
  • the methanol vapor that has exchanged heat with the absorption liquid in the second reboiler 5b flows through the line 13 as methanol vapor or in a state containing at least liquid methanol, and in the condensing device 12, it is cooled by the cooler 12a and then sent to a reflux tank. 12b.
  • a part of the condensate (liquid methanol) in the reflux tank 12b is returned to the second distillation column 20 via the return line 12c, while the remaining condensate is used to consume or store methanol via the methanol supply line 12d. It is supplied to a device (not shown) for doing so.
  • the absorption liquid is heated by heat exchange between the steam and the absorption liquid
  • the second reboiler 5b after compressing the fluid supplied from the second distillation column 20, the absorption liquid is heated. Since the absorption liquid is heated by exchanging heat with the first reboiler 5a, the amount of steam used in the first reboiler 5a is reduced, and the amount of heat supplied to the first distillation column 2 from the outside can be reduced.
  • Embodiment 4 a carbon dioxide recovery system according to Embodiment 4 will be described.
  • the carbon dioxide recovery system according to Embodiment 4 is a modification of Embodiment 2 or 3 so that heat of crude methanol produced in methanol production apparatus 30 is used in second reboiler 5b.
  • the fourth embodiment is configured with the above-mentioned changes to the third embodiment, but the fourth embodiment may also be configured with the above-described changes to the second embodiment.
  • the same components as those in the third embodiment are given the same reference numerals, and detailed explanation thereof will be omitted.
  • a heat exchanger 32 for removing heat generated during methanol synthesis is provided in the methanol production apparatus 30.
  • the heat exchanger 32 is configured to exchange heat generated during methanol synthesis with methanol supplied from the methanol purification device 40, which includes the condensation device 12 and the second distillation column 20 (including the reboiler 11). has been done.
  • methanol is supplied from the methanol purifier 40, but in the fourth embodiment, as a specific example, a branch line 31 branched from the methanol supply line 12d passes through the heat exchanger 32.
  • a configuration will be described in which the second distillation column 20 and the compressor 14 are connected to the line 13. The other configurations are the same as in the third embodiment.
  • Embodiment 4 differs from Embodiment 3 in a part of the operation in which the absorption liquid and methanol vapor exchange heat in the second reboiler 5b. In the following, only operations different from those in the third embodiment will be described.
  • the crude methanol produced in the methanol production device 30 is cooled by exchanging heat with methanol supplied from the methanol purification device 40 in the heat exchanger 32.
  • the temperature of methanol increases and becomes methanol vapor.
  • the methanol vapor flows into the line 13 between the second distillation column 20 and the compressor 14, and joins with the methanol vapor flowing through the line 13 from the second distillation column 20 toward the second reboiler 5b.
  • the combined methanol vapor is compressed by the compressor 14 to further raise its temperature, and exchanges heat with the absorption liquid in the second reboiler 5b.
  • the subsequent operation is the same as in the third embodiment.
  • the methanol vapor heated in the heat exchanger 32 is supplied to the second reboiler 5b together with the methanol vapor supplied from the second distillation column 20, thereby further reducing the amount of steam used in the first reboiler 5a. Therefore, the amount of heat supplied to the first distillation column 2 from the outside can be further reduced.
  • the second distillation column 20 is a distillation column for rectifying methanol in a methanol production plant, but is not limited to such a distillation column, and may be a methanol derivative production device, For example, it may be an apparatus for producing dimethyl carbonate from carbon dioxide and methanol, an apparatus for producing olefins from methanol (MTO), an apparatus for producing gasoline from methanol (MTG), or the like.
  • methanol is not limited to that produced in the plant (product or intermediate material), and may be used as a raw material that is procured externally.
  • the second distillation column 20 which is a distillation column
  • methanol is supplied from, for example, a methanol storage facility and a heating device that heats methanol.
  • the second distillation column 20 is one distillation column, but the second distillation column 20 may be composed of two or more distillation columns, or one or more distillation columns. It may also be configured by a combination of a device having a configuration other than a distillation column.
  • the fluid used as a heat source in the second reboiler 5b was methanol vapor, but it is not limited to methanol.
  • Water, a hydrocarbon having physical properties such that the saturation temperature is 100° C. or less at atmospheric pressure and 120° C. or less at 10 atmospheres or less, or a hydrocarbon containing oxygen atoms may be used as the fluid.
  • the fluid is not limited to pure substances such as these, and a fluid containing such substances as a part may be used. Examples of such substances include ethanol, acetone, 2-propanol, hexane, and mixtures thereof.
  • the first reboiler 5a and the second reboiler 5b are provided in parallel with each other in the flow direction of the absorption liquid, but the present invention is not limited to these embodiments.
  • the first reboiler 5a and the second reboiler 5b may be provided in series with each other.
  • the present disclosure does not particularly mention the configuration of the device 10 that uses gas mainly containing carbon dioxide and hydrogen, this is not particularly limited as long as the device uses such gas, and embodiments In cases 2 to 4, the device 10 may be a methanol production device 30.
  • the carbon dioxide recovery system includes: a first distillation column (2) that heats an absorption liquid that has absorbed carbon dioxide to diffuse carbon dioxide from the absorption liquid; a first reboiler (5a) that exchanges heat between the absorption liquid and steam extracted from the first distillation column (2); A hydrogen supply unit (8) is provided that supplies hydrogen to the absorption liquid in the first reboiler (5a) or the absorption liquid flowing out from the first reboiler (5a).
  • the carbon dioxide recovery system of the present disclosure by supplying hydrogen to the absorption liquid in the first reboiler or the absorption liquid flowing out from the first reboiler, the mixture of hydrogen and absorption liquid is supplied to the first distillation column. be returned. Then, a gas containing a good mixture of hydrogen and water vapor evaporated from the absorption liquid rises in the first distillation column, so that the absorption liquid that has absorbed carbon dioxide efficiently comes into gas-liquid contact not only with water vapor but also with hydrogen. be able to.
  • a carbon dioxide recovery system is the carbon dioxide recovery system of [1], a second distillation column (20) different from the first distillation column (2); A second reboiler (5b) is provided for exchanging heat between the absorption liquid extracted from the first distillation column (2) and the fluid supplied from the second distillation column (20).
  • the absorption liquid in the first reboiler, the absorption liquid is heated by heat exchange between the steam and the absorption liquid, and in the second reboiler, the fluid supplied from the second distillation column and the absorption liquid are heated. Since the absorption liquid is heated by heat exchange, the amount of steam used in the first reboiler is reduced, and the amount of heat supplied from the outside to the first distillation column can be reduced.
  • a carbon dioxide recovery system is the carbon dioxide recovery system of [2], comprising: A compressor (14) is provided for compressing the fluid before the fluid flows into the second reboiler (5b).
  • the absorption liquid in the first reboiler, the absorption liquid is heated by heat exchange between the steam and the absorption liquid, and in the second reboiler, the fluid supplied from the second distillation column is compressed and then absorbed. Since the absorption liquid is heated by exchanging heat with the liquid, the amount of steam used in the first reboiler is reduced, and the amount of heat supplied from the outside to the first distillation column can be reduced.
  • a carbon dioxide recovery system is the carbon dioxide recovery system of [3], comprising:
  • the fluid includes water, a hydrocarbon having physical properties such that a saturation temperature is 100° C. or less at atmospheric pressure and 120° C. or less at 10 atmospheres or less, or a hydrocarbon containing an oxygen atom.
  • a carbon dioxide recovery system is the carbon dioxide recovery system according to any one of [2] to [4], A methanol production device (30) for producing crude methanol to be supplied to the second distillation column (20), The fluid is methanol vapor.
  • the absorption liquid in the first reboiler, the absorption liquid is heated by heat exchange between the vapor and the absorption liquid, and in the second reboiler, the methanol vapor supplied from the second distillation column and the absorption liquid are heated. Since the absorption liquid is heated by heat exchange, the amount of steam used in the first reboiler is reduced, and the amount of heat supplied from the outside to the first distillation column can be reduced.
  • a carbon dioxide recovery system is the carbon dioxide recovery system of [5], Heat exchange for exchanging heat between the crude methanol produced in the methanol production apparatus (30) and methanol supplied from the methanol purification apparatus (40) that includes the second distillation column (20) and purifies the crude methanol. Equipped with a container (32), Methanol vapor generated by heat exchange between the crude methanol and the methanol in the heat exchanger (32) is configured to combine with the methanol vapor supplied from the second distillation column (20). There is.
  • the methanol vapor heated in the heat exchanger is supplied to the second reboiler together with the methanol vapor supplied from the second distillation column, so the amount of steam used in the first reboiler is further reduced. As a result, the amount of external heat supplied to the first distillation column can be further reduced.
  • Carbon dioxide recovery system 1 Carbon dioxide recovery system 2 First distillation column 5a First reboiler 5b Second reboiler 8 Hydrogen supply section 14 Compressor 20 Second distillation column 30 Methanol production device 32 Heat exchanger 40 Methanol purification device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

二酸化炭素回収システムは、二酸化炭素を吸収した吸収液を加熱して吸収液から二酸化炭素を放散させる第1蒸留塔と、第1蒸留塔から抜き出された吸収液と蒸気とを熱交換する第1リボイラと、第1リボイラ内の吸収液又は第1リボイラから流出した吸収液に水素を供給する水素供給部とを備える。

Description

二酸化炭素回収システム
 本開示は、二酸化炭素回収システムに関する。
 本願は、2022年3月16日に日本国特許庁に出願された特願2022-040864号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、二酸化炭素を含むガスと吸収液とを気液接触させて吸収液に二酸化炭素を吸収させる吸収塔と、吸収塔で二酸化炭素を吸収した吸収液から二酸化炭素を放出させる蒸留塔とを備えた二酸化炭素回収システムが記載されている。この二酸化炭素回収システムでは、蒸留塔において吸収液からの二酸化炭素の分離を促進するために、吸収液にほぼ溶解しないガス、例えば水素を蒸留塔に供給している。
特許第6906766号公報
 通常、二酸化炭素を吸収した吸収液と蒸留塔内の吸収液から蒸発した水蒸気とが効率よく気液接触するように蒸留塔は設計されているが、特許文献1に記載の二酸化炭素回収システムのように、水素を蒸留塔の下端部から蒸留塔内に供給すると、水蒸気と水素との混合が十分でないので、吸収液と水素とが効率よく気液接触できないという課題があった。また、水素を蒸留塔に供給する場合と、水素を蒸留塔に供給しない場合とのそれぞれにおいて、蒸留塔内の圧力を同じ条件とすると、後者の場合に比べて前者の場合のほうが吸収液から乾燥水素へ移動する水蒸気量が多くなり、この水蒸気の潜熱分だけリボイラデューティが増えるので、水蒸気が凝縮しやすくなるといった課題もあった。
 上述の事情に鑑みて、本開示の少なくとも1つの実施形態は、蒸留塔内で二酸化炭素を吸収した吸収液と水素とを効率よく気液接触できるとともに吸収液から蒸発した水蒸気が凝縮するおそれを低減できる二酸化炭素回収システムを提供することを目的とする。
 上記目的を達成するため、本開示に係る二酸化炭素回収システムは、二酸化炭素を吸収した吸収液を加熱して前記吸収液から二酸化炭素を放散させる第1蒸留塔と、前記第1蒸留塔から抜き出された前記吸収液と蒸気とを熱交換する第1リボイラと、前記第1リボイラ内の前記吸収液又は前記第1リボイラから流出した前記吸収液に水素を供給する水素供給部とを備える。
 本開示の二酸化炭素回収システムによれば、第1リボイラ内の吸収液又は第1リボイラから流出した吸収液に水素を供給することにより、水素と吸収液とが混合した状態で第1蒸留塔に戻される。そうすると、水素と吸収液から蒸発した水蒸気とが良好に混合した気体が第1蒸留塔内を上昇するので、二酸化炭素を吸収した吸収液は、水蒸気だけではなく、水素とも効率よく気液接触することができる。また、第1リボイラにおいて昇温中の吸収液又は第1リボイラにおいて昇温された吸収液に水素が供給されるので、第1リボイラにおける温度制御により、水蒸気が凝縮するおそれを低減することができる。
本開示の実施形態1に係る二酸化炭素回収システムの構成模式図である。 本開示の実施形態2に係る二酸化炭素回収システムの構成模式図である。 本開示の実施形態3に係る二酸化炭素回収システムの構成模式図である。 本開示の実施形態4に係る二酸化炭素回収システムの構成模式図である。
 以下、本開示の実施形態による二酸化炭素回収システムについて、図面に基づいて説明する。以下で説明する実施形態は、本開示の一態様を示すものであり、この開示を限定するものではなく、本開示の技術的思想の範囲内で任意に変更可能である。
(実施形態1)
<本開示の実施形態1に係る二酸化炭素回収システムの構成>
 図1に示されるように、本開示の実施形態1に係る二酸化炭素回収システム1は、第1蒸留塔2を備えている。第1蒸留塔2は、例えば、二酸化炭素を含むガスと吸収液とを気液接触させることにより吸収液に二酸化炭素を吸収させるための図示しない吸収塔と吸収液供給ライン3を介して連通している。
 第1蒸留塔2には、第1蒸留塔2内の吸収液を第1蒸留塔2の塔底から抜き出して第1蒸留塔2内に再び戻すように吸収液を循環させるための循環ライン4が設けられている。循環ライン4には、第1リボイラ5aが設けられている。第1リボイラ5aは、循環ライン4を流れる吸収液と蒸気(例えば水蒸気)とが熱交換することにより、吸収液を加熱する熱交換器である。
 第1リボイラ5aには、第1リボイラ5a内の吸収液に水素を供給する水素供給部8が設けられている。水素供給部8の構成については特に限定するものではないが、例えば、水素供給部8は、水素供給源8aと、一端が水素供給源8aに連通するとともに他端が第1リボイラ5a内の吸収液の流通経路に連通する水素供給ライン8bとを備えてもよい。水素供給源8aは例えば、水素を貯蔵する水素ボンベ又は水素タンクや、任意の方法で水素を製造する水素製造装置であってもよい。水素供給源8aから第1リボイラ5a内の吸収液の流通経路に水素を供給するために、水素供給ライン8bに圧縮機を設けてもよい。
また、加熱した状態で水素を供給するために、水素供給ライン8bに熱交換器を設けてもよい。
 尚、水素供給ライン8bの他端は、第1リボイラ5a内の吸収液の流通経路ではなく、第1リボイラ5aと第1蒸留塔2との間で循環ライン4に連通してもよい。この場合には、第1リボイラ5aから流出した吸収液に水素が供給されることになる。
 また、第1蒸留塔2には、第1蒸留塔2の塔頂から流出したガス(以下、「流出ガス」と言う)を冷却して得られた凝縮液を第1蒸留塔2に戻す凝縮装置6が設けられている。凝縮装置6は、流出ガスが流通する流出ガスライン6aと、流出ガスライン6aに設けられた冷却器6bと、流出ガスライン6aの下流側端部に接続された還流槽6cと、還流槽6c内の凝縮液を第1蒸留塔2に戻す凝縮液ライン6dとを備えている。冷却器6bは、一例として、流出ガスと任意の冷却流体とを熱交換することにより流出ガスを冷却する熱交換器とすることができる。還流槽6c内には凝縮液の他に、後述するように主に二酸化炭素と水素とを含むガスが存在する。還流槽6cの塔頂には、当該ガスを使用する装置10に接続するガス供給ライン7が接続されていてもよい。ガス供給ライン7には、当該ガスを昇圧するための圧縮機9を設けてもよい。
<本開示の実施形態1に係る二酸化炭素回収システムの動作>
 次に、本開示の実施形態1に係る二酸化炭素回収システム1の動作について説明する。吸収液供給ライン3を介して、二酸化炭素を吸収した吸収液が第1蒸留塔2内に流入する。第1蒸留塔2内の吸収液は、第1蒸留塔2の塔底から抜き出された後に循環ライン4を流通して第1蒸留塔2内に再び戻るように循環する。吸収液がこのように循環する際に、吸収液は第1リボイラ5a内を流通する。吸収液が第1リボイラ5a内を流通する際に、水素供給部8によって水素が吸収液に供給される。第1リボイラ5aにおいて、水素と吸収液との混合流体が蒸気と熱交換することにより加熱される。第1リボイラ5aにおいて加熱された混合流体は第1蒸留塔2内に流入する。
 加熱された混合流体が第1蒸留塔2内に流入することにより、第1蒸留塔2内に滞留する吸収液の温度が上昇するので、吸収液に吸収されている二酸化炭素が吸収液から放散されて、第1蒸留塔2内を上昇する。また、吸収液から水が蒸発するので、水蒸気も第1蒸留塔2内を上昇する。さらに、第1リボイラ5aにおいて加熱された混合流体中の水素も、第1蒸留塔2内において吸収液から放散されて、第1蒸留塔2内を上昇する。すなわち、第1蒸留塔2内では、二酸化炭素と水蒸気と水素とが上昇する。
 吸収液供給ライン3を介して第1蒸留塔2に流入した吸収液は、第1蒸留塔2内を落下する際に、第1蒸留塔2内を上昇する二酸化炭素と水蒸気と水素とのそれぞれと気液接触することにより加熱される。一方で、二酸化炭素と水蒸気と水素とは降温するので、水蒸気の一部は凝縮して液体となり、第1蒸留塔2内を落下する。このため、第1蒸留塔2の塔頂から流出する流出ガスは、二酸化炭素と水蒸気と水素とを含むことになる。
 実施形態1では第1リボイラ5a内の吸収液に水素が供給されるので、水素と吸収液とが十分に混合した状態で第1蒸留塔2に流入する。そうすると、第1蒸留塔2内において、水蒸気と水素とが十分混合した状態で吸収液と気液接触するので、吸収液は、水蒸気だけではなく水素とも効率よく気液接触することができる。第1リボイラ5aから流出した吸収液に水素が供給される場合も同様のことが当てはまる。これに対し、水素を第1蒸留塔2内に直接供給する場合は、必ずしも水蒸気と水素とが十分に混合するわけではなく、両者を十分に混合するために混合装置のようなものが必要になる場合もあるので、実施形態1のような水素供給方法の方が、吸収液と水蒸気及び水素とを気液接触させる観点からは、二酸化炭素回収システム1の構成において有利になると考えられる。
 また、上述したように、第1蒸留塔2に水素を供給すると水蒸気が凝縮しやすくなるが、実施形態1では、第1リボイラ5aにおいて昇温中の吸収液又は第1リボイラ5aにおいて昇温された吸収液に水素が供給されるので、第1リボイラ5aにおける温度制御により、水蒸気が凝縮するおそれを低減することもできる。
 第1蒸留塔2の塔頂から流出した流出ガスは流出ガスライン6aを流通する。流出ガスが流出ガスライン6aを流通する際に、冷却器6bにおいて流出ガスが冷却される。流出ガスが冷却されて温度が低下すると、流出ガス中の沸点の低い成分は凝縮するが二酸化炭素及び水素の大部分は気体のままである。冷却された流出ガスが還流槽6cに流入すると、流出ガスは気体成分と液体成分とに分離される。主に二酸化炭素及び水素を含む気体成分は、ガス供給ライン7を介して装置10に供給される。一方、液体成分は、凝縮液ライン6dを介して第1蒸留塔2内に戻される。
 上述したように、第1蒸留塔2に水素を供給すると第1蒸留塔2のリボイラデューティが増える。一方で、第1蒸留塔2に水素を供給することにより、第1蒸留塔2に水素を供給しない場合に比べて第1蒸留塔2内の温度を下げられるため、第1蒸留塔2内の圧力を高めることができる。そうすると、還流槽6c内の圧力も高くなるので、圧縮機9によって装置10へ二酸化炭素及び水素を供給する場合には、圧縮機9の消費エネルギーを削減することができる。また、この場合第1蒸留塔2内の圧力が高まりリボイラデューティが水素を供給しないときと同等まで下がる。これにより、二酸化炭素回収システム1全体の運転コストを低下することができる。
(実施形態2)
 次に、実施形態2に係る二酸化炭素回収システムについて説明する。実施形態2に係る二酸化炭素回収システムは、実施形態1に対して、第1リボイラ5aに加えて、吸収液を加熱するための第2リボイラを追加したものである。尚、実施形態2において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<本開示の実施形態2に係る二酸化炭素回収システムの構成>
 図2に示されるように、実施形態2に係る二酸化炭素回収システム1は、第1蒸留塔2に加えて、第1蒸留塔2とは異なる第2蒸留塔20も備えている。循環ライン4は、吸収液の流れが2つに分かれて互いに並列に流れる部分である第1ライン部分4a及び第2ライン部分4bを含んでいる。第1ライン部分4a及び第2ライン部分4bにはそれぞれ、第1リボイラ5a及び第2リボイラ5bが設けられている。すなわち、第1リボイラ5a及び第2リボイラ5bは吸収液の流れ方向に関して互いに並列に設けられている。第2リボイラ5bは、第2ライン部分4bを流れる吸収液と第2蒸留塔20から供給される流体とが熱交換することにより、吸収液を加熱する熱交換器である。
 第2蒸留塔20は、第1蒸留塔2とは異なるものである限りはその構成を特に限定するものではないが、実施形態2では第2蒸留塔20が、メタノール製造プラントにおいて主成分をメタノールとする粗メタノールを精留してメタノール濃度を高めた流体を得るための蒸留塔として説明する。第2蒸留塔20は、粗メタノールを製造するメタノール製造装置30と粗メタノール供給ライン16を介して連通している。
 第2蒸留塔20には、第1蒸留塔2と同様に、第2蒸留塔20内の粗メタノールを加熱するためのリボイラ11と、第2蒸留塔20の塔頂から流出したメタノール蒸気を凝縮するための凝縮装置12とが設けられている。リボイラ11は、例えば、蒸気(例えば水蒸気)と粗メタノールとが熱交換する熱交換器である。凝縮装置12は、例えば、第2蒸留塔20から流出したメタノール蒸気と任意の冷却流体とが熱交換する熱交換器である冷却器12aと、冷却器12aで冷却された流体(主に液体メタノール)が流入する還流槽12bと、還流槽12b内の一部の液体メタノールを第2蒸留塔20に戻すための戻りライン12cと、還流槽12b内の残りの液体メタノールを製品として供給するためのメタノール供給ライン12dとを備えている。
 第2蒸留塔20から流出したメタノール蒸気が流通するライン13の一端が第2蒸留塔20の塔頂に接続され、ライン13の他端が凝縮装置12の還流槽12bに接続されている。ライン13は、第2リボイラ5bを通過するように、すなわち、第2リボイラ5bにおいて第2ライン部分4bを流通する吸収液とライン13を流通するメタノール蒸気とが熱交換するように設けられている。したがって、前述した流体は、実施形態2では、第2蒸留塔20の塔頂から流出したメタノール蒸気である。その他の構成は実施形態1と同じである。
<本開示の実施形態2に係る二酸化炭素回収システムの動作>
 次に、本開示の実施形態2に係る二酸化炭素回収システム1の動作について説明する。第1蒸留塔2において吸収液から二酸化炭素が放散される動作と、第1リボイラ5aにおいて昇温中の吸収液又は第1リボイラ5aにおいて昇温された吸収液に水素が供給される動作とについては実施形態1と同じである。実施形態2では、第1リボイラ5aだけではなく第2リボイラ5bにおいても、第1蒸留塔2の塔底から抜き出された吸収液が加熱される点が実施形態1と異なる。以下では、実施形態1と異なる動作について説明する。
 メタノール製造装置30において製造された粗メタノールは、粗メタノール供給ライン16を介して第2蒸留塔20内に流入する。第2蒸留塔20内に流入した粗メタノールは、リボイラ11において加熱されて温度が上昇する。粗メタノールの温度が上昇すると、沸点の低いメタノールの大部分が気化して第2蒸留塔20内を上昇する一方、沸点の高い成分(主に水)の大部分が液体のまま第2蒸留塔20内に留まる。第2蒸留塔20内を上昇して第2蒸留塔20から流出した主成分をメタノールとする蒸気(以下、「メタノール蒸気」という)はライン13を流通する。
 ライン13を流通するメタノール蒸気は、第2リボイラ5bにおいて吸収液と熱交換し、温度が低下する。温度によっては、メタノールの少なくとも一部が凝縮する場合がある。第2リボイラ5bにおいて吸収液と熱交換したメタノール蒸気は、メタノール蒸気のまま、又は、少なくとも液体メタノールを含む状態でライン13を流通し、凝縮装置12において、冷却器12aによって冷却された後に還流槽12bに流入する。還流槽12b内の凝縮液(液体メタノール)の一部は戻りライン12cを介して第2蒸留塔20に戻される一方、残りの凝縮液は、メタノール供給ライン12dを介して、メタノールを消費又は貯蔵するための図示しない装置に供給される。
 このように、第1リボイラ5aにおいて、蒸気と吸収液とが熱交換することにより吸収液を加熱するとともに、第2リボイラ5bにおいて、第2蒸留塔20から供給された流体と吸収液とが熱交換することにより吸収液を加熱するので、第1リボイラ5aにおける蒸気の使用量が低減されて、第1蒸留塔2への外部からの熱供給量を削減することができる。
 実施形態2では、第2リボイラ5bにおいてメタノール蒸気の少なくとも一部が凝縮することで、凝縮潜熱分の熱量を吸収液に与えることが可能となる。これにより、ライン13はヒートポンプとして作用するため、二酸化炭素回収システム1全体のエネルギー消費量を下げることができる。この効果をさらに高めるために、第2蒸留塔20内を加圧してもよい。第2蒸留塔20内を加圧するために、例えば、粗メタノール供給ライン16にポンプを設け、第2蒸留塔20に供給する粗メタノールを昇圧してもよい。
(実施形態3)
 次に、実施形態3に係る二酸化炭素回収システムについて説明する。実施形態3に係る二酸化炭素回収システムは、実施形態2に対して、第2蒸留塔20から第2リボイラ5bに供給されるメタノール蒸気を圧縮する圧縮機をライン13に追加したものである。尚、実施形態3において、実施形態2の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<本開示の実施形態3に係る二酸化炭素回収システムの構成>
 図3に示されるように、実施形態3に係る二酸化炭素回収システム1において、ライン13には、第2蒸留塔20と第2リボイラ5bとの間に、圧縮機14が設けられ、第2リボイラ5bと凝縮装置12との間に、圧力を調節するための調節弁15が設けられている。その他の構成は実施形態2と同じである。この圧縮機14は、実施形態2において第2蒸留塔20内を加圧する代わりに、第2蒸留塔20から第2リボイラ5bに向けて供給されたメタノール蒸気を加圧するためのものである。
<本開示の実施形態3に係る二酸化炭素回収システムの動作>
 次に、本開示の実施形態3に係る二酸化炭素回収システム1の動作について説明する。実施形態3は、第2リボイラ5bにおいて吸収液とメタノール蒸気とが熱交換する動作において実施形態2と異なる。以下では、実施形態2と異なる動作についてのみ説明する。
 第2蒸留塔20の塔頂から流出してライン13を流通するメタノール蒸気は、圧縮機14によって圧縮される。圧縮機14による圧縮でメタノール蒸気の温度が上昇する。圧縮機14によって圧縮されたメタノール蒸気は、第2リボイラ5bにおいて吸収液と熱交換し、温度が低下する。温度によっては、メタノールの少なくとも一部が凝縮する場合がある。第2リボイラ5bにおいて吸収液と熱交換したメタノール蒸気は、メタノール蒸気のまま、又は、少なくとも液体メタノールを含む状態でライン13を流通し、凝縮装置12において、冷却器12aによって冷却された後に還流槽12bに流入する。還流槽12b内の凝縮液(液体メタノール)の一部は戻りライン12cを介して第2蒸留塔20に戻される一方、残りの凝縮液は、メタノール供給ライン12dを介して、メタノールを消費又は貯蔵するための図示しない装置に供給される。
 ライン13を流通するメタノール蒸気を熱媒体とする場合、当該熱媒体を圧縮することで昇温させ、第2リボイラ5bで熱交換することで凝縮潜熱分の熱量も吸収液に与えることが可能となる。これにより、ライン13とライン13に付随する装置はヒートポンプとして作用するため、二酸化炭素回収システム1全体のエネルギー消費量を下げることができる。
 このように、第1リボイラ5aにおいて、蒸気と吸収液とが熱交換することにより吸収液を加熱するとともに、第2リボイラ5bにおいて、第2蒸留塔20から供給された流体を圧縮した後に吸収液と熱交換させて吸収液を加熱するので、第1リボイラ5aにおける蒸気の使用量が低減されて、第1蒸留塔2への外部からの熱供給量を削減することができる。
(実施形態4)
 次に、実施形態4に係る二酸化炭素回収システムについて説明する。実施形態4に係る二酸化炭素回収システムは、実施形態2又は3に対して、メタノール製造装置30において製造された粗メタノールの熱を第2リボイラ5bで利用するように変更したものである。以下の説明では、実施形態3に対して上記変更をした形態で実施形態4を構成しているが、実施形態2に対して上記変更をした形態で実施形態4を構成してもよい。尚、実施形態4において、実施形態3の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<本開示の実施形態4に係る二酸化炭素回収システムの構成>
 図4に示されるように、実施形態4に係る二酸化炭素回収システム1において、メタノール製造装置30の中には、メタノール合成時に発生した熱を除熱するための熱交換器32が設けられている。熱交換器32は、凝縮装置12及び第2蒸留塔20(リボイラ11を含む)から構成されたメタノール精製装置40から供給されるメタノールと、メタノール合成時に発生した熱とが熱交換するように構成されている。メタノールがメタノール精製装置40のどこから供給されるかについては特に限定はしないが、実施形態4ではその具体的な一例として、メタノール供給ライン12dから分岐した分岐ライン31が熱交換器32を通過するようにして第2蒸留塔20と圧縮機14との間でライン13に接続される構成で説明する。その他の構成は実施形態3と同じである。
<本開示の実施形態4に係る二酸化炭素回収システムの動作>
 次に、本開示の実施形態4に係る二酸化炭素回収システム1の動作について説明する。実施形態4は、第2リボイラ5bにおいて吸収液とメタノール蒸気とが熱交換する動作の一部において実施形態3と異なる。以下では、実施形態3と異なる動作についてのみ説明する。
 メタノール製造装置30において製造された粗メタノールは、熱交換器32において、メタノール精製装置40から供給されるメタノールと熱交換することにより冷却される。一方で、メタノールの温度は上昇しメタノール蒸気となる。メタノール蒸気は、第2蒸留塔20と圧縮機14との間でライン13に流入し、第2蒸留塔20から第2リボイラ5bに向かってライン13を流通するメタノール蒸気と合流する。合流したメタノール蒸気は、実施形態3と同様に、圧縮機14で圧縮されることによりさらに昇温されて、第2リボイラ5bで吸収液と熱交換する。その後の動作は実施形態3と同じである。
 このように、熱交換器32において加熱されたメタノール蒸気が、第2蒸留塔20から供給されるメタノール蒸気と共に第2リボイラ5bに供給されることにより、第1リボイラ5aにおける蒸気の使用量をさらに低減できるので、第1蒸留塔2への外部からの熱供給量をさらに削減することができる。
<各実施形態に係る二酸化炭素回収システムの変形例>
 実施形態2~4では、第2蒸留塔20は、メタノール製造プラントにおいてメタノールを精留するための蒸留塔であったが、このような蒸留塔に限定するものではなく、メタノール派製品製造装置、例えば、二酸化炭素とメタノールとから炭酸ジメチルを製造する装置、メタノールからオレフィンを製造する(MTO)装置、メタノールからガソリンを製造する(MTG)等であってもよい。また、メタノールはプラントで製造されるもの(製品又は中間材)に限定はされず、原料として外部調達されたものを利用してもよい。この場合は、蒸留塔である第2蒸留塔20に代えて、例えば、メタノールの貯蔵設備及びメタノールを加熱する加熱装置からメタノールが供給されることになる。また、実施形態2~4では、第2蒸留塔20は1つの蒸留塔であったが、第2蒸留塔20を2つ以上の蒸留塔から構成してもよいし、1つ以上の蒸留塔と蒸留塔以外の構成の装置との組み合わせで構成してもよい。
 実施形態2~4では、第2リボイラ5bにおいて熱源として使用される流体はメタノール蒸気であったが、メタノールに限定するものではない。水、若しくは、飽和温度が大気圧で100℃以下かつ10気圧以下で120℃以下である物性を有する炭化水素又は酸素原子を含む炭化水素を前記流体として使用してもよい。また、このような物質の純物質に限定するものではなく、このような物質を一部として含むものを前記流体として使用してもよい。このような物質としては、エタノール、アセトン、2-プロパノール、ヘキサン、これらの混合物等を例示することができる。
 実施形態2~4では、吸収液の流れ方向に関して第1リボイラ5a及び第2リボイラ5bが互いに並列に設けられているが、これらの形態に限定するものではない。第1リボイラ5a及び第2リボイラ5bが互いに直列に設けられていてもよい。
 本開示では、主に二酸化炭素と水素とを含むガスを使用する装置10の構成については特に言及しなかったが、このようなガスを使用する装置であれば特に限定するものではなく、実施形態2~4の場合には、装置10はメタノール製造装置30であってもよい。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
[1]一の態様に係る二酸化炭素回収システムは、
 二酸化炭素を吸収した吸収液を加熱して前記吸収液から二酸化炭素を放散させる第1蒸留塔(2)と、
 前記第1蒸留塔(2)から抜き出された前記吸収液と蒸気とを熱交換する第1リボイラ(5a)と、
 前記第1リボイラ(5a)内の前記吸収液又は前記第1リボイラ(5a)から流出した前記吸収液に水素を供給する水素供給部(8)と
を備える。
 本開示の二酸化炭素回収システムによれば、第1リボイラ内の吸収液又は第1リボイラから流出した吸収液に水素を供給することにより、水素と吸収液とが混合した状態で第1蒸留塔に戻される。そうすると、水素と吸収液から蒸発した水蒸気とが良好に混合した気体が第1蒸留塔内を上昇するので、二酸化炭素を吸収した吸収液は、水蒸気だけではなく、水素とも効率よく気液接触することができる。また、第1リボイラにおいて昇温中の吸収液又は第1リボイラにおいて昇温された吸収液に水素が供給されるので、第1リボイラにおける温度制御により、水蒸気が凝縮するおそれを低減することができる。
[2]別の態様に係る二酸化炭素回収システムは、[1]の二酸化炭素回収システムであって、
 前記第1蒸留塔(2)とは異なる第2蒸留塔(20)と、
 前記第1蒸留塔(2)から抜き出された前記吸収液と、前記第2蒸留塔(20)から供給される流体とを熱交換する第2リボイラ(5b)と
を備える。
 このような構成によれば、第1リボイラにおいて、蒸気と吸収液とが熱交換することにより吸収液を加熱するとともに、第2リボイラにおいて、第2蒸留塔から供給された流体と吸収液とが熱交換することにより吸収液を加熱するので、第1リボイラにおける蒸気の使用量が低減されて、第1蒸留塔への外部からの熱供給量を削減することができる。
[3]さらに別の態様に係る二酸化炭素回収システムは、[2]の二酸化炭素回収システムであって、
 前記流体が前記第2リボイラ(5b)に流入する前に前記流体を圧縮する圧縮機(14)を備える。
 このような構成によれば、第1リボイラにおいて、蒸気と吸収液とが熱交換することにより吸収液を加熱するとともに、第2リボイラにおいて、第2蒸留塔から供給された流体を圧縮した後に吸収液と熱交換させて吸収液を加熱するので、第1リボイラにおける蒸気の使用量が低減されて、第1蒸留塔への外部からの熱供給量を削減することができる。
[4]さらに別の態様に係る二酸化炭素回収システムは、[3]の二酸化炭素回収システムであって、
 前記流体は、水、若しくは、飽和温度が大気圧で100℃以下かつ10気圧以下で120℃以下である物性を有する炭化水素又は酸素原子を含む炭化水素を含む。
[5]さらに別の態様に係る二酸化炭素回収システムは、[2]~[4]のいずれかの二酸化炭素回収システムであって、
 前記第2蒸留塔(20)に供給される粗メタノールを製造するメタノール製造装置(30)を備え、
 前記流体はメタノール蒸気である。
 このような構成によれば、第1リボイラにおいて、蒸気と吸収液とが熱交換することにより吸収液を加熱するとともに、第2リボイラにおいて、第2蒸留塔から供給されたメタノール蒸気と吸収液とが熱交換することにより吸収液を加熱するので、第1リボイラにおける蒸気の使用量が低減されて、第1蒸留塔への外部からの熱供給量を削減することができる。
[6]さらに別の態様に係る二酸化炭素回収システムは、[5]の二酸化炭素回収システムであって、
 前記メタノール製造装置(30)において製造された前記粗メタノールと、前記第2蒸留塔(20)を含み前記粗メタノールを精製するメタノール精製装置(40)から供給されるメタノールとを熱交換する熱交換器(32)を備え、
 前記熱交換器(32)において前記粗メタノールと前記メタノールとを熱交換することにより生成したメタノール蒸気は、前記第2蒸留塔(20)から供給される前記メタノール蒸気と合流するように構成されている。
 このような構成によれば、熱交換器において加熱されたメタノール蒸気が、第2蒸留塔から供給されるメタノール蒸気と共に第2リボイラに供給されるので、第1リボイラにおける蒸気の使用量がさらに低減されて、第1蒸留塔への外部からの熱供給量をさらに削減することができる。
1 二酸化炭素回収システム
2 第1蒸留塔
5a 第1リボイラ
5b 第2リボイラ
8 水素供給部
14 圧縮機
20 第2蒸留塔
30 メタノール製造装置
32 熱交換器
40 メタノール精製装置

Claims (6)

  1.  二酸化炭素を吸収した吸収液を加熱して前記吸収液から二酸化炭素を放散させる第1蒸留塔と、
     前記第1蒸留塔から抜き出された前記吸収液と蒸気とを熱交換する第1リボイラと、
     前記第1リボイラ内の前記吸収液又は前記第1リボイラから流出した前記吸収液に水素を供給する水素供給部と
    を備える二酸化炭素回収システム。
  2.  前記第1蒸留塔とは異なる第2蒸留塔と、
     前記第1蒸留塔から抜き出された前記吸収液と、前記第2蒸留塔から供給される流体とを熱交換する第2リボイラと
    を備える、請求項1に記載の二酸化炭素回収システム。
  3.  前記流体が前記第2リボイラに流入する前に前記流体を圧縮する圧縮機を備える、請求項2に記載の二酸化炭素回収システム。
  4.  前記流体は、水、若しくは、飽和温度が大気圧で100℃以下かつ10気圧以下で120℃以下である物性を有する炭化水素又は酸素原子を含む炭化水素を含む、請求項3に記載の二酸化炭素回収システム。
  5.  前記第2蒸留塔に供給される粗メタノールを製造するメタノール製造装置を備え、
     前記流体はメタノール蒸気である、請求項2~4のいずれか一項に記載の二酸化炭素回収システム。
  6.  前記メタノール製造装置において製造された前記粗メタノールと、前記第2蒸留塔を含み前記粗メタノールを精製するメタノール精製装置から供給されるメタノールとを熱交換する熱交換器を備え、
     前記熱交換器において前記粗メタノールと前記メタノールとを熱交換することにより生成したメタノール蒸気は、前記第2蒸留塔から供給される前記メタノール蒸気と合流するように構成されている、請求項5に記載の二酸化炭素回収システム。
PCT/JP2023/008481 2022-03-16 2023-03-07 二酸化炭素回収システム WO2023176572A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2023235640A AU2023235640A1 (en) 2022-03-16 2023-03-07 Carbon dioxide recovery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-040864 2022-03-16
JP2022040864A JP2023135677A (ja) 2022-03-16 2022-03-16 二酸化炭素回収システム

Publications (1)

Publication Number Publication Date
WO2023176572A1 true WO2023176572A1 (ja) 2023-09-21

Family

ID=88023113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008481 WO2023176572A1 (ja) 2022-03-16 2023-03-07 二酸化炭素回収システム

Country Status (3)

Country Link
JP (1) JP2023135677A (ja)
AU (1) AU2023235640A1 (ja)
WO (1) WO2023176572A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034659A (ja) * 2001-07-19 2003-02-07 Mitsubishi Heavy Ind Ltd メタノールの製造方法
JP2011213494A (ja) * 2010-03-31 2011-10-27 Nippon Steel Engineering Co Ltd 二酸化炭素ガス回収装置
CN107138025A (zh) * 2017-05-31 2017-09-08 华南理工大学 一种压力能和冷能高效回收利用的低温甲醇洗工艺
JP6906766B2 (ja) 2017-11-30 2021-07-21 株式会社神戸製鋼所 ガス処理方法及びガス処理装置
JP2022040864A (ja) 2020-08-31 2022-03-11 日本製鉄株式会社 軸受部品の素材となる継目無鋼管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034659A (ja) * 2001-07-19 2003-02-07 Mitsubishi Heavy Ind Ltd メタノールの製造方法
JP2011213494A (ja) * 2010-03-31 2011-10-27 Nippon Steel Engineering Co Ltd 二酸化炭素ガス回収装置
CN107138025A (zh) * 2017-05-31 2017-09-08 华南理工大学 一种压力能和冷能高效回收利用的低温甲醇洗工艺
JP6906766B2 (ja) 2017-11-30 2021-07-21 株式会社神戸製鋼所 ガス処理方法及びガス処理装置
JP2022040864A (ja) 2020-08-31 2022-03-11 日本製鉄株式会社 軸受部品の素材となる継目無鋼管

Also Published As

Publication number Publication date
JP2023135677A (ja) 2023-09-29
AU2023235640A1 (en) 2024-09-19

Similar Documents

Publication Publication Date Title
RU2611499C2 (ru) Способ и установка для дистилляции метанола с регенерацией тепла
RU2472843C2 (ru) Интеграция по теплу в процессе, включающем газификацию угля и реакцию метанирования
KR20070024551A (ko) 수소 플랜트에서의 냉각 방법 및 장치
CN108138595A (zh) 基于改进的高斯瓦米循环的气体加工装置废热至电力和冷却的转换
CN108138599A (zh) 基于卡林那循环的气体加工装置废热至电力的转换
CN108352550A (zh) 带冷凝-蒸发装置燃料电池系统并行冷凝蒸发方法和装置及带冷凝-蒸发装置染料电池系统
CA2860900C (en) Process and plant for distillation of methanol with heat recovery
RU2695209C1 (ru) Установка регенерации водного раствора метанола
JP2007024489A (ja) 液化天然ガスからの炭化水素の分離方法および装置
US8673062B2 (en) Method for purifying gases and obtaining acid gases
WO2023176572A1 (ja) 二酸化炭素回収システム
JP2020121239A (ja) 蒸留装置
JP6621415B2 (ja) ジメチルエーテル反応器の生成物流の分離処理法
DD161075A3 (de) Verfahren zur abwaermenutzung fuer die erzeugung mechanischer energie mit wahlweise gleichzeitiger kaelteerzeugung
CN107138025A (zh) 一种压力能和冷能高效回收利用的低温甲醇洗工艺
KR101907609B1 (ko) 암모니아수 회수 장치 및 암모니아수 회수 방법
JP2012236176A (ja) 海水の淡水化システム及びその方法
WO2023085086A1 (ja) 二酸化炭素回収システム
CN106316800B (zh) 一种低耗能由甲醇制备二甲醚的方法
JP2022124582A (ja) 蒸留装置
JP2004114029A (ja) 排水中の水溶性揮発成分を分離・回収する方法
CN106500086A (zh) 一种废蒸汽资源化利用及回收系统
US9638367B2 (en) Saturator and natural gas reforming system provided with same
CN110813028A (zh) 用于从气体混合物除去酸性气体成分的方法和装置
WO2023136065A1 (ja) 二酸化炭素回収システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770528

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023770528

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023770528

Country of ref document: EP

Effective date: 20240909

ENP Entry into the national phase

Ref document number: 2023235640

Country of ref document: AU

Date of ref document: 20230307

Kind code of ref document: A