EP2756251B1 - Dispositif de transport de chaleur à pompage capillaire - Google Patents

Dispositif de transport de chaleur à pompage capillaire Download PDF

Info

Publication number
EP2756251B1
EP2756251B1 EP12756742.8A EP12756742A EP2756251B1 EP 2756251 B1 EP2756251 B1 EP 2756251B1 EP 12756742 A EP12756742 A EP 12756742A EP 2756251 B1 EP2756251 B1 EP 2756251B1
Authority
EP
European Patent Office
Prior art keywords
reservoir
evaporator
inlet
liquid phase
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12756742.8A
Other languages
German (de)
English (en)
Other versions
EP2756251A1 (fr
Inventor
Vincent Dupont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euro Heat Pipes SA
Original Assignee
Euro Heat Pipes SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Euro Heat Pipes SA filed Critical Euro Heat Pipes SA
Publication of EP2756251A1 publication Critical patent/EP2756251A1/fr
Application granted granted Critical
Publication of EP2756251B1 publication Critical patent/EP2756251B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Definitions

  • the present invention relates to capillary pumping heat transport devices, in particular passive biphasic fluid loop devices.
  • the device In addition, if the device is subjected to accelerations, it can occur a phenomenon of cold shock in the tank which suddenly lowers the pressure and deteriorates the performance.
  • the hydraulic damping thus created, it avoids excessive liquid fluid movements in the tank when the device is subjected to accelerations, for example if it is on board a transport vehicle , and thus avoids a mixture in the tank that can lead to the effect of 'cold shock', namely a sudden lowering of the free surface temperature of the liquid in the tank which causes a drop in pressure and a decrease in efficiency of the loop.
  • the partition in several separate volumes of liquid avoids a mixture that could occur due to sudden increases in thermal power, especially the case of startup.
  • the figure 1 shows a capillary pumping heat transport device with a two-phase fluid loop.
  • the device comprises an evaporator 1, having an inlet 1a and an outlet 1b , and a microporous mass 10 adapted to provide capillary pumping.
  • the microporous mass 10 surrounds a blind central longitudinal recess 15 in communication with the inlet 1a to receive working fluid 9 in the liquid state from a reservoir 3.
  • the evaporator 1 is thermally coupled to a heat source 11, such as a set comprising electronic power components or any other element that generates heat, for example by the Joule effect, or by any other process.
  • a heat source 11 such as a set comprising electronic power components or any other element that generates heat, for example by the Joule effect, or by any other process.
  • the cavities released by the evacuated vapor are filled with liquid sucked by the microporous mass 10 from the aforementioned central recess 15; it is the phenomenon of capillary pumping well known in itself.
  • the fluid temperature 9 is lowered below its liquid-vapor equilibrium temperature, which is also called sub-cooling ('sub-cooling' in English) so that the fluid can not return to the vapor state without a consequent contribution heat.
  • the vapor pressure pushes the liquid towards the outlet 2b of the condenser 2 which opens onto a second communication circuit 5, furthermore connected to the tank 3.
  • the reservoir has at least one inlet and / or outlet orifice 31, here in this case on the figure 1 a separate inlet orifice 31a and outlet 31b , and the reservoir 3 has an internal volume 30, filled with the coolant 9.
  • the working fluid 9 can be, for example, ammonia or any other suitable fluid, but it is preferable to choose methanol.
  • the working fluid 9 is two-phase and is partly in liquid phase 9a and partly in vapor phase 9b. In an environment where gravity is exerted (vertical along Z), the gas phase portion 9b is located above the liquid phase portion 9a and a liquid-vapor interface 19 separates the two phases (free surface of the liquid in the liquid phase). tank).
  • this pressure corresponds to the saturation pressure of the fluid at the temperature prevailing at the separation surface 19.
  • the temperature of the liquid is generally lower than the temperature prevailing at the separation surface 19.
  • the first and second fluid communication circuits 4,5 are preferably tubular conduits, but could be other types of fluid communication conduits or channels (rectangular, flexible conduits, etc.).
  • the second fluid communication circuit 5 may be in the form of two separate independent conduits 5a, 5b (cf. Fig 1 ) or a single pipe with a 'T' connection 5c (cf. Fig 2 ).
  • the second fluid communication circuit 5 connects the outlet of the condenser 2b to the inlet of the evaporator 1a, either indirectly via the reservoir (in the case of two independent conduits) or directly (case or a single driving with 'T').
  • the reservoir In order to avoid mixing phenomena within the reservoir which are conducive to the phenomenon of 'cold shock', there are provided, inside the reservoir, several distinct volumes of liquid separated from each other but said distinct volumes remaining in fluid communication.
  • in the reservoir can be arranged a plurality of internal walls 7 adapted to separate said several separate volumes.
  • said several distinct volumes may be formed in a tight mesh structure (not shown in the figures), such as for example an iron straw type structure, or a sponge-type structure or a macroporous structure, or still a stack of hollow spheres pierced with small orifices.
  • a tight mesh structure such as for example an iron straw type structure, or a sponge-type structure or a macroporous structure, or still a stack of hollow spheres pierced with small orifices.
  • the reservoir comprises an inlet jet deflector 8 in the vicinity of the inlet orifice 31a or the inlet / outlet orifice 31 according to the configuration of the second conduit.
  • This inlet jet deflector prevents a rapid arrival of liquid in the tank creates a bubbling or a current promoting the mixing of the liquid. It may be in the form of a downward U-shaped profile, or a bell or other shape creating a sufficient deflection of the path of the inlet jet.
  • the figure 3 shows a compartment structure 71, with vertical walls 7, that is to say oriented in the direction of gravity. It should be noted, however, that the walls may just as well be slightly or substantially inclined, as illustrated for example on the Figure 1 .
  • the compartment structure is regular, i.e. a certain geometric pattern is repeated several times.
  • the reservoir may have any shape, and in particular parallelepipedal or cylindrical.
  • the compartment structure can be formed of stainless steel to give it good durability.
  • the compartment structure may be formed of compatible plastic of the working fluid and in particular methanol; whereby it is compatible with this fluid commonly used for terrestrial applications, its life is satisfactory and its cost is low.
  • said several distinct volumes communicate through passages of small section, preferably less than 1/10 of the largest section of the tank.
  • the inner walls 7 have orifices 70 whose passage section is small, in order to create a hydraulic damping between the separate volumes of liquid.
  • the passages between the separate volumes can also be located at the base of the compartments, without orifice on the height of the compartments.
  • a grid 28 pierced with a plurality of small section holes allows the fluid to move between the compartments through a transfer chamber 29 located in the base zone 34 of the reservoir.
  • This grid 28 also known as diffusion can advantageously serve as a support for the compartment structure 71.
  • the height of the walls may be between 30% and 90% of the height of the tank, and will be chosen in particular so that the upper surface 19 of the liquid does not exceed the upper end of the walls 7.
  • honeycomb structure of hexagonal mesh or a square mesh structure as illustrated respectively in FIGS. Figures 4a and 4b .
  • Hexagonal compartments 77, (respectively square 78 ) communicate between their lower opening 76 (respectively 79 ).
  • the plurality of walls may comprise walls oriented differently from each other.
  • the size of the cells must not be too thin (less than one millimeter), otherwise the structure traps the liquid by capillarity and requires overfilling. to avoid drying the loop when starting in cold conditions or drops in power.
  • the compartments are thus devoid of microporous structure, although the reservoir can form a macroporous structure.
  • the compartment structure comprises a phase change material imparting a thermal inertia to said structure which contributes to limiting the sudden variations in temperature.
  • the figure 5 is analogous to the figure 3 and shows a variant of the reservoir of the device with a liquid inlet at the bottom and on the side 35, which can simplify the inlet jet baffle 8.
  • the inlet jet baffle 8 can then be reduced to a plate extending horizontally or at an extension pierced with a multitude of holes in the tube 5.
  • the device may furthermore incidentally comprise a non-return member 6, arranged between the internal volume 30 of the reservoir and the microporous mass 10 of the evaporator, to prevent the liquid present in the evaporator from moving towards the volume inside the tank.
  • This non-return member 6 makes it possible to prevent a liquid movement from the evaporator towards the reservoir when the boiling is triggered during the start-up phases of the system.
  • this non-return member 6 may comprise a float (not shown in detail) whose density is slightly less than the fluid density in the liquid phase.
  • the device may further comprise a power supply element 36, for example a heating element or pressurizing, located at the reservoir to control the pressurization of the loop during startup.
  • a control system 'Ctrl' driver 38 in the case of a heating element, the supply of calories to this heating element 36, as a function of temperature information and / or pressure information delivered by sensors (not shown), in order to ensure the start of the two-phase loop.
  • the heating element can be located both in the liquid phase and / or the vapor phase. Preferably, this element is located in the liquid phase and generates steam towards the upper part of the reservoir.
  • the regulation with the heating element will be facilitated by the presence of a cold source in contact with the latter (ambient air, or other).
  • this control system 'Ctrl' can also prepare the two-phase loop for an imminent and important arrival of calories on the evaporator, which makes it possible to anticipate the reaction of the two-phase loop with respect to the need for heat dissipation.
  • the design of the loop can be optimized for large quantities of heat to be evacuated.
  • the device is devoid of any mechanical pump although the invention does not exclude the presence of a mechanical booster pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Fuel Cell (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Central Heating Systems (AREA)

Description

  • La présente invention est relative aux dispositifs de transport de chaleur à pompage capillaire, en particulier les dispositifs passifs à boucle fluide diphasique.
  • Il est connu du document FR-A-2949642 et du document US - 4,957,157 de tels dispositifs utilisés comme moyen de refroidissement pour convertisseur de puissance électrotechnique.
  • Cependant, il est apparu que les phases de démarrage étaient particulièrement délicates pour des puissances thermiques importantes, il peut se produire un assèchement de la mèche capillaire et donc un échec du démarrage.
  • De plus, si le dispositif est soumis à des accélérations, il peut se produire un phénomène de 'cold shock' dans le réservoir qui abaisse brutalement la pression et qui détériore la performance.
  • Il est donc apparu un besoin d'augmenter la fiabilité du démarrage et du fonctionnement de telles boucles.
  • A cet effet, l'invention a pour objet un dispositif de transfert thermique à pompage capillaire, adapté pour extraire de la chaleur depuis une source chaude et pour restituer cette chaleur à une source froide au moyen d'un fluide de travail diphasique contenu dans un circuit général clos, comprenant :
    • au moins un évaporateur, ayant une entrée et une sortie, et une masse microporeuse adaptée pour assurer un pompage capillaire de fluide en phase liquide
    • au moins un condenseur, ayant une entrée et une sortie,
    • un réservoir ayant un volume intérieur et au moins un orifice d'entrée et/ou sortie, avec une portion de phase gazeuse située au-dessus d'une portion de phase liquide,
    • un premier circuit de communication, pour du fluide essentiellement en phase vapeur, reliant la sortie de l'évaporateur à l'entrée du condenseur,
    • un deuxième circuit de communication, pour du fluide essentiellement en phase liquide, reliant la sortie du condenseur au réservoir et à l'entrée de l'évaporateur, caractérisé en ce que le réservoir comprend plusieurs volumes distincts de phase liquide, les dits volumes distincts restant en communication fluide,
    le réservoir comprenant une pluralité de parois internes formant des compartiments adaptés pour séparer lesdits plusieurs volumes distincts de phase liquide,
    lesdits plusieurs volumes distincts communiquant par des passages de faible section, de manière à créer un amortissement hydraulique entre les volumes distincts de phase liquide.
  • Grâce à ces dispositions, et à l'amortissement hydraulique ainsi créé, on évite des mouvements de fluide liquide trop importants dans le réservoir lorsque le dispositif est soumis à des accélérations, par exemple si celui-ci est à bord d'un véhicule de transport, et on évite ainsi un mélange dans le réservoir pouvant conduire à effet de 'cold shock', à savoir un abaissement brutal de la température de surface libre du liquide dans le réservoir qui entraine une baisse de la pression et une baisse de l'efficacité de la boucle. De même, la partition en plusieurs volumes distincts de liquide permet d'éviter un mélange qui pourrait intervenir du fait d'augmentations brusques de puissance thermique, en particulier le cas du démarrage.
  • Dans divers modes de réalisation de l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes :
    • la phase liquide ne dépasse pas de l'extrémité supérieure des parois; ce qui évite le mélange de liquide en cas d'accélérations subies ;
    • lesdits plusieurs volumes distincts communiquent par des passages de faible section de préférence inférieure au 1/10 de la plus grande section du réservoir ; moyennant quoi le déplacement d'un volume distinct à l'autre est possible mais limité en débit;
    • la pluralité de parois internes forment une structure de compartiments régulière; moyennant quoi les parois se supportent les unes par rapport aux autres ;
    • le réservoir comprend une structure macroporeuse et les compartiments sont dépourvus de structure microporeuse
    • la structure de compartiment prend la forme d'une structure en nid d'abeille ; de sorte que la structure de compartiment présente un coût modéré car cette structure est optimisée ;
    • le dispositif est principalement soumis à la gravité terrestre et la structure de compartiment comprend des cloisons inclinées ou verticales ; de sorte que les déplacements de fluides sont limités en cas d'accélération horizontale ;
    • la structure de compartiment est formée en acier inox ; moyennant quoi sa durabilité est très satisfaisante ;
    • la structure de compartiment est formée en plastique compatible avec le fluide de travail en particulier le méthanol ; moyennant quoi elle est compatible avec ce fluide communément utilisé, sa durée de vie est satisfaisante et son coût est faible ;
    • lesdits plusieurs volumes distincts sont formés dans une structure maillée serrée (tissu métallique) ; moyennant quoi une alternative à la structure de parois est proposée ;
    • la structure de compartiment comprend un matériau à changement de phase conférant une inertie thermique ; moyennant quoi l'effet de 'cold shock' est encore amoindri ;
    • le réservoir comprend un déflecteur de jet d'entrée ; moyennant quoi l'effet de jet produit par l'entrée du liquide dans le réservoir est limité à une zone restreinte ;
    • le réservoir peut être adjacent à l'évaporateur ou le réservoir peut être intégré à l'évaporateur ; moyennant quoi l'intégration mécanique du réservoir peut être améliorée ;
    • le dispositif comprend en outre un organe anti retour agencé entre le volume intérieur du réservoir et la masse microporeuse de l'évaporateur, et agencée pour empêcher que du liquide présent dans l'évaporateur ne se déplace vers le volume intérieur du réservoir ;
    • le dispositif est principalement soumis à la gravité, et l'organe anti retour comprend un flotteur;
    • le dispositif de transfert thermique est préférentiellement dépourvu de pompe mécanique ; de sorte que sa fiabilité est augmentée ;
    • le dispositif comprend en outre un élément d'apport d'énergie au niveau du réservoir pour contrôler la mise en pression de la boucle lors du démarrage ; de sorte que le démarrage de la boucle peut être fiabilisé.
  • D'autres aspects, buts et avantages de l'invention apparaîtront à la lecture de la description suivante de plusieurs modes de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en regard des dessins joints sur lesquels :
    • la figure 1 est une vue générale d'un dispositif selon un mode de réalisation de l'invention,
    • la figure 2 est une variante du dispositif de la Figure 1,
    • la figure 3 montre de façon plus détaillée le réservoir du dispositif de la figure 2,
    • les figures 4a et 4b montre des structures de compartiment dans le réservoir du dispositif des figures 1 et 2,
    • la figure 5 est analogue à la figure 3 et montre une variante du réservoir du dispositif de la figure 2.
    • la figure 6 est une variante du dispositif de la Figure 1.
  • Sur les différentes figures, les mêmes références désignent des éléments identiques ou similaires.
  • La figure 1 montre un dispositif de transport de chaleur à pompage capillaire, à boucle fluide diphasique. Le dispositif comprend un évaporateur 1, ayant une entrée 1a et une sortie 1b, et une masse microporeuse 10 adaptée pour assurer un pompage capillaire. A cet effet, la masse microporeuse 10 entoure un évidement longitudinal central borgne 15 en communication avec l'entrée 1a pour recevoir du fluide de travail 9 à l'état liquide depuis un réservoir 3.
  • L'évaporateur 1 est thermiquement couplé à une source chaude 11, comme par exemple un ensemble comprenant des composants électroniques de puissance ou tout autre élément générant de la chaleur, par exemple par effet joule, ou par tout autre processus.
  • Sous l'effet de l'apport de calories au contact 16 de la masse microporeuse emplie de liquide, du fluide passe de l'état liquide à l'état vapeur et s'évacue par la chambre de transfert 17 et par un premier circuit de communication 4 qui achemine ladite vapeur vers un condenseur 2 ayant une entrée 2a et une sortie 2b.
  • Dans l'évaporateur 1, les cavités libérées par la vapeur évacuée sont comblées par du liquide aspiré par la masse microporeuse 10 à partir de l'évidement central 15 susmentionné ; il s'agit du phénomène de pompage capillaire bien connu en soi.
  • A l'intérieur dudit condenseur 2, de la chaleur est cédé par le fluide en phase vapeur à une source froide 12, ce qui provoque un refroidissement du fluide vapeur et son changement de phase vers la phase liquide, autrement dit sa condensation.
  • Au niveau du condenseur 2, la température du fluide de travail 9 est abaissée en dessous de sa température d'équilibre liquide-vapeur, ce qui est aussi appelé sous-refroidissement ('sub cooling' en anglais) de sorte que le fluide ne peut pas repasser à l'état vapeur sans apport conséquent de chaleur.
  • La pression de vapeur pousse le liquide en direction de la sortie 2b du condenseur 2 qui débouche sur un deuxième circuit de communication 5, relié par ailleurs au réservoir 3.
  • Le réservoir présente au moins un orifice d'entrée et/ou sortie 31, ici en l'occurrence sur la figure 1 un orifice d'entrée 31a et un orifice de sortie 31b distincts, et le réservoir 3 présente un volume intérieur 30, rempli du fluide caloporteur 9. Le fluide de travail 9 peut être par exemple de l'ammoniac ou tout autre fluide approprié, mais on peut choisir préférentiellement du méthanol. Le fluide de travail 9 est diphasique et se présente pour partie sous phase liquide 9a et pour partie sous phase vapeur 9b. Dans un environnement où une gravité s'exerce (verticale selon Z), la partie de phase gazeuse 9b se situe au dessus de la partie de phase liquide 9a et une interface liquide-vapeur 19 sépare les deux phases (surface libre du liquide dans le réservoir).
  • C'est la température de cette surface de séparation 19 qui détermine la pression dans la boucle, cette pression correspond à la pression de saturation du fluide à la température prévalant à la surface de séparation 19.
  • Au niveau de la base du réservoir 34, la température du liquide est généralement inférieure à la température prévalant à la surface de séparation 19.
  • Pour un fonctionnement correct de la boucle à pompage capillaire, il faut éviter que la température qui prévaut à la surface de séparation 19 évolue rapidement, et éviter en particulier un mélange de la phase liquide 9a qui a tendance à ramener du liquide froid du bas du réservoir vers le haut et donc de faire chuter la température de surface, et par la même la pression.
  • Ce phénomène de chute brutale de température et de pression est appelé communément 'cold shock' et doit être évité.
  • Les premier et second circuits de communication fluide 4,5 sont de préférence des conduites tubulaires, mais il pourrait s'agir d'autres types de conduites ou de canaux de communication fluides (conduites rectangulaires, flexibles, etc.).
  • De même, le deuxième circuit de communication fluide 5 peut être sous la forme de deux conduites indépendantes distinctes 5a,5b (cf. Fig 1) ou d'une seule conduite avec un raccord en 'T' 5c (cf. Fig 2).
  • Ces configurations de conduites restent pertinentes lorsque plusieurs et/ou plusieurs condenseurs sont connectés en parallèle.
  • Dans tous les cas, le deuxième circuit de communication fluide 5 relie la sortie du condenseur 2b à l'entrée de l'évaporateur 1a, soit indirectement en passant par le réservoir (cas de deux conduites indépendantes) soit directement (cas ou d'une seule conduite avec 'T').
  • En vue d'éviter les phénomènes de mélange au sein du réservoir qui sont propices au phénomène de 'cold shock', il est prévu, à l'intérieur du réservoir plusieurs volumes de liquide distincts séparés les uns des autres mais lesdits volumes distincts restant en communication fluide. En particulier, et plus précisément, dans le réservoir peuvent être agencées une pluralité de parois internes 7 adaptées pour séparer lesdits plusieurs volumes distincts.
  • Toutefois, selon une alternative, lesdits plusieurs volumes distincts peuvent être formés dans une structure maillée serrée (non représentée sur les figures), comme par exemple une structure de type paille de fer, ou encore une structure de type éponge ou une structure macroporeuse, ou encore un empilage de sphères creuses percées de petits orifices.
  • De plus, avantageusement selon l'invention, le réservoir comprend un déflecteur de jet d'entrée 8 au voisinage de l'orifice d'entrée 31a ou de l'orifice d'entrée/sortie 31 selon la configuration de la deuxième conduite.
  • Ce déflecteur de jet d'entrée empêche qu'une arrivée rapide de liquide dans le réservoir ne crée un bouillonnement ou un courant favorisant le mélange du liquide. Il peut se présenter sous la forme d'un profilé en U orienté vers le bas, ou d'une cloche ou de toute autre forme créant une déviation suffisante de la trajectoire du jet d'entrée.
  • La figure 3 montre une structure de compartiment 71, avec des parois verticales 7, c'est-à-dire orientées selon la direction de gravité. Il est toutefois à noter que les parois peuvent tout aussi bien être légèrement ou substantiellement inclinées, comme illustré par exemple sur le Figure 1. De préférence, la structure de compartiment est régulière, c'est-à-dire qu'un certain motif géométrique est répété plusieurs fois. Il est à noter que le réservoir peut avoir une forme quelconque, et en particulier parallélépipédique ou cylindrique. De plus, la structure de compartiment peut être formée en acier inox pour lui conférer une bonne durabilité. En outre, la structure de compartiment peut être formée en plastique compatible du fluide de travail et en particulier du méthanol ; moyennant quoi elle est compatible avec ce fluide communément utilisé pour les applications terrestres, sa durée de vie est satisfaisante et son coût est faible.
  • Selon un aspect de la présente invention, lesdits plusieurs volumes distincts communiquent par des passages de section de faible, de préférence inférieure au 1/10 de la plus grande section du réservoir. Par exemple comme illustré sur la figure 3, les parois internes 7 présentent des orifices 70 dont la section de passage est petite, ceci afin de créer un amortissement hydraulique entre les volumes distincts de liquide.
  • Les passages entre les volumes distincts peuvent aussi se situer à la base des compartiments, sans orifice sur la hauteur des compartiments. Dans ce cas, une grille 28 percée d'une pluralité de trous de faible section permet au fluide de se déplacer entre les compartiments en passant par une chambre de transfert 29 située dans la zone de base 34 du réservoir. Cette grille 28 dite aussi de diffusion peut avantageusement servir de support pour la structure de compartiments 71.
  • La hauteur des parois peut être comprise entre 30% et 90% de la hauteur du réservoir, et sera choisie en particulier pour que la surface supérieure 19 du liquide ne dépasse pas l'extrémité supérieure des parois 7.
  • De façon avantageuse, on peut choisir une structure en nid d'abeille de maille hexagonale ou un structure à maille carrée, comme illustré respectivement aux figures 4a et 4b. Les compartiments de forme hexagonale 77, (respectivement carrée 78) communiquent entre par leur ouverture inférieure 76 (respectivement 79).
  • De plus, la pluralité de parois peut comporter des parois orientées différemment les unes des autres. En particulier, il peut y avoir certaines parois parallèles au plan XZ, d'autres parallèles au plan XY et d'autres parallèles au plan YZ : ainsi on peut limiter les mouvements selon toutes les directions dans l'espace, ce qui est particulièrement avantageux si le dispositif est embarqué à bord d'un aéronef.
  • Par ailleurs la taille des cellules ne doit pas être trop fine (inférieure au millimètre) sinon la structure piège le liquide par capillarité et demande un sur-remplissage pour éviter d'assécher la boucle lors des démarrages en conditions froides ou des baisses de puissances. Les compartiments sont ainsi dépourvus de structure microporeuse, bien que le réservoir puisse former une structure macroporeuse.
  • Selon un autre aspect avantageux de l'invention, la structure de compartiment comprend un matériau à changement de phase conférant une inertie thermique à ladite structure qui concourt à limiter les écarts brusques de température.
  • La figure 5 est analogue à la figure 3 et montre une variante du réservoir du dispositif avec une entrée de liquide en partie basse et sur le coté 35, ce qui peut permettre de simplifier le déflecteur de jet d'entrée 8. Le déflecteur de jet d'entrée 8 peut alors se réduire à une plaque s'étendant horizontalement ou à une prolongation percée d'une multitude de trous du tube 5.
  • De plus, comme illustré à la figure 6 (analogue à la figure 1), le dispositif peut comprendre accessoirement en outre un organe anti-retour 6, agencé entre le volume intérieur 30 du réservoir et la masse microporeuse 10 de l'évaporateur, pour empêcher que du liquide présent dans l'évaporateur ne se déplace vers le volume intérieur du réservoir. Cet organe anti-retour 6 permet d'éviter un mouvement de liquide depuis l'évaporateur en direction du réservoir lors du déclenchement de l'ébullition lors des phases de démarrage du système.
  • De façon préférentielle, cet organe anti-retour 6 peut comporter un flotteur (non représenté en détail) dont la densité est légèrement inférieure à la densité du fluide en phase liquide.
  • Par ailleurs, le dispositif peut comprendre en outre un élément d'apport d'énergie 36, par exemple un élément de chauffage ou de mise en pression, situé au niveau du réservoir pour contrôler la mise en pression de la boucle lors du démarrage. Un système de commande 'Ctrl' 38 pilote, dans le cas d'un élément de chauffage, l'apport de calories sur cet élément de chauffage 36, en fonction d'une information de température et/ou une information de pression délivrées par des capteurs (non représentés), et ceci afin d'assurer le démarrage de la boucle diphasique.
  • L'élément chauffant peut être situé aussi bien dans la phase liquide et/ou la phase vapeur. Préférentiellement cet élément est situé dans la phase liquide et génère de la vapeur vers la partie supérieure du réservoir. La régulation avec l'élément chauffant sera facilitée par la présence d'une source froide en contact de ce dernier (air ambiant, ou autre). De plus, ce système de commande 'Ctrl' peut aussi préparer la boucle diphasique à une arrivée imminente et importante de calories sur l'évaporateur, ce qui permet d'anticiper la réaction de la boucle diphasique par rapport au besoin de dissipation thermique. Le dimensionnement de la boucle peut être ainsi optimisé pour des quantités de chaleur importante à évacuer.
  • Avantageusement selon l'invention, le dispositif est dépourvu d'une quelconque pompe mécanique bien que l'invention n'exclut pas la présence d'une pompe mécanique d'appoint.

Claims (14)

  1. Dispositif de transfert thermique à pompage capillaire soumis à la gravité, adapté pour extraire de la chaleur depuis une source chaude (11) et pour restituer cette chaleur à une source froide (12) au moyen d'un fluide de travail diphasique contenu dans un circuit général clos, comprenant :
    - au moins un évaporateur (1), ayant une entrée et une sortie, et une masse microporeuse (10) adaptée pour assurer un pompage capillaire de fluide en phase liquide
    - au moins un condenseur (2), ayant une entrée et une sortie,
    - un réservoir (3) ayant un volume intérieur (30), et au moins un orifice d'entrée et/ou sortie (31;31a,31b), avec une portion de phase gazeuse située au-dessus d'une portion de phase liquide,
    - un premier circuit de communication (4), pour du fluide essentiellement en phase vapeur, reliant la sortie de l'évaporateur à l'entrée du condenseur,
    - un deuxième circuit de communication (5), pour du fluide essentiellement en phase liquide, reliant la sortie du condenseur au réservoir et à l'entrée de l'évaporateur,
    caractérisé en ce que le réservoir (3) comprend plusieurs volumes distincts de phase liquide, lesdits volumes distincts restant en communication fluide, le réservoir comprenant une pluralité de parois internes (7) formant des compartiments adaptés pour séparer lesdits plusieurs volumes distincts de phase liquide,
    lesdits plusieurs volumes distincts communiquant par des passages de faible section, de manière à créer un amortissement hydraulique entre les volumes distincts de phase liquide.
  2. Dispositif selon la revendication 1, dans lequel la phase liquide ne dépasse pas de l'extrémité supérieure des parois (7).
  3. Dispositif selon l'une des revendications 1 à 2, dans lequel la pluralité de parois internes forme une structure de compartiments régulière.
  4. Dispositif selon l'une des revendications 1 à 3, dans lequel le réservoir comprend une structure macroporeuse et les compartiments sont dépourvus de structure micro poreuse.
  5. Dispositif selon la revendication 4, principalement soumis à la gravité terrestre, dans lequel les parois forment des cloisons inclinées ou verticales.
  6. Dispositif selon l'une des revendications 4 à 5, dans lequel la structure de compartiment prend la forme d'une structure en nid d'abeille.
  7. Dispositif selon l'une des revendications 4 à 6, dans lequel la structure de compartiment comprend un matériau à changement de phase conférant une inertie thermique.
  8. Dispositif selon l'une des revendications 1 à 7, dans lequel le réservoir comprend un déflecteur de jet d'entrée (8) au voisinage de l'orifice d'entrée.
  9. Dispositif selon l'une des revendications 1 à 8, dans lequel le réservoir peut être adjacent à l'évaporateur ou le réservoir peut être intégré à l'évaporateur.
  10. Dispositif selon l'une des revendications 1 à 9, comprenant un organe anti retour (6) agencé entre le volume intérieur (30) du réservoir et la masse microporeuse (10) de l'évaporateur, et agencé pour empêcher que du liquide présent dans l'évaporateur ne se déplace vers le volume intérieur du réservoir.
  11. Dispositif selon la revendication 10, principalement soumis à la gravité terrestre, dans lequel l'organe anti retour comprend un flotteur (60).
  12. Dispositif de transfert thermique selon la selon l'une des revendications précédentes, caractérisé en ce qu'il est dépourvu de pompe mécanique.
  13. Dispositif selon l'une des revendications précédentes, comprenant en outre un élément d'apport d'énergie (36) au niveau du réservoir pour contrôler la mise en pression de la boucle lors du démarrage.
  14. Dispositif selon l'une des revendications précédentes, dans lequel la section des passages de faible section est inférieure au 1/10 de la plus grande section du réservoir.
EP12756742.8A 2011-09-14 2012-09-12 Dispositif de transport de chaleur à pompage capillaire Active EP2756251B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1158202A FR2979981B1 (fr) 2011-09-14 2011-09-14 Dispositif de transport de chaleur a pompage capillaire
PCT/EP2012/067752 WO2013037784A1 (fr) 2011-09-14 2012-09-12 Dispositif de transport de chaleur à pompage capillaire

Publications (2)

Publication Number Publication Date
EP2756251A1 EP2756251A1 (fr) 2014-07-23
EP2756251B1 true EP2756251B1 (fr) 2016-04-06

Family

ID=46829776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12756742.8A Active EP2756251B1 (fr) 2011-09-14 2012-09-12 Dispositif de transport de chaleur à pompage capillaire

Country Status (7)

Country Link
US (1) US9958214B2 (fr)
EP (1) EP2756251B1 (fr)
JP (1) JP6163490B2 (fr)
CN (1) CN104094074B (fr)
ES (1) ES2580402T3 (fr)
FR (1) FR2979981B1 (fr)
WO (1) WO2013037784A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2665754C1 (ru) * 2017-06-22 2018-09-04 Александр Михайлович Деревягин Способ и устройство для теплопередачи

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014170907A2 (fr) * 2013-04-17 2014-10-23 Venkata Sundereswar Rao Vempati Générateur de vapeur sans pression écoénergétique
FR3006431B1 (fr) 2013-05-29 2015-06-05 Euro Heat Pipes Dispositif de transport de chaleur a fluide diphasique
FR3009377B1 (fr) * 2013-08-01 2018-10-19 Euro Heat Pipes Evaporateur a dispositif anti-retour pour boucle diphasique
CN103987235B (zh) * 2014-04-14 2017-02-08 中国电子科技集团公司第十一研究所 一种散热方法和系统
DE102015107473A1 (de) 2015-05-12 2016-11-17 Benteler Automobiltechnik Gmbh Kraftfahrzeug-Wärmeübertragersystem
CN109029034A (zh) * 2018-07-12 2018-12-18 南京航空航天大学 一种自驱动热管循环换热器

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2366955A (en) 1941-09-20 1945-01-09 Servel Inc Refrigeration
US3613778A (en) * 1969-03-03 1971-10-19 Northrop Corp Flat plate heat pipe with structural wicks
DE2235792A1 (de) * 1972-07-21 1974-01-31 Dornier System Gmbh Vorrichtung zur uebertragung von waermeenergie
US4061131A (en) * 1975-11-24 1977-12-06 Acme Engineering And Manufacturing Corporation Heat transfer system particularly applicable to solar heating installations
US4286579A (en) 1979-05-30 1981-09-01 Barry Johnston Closed loop solar collector system
US4296729A (en) * 1980-02-04 1981-10-27 Suntime, Inc. Solar hot water heating system
JPH0230439B2 (ja) 1985-01-30 1990-07-06 Matsushita Electric Ind Co Ltd Ruupushikihiitopaipu
FR2578638B1 (fr) * 1985-03-08 1989-08-18 Inst Francais Du Petrole Procede de transfert de chaleur d'un fluide chaud a un fluide froid utilisant un fluide mixte comme agent caloporteur
JPS62233686A (ja) * 1986-03-31 1987-10-14 Yamato Seisakusho:Kk 熱伝達装置
JPH0718408B2 (ja) 1986-06-23 1995-03-06 謙治 岡安 熱駆動ポンプ
FR2602851B1 (fr) 1986-08-05 1988-11-18 Nantes D Avignonet Philippe De Systeme anti-retour pour toutes canalisations d'ecoulement non pulse ni aspire
US4830097A (en) * 1987-07-15 1989-05-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Space vehicle thermal rejection system
JP2657809B2 (ja) 1987-12-22 1997-09-30 謙治 岡安 熱伝達装置
JP2544433B2 (ja) * 1988-03-31 1996-10-16 三機工業株式会社 冷媒自然循環式熱移動装置
US4957157A (en) * 1989-04-13 1990-09-18 General Electric Co. Two-phase thermal control system with a spherical wicked reservoir
JP2859927B2 (ja) 1990-05-16 1999-02-24 株式会社東芝 冷却装置および温度制御装置
JPH0490498A (ja) * 1990-08-03 1992-03-24 Mitsubishi Electric Corp 熱伝達装置
JP2801998B2 (ja) * 1992-10-12 1998-09-21 富士通株式会社 電子機器の冷却装置
US5816313A (en) * 1994-02-25 1998-10-06 Lockheed Martin Corporation Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves
BE1009410A3 (fr) * 1995-06-14 1997-03-04 B C A Sa Dispositif de transport de chaleur.
FR2752291B1 (fr) * 1996-08-12 1998-09-25 Centre Nat Etd Spatiales Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide
JP3748984B2 (ja) 1997-05-29 2006-02-22 本田技研工業株式会社 熱駆動式液圧発生装置
JP2000241089A (ja) * 1999-02-19 2000-09-08 Mitsubishi Electric Corp 蒸発器、吸熱器、熱輸送システム及び熱輸送方法
US6227288B1 (en) * 2000-05-01 2001-05-08 The United States Of America As Represented By The Secretary Of The Air Force Multifunctional capillary system for loop heat pipe statement of government interest
US8109325B2 (en) 2000-06-30 2012-02-07 Alliant Techsystems Inc. Heat transfer system
US8047268B1 (en) 2002-10-02 2011-11-01 Alliant Techsystems Inc. Two-phase heat transfer system and evaporators and condensers for use in heat transfer systems
US8136580B2 (en) 2000-06-30 2012-03-20 Alliant Techsystems Inc. Evaporator for a heat transfer system
US7549461B2 (en) 2000-06-30 2009-06-23 Alliant Techsystems Inc. Thermal management system
US6883588B1 (en) * 2000-07-24 2005-04-26 Space Systems/Loral, Inc. Spacecraft radiator system using a heat pump
US6976527B2 (en) * 2001-07-17 2005-12-20 The Regents Of The University Of California MEMS microcapillary pumped loop for chip-level temperature control
JP3661862B2 (ja) * 2002-02-05 2005-06-22 独立行政法人 宇宙航空研究開発機構 アキュムレータ
US7061446B1 (en) * 2002-10-24 2006-06-13 Raytheon Company Method and apparatus for controlling temperature gradients within a structure being cooled
FR2851503B1 (fr) * 2003-02-20 2008-02-15 Appareil de ventilation, de chauffage et/ou de climatisation pour habitacle de vehicule automobile a refroidissement simultane d'air et d'un fluide caloporteur
US7823629B2 (en) * 2003-03-20 2010-11-02 Thermal Corp. Capillary assisted loop thermosiphon apparatus
US6865897B2 (en) * 2003-07-10 2005-03-15 Praxair Technology, Inc. Method for providing refrigeration using capillary pumped liquid
US20050067146A1 (en) 2003-09-02 2005-03-31 Thayer John Gilbert Two phase cooling system method for burn-in testing
JP2006064193A (ja) * 2004-08-24 2006-03-09 Mitsubishi Electric Corp ループ熱交換熱輸送機器
US20060065386A1 (en) 2004-08-31 2006-03-30 Mohammed Alam Self-actuating and regulating heat exchange system
US6990816B1 (en) * 2004-12-22 2006-01-31 Advanced Cooling Technologies, Inc. Hybrid capillary cooling apparatus
JP4381998B2 (ja) 2005-02-24 2009-12-09 株式会社日立製作所 液冷システム
TWM284951U (en) * 2005-09-21 2006-01-01 Yen Sun Technology Corp Heat dissipating device for an electronic device
CN2861836Y (zh) * 2005-09-21 2007-01-24 上海海事大学 复合式热管除湿器
TWI276396B (en) * 2006-01-13 2007-03-11 Ind Tech Res Inst Closed-loop latent heat cooling method, and capillary force or non-nozzle module thereof
US7748436B1 (en) * 2006-05-03 2010-07-06 Advanced Cooling Technologies, Inc Evaporator for capillary loop
US8627847B2 (en) 2006-06-06 2014-01-14 SIVAN Valves, LLC Backflow preventer valve
US20080078530A1 (en) * 2006-10-02 2008-04-03 Foxconn Technology Co., Ltd. Loop heat pipe with flexible artery mesh
US20080225489A1 (en) * 2006-10-23 2008-09-18 Teledyne Licensing, Llc Heat spreader with high heat flux and high thermal conductivity
CN100460798C (zh) * 2007-05-16 2009-02-11 中山大学 一种均温回路热管装置
TWI318679B (en) * 2007-05-16 2009-12-21 Ind Tech Res Inst Heat dissipation system with an plate evaporator
FR2919923B1 (fr) 2007-08-08 2009-10-30 Astrium Sas Soc Par Actions Si Dispositif passif a micro boucle fluide a pompage capillaire
WO2009038490A1 (fr) * 2007-09-17 2009-03-26 Vadim Anatolievich Pomytkin Diffuseur thermique pour refroidisseurs de caloduc et refroidisseurs d'eau
US8196395B2 (en) 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
FR2949642B1 (fr) 2009-08-27 2012-05-04 Alstom Transport Sa Convertisseur de puissance electrique pour un vehicule ferroviaire
JP5287638B2 (ja) * 2009-09-25 2013-09-11 富士通株式会社 ループ型ヒートパイプ及び電子機器
WO2012059975A1 (fr) * 2010-11-01 2012-05-10 富士通株式会社 Tuyau de chaleur en forme de boucle et dispositif électronique équipé de celui-ci
CN102723316A (zh) * 2011-03-29 2012-10-10 北京奇宏科技研发中心有限公司 环路热管结构
FR2979982B1 (fr) * 2011-09-14 2016-09-09 Euro Heat Pipes Dispositif de transport de chaleur a pompage capillaire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2665754C1 (ru) * 2017-06-22 2018-09-04 Александр Михайлович Деревягин Способ и устройство для теплопередачи

Also Published As

Publication number Publication date
FR2979981A1 (fr) 2013-03-15
JP6163490B2 (ja) 2017-07-12
US20150083373A1 (en) 2015-03-26
CN104094074B (zh) 2016-08-24
ES2580402T3 (es) 2016-08-23
CN104094074A (zh) 2014-10-08
JP2014527153A (ja) 2014-10-09
FR2979981B1 (fr) 2016-09-09
US9958214B2 (en) 2018-05-01
WO2013037784A1 (fr) 2013-03-21
EP2756251A1 (fr) 2014-07-23

Similar Documents

Publication Publication Date Title
EP2756251B1 (fr) Dispositif de transport de chaleur à pompage capillaire
EP2756252B1 (fr) Dispositif de transport de chaleur à pompage capillaire
EP2956729B1 (fr) Dispositif de transport de chaleur à fluide diphasique
WO2014191512A1 (fr) Dispositif de transport de chaleur à fluide diphasique
EP3207324B1 (fr) Caloduc plat avec fonction reservoir
WO1997000416A1 (fr) Boucle a pompage capillaire de transport de chaleur
EP0782885A1 (fr) Dispositif de pulverisation a rendement éléve notamment d'eau sous forme de micro-gouttelettes
FR3045793A1 (fr) Pack de batterie refroidit par un materiau a changement de phase a pression constante
EP2851949A1 (fr) Dispositif de refroidissement d'une puce de circuit intégré
EP0314585B1 (fr) Echangeur de chaleur gaz/liquide avec condensation
FR3016923A3 (fr) Bocal de degazage et systeme de refroidissement pour vehicule automobile comprenant un tel bocal de degazage
FR2524124A1 (fr) Procede de stockage et de restitution calorifique, et dispositif pour sa mise en oeuvre, constituant un element porteur de batiment
EP1740898B1 (fr) Installation de deshydratation par zeolithes
EP2393714A1 (fr) Réservoir cryogénique et lanceur supatial comportant un tel réservoir
EP2476301B1 (fr) Systeme de controle thermique d'un equipement
EP3027995B1 (fr) Evaporateur à dispositif anti-retour pour boucle diphasique
EP0022391A1 (fr) Dispositif cryostatique destiné à supporter des accélérations
FR3032027A1 (fr) Boucle diphasique de refroidissement a evaporateurs satellites
FR2706531A1 (fr) Vase d'expansion pour circuit de refroidissement de moteur thermique.
FR2978819A1 (fr) Desorbeur d'un dispositif de climatisation a carter rigidifie
WO2019220035A1 (fr) Évaporateur d'une boucle fluide et boucle fluide comprenant un tel évaporateur
EP1918168B1 (fr) Réservoir de liquide hydraulique d'embrayage et de freinage à chambre
WO2013017439A1 (fr) Desorbeur d'un dispositif de climatisation
BE345688A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140311

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151006

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 788285

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012016689

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 788285

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160406

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2580402

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160806

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160808

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160707

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012016689

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

26N No opposition filed

Effective date: 20170110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160912

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210910

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210928

Year of fee payment: 10

Ref country code: DE

Payment date: 20210908

Year of fee payment: 10

Ref country code: SE

Payment date: 20210916

Year of fee payment: 10

Ref country code: BE

Payment date: 20210927

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20211005

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220823

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012016689

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220912

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220912

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220913

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20231001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240716

Year of fee payment: 13