EP2766123B1 - Procédé destiné à fragmenter et/ou à pré-affaiblir un matériau au moyen de décharges à haute tension - Google Patents

Procédé destiné à fragmenter et/ou à pré-affaiblir un matériau au moyen de décharges à haute tension Download PDF

Info

Publication number
EP2766123B1
EP2766123B1 EP11773167.9A EP11773167A EP2766123B1 EP 2766123 B1 EP2766123 B1 EP 2766123B1 EP 11773167 A EP11773167 A EP 11773167A EP 2766123 B1 EP2766123 B1 EP 2766123B1
Authority
EP
European Patent Office
Prior art keywords
liquid
feeding
process liquid
rinsing
process area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11773167.9A
Other languages
German (de)
English (en)
Other versions
EP2766123A1 (fr
Inventor
Helena AHLQVIST JEANNERET
Reinhard MÜLLER-SIEBERT
Heiko FEITKENHAUER
Alexander WEH
Fabrice Monti Di Sopra
Peter HOPPÉ
Josef Singer
Harald Giese
Klaus Leber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Selfrag AG
Original Assignee
Selfrag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Selfrag AG filed Critical Selfrag AG
Publication of EP2766123A1 publication Critical patent/EP2766123A1/fr
Application granted granted Critical
Publication of EP2766123B1 publication Critical patent/EP2766123B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/06Selection or use of additives to aid disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/10Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone
    • B02C23/12Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone with return of oversize material to crushing or disintegrating zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/20Adding fluid, other than for crushing or disintegrating by fluid energy after crushing or disintegrating
    • B02C23/22Adding fluid, other than for crushing or disintegrating by fluid energy after crushing or disintegrating with recirculation of material to crushing or disintegrating zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/36Adding fluid, other than for crushing or disintegrating by fluid energy the crushing or disintegrating zone being submerged in liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C2019/183Crushing by discharge of high electrical energy

Definitions

  • the invention relates to methods for fragmentation and / or pre-attenuation of material by means of high-voltage discharges, a high-voltage electrode for a process space for performing the method, a process space with such a high-voltage electrode for performing the method, a process container forming such a process space and a system for fragmentation and / or Pre-weakening of material by means of high-voltage discharges with such a process container according to the preambles of the independent claims.
  • the material to be comminuted or prewashed together with a process fluid for example water
  • a process fluid for example water
  • a first aspect of the invention relates to a method for fragmentation and / or weakening of material, preferably of rock material or ore, by means of high-voltage discharges.
  • Fragmentation is a crushing of the material understood
  • a weakening also referred to as pre-weakening
  • the material to be fragmented or weakened is introduced together with a process fluid into a process space in which two electrodes face one another at a distance and thus form a high-voltage discharge path within the process space between them.
  • the material to be fragmented or weakened and the process fluid are arranged in the process space such that the area between the two electrodes is filled with material and process fluid to be fragmented or weakened.
  • High-voltage discharges are generated between the two electrodes in order to fragment and / or weaken the material introduced into the process space.
  • process fluid is removed from the process space and process fluid is supplied into the process space, wherein the supplied process fluid has a lower electrical conductivity than the discharged process fluid.
  • the conductivity of the supplied process liquid is in the range between 0.2 micro Siemens per cm and 5000 micro Siemens per cm.
  • the electrical conductivity of the process liquid located in the process space the electrical conductivity of the process liquid discharged from the process space and / or the discharge resistance determined between the two electrodes and depending on the determined values, the supply of process fluid into the process space and / or, where appropriate, the conditioning of the process liquid changed, preferably regulated.
  • the electrical conductivity of the process liquid located in the process space the electrical conductivity of the process liquid discharged from the process space and / or the discharge resistance determined between the two electrodes and depending on the determined values, the supply of process fluid into the process space and / or, where appropriate, the conditioning of the process liquid changed, preferably regulated.
  • the removal and supply of the process liquid takes place simultaneously, since this allows the formation of a purge flow, with which specific specific areas of the process space can be detected.
  • the supplied and removed process liquid volumes are substantially identical, which is likewise preferred, it is thereby possible to prevent or at least keep within narrow limits a fluctuation of the process liquid level in the process space, which is particularly desirable for continuous processes.
  • the supply and removal of process liquid can take place continuously or at intervals, depending on the process control.
  • a simultaneous continuous supply and removal of process liquid has the advantage that a continuous purge flow is possible with quasi-stationary conductivity conditions in the process space zone detected by the purge flow. If the simultaneous supply and removal of process liquid takes place at intervals, it is possible to achieve a good rinsing of certain zones of the process space even with small exchange quantities due to short-term intensive flow.
  • the discharged process liquid is subjected to a conditioning process in which its electrical conductivity is reduced. Then it is completely or partially returned to the process room. This makes it possible to use all or some of the process fluid discharged from the process space again as the process fluid for the fragmentation or Vorschwumbleungslui in the process room.
  • the conditioning of the process liquid is preferably carried out by withdrawing ions, by diluting with process liquid of lower conductivity, by removing fine material, by changing the pH of the process liquid and / or by adding complexing agents.
  • the process space for forming a process fluid circuit is connected to the inlet and outlet of a process fluid treatment system for reducing the electrical conductivity of the process fluid and process fluid is circulated in this circuit.
  • process fluid is removed from the process space at a first location of the process space and fed to the process fluid treatment plant.
  • it is then reduced in its electrical conductivity, for example by means of the aforementioned measures, and then completely or partially returned to the process space at a second location of the process space.
  • Such methods have the advantage that the consumption of process fluid can be kept very low and it is also possible to keep the amounts of waste, which must be disposed of very low.
  • the supply of process liquid into the process space is effected in such a way that a targeted introduction of the process liquid into the reaction zone between the two electrodes results.
  • the reaction zone is understood to be the zone of the process space in which the high-voltage discharges typically take place. This makes it possible to significantly influence the Fragment réelles- or weakening process even with small amounts of supplied process fluid. Often, the process fluid quality in the other zones of the process space is unimportant for the process or of secondary importance, so that an intensive rinsing of the same would not benefit and would only increase the plant's technical complexity.
  • the supply and removal of process liquid takes place in such a way that the supplied process fluid flows through the reaction zone between the two electrodes, in particular from top to bottom or from bottom to top or in a direction radially outward from the center of the reaction zone.
  • Such a flow characteristic has the advantage that old process fluid and fine particles contained therein are flushed out of the reaction zone and substantially freshly supplied process fluid is present in the reaction zone.
  • the supply of process liquid into the process space via one of the electrodes or via both electrodes is possible to dispense with separate feed arrangements.
  • a feed of process fluid takes place via one or more feed openings arranged on the end side of the respective electrode, specifically advantageously via a central feed opening and / or via a plurality of feed openings arranged concentrically around the electrode center.
  • one or two electrodes surrounded by an insulator are used.
  • the supply of process liquid via the insulator of one or both electrodes is possible, so that the actual high-voltage electrode, which is to be regarded as consumable, can be designed structurally simple and therefore cost.
  • the supply of process fluid via one or more end faces arranged on the respective insulator supply openings preferably over a plurality of concentrically arranged around the electrode center feed openings on the respective insulator, since a uniform supply into the reaction zone is possible.
  • the supply of process liquid takes place via an arrangement of inflow nozzles or via an annular gap which or which concentrically surrounds the respective electrode or its insulator.
  • a process space in which the two electrodes are arranged one above the other in the direction of gravity and in which the lower electrode is formed at the bottom of the process space.
  • Such process spaces have proven to be particularly suitable, since with appropriate design a gravity-induced promotion of the fragmented or weakened material in the reaction zone and a gravity-induced discharge of the fragmented or vorumblechten material from this and from the process space is possible and thus to separate Subsidies can be waived for this purpose.
  • the supply of process fluid and / or the discharge of process fluid via one or more discharge openings at the bottom of the process space.
  • This has the advantage that a flushing flow can be generated in the region of the bottom, with which fine particles settling there can be discharged from the process space. This also makes it possible to remove all the process liquid in the process space by gravity feed from the process space.
  • a process space in which the two electrodes are arranged side by side in the direction of gravity, wherein preferably both electrodes have an insulator and a potential not equal to the ground potential is applied.
  • both electrodes have an insulator and a potential not equal to the ground potential is applied.
  • different openings are used for discharging the process liquid from the process space and for removing the fractionated or weakened material from the process space. This results in greater freedom with respect to the design of the process space and the possible generation of a purge flow in certain areas of the same.
  • the fragmented or weakened material is removed via a, in particular central opening or via a plurality of removal openings at the bottom of the process space. This has the advantage that the removal can be done gravitationally, without additional funding.
  • the material to be fragmented or weakened is fed continuously or batchwise to the process space and continuously or batchwise removed fragmented or weakened material from the process space. So it is e.g. provided to supply the material to be fragmented or weakened batchwise and continuously dissipate the fragmented or weakened material, or vice versa. It is also provided, of course, to carry out both the feeding and the discharging continuously (pure continuous operation) or to carry out both batchwise (pure batch operation). Depending on the system configuration and the material to be treated, one or the other variant may be more advantageous.
  • a second aspect of the invention relates to a method, preferably according to the first aspect of the invention, for the fragmentation and / or weakening of material, preferably of rock material or ore, by means of high-voltage discharges.
  • a fragmentation is understood to mean a comminution of the material under a weakening (also referred to as a pre-weakening) is meant a generation of internal cracks in the material, which facilitates a further, in particular mechanical comminution of the material.
  • the material to be fragmented or weakened is introduced together with a process fluid into a process space in which two electrodes face one another at a distance and thus form a high-voltage discharge path within the process space between them.
  • the material to be fragmented or weakened and the process liquid are arranged in the process space such that the region between the two electrodes is filled with material and process liquid to be fragmented or weakened. High-voltage discharges are generated between the two electrodes in order to fragment and / or weaken the material introduced into the process space.
  • material which is to be fragmented or weakened is introduced into the process space continuously or batchwise and material is removed from the process space continuously or batchwise, at least part of the material discharged from the process space being reintroduced into the process space after a further process step outside the process space
  • Process space has undergone, which includes flushing the re-introduced into the process space material with a first rinse liquid, preferably with a first rinse liquid having a lower conductivity than the process liquid located in the process space.
  • rinsing is here a contacting of the material with the first rinse liquid in the widest Understood meaning.
  • the material is placed in a basin filled with the first rinsing liquid or that the material is rinsed off with the first rinsing liquid.
  • the electrical conductivity of the first rinsing liquid used for rinsing is determined and then the feed of the rinsing liquid used for rinsing and / or, where appropriate, the conditioning of the first rinsing liquid is changed, and this is controlled in advance. In this way, a stable process management can be automated.
  • the further process step comprises rinsing the material to be reintroduced into the process space with a first rinsing liquid, preferably with a first rinsing liquid having a lower conductivity than the process liquid located in the process space, pass between the end of the rinsing of the Material with the first rinse and the subsequent re-introduction of the material into the process space or, more preferably, the loading of the material with high-voltage discharges in the process space less than 5 minutes, preferably less than 3 minutes.
  • the first rinsing liquid used for rinsing has a similar, preferably identical, nature to that introduced into the process space
  • Process fluid results in materials that outsource in contact with the liquid ions in the liquid
  • the advantage that the ionization of the process liquid in the process space can be significantly reduced thereby, with the result that a better fragmentation or weakening efficiency can be achieved can.
  • the first rinsing liquid used for rinsing is circulated in a circuit and continuously or temporarily by the withdrawal of ions, by dilution with rinsing liquid of lower conductivity, by withdrawal of fine material, by changing their pH and / or conditioned by addition of complexing agents.
  • the material removed from the process space preferably by sieving, is divided into coarse material and fine material.
  • the coarse material is returned to the process room after it has passed through the further process step outside the process area.
  • the discharge of the target material fragmented material and of the circulated material can be combined and thereby simplified.
  • the dividing into coarse material and fine material takes place before the further process step is carried out. This results in the advantage that only the material to be returned to the process space passes through the further process step.
  • the amount of coarse material obtained by the division into coarse material and fine material is greater than the amount of fine material obtained, that is, the recirculated amount of material is greater than the amount comminuted to target size.
  • the further process step rinsing the material to be re-introduced into the process space comprising a rinsing liquid, which is similar, preferably identical to the process liquid introduced into the process space, and materials are treated, which in contact with the process liquid ions in this outsource, this results in the advantage that the Ionenbefrachtung the process liquid in the process room even further can be reduced because it is possible to supply the process space more "washed" recirculation material in a continuous process as "unwashed” new material.
  • a third aspect of the invention relates to a method, preferably according to the first or the second aspect of the invention, for the fragmentation and / or weakening of material, preferably of rock material or ore, by means of high-voltage discharges.
  • a fragmentation is understood to mean a comminution of the material
  • a weakening also referred to as a pre-weakening
  • the material to be fragmented or weakened is introduced together with a process fluid into a process space in which two electrodes face one another at a distance and thus form a high-voltage discharge path within the process space between them.
  • the material to be fragmented or weakened and the process liquid are arranged in the process space such that the region between the two electrodes is filled with material and process liquid to be fragmented or weakened. High-voltage discharges are generated between the two electrodes in order to fragment and / or weaken the material introduced into the process space.
  • the material introduced into the process space is previously rinsed with a second rinsing liquid for fragmentation or pre-weakening, preferably with a second rinsing liquid with a lower conductivity than the process liquid located during fragmentation or weakening in the process space.
  • the second rinsing liquid is similar, preferably identical to the process liquid introduced into the process space, which is preferred, and that materials are treated which in contact with the liquid ions outsource into this liquid, which can significantly improve energy efficiency and can prevent a problematic materials from changing from an electrodynamic action to an electro-hydraulic action or at least slow it down.
  • the electrical conductivity of the second rinsing liquid used for rinsing is determined and, depending on the determined values, the supply of the second rinsing liquid used for rinsing and / or, where applicable, the conditioning of the second rinsing liquid is changed, preferably regulated. In this way, a stable process management can be automated.
  • the rinsing with the second rinsing liquid takes place within the process space, in another outside the process space.
  • rinsing is meant here a contacting of the material with the second rinsing liquid in the broadest sense.
  • the material is placed in a tank filled with the second rinsing liquid before it is introduced into the process space or that the material is rinsed off with the second rinsing liquid.
  • combinations are provided as well as a multiple insertion, flooding and / or rinsing, eg also at intervals between exposure to the material with high voltage discharges.
  • the result for materials which migrate ions into the liquid in contact with the liquid is that the ionizing of the process liquid in the This process space can be reduced even further, since a re-concentration of ions on the material surface can be substantially prevented with the result that an even better fragmentation or weakening efficiency can be achieved.
  • the second rinsing liquid used for rinsing is circulated in a circuit and continuously or temporarily by the withdrawal of ions, by dilution with rinsing liquid of lower conductivity, by withdrawal of fine material, by changing their pH and / or by Add complexing agents conditioned.
  • These individual measures for conditioning are familiar to the person skilled in the art and therefore need not be explained further here. This results in the advantage that the consumption of second rinsing liquid can be kept very low and it is also possible to keep the amounts of waste, which must be disposed of low.
  • water is used as process liquid in the processes according to the first, second and third aspects of the invention. This is inexpensive and has proven in practice to be very suitable for such methods.
  • a noble metal or semiprecious metal ore is used, preferably a copper ore or a copper / gold alloy. Ore. With such materials, the advantages of the invention are particularly evident.
  • a fourth aspect of the invention relates to a high-voltage electrode for a process space for carrying out one of the methods according to the first, second or third aspect of the invention.
  • the high-voltage electrode comprises an insulator body with a central conductor, preferably made of metal, in particular copper, a copper alloy or a stainless steel, at the working end, which protrudes axially from the insulator body, an electrode tip is arranged, which advantageously has the form of a spherical cap or a paraboloid of revolution.
  • the central conductor and / or the insulator have one or more supply openings for supplying process liquid into the process space to be formed with this high-voltage electrode, which open into one or more supply channels in the high-voltage electrode, via which these supply openings extend from a location remote from the working end , Preferably from the non-working end of the high voltage electrode ago, with process fluid, preferably water, can be fed.
  • process fluid preferably water
  • Such a high-voltage electrode has the advantage that it can be dispensed with by their use to separate supply arrangements for process liquid and that virtually inevitably a supply of the process liquid in the region of the reaction zone of the process space is carried out, which is desirable.
  • the insulator body is surrounded by a further component which, as such or together with the insulator body, forms an end-side annular gap.
  • the latter can be supplied with process liquid, preferably water, from a location remote from the working end, preferably from the non-working end of the high-voltage electrode.
  • the central conductor has at its working end one or more front-side feed openings for supplying process liquid into the process space, preferably a central feed opening and / or a plurality of feed openings arranged concentrically around the electrode center.
  • the central conductor has at its working end one or more arranged on its circumference feed openings, which are advantageously evenly distributed on its circumference. As a result, a somewhat more diffuse supply of the process liquid into the reaction zone is possible.
  • one or the other variant or else a combination thereof may be more advantageous.
  • the central conductor in the region of its Häend Schollen outlet from the insulator body on its outer circumference on a circumferential radial bead, which serves as a field relief. It is further preferred that the end face of this bead has feed openings.
  • the central conductor for supplying the process fluid to the supply openings has a central supply channel, which is preferred, there is the advantage that a simple low-cost construction of the high-voltage electrode becomes possible.
  • a further advantage is that a central longitudinal bore in a high-voltage electrode has the least influence on its current conductivity during normal operation.
  • the insulator body of the high-voltage electrode prefferably has one or more feed openings on its end face, preferably a plurality of feed openings arranged concentrically around the electrode center, or for the insulator body to be surrounded by a further component which forms an arrangement of inflow nozzles ,
  • these feed openings and / or nozzles from a working end remote location, preferably from the non-working end of the high voltage electrode ago, with process liquid, preferably water, are fed.
  • process liquid preferably water
  • a fifth aspect of the invention relates to a process space with a high-voltage electrode according to the fourth aspect of the invention for carrying out a method according to the first, second or third aspect of the invention.
  • a sixth aspect of the invention relates to a process container which forms a preferably closed process chamber according to the fifth aspect of the invention.
  • a seventh aspect of the invention relates to a plant for the fragmentation and / or weakening of material, preferably of rock material or ore, by means of high-voltage discharges.
  • the plant comprises a process vessel according to the sixth aspect of the invention and a high voltage pulse generator for applying high voltage pulses to the high voltage electrode according to the fourth aspect of the invention for generating high voltage discharges in the process space formed by the process vessel.
  • Fig. 1 shows the lower part of a first process container in vertical section during the implementation of a method according to the invention.
  • the process container forms a closed process space 2, at the bottom of which an electrode 4 is arranged which is at ground potential.
  • the process space 2 is filled to about half (see liquid level S) with a process liquid 5, in the present case with water.
  • the funnel-shaped bottom of the process space 2 is covered with a bed of material to be fragmented 1, in this case rock pieces. From above, a rod-shaped high-voltage electrode 3 projects into the process space 2.
  • the part of the high voltage electrode 3 visible here is formed by an insulator body 8 with a central conductor 14, at the working end, which protrudes axially from the insulator body 8, a rod-shaped electrode tip 15 is arranged.
  • the central conductor 14 or the electrode end 15 forming its working end has, in the region directly adjacent to the end face of the insulator body 8 on the working end side, a circumferential, radial bead 16 on its outer circumference, which serves as field relief.
  • the electrode tip 15 and the bead 16 are formed together as a one-piece replaceable part made of stainless steel, which is screwed with an internal thread 19, which is formed at the end of an expansion sleeve 20 on an external thread 21 of a central conductor 14 extending tie rod 22, such that the the insulator body 8 facing end face of the bead 16 bears under pressure bias on the working end side end face of the central conductor 14.
  • the high-voltage electrode 3 dips with its electrode tip 15 into the bed of rock pieces 1 located at the bottom of the process space 2 such that a space (reaction zone) remains between the end face of the electrode tip 15 of the high-voltage electrode 3 and the end face of the bottom electrode 4, which remains with pieces of rock 1 and process liquid 5 is filled.
  • the bead 16 At its end facing away from the insulator body 8, the bead 16 a plurality of uniform angular pitch around the electrode center around arranged supply openings 6 for process liquid 5, which via a running in the center of Switzerlandankers 22 and through the expansion sleeve 20 central supply channel 7 from the non-working end of High voltage electrode 3 ago continuously supplied with process fluid 5 (see arrows).
  • process fluid 5 see arrows.
  • fresh process fluid is continuously introduced into the reaction zone R in which the high-voltage electrode 3 is acted upon With high voltage pulses high voltage discharges between the bottom electrode 4 and the high voltage electrode 3 are generated, fed and thereby old process liquid 5 and fine particles from the reaction zone R displaces.
  • the same amount of process liquid is discharged via radial discharge openings 12 above the reaction zone R from the process chamber 2 (see arrows) and a process liquid treatment plant (not shown) fed, in which the particle load is removed and the electrical conductivity of the process liquid 5 is reduced.
  • the thus processed process liquid 5 is returned via the supply openings 6 in the high voltage electrode 3 in the process chamber 2.
  • a process fluid circuit is formed here, with which the reaction zone is rinsed continuously with treated process fluid 5.
  • Fig. 3 shows a vertical section through the working end of a second high-voltage electrode 3, which differs from the in Fig. 2 merely differs in that the supply openings 6 for the process liquid 5 are not arranged on the front side of the bead 16, but on the circumference of the rod-shaped electrode tip 15.
  • Fig. 4 shows a vertical section through the working end of a third high-voltage electrode 3, which differs from the in Fig. 2 shown differs in that not several feed openings 6 are arranged for the process liquid 5 at the end face of the bead 16, but only a central feed opening 6 at the end face of the rod-shaped electrode tip 15th
  • Fig. 5 shows a vertical section through the working end of a fourth high-voltage electrode 3, which differs from the in the Figures 2 . 3 and 4 shown high voltage electrodes 3 basically once distinguished by the fact that the feed openings 6 not are formed by the central conductor 14 and the electrode tip 15, but from the insulator body 8, at the working-side end face several feed channels 7 to form the feed openings 6 exit.
  • the central conductor 14 is formed in the present case as a solid metal rod and forms in the region of his Schwarzeauen outlet from the insulator body 8 at its outer periphery a circumferential, radial bead 16, which also serves as a field relief.
  • the electrode tip 15 is again formed as a removable part, but here in the form of a Dehnschaftbolzens 23 which is screwed with an end-side male thread 21 in an internal thread 19 in the central conductor 14 and by means of a screwed onto the electrode tip 15 forming end nut 24 under compressive bias on the Front side of the central conductor 14 is present.
  • Fig. 6 shows a vertical section through the working end of a fifth, inventive high voltage electrode 3, which differs from the in Fig. 5 differs characterized in that the insulator body 8 of the electrode 3 is surrounded by a sleeve-shaped member 17 which covers a part of his end face end face and forms together with the insulator body 8 an end annular gap 10, which from the non-working end of the high voltage electrode 3 via the supply channels 7 can be fed with process fluid.
  • the electrode tip 15 is formed by a cap nut 25, which is fastened by means of a screwed into this Dehnschaftbolzens 23 in a threaded blind hole in the end face of the central conductor 14 and under pressure prestress against this end face of the central conductor 14.
  • a cap nut 25 which is fastened by means of a screwed into this Dehnschaftbolzens 23 in a threaded blind hole in the end face of the central conductor 14 and under pressure prestress against this end face of the central conductor 14.
  • Fig. 7 shows the lower part of a second process container in vertical section.
  • the process container shown here differs from the one in Fig. 1 shown process container only in that for supplying the process liquid is not a high voltage electrode with feed openings, but an array of Zuströmdüsen 9, which are uniformly distributed above the reaction zone R on the boundary walls of the process container and in normal operation each directed to the bottom electrode 4 Create process liquid jet (see arrows).
  • the removal of the process liquid takes place during normal operation as in the process container Fig. 1 via radial discharge openings 12 above the reaction zone R (see arrows).
  • Fig. 8 shows the lower part of a third process container in vertical section.
  • the supply of process liquid takes place via supply openings (not shown) from above.
  • the bottom electrode 4 is supported by a sieve bottom 26, via which process liquid is conducted to the actual process container bottom 27 during normal operation and discharged via a central discharge opening 12.
  • the high voltage electrode 3 is substantially identical to that of the process container in FIG Fig. 7 ,
  • Fig. 9 shows a fourth process container in vertical section.
  • the process container forms an upwardly open process space 2, at whose funnel-shaped base a bottom electrode 4 is arranged, which has a central discharge bore 13 for material comminuted to target size.
  • a rod-shaped high-voltage electrode 3 projects from above into the process space 2, which consists of an insulator body 8 with a central conductor 14, at the working end of which projects axially out of the insulator body 8, a rod-shaped electrode tip 15 is arranged.
  • the central conductor 14 or the electrode end 15 forming its working end has, in the region directly adjacent to the end face of the insulator body 8 at the working end, a circumferential, radial bead 16 on its outer circumference, which serves as a field relief.
  • the bottom of the process container has a nozzle 11 for supplying process liquid, by means of which a process liquid stream directed towards the reaction zone is produced during normal operation (see arrow).
  • the bottom of the process container has a discharge opening 12 for process liquid (see arrow).
  • Fig. 10 shows a fifth process container in vertical section, which differs from the in Fig. 9 shown process container only differs in that for supplying the process liquid not a floor nozzle is present, but a high voltage electrode 3 with feed openings 6 (see arrows).
  • This high voltage electrode 3 is identical to that in FIGS FIGS. 1 and 2 shown high voltage electrode.
  • Fig. 11 shows a highly schematic vertical section through a process chamber 2 with two separate reaction zones R a plant for the weakening of ores.
  • a vibrating screen deck 28 is arranged, which has two electrode surfaces 4, which are grounded.
  • a rod-shaped high-voltage electrode 3 is arranged in each case with a vertical distance, which in the structure similar to that in the FIGS. 7 and 8th is shown.
  • the process room 2 is filled to half its height with a process liquid 5 (see liquid level S)
  • reaction zone R the region in which the high-voltage discharges take place (reaction zone R) is charged via flushing nozzles 18 with process fluid 5 (see arrows).
  • process fluid 5 the region in which the high-voltage discharges take place
  • the same amount of process liquid 5 is discharged at the bottom of the process chamber 2 via a discharge opening 12 (see arrows) and a process fluid treatment plant (not shown) fed, in which this is processed and reduced in their electrical conductivity.
  • the thus processed process liquid 5 is returned via the flushing nozzles 18 in the process chamber 2.
  • a process fluid circuit is also formed here, with which the reaction zones R are rinsed continuously with treated process fluid 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Disintegrating Or Milling (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Claims (51)

  1. Procédé de fragmentation et/ou de pré-affaiblissement du matériau (1), particulièrement du matériau de roche (1) ou du minerai, par des décharges à haute tension, comprenant les étapes:
    a) de fournir une chambre de processus (2) avec une voie de décharge à haute tension entre deux électrodes (3, 4) arrangés l'un en face de l'autre à une distance d'électrodes;
    b) d'introduire le matériau (1) à fragmenter ou bien à pré-affaiblir et un liquide de processus (5) dans la chambre de processus (2) de sorte que, pendant l'opération de fragmentation ou bien de pré-affaiblissement prévue, la région entre les deux électrodes est remplie de matériau (1) à fragmenter ou bien à pré-affaiblir et de liquide de processus (5); et
    c) de fragmenter ou bien de pré-affaiblir le matériau (1) dans la chambre de processus (2) en générant des décharges à haute tension entre les deux électrodes (3, 4), du liquide de processus (5) étant évacué de la chambre de processus (2) et du liquide de processus (5) étant introduit dans la chambre de processus (2) pendant la fragmentation ou bien le pré-affaiblissement du matériau, et le liquide de processus (5) introduit ayant une conductivité électrique inférieure à celle du liquide de processus (5) évacué,
    caractérisé en ce que la conductivité électrique du liquide de processus (5) situé dans la chambre de processus, la conductivité électrique du liquide de processus (5) évacué de la chambre de processus (2) et/ou la résistance de décharge entre les deux électrodes (3, 4) est déterminée et l'alimentation du liquide de processus (5) dans la chambre de processus et/ou, si applicable, le conditionnement du liquide de processus (5) est changé, particulièrement réglé, dépendant des valeurs déterminées.
  2. Procédé selon la revendication 1, la conductivité du liquide de processus (5) alimenté étant comprise entre 0.2 micro-Siemens par cm et 5000 micro-Siemens par cm.
  3. Procédé selon l'une des revendications précédentes, l'évacuation et l'alimentation du liquide de processus (5) se déroulant simultanément.
  4. Procédé selon l'une des revendications précédentes, les volumes du liquide de processus alimenté et évacué étant essentiellement identiques.
  5. Procédé selon l'une des revendications précédentes, l'alimentation et/ou l'évacuation du liquide de processus (5) se déroulant de manière continue ou intermittente.
  6. Procédé selon l'une des revendications précédentes, le liquide de processus évacué (5) étant soumis à une étape de conditionnement, pendant laquelle sa conductivité électrique est réduite, et ensuite étant alimenté de nouveau entièrement ou partiellement dans la chambre de processus (2).
  7. Procédé selon la revendication 6, le liquide de processus (5) étant conditionné par une extraction des ions, par dilution avec du liquide de processus avec une plus faible conductivité, par extraction de matériau fin, par changement de sa valeur PH et/ou par addition des agents complexants.
  8. Procédé selon l'une des revendications 6 à 7, la chambre de processus (2) étant connectée avec l'entrée et sortie d'une installation de traitement de liquide de processus pour diminuer la conductivité électrique du liquide de processus (5), afin de former un circuit de liquide de processus, et du liquide de processus (5) étant circulé dans ce circuit en extrayant du liquide de processus (5) de la chambre de processus dans un premier endroit et l'alimenter dans l'installation de traitement de liquide de processus, sa conductivité électrique étant réduite dans l'installation de traitement de liquide de processus et ensuite étant alimenté de nouveau entièrement ou partiellement dans la chambre de processus (2) dans un deuxième endroit de la chambre de processus (2).
  9. Procédé selon l'une des revendications précédentes, l'alimentation de liquide de processus (5) se déroulant de sorte qu'une introduction ciblée du liquide de processus (5) dans la zone de réaction (R) entre les deux électrodes (3, 4) résulte.
  10. Procédé selon l'une des revendications précédentes, l'alimentation et l'évacuation de liquide de processus (5) se déroulant de sorte que le liquide de processus (5) alimenté passe entre les deux électrodes (3, 4) à travers la zone de réaction, particulièrement de haut en bas ou de bas en haut ou dans une direction du centre de la zone de réaction (R) radialement vers l'extérieur.
  11. Procédé selon l'une des revendications précédentes, une alimentation de liquide de processus (5) se déroulant via l'une des électrodes (3; 4) ou les deux électrodes (3, 4).
  12. Procédé selon la revendication 11, une alimentation de liquide de processus (5) se déroulant via une ou plusieurs ouvertures d'alimentation (6, 9, 10, 11) arrangées sur la face de la correspondante électrode (3), particulièrement via une ouverture centrale et/ou via plusieurs ouvertures d'alimentation arrangées de manière concentrique autour du centre des électrodes.
  13. Procédé selon l'une des revendications 11 à 12, une ou plusieurs électrodes en forme de barre (3) étant utilisées et une alimentation de liquide de processus (5) se déroulant via une ou plusieurs ouvertures d'alimentation (6, 9, 10, 11) arrangées à la circonférence de la correspondante électrode (3), particulièrement par plusieurs ouvertures d'alimentation distribuées uniformément sur la circonférence des électrodes.
  14. Procédé selon l'une des revendications 12 à 13, l'alimentation de liquide de processus (5) aux ouvertures d'alimentation (6, 9, 10, 11) se déroulant via un perçage d'alimentation (7) dans la correspondante électrode (3).
  15. Procédé selon l'une des revendications précédentes, une ou plusieurs électrodes (3) entourées par un isolateur (8) étant utilisées et une alimentation de liquide de processus (5) se déroulant via l'isolateur (8) d'une ou des deux électrodes (3).
  16. Procédé selon la revendication 15, une alimentation de liquide de processus (5) se déroulant via une ou plusieurs ouvertures d'alimentation (6, 9, 10, 11) arrangées sur la face du correspondant isolateur (8), particulièrement via plusieurs ouvertures d'alimentation (6, 9, 10, 11) arrangées de manière concentrique au correspondant isolateur (8).
  17. Procédé selon l'une des revendications précédentes, une alimentation de liquide de processus (5) se déroulant via un arrangement de buses d'alimentation (9) entourant de manière concentrique la correspondante électrode (3, 4) ou son isolateur (8).
  18. Procédé selon l'une des revendications précédentes, une alimentation de liquide de processus (5) se déroulant via un passage annulaire (10) entourant de manière concentrique la correspondante électrode (3, 4) ou son isolateur (8).
  19. Procédé selon l'une des revendications précédentes, une chambre de processus (2) étant prévue, en cas de laquelle les deux électrodes (3, 4) sont arrangées l'une au-dessus de l'autre, vue en direction de la pesanteur, et en cas de laquelle l'électrode basse (4) est formée au fond de la chambre de processus (2).
  20. Procédé selon la revendication 19, l'alimentation de liquide de processus (5) se déroulant via une ou plusieurs ouvertures d'alimentation (11) au fond de la chambre de processus (2).
  21. Procédé selon l'une des revendications 19 à 20, l'évacuation de liquide de processus (5) se déroulant via une ou plusieurs ouvertures d'évacuation (12) au fond de la chambre de processus (2).
  22. Procédé selon l'une des revendications 1 à 18, une chambre de processus étant prévue, en cas de laquelle les deux électrodes sont arrangées l'une à côté de l'autre, vue en direction de la pesanteur, et particulièrement les deux électrodes ayant un isolateur et étant soumises à un potentiel inégale au potentiel de masse.
  23. Procédé selon l'une des revendications précédentes, des différentes ouvertures (12; 13) étant utilisées afin d'évacuer du liquide de processus (5) de la chambre de processus (2) et d'extraire du matériau fractionné ou bien pré-affaibli (1) de la chambre de processus (2).
  24. Procédé selon l'une des revendications 19 à 23, du matériau fractionné ou bien pré-affaibli étant extrait via une, particulièrement centrale, ou plusieurs ouvertures d'extraction (13) au fond de la chambre de processus (2).
  25. Procédé selon l'une des revendications précédentes, du matériau fractionné ou bien pré-affaibli étant alimenté dans la chambre de processus (2) de manière continue ou intermittente et du matériau fractionné ou bien pré-affaibli de manière continue ou intermittente étant évacué de la chambre de processus (2).
  26. Procédé, particulièrement selon l'une des revendications précédentes, de fragmentation et/ou de pré-affaiblissement du matériau (1), particulièrement du matériau de roche (1) ou du minerai, par des décharges à haute tension, comprenant les étapes:
    a) de fournir une chambre de processus (2) avec une voie de décharge à haute tension entre deux électrodes (3, 4) arrangés l'un en face de autre à une distance d'électrodes;
    b) d'introduire le matériau (1) à fragmenter ou bien à pré-affaiblir et un liquide de processus (5) dans la chambre de processus (2) de sorte que pendant l'opération de fragmentation ou bien de pré-affaiblissement prévue la région entre les deux électrodes est remplie de matériau (1) à fragmenter ou bien à pré-affaiblir et de liquide de processus (5);
    c) de fragmenter ou bien de pré-affaiblir le matériau (1) dans la chambre de processus (2) en générant des décharges à haute tension entre les deux électrodes (3, 4), du matériau (1) à fragmenter ou bien à pré-affaiblir étant alimenté dans la chambre de processus de manière continue ou intermittente et du matériau étant évacué de la chambre de processus de manière continue ou intermittente, au moins une partie du matériau (1) évacué de la chambre de processus (2) étant alimenté de nouveau dans la chambre de processus (2) après avoir été soumis à une étape de processus additionnelle hors de la chambre de processus (2) et l'étape de processus additionnelle comprenant un rinçage du matériau à alimenter de nouveau dans la chambre de processus (2) avec un premier liquide de rinçage, particulièrement avec un premier liquide de rinçage avec une conductivité électrique inférieure à celle du liquide de processus (5) présent dans la chambre de processus,
    caractérisé en ce que la conductivité électrique du premier liquide de rinçage utilisé pour le rinçage est déterminée et, dépendant des valeurs déterminées, l'alimentation du premier liquide de rinçage utilisé pour le rinçage et/ou, si applicable, le conditionnement du premier liquide de rinçage est changé, particulièrement réglé.
  27. Procédé selon la revendication 26, moins de 5 minutes passant, particulièrement moins de 3 minutes passant entre la fin du rinçage du matériau avec le premier liquide de rinçage et la nouvelle alimentation ultérieure du matériau dans la chambre de processus (2) ou l'application des décharges de haute tension au matériau dans la chambre de processus (2).
  28. Procédé selon l'une des revendications 26 à 27, le premier liquide de rinçage utilisé pour le rinçage étant similaire, particulièrement identique, au liquide de processus (5) introduit dans la chambre de processus (2).
  29. Procédé selon l'une des revendications 26 à 28, le premier liquide de rinçage pour rincer étant circulé dans un circuit et étant conditionné par une extraction des ions, par dilution avec du liquide de processus avec une faible conductivité, par extraction de matériau fin, par changement de sa valeur PH et/ou par addition des agents complexants.
  30. Procédé selon l'une des revendications 26 à 29, le matériau évacué de la chambre de processus (2) étant séparé en matériau grossier et matériau fin, particulièrement par tamisage, et seulement le matériau grossier étant introduit de nouveau dans la chambre de processus (2).
  31. Procédé selon la revendication 30, la quantité de matériau grossier obtenue par séparation en matériau grossier et matériau fin étant supérieure à la quantité obtenue de matériau fin.
  32. Procédé, particulièrement selon l'une des revendications précédentes, de fragmentation et/ou de pré-affaiblissement du matériau (1), particulièrement du matériau de roche (1) ou du minerai, par des décharges à haute tension, comprenant les étapes:
    a) de fournir une chambre de processus (2) avec une voie de décharge à haute tension entre deux électrodes (3, 4) arrangés l'un en face de autre à une distance d'électrodes;
    b) d'introduire le matériau (1) à fragmenter ou bien à pré-affaiblir et un liquide de processus (5) dans la chambre de processus (2) de sorte que pendant l'opération de fragmentation ou bien de pré-affaiblissement prévue la région entre les deux électrodes est remplie de matériau (1) à fragmenter ou bien à pré-affaiblir et de liquide de processus (5);
    c) de fragmenter ou bien de pré-affaiblir le matériau (1) dans la chambre de processus (2) en générant des décharges à haute tension entre les deux électrodes (3, 4),
    le matériau (1) alimenté dans la chambre de processus (2) étant rincé avant la fragmentation ou bien le pré-affaiblissement avec un deuxième liquide de rinçage, particulièrement avec un deuxième liquide de rinçage avec une conductivité électrique inférieure à celle du liquide de processus (5) présent dans la chambre de processus (2),
    caractérisé en ce que la conductivité électrique du deuxième liquide de rinçage utilisé pour le rinçage est déterminée et, dépendant des valeurs déterminées, l'alimentation du deuxième liquide de rinçage utilisé pour le rinçage et/ou, si applicable, le conditionnement du deuxième liquide de rinçage est changé, particulièrement réglé.
  33. Procédé selon la revendication 32, le rinçage avec le deuxième liquide de rinçage se déroulant à l'intérieur ou à l'extérieur de la chambre de processus (2).
  34. Procédé selon la revendication 33, le rinçage avec le deuxième liquide de rinçage se déroulant hors de la chambre de processus (2) et moins de 5 minutes passant, particulièrement moins de 3 minutes passant entre la fin du rinçage du matériau avec le deuxième liquide de rinçage et la nouvelle alimentation ultérieure du matériau dans la chambre de processus (2) ou l'application des décharges de haute tension au matériau dans la chambre de processus.
  35. Procédé selon l'une des revendications 32 à 34, le deuxième liquide de rinçage utilisé pour le rinçage étant similaire, particulièrement identique, au liquide de processus (5) présent dans la chambre de processus (2) pendant la fragmentation ou bien le pré-affaiblissement.
  36. Procédé selon l'une des revendications 32 à 35, le deuxième liquide de rinçage pour rincer étant circulé dans un circuit et étant conditionné par une extraction des ions, par dilution avec du liquide de processus avec une faible conductivité, par extraction de matériau fin, par changement de sa valeur PH et/ou par addition des agents complexants.
  37. Procédé selon l'une des revendications précédentes, de l'eau étant utilisée comme liquide de processus.
  38. Procédé selon l'une des revendications précédentes, un minerai de métal précieux ou de métal semi-précieux étant utilisé comme matériau (1) à fragmenter ou à pré-affaiblir, particulièrement un minerai de cuivre ou un minerai de cuivre/or.
  39. Procédé selon l'une des revendications précédentes, un particulièrement mécanique concassage du matériau fragmenté et/ou pré-affaibli obtenu du procédé étant effectué.
  40. Électrode à haute tension (3) pour une chambre de processus (2) pour exécuter le procédé selon l'une des revendications précédentes, comprenant un corps d'isolation (8) avec un conducteur central (14), à l'extrémité de travail, qui fait saille axialement du corps d'isolation (8), duquel une pointe d'électrode (15) étant arrangée, le conducteur central (14) et/ou l'isolateur (8) ayant à l'extrémité de travail une ou plusieurs ouvertures d'alimentation (6, 9, 10, 11) qui s'ouvrent dans une ou plusieurs canaux d'alimentation (7) via lesquels elles peuvent être alimentées avec du liquide de processus (5), particulièrement de l'eau, à partir d'un endroit loin de l'extrémité de travail, particulièrement à partir de l'autre extrémité de l'électrode à haute tension (3),
    caractérisé en ce que le corps d'isolation (8) est entouré par un autre composant (17) formant soi-même ou ensemble avec le corps d'isolation (8) un passage annulaire (10) frontal qui peut être alimenté avec du liquide de processus (5), particulièrement de l'eau, à partir d'un endroit loin de l'extrémité de travail, particulièrement à partir de l'autre extrémité.
  41. Électrode à haute tension (3) selon la revendication 40, le conducteur centrale (14) ayant à son extrémité de travail une ou plusieurs ouvertures d'alimentation (6) frontales, particulièrement une ouverture d'alimentation centrale (6) et/ou plusieurs ouvertures d'alimentation (6) arrangées de manière concentrique autour du centre d'électrode.
  42. Électrode à haute tension (3) selon l'une des revendications 40 à 41, le conducteur central (14) ayant un boudin (16) radial périphérique à sa circonférence extérieure dans la zone de sortie du corps d'isolation (8) du côté de l'extrémité de travail, et particulièrement la face de ce boudin (16) ayant des ouvertures d'alimentation (6).
  43. Électrode à haute tension (3) selon l'une des revendications 40 à 42, le conducteur central ayant à son extrémité de travail une ou plusieurs ouvertures d'alimentation arrangées sur sa circonférence, qui sont particulièrement distribuées uniformément sur sa circonférence.
  44. Électrode à haute tension (3) selon l'une des revendications 40 à 43, le conducteur central (14) ayant un canal d'alimentation central (7) pour l'alimentation du liquide de processus (5) aux ouvertures d'alimentation (6).
  45. Électrode à haute tension (3) selon l'une des revendications 40 à 44, le corps d'isolation (8) ayant une ou plusieurs ouvertures d'alimentation (6) sur sa face du côté de l'extrémité de travail, particulièrement plusieurs ouvertures d'alimentation (6) arrangées de manière concentrique autour du centre de l'électrode.
  46. Électrode à haute tension (3) selon l'une des revendications 40 à 45, le corps d'isolation (8) étant entouré par un autre composant formant un arrangement de buses d'entrée qui peuvent être alimentées avec du liquide de processus (5), particulièrement de l'eau, à partir d'un endroit loin de l'extrémité de travail, particulièrement à partir de l'autre extrémité.
  47. Électrode à haute tension (3) selon l'une des revendications 40 à 46, la pointe de l'électrode étant en forme d'une calotte sphérique ou d'un paraboloïde de révolution.
  48. Électrode à haute tension (3) selon l'une des revendications 40 à 47, le conducteur central (14) étant en métal, particulièrement en cuivre, un alliage de cuivre ou un acier inoxydable.
  49. Chambre de processus (2) avec une électrode à haute tension (3) selon l'une des revendications 40 à 48 pour exécuter le procédé selon l'une des revendications 1 à 39.
  50. Récipient de processus formant une chambre de processus (2), particulièrement fermée, selon la revendication 49.
  51. Installation de fragmentation et/ou de pré-affaiblissement du matériau (1), particulièrement du matériau de roche (1) ou du minerai, par des décharges à haute tension, comprenant un récipient de processus selon la revendication 50 ainsi qu'un générateur d'impulsions à haute tension pour générer des décharges à haute tension dans la chambre de processus (2) formée par le récipient de processus (2).
EP11773167.9A 2011-10-10 2011-10-10 Procédé destiné à fragmenter et/ou à pré-affaiblir un matériau au moyen de décharges à haute tension Active EP2766123B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH2011/000242 WO2013053066A1 (fr) 2011-10-10 2011-10-10 Procédé destiné à fragmenter et/ou à pré-affaiblir un matériau au moyen de décharges à haute tension

Publications (2)

Publication Number Publication Date
EP2766123A1 EP2766123A1 (fr) 2014-08-20
EP2766123B1 true EP2766123B1 (fr) 2015-09-30

Family

ID=44872126

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11773167.9A Active EP2766123B1 (fr) 2011-10-10 2011-10-10 Procédé destiné à fragmenter et/ou à pré-affaiblir un matériau au moyen de décharges à haute tension

Country Status (9)

Country Link
US (1) US10029262B2 (fr)
EP (1) EP2766123B1 (fr)
JP (1) JP5963871B2 (fr)
CN (1) CN103857471B (fr)
AU (1) AU2011379145B2 (fr)
CA (1) CA2850980C (fr)
ES (1) ES2556123T3 (fr)
RU (1) RU2568747C1 (fr)
WO (1) WO2013053066A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129708A1 (fr) * 2011-03-30 2012-10-04 Selfrag Ag Système d'électrodes pour un dispositif de fragmentation électrodynamique
WO2015058311A1 (fr) * 2013-10-25 2015-04-30 Selfrag Ag Procédé de fragmentation et/ou d'affaiblissement d'un matériau à l'aide de décharges à haute tension
WO2015058312A1 (fr) * 2013-10-25 2015-04-30 Selfrag Ag Procédé de fragmentation et/ou de pré-fragilisation de matériau à l'aide de décharges à haute tension
DE102014018159A1 (de) 2014-12-10 2016-06-16 Kvt-Fastening Ag Blindnietelement, dessen Herstellung und Verwendung
CA2976964C (fr) 2015-02-27 2023-05-23 Selfrag Ag Procede et dispositif de fragmentation et / ou d'affaiblissement d'un materiau coulant au moyen de decharges a haute tension
CN107206390B (zh) 2015-02-27 2020-06-16 泽尔弗拉格股份公司 用于借助于高压放电将松散材料碎片化和/或细化的方法和设备
CN107405628B (zh) * 2015-02-27 2020-02-14 泽尔弗拉格股份公司 用于借助于高压放电使能倾倒的材料变碎和/或弱化的方法和设备
CN104984807B (zh) * 2015-07-08 2017-10-31 温州科技职业学院 一种用于连续放电破碎矿石的装置及其破碎矿石的方法
CN106925403A (zh) * 2015-12-29 2017-07-07 大连亚泰科技新材料股份有限公司 一种应用高电压法制备纳米电气石的设备及制备方法
AU2016411989B2 (en) 2016-06-15 2022-10-06 Selfrag Ag Method of treating a solid material by means of high voltage discharges
RU2710432C1 (ru) * 2016-08-31 2019-12-26 Зельфраг Аг Способ эксплуатации высоковольтной импульсной системы
CN106552704B (zh) * 2016-11-07 2018-10-19 大连理工大学 一种制备菱镁矿石单体解离颗粒的方法
CN106824455B (zh) * 2017-03-31 2022-05-20 东北大学 一种用于矿石预处理的高压电脉冲碎矿装置使用方法
AU2017204211A1 (en) * 2017-06-21 2019-01-17 The University Of Queensland An integrated separator system & process for preconcentration and pretreatment of a material
DE102018003512A1 (de) * 2018-04-28 2019-10-31 Diehl Defence Gmbh & Co. Kg Anlage und Verfahren zur elektrodynamischen Fragmentierung
JP6947126B2 (ja) * 2018-06-12 2021-10-13 株式会社Sumco シリコンロッドの破砕方法及び装置並びにシリコン塊の製造方法
US20210269942A1 (en) * 2018-07-04 2021-09-02 Mitsubishi Materials Corporation Method of fragmenting or method of generating cracks in semiconductor material, and method of manufacturing semiconductor material lumps
CN110215985B (zh) * 2019-07-05 2021-06-01 东北大学 一种用于矿石粉碎预处理的高压电脉冲装置
JP2021107042A (ja) * 2019-12-27 2021-07-29 三菱マテリアル株式会社 半導体材料の破砕方法又はクラック発生方法、及び半導体材料塊の製造方法
CA3068769A1 (fr) * 2020-01-20 2021-07-20 2S Water Incorporated Pointe d`electrode a liquide

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1341851A (fr) * 1962-12-17 1963-11-02 Enertron Corp Procédé et appareil pour le traitement de matières, notamment par pulvérisation et le mélange de matières par une nouvelle action électrohydraulique
JPS4626574B1 (fr) * 1968-11-27 1971-08-02 Shikigaishiya Inoue
GB1284426A (en) * 1969-12-22 1972-08-09 Atomic Energy Authority Uk Improvements in or relating to electrohydraulic crushing apparatus
BE792134A (fr) 1972-04-10 1973-05-30 Levin Igor A Procede d'enlevement de depots de la surface de constructions
JPS534668B2 (fr) 1972-12-15 1978-02-20
SU697188A1 (ru) * 1977-09-26 1979-11-15 Предприятие П/Я Р-6292 Устройство дл измельчени неметаллических материалов
SU874183A1 (ru) * 1980-01-17 1981-10-23 Украинский научно-исследовательский институт природных газов Коллоидный диспергатор
SU888355A1 (ru) * 1980-07-16 1991-11-07 Yutkin L A Электрогидравлическа дробилка
AU554866B2 (en) * 1982-05-21 1986-09-04 De Beers Industrial Diamond Division (Proprietary) Limited High voltage disintegration
JPH0626574A (ja) * 1992-07-07 1994-02-01 Mitsubishi Electric Corp 冷媒圧縮機のシール装置
JPH1057832A (ja) * 1996-08-21 1998-03-03 Komatsu Ltd 放電衝撃破壊方法及び放電衝撃破壊装置
GB9714833D0 (en) * 1997-07-16 1997-09-17 Uri Andres Disintegration of brittle dielectrics by high voltage electrical pulses in disintegration chamber
JP3565170B2 (ja) 2001-02-09 2004-09-15 株式会社Nhvコーポレーション 破砕用パワープローブおよびその使用方法
EP1243339B1 (fr) * 2001-03-24 2005-12-07 Forschungszentrum Karlsruhe GmbH Procédé pour la séparation sélective des particules d'une suspension
JP2003320268A (ja) 2002-05-02 2003-11-11 Sumitomo Electric Ind Ltd 破砕装置用電極および破砕装置
DE10302867B3 (de) * 2003-01-25 2004-04-08 Forschungszentrum Karlsruhe Gmbh Verfahren zur rechnergestützten Prozessführung einer Fragmentieranlage
DE10342376B3 (de) * 2003-09-13 2005-07-07 Forschungszentrum Karlsruhe Gmbh Verfahren zum Betreiben einer Fragmentieranlage und Fragmentrieranlage zur Durchführung des Verfahrens
DE10346055B8 (de) * 2003-10-04 2005-04-14 Forschungszentrum Karlsruhe Gmbh Aufbau einer elektrodynamischen Fraktionieranlage
DE10346650A1 (de) * 2003-10-08 2005-05-19 Forschungszentrum Karlsruhe Gmbh Prozessreaktor und Betriebsverfahren für die elektrodynamische Fragmentierung
US8125129B2 (en) * 2006-02-15 2012-02-28 Selfrag Ag Working electrode for an electrodynamic fragmenting installation
RU2347619C1 (ru) * 2007-06-06 2009-02-27 Виктор Дмитриевич Бочков Технологическое устройство для электрогидроимпульсного воздействия на материалы

Also Published As

Publication number Publication date
CA2850980C (fr) 2018-05-01
RU2568747C1 (ru) 2015-11-20
AU2011379145A1 (en) 2014-04-24
US10029262B2 (en) 2018-07-24
JP2014528355A (ja) 2014-10-27
ES2556123T3 (es) 2016-01-13
CN103857471B (zh) 2016-04-13
AU2011379145B2 (en) 2016-10-20
JP5963871B2 (ja) 2016-08-03
WO2013053066A1 (fr) 2013-04-18
EP2766123A1 (fr) 2014-08-20
CN103857471A (zh) 2014-06-11
CA2850980A1 (fr) 2013-04-18
US20150069153A1 (en) 2015-03-12

Similar Documents

Publication Publication Date Title
EP2766123B1 (fr) Procédé destiné à fragmenter et/ou à pré-affaiblir un matériau au moyen de décharges à haute tension
EP3261768B1 (fr) Procédé et dispositif de fragmentation et/ou d'affaiblissement d'un matériau coulant au moyen d'une décharge à haute tension
EP1673172B1 (fr) Reacteur de traitement et procede de mise en action pour la fragmentation electrodynamique
EP3261769A1 (fr) Procédé et dispositif de fragmentation et/ou d'affaiblissement d'un matériau coulant au moyen de décharges à haute tension
EP3074708B1 (fr) Dispositif et procédé de fabrication de granulés gonflés
EP3122463B1 (fr) Procédé pour fragmenter un matériau en forme de barre, en particulier en silicium polycristallin
EP3060347B1 (fr) Procédé de fragmentation et/ou de pré-fragilisation de matériau à l'aide de décharges à haute tension
EP2691180B1 (fr) Système d'électrodes pour un dispositif de fragmentation électrodynamique
EP2867902B1 (fr) Appareil et procede pour broyage des resines exchangeuses d'ions
EP2059342A1 (fr) Cylindre broyeur et procédé de réusinage
EP3261767B1 (fr) Procédé et dispositif de fragmentation et/ou d'affaiblissement d'un morceau de matériau au moyen de décharges de haute tension
DE102011084937A1 (de) Vorrichtung zur Frakturierung von polykristallinem Silizium und Verfahren zur Herstellung frakturierter Fragmente von polykristallinem Silizium
DE2507492C3 (de) Verfahren und Vorrichtung zum elektrolytischen Entfernen von Metallionen aus einer Lösung
DE102012206100A1 (de) Aufbereitungsextruder
EP2888053B1 (fr) Procede et dispositif de fragmentation et/ou d'affaiblissement de materiau au moyen d'impulsions a haute tension
EP3212374A1 (fr) Dispositif et procédé pour broyer des matériaux composites renforcés par des fibres
EP3894080A1 (fr) Système d'application d'une contrainte sur des particules au moyen d'impulsions électriques
DE1758853A1 (de) Verbesserte Verfahren und Vorrichtungen zum Anreichern von Erzen od.dgl.
AT274987B (de) Verfahren und Vorrichtung zum elektrostatischen Oberflächenbeschichten mit pulverförmigen Stoffen
DE10210453A1 (de) Verfahren zur Herstellung von Seiherstäben, Seiherstab mit Distanzelement sowie Vorrichtung zum Abpressen
DE2226486C3 (de) Verfahren und Vorrichtung zum Abtrennen von Wasser
DE2144375A1 (de) Verfahren und vorrichtung zur galvanischen behandlung von stabmaterial
DE2617176B2 (de) Verfahren zum Regenerieren von gebrauchter Aktivkohle
DE102016217073A1 (de) Verfahren zur Behandlung von Schmutzwasser
DE2650474A1 (de) Verfahren zum regenerieren von gebrauchter aktivkohle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150519

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 752067

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011007978

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2556123

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160113

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151231

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160201

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011007978

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

26N No opposition filed

Effective date: 20160701

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111010

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20171020

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 752067

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191028

Year of fee payment: 9

Ref country code: ES

Payment date: 20191122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20191008

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201010

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201010

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231019

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231019

Year of fee payment: 13

Ref country code: FR

Payment date: 20231025

Year of fee payment: 13

Ref country code: FI

Payment date: 20231020

Year of fee payment: 13

Ref country code: DE

Payment date: 20231020

Year of fee payment: 13

Ref country code: CH

Payment date: 20231101

Year of fee payment: 13