FR3032027A1 - Boucle diphasique de refroidissement a evaporateurs satellites - Google Patents

Boucle diphasique de refroidissement a evaporateurs satellites Download PDF

Info

Publication number
FR3032027A1
FR3032027A1 FR1550591A FR1550591A FR3032027A1 FR 3032027 A1 FR3032027 A1 FR 3032027A1 FR 1550591 A FR1550591 A FR 1550591A FR 1550591 A FR1550591 A FR 1550591A FR 3032027 A1 FR3032027 A1 FR 3032027A1
Authority
FR
France
Prior art keywords
main
main circuit
evaporator
loop
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1550591A
Other languages
English (en)
Other versions
FR3032027B1 (fr
Inventor
Vincent Dupont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euro Heat Pipes SA
Original Assignee
Euro Heat Pipes SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR1550591A priority Critical patent/FR3032027B1/fr
Application filed by Euro Heat Pipes SA filed Critical Euro Heat Pipes SA
Priority to ES15766100T priority patent/ES2699092T3/es
Priority to EP15766100.0A priority patent/EP3250870B1/fr
Priority to US15/546,618 priority patent/US10352623B2/en
Priority to JP2017536554A priority patent/JP6578361B2/ja
Priority to PCT/EP2015/070883 priority patent/WO2016119921A1/fr
Priority to CN201580073254.9A priority patent/CN107208980B/zh
Publication of FR3032027A1 publication Critical patent/FR3032027A1/fr
Application granted granted Critical
Publication of FR3032027B1 publication Critical patent/FR3032027B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0216Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having particular orientation, e.g. slanted, or being orientation-independent

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Système de transfert thermique (10) comprenant un circuit principal (1) en boucle de fluide, le circuit principal étant dépourvu de moyens de pompage mécanique ou capillaire, au moins un ensemble évaporateur (2) agencé en dérivation du circuit principal avec une canalisation d'admission (21), prélevant du fluide liquide sur la boucle principale, un évaporateur (4) incluant un élément poreux à pompage capillaire couplé à une source chaude à refroidir, une canalisation de sortie (22) ayant une buse d'éjection qui injecte le fluide en phase principalement vapeur dans le circuit principal au moins selon la direction de circulation de boucle, au moins un ensemble condenseur (5), comprenant une portion du circuit principal de boucle et un échangeur de chaleur couplé à une source froide, pour évacuer des calories.

Description

1 Boucle diphasique de refroidissement à évaporateurs satellites L'invention concerne les systèmes de transfert thermique et plus particulièrement les boucles diphasiques de refroidissement. Ce type de systèmes est utilisé pour refroidir divers appareils et en particulier pour refroidir un ou plusieurs processeurs d'une carte électronique. Il est connu dans l'art d'utiliser avantageusement la circulation d'un fluide diphasique avec un évaporateur et un condenseur, des changements de phase permettant de transporter efficacement de la chaleur d'un point à un autre ; la circulation du fluide de travail dans la boucle étant générée par un effet de thermosiphon ou par une mèche poreuse assurant un pompage capillaire. Il est connu d'utiliser ce genre de système pour refroidir des cartes électroniques, notamment des cartes serveurs de 'data center'. Dans certaines cartes électroniques, on doit refroidir non pas un seul, mais plusieurs processeurs ou composants électroniques. Au lieu de multiplier les boucles diphasiques, certains ont proposé dans le cas de deux processeurs de disposer en série deux évaporateurs et deux condenseurs, comme dans le document US2012132402. Toutefois, cette solution est mal adaptée si les charges thermiques ne sont pas homogènes, et de plus le démarrage peut poser des problèmes, on constate aussi des instabilités dans le fonctionnement d'une telle boucle. Une autre solution consiste à placer plusieurs évaporateurs dans une disposition « en 20 parallèle » sur une boucle diphasique, comme connu du document US2002/0007937, mais dans une telle configuration, chaque évaporateur vient accroître les pertes de charges dans la boucle sans accroître l'effet moteur sur la boucle et il s'ensuit une limitation des performances. Il est donc apparu un besoin de proposer une solution plus souple qui puisse convenir pour le refroidissement de un ou plusieurs processeurs ou composants électroniques dissipatifs.
25 A cet effet, il est proposé un système de transfert thermique comprenant : - un circuit principal en boucle de fluide, le circuit principal étant dépourvu de moyens de pompage mécanique ou capillaire ou gravitaire, avec une direction de circulation de boucle de fluide, - au moins un ensemble évaporateur agencé en dérivation du circuit principal avec : 30 - au moins une canalisation d'admission, prélevant du fluide liquide sur le circuit principal, - un évaporateur incluant un élément poreux à pompage capillaire couplé à une source chaude à refroidir, 3032027 2 - au moins une canalisation de sortie ayant une buse d'éjection qui injecte le fluide en phase principalement vapeur dans le circuit principal au moins selon la direction de circulation de boucle, - au moins un ensemble condenseur, comprenant une portion du circuit principal de boucle et 5 un échangeur de chaleur couplé à une source froide, pour évacuer des calories. Grâce à ces dispositions, l'injection de la vapeur depuis la canalisation de sortie dans le circuit principal provoque un effet d' entrainement par transfert de quantité de mouvement. Le jet de vapeur forme un effet moteur pour le circuit principal en boucle et on obtient une circulation forcée du fluide de travail dans la boucle principale.
10 Dans des modes de réalisation du dispositif selon l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes. Le fluide est sous forme essentiellement diphasique dans le circuit principal en boucle, à savoir sous forme vapeur et sous forme liquide. Ainsi il n'est nul besoin de sous refroidir au niveau du (des) condenseur(s) ; L'absence de besoin de sous refroidissement permet de limiter 15 voire diminuer la taille nécessaire du condenseur ou des condenseurs. Il est bien connu de l'art antérieur, que le liquide sous-refroidi est nécessaire pour compenser le flux thermique parasite au niveau de l'évaporateur en provenance de la mèche poreuse, de l'environnement, d'éventuelles fuites capillaires, etc. On peut disposer plusieurs ensembles évaporateur, chacun agencé en dérivation du circuit principal ; on peut ainsi refroidir deux ou plus de deux processeurs d'une carte électronique, et/ou une pluralité de sources chaudes dissipatives ; on bénéficie aussi d'un effet d'addition de l'entraînement dû aux injections de vapeur de chaque ensemble évaporateur. Dans le cas où le système est soumis à l'accélération de la gravité, le circuit principal en boucle peut s'étendre avantageusement dans un plan sensiblement horizontal par rapport à la gravité ; avantageusement le fluide peut circuler dans la boucle principale sans utiliser d'effet de thermosiphon, l'effet moteur dans le circuit principal étant obtenu par des injections de vapeur en provenance d'évaporateur(s). Le (ou les) évaporateur(s) est (sont) positionné(s) en contrebas du circuit principal; Avantageusement on peut tirer bénéfice d'un effet de siphon local pour l'alimentation de liquide de la conduite principale vers l'élément poreux, et accessoirement on favorise la remontée de bulles de vapeur et/ou de gaz non condensable vers la conduite principale. Le (ou les) évaporateur(s) peut (peuvent) être positionné(s) au-dessus du circuit principal de façon à assurer une présence minimale de vapeur au contact de l'élément poreux de l'évaporateur lors de la phase de démarrage.
3032027 3 Il peut être prévu dans un ou plusieurs évaporateurs une mèche secondaire interposée entre l'élément poreux (aussi nommé mèche primaire) et la conduite principale ; ceci permet une bonne évacuation des bulles de vapeur et/ou de gaz non condensables (NCG) par un lien capillaire, même en l'absence de gravité, tout en assurant l'approvisionnement en liquide la 5 mèche primaire. La buse d'éjection peut être disposée dans la conduite du circuit principal, à savoir à l'intérieur même de la canalisation. Ceci permet d'optimiser l'effet d'entraînement et le transfert de quantité de mouvement. La buse d'éjection peut être disposée de manière pariétale sur la paroi de la 10 canalisation principale. Avantageusement, on peut alors utiliser une pièce de raccordement en forme de Y facile à mettre en oeuvre du point de vue de l'étanchéité. Le système peut comprendre en outre un réservoir commun branché sur la boucle principale ; On peut ainsi contrôler les conditions opérationnelles de la boucle en maîtrisant la température de saturation Tsat, et cela fournit par ailleurs un rôle de vase d'expansion, on peut 15 ainsi éviter de prévoir une fonction réservoir dans chaque ensemble évaporateur. Au niveau de l'un des ensembles condenseur, la conduite principale peut comprendre une portion formée par une pluralité de sous-canaux arrangés en parallèle, en vue de limiter les pertes de charge hydraulique au travers de cette portion appartenant à l'ensemble condenseur.
20 Le système peut comprendre en outre un ou plusieurs pont(s) thermique(s) reliant thermiquement la conduite principale avec une ou plusieurs source(s) de chaleur annexe(s). On peut ainsi traiter des sources chaudes auxiliaires comme des mémoires, certes moins dissipatives que les processeurs, mais qu'il convient également de refroidir.
25 D'autres aspects, buts et avantages de l'invention apparaîtront à la lecture de la description suivante d'un mode de réalisation de l'invention, donné à titre d'exemple non limitatif. L'invention sera également mieux comprise en regard des dessins joints sur lesquels : - la figure 1 est un schéma de principe du système selon l'invention avec un seul ensemble évaporateur, 30 - la figure 2 est un schéma de principe du système selon l'invention avec plusieurs ensembles évaporateurs, - la figure 3 est une vue en coupe d'un évaporateur selon une première disposition, - la figure 4 est une vue en coupe partielle plus détaillée de l'évaporateur de la figure 3, 3032027 4 - les figures 5A et 5B sont des vues en coupe de la canalisation de sortie formant injecteur à l'endroit où elle rejoint le circuit principal en boucle, la figure 6 est une vue en coupe d'un évaporateur selon une deuxième disposition, la figure 7 est un schéma illustrant l'utilisation du système de transfert thermique selon 5 l'invention dans une carte serveur multiprocesseur, - la figure 8 montre un exemple de configuration de la canalisation principale au niveau d'un condenseur. Sur les différentes figures, les mêmes références désignent des éléments identiques ou similaires.
10 La figure 1 montre un système de transfert thermique 10 utilisant un fluide de travail diphasique 7 destiné à prélever des calories d'une source chaude 9 et à les évacuer à distance de la source chaude. Plus précisément, le système de transfert thermique 10 comprend un circuit principal 1 en boucle. Le système de transfert thermique 10 contient dans un volume intérieur, isolé de manière étanche de l'environnement extérieur, une quantité donnée de fluide 15 de travail 7. Dans la présente description, on entend par « circuit principal 1 en boucle » une conduite ou une canalisation 11 qui se re-boucle sur elle-même formant ainsi un circuit fermé pour le fluide de travail 7, on parle donc de « conduite principale » par opposition aux autres canalisations utilisées pour raccorder les évaporateurs agencés en parallèle. Le circuit 20 principal est aussi appelé « bus thermique » et/ou « collecteur thermique général ». Il est entendu que le circuit principal ne contient généralement aucun élément d'obstruction qui puisse gêner la libre circulation du fluide de travail, laquelle circulation se produit dans une direction de circulation privilégiée représentée par le repère F. Le fluide de travail qui circule dans le circuit principal, comprend généralement les deux 25 phases c'est-à-dire phase liquide et phase vapeur, sans pour autant exclure qu'il y ait des endroits où le fluide soit essentiellement liquide 7L et d'autres endroits où le fluide soit essentiellement vapeur 7V. Selon la présente invention, le circuit principal lui-même est dépourvu de moyens de pompage mécanique ou capillaire ou encore gravitaire. Le circuit principal forme une boucle 30 qui peut avoir une forme générale circulaire, rectangle, carrée ou tout autre ; de même, le circuit principal peut être formé en deux dimensions (c'est-à-dire essentiellement à plat) ou peut être formé en trois dimensions c'est-à-dire non à plat. La section de la canalisation peut être substantiellement constante ; toutefois, il n'est pas exclu que la section de la canalisation puisse varier le long du circuit principal.
3032027 5 Pour prélever des calories de la source chaude 9, il est prévu un ensemble évaporateur 2 agencé en dérivation du circuit principal. Cet ensemble évaporateur 2 comprend : - au moins une canalisation d'admission 21, prélevant du fluide liquide sur la boucle principale, 5 - un évaporateur 4 incluant un élément poreux 3 formant pompage capillaire et couplé à une source chaude à refroidir, - au moins une canalisation de sortie 22 ayant au moins une buse d'éjection qui injecte le fluide en phase principalement vapeur dans le circuit principal selon la direction de circulation de boucle F.
10 On remarque que l'interface hydraulique de l'ensemble évaporateur 2 avec le circuit principal 1 se borne à d'une part un raccordement de prélèvement de fluide liquide et d'autre part une sortie d'injection de vapeur. L'injection de vapeur dans la conduite principale peut être pariétale comme ceci est illustré à la figure 5B ou disposée complètement à l'intérieur de la section de la conduite principale comme ceci est illustré à la figure 5A. L'injection de 15 vapeur se produit à vitesse élevée ce qui provoque un transfert de quantité de mouvement vers le fluide de travail environnant dans la canalisation principale, comme cela sera illustré plus en détail plus loin. Dans l'exemple illustré, la canalisation d'admission 21 est distincte de la canalisation de sortie 22, ainsi l'ensemble évaporateur est analogue à une boucle dite `CPL' (Capillary 20 Pumped Loop) selon une classification connue de l'homme de l'art. Toutefois on note que les canalisations d'admission 21 et de sortie 22 pourraient être accolées ou contiguës. Également, chacune des canalisations d'admission 21 et de sortie 22 pourraient se réduire à un simple passage sans forcément qu'il y ait une conduite tubulaire ou équivalent ; sur la figure 3 il est dessiné en traits pointillés un cas de figure où la canalisation principale 1' est adjacente à 25 l'évaporateur et dans ce cas l'une et/ou l'autre des canalisations d'admission 21 et de sortie 22 pourrait se réduire à un simple passage. Le point de prélèvement 25 de liquide par la canalisation d'admission 21 se situe en amont (par rapport au sens de circulation F) vis-à-vis du point de sortie 26 de vapeur de la canalisation de sortie dans la conduite principale 11.
30 De plus, le système comprend un ensemble condenseur 5 qui évacue les calories transportées par la conduite principale à distance de(s) la source(s) chaude(s). L'ensemble condenseur 5 est formé par une portion de la conduite principale elle-même et un échangeur de chaleur couplé à une source froide ; cet échangeur de chaleur n'est volontairement pas détaillé ici, il peut être de tout type connu dans l'art, par exemple un échangeur à air avec des 3032027 6 ailettes, optionnellement avec une convection forcée avec un ventilateur, cela peut être aussi par exemple un échangeur à liquide par exemple un échangeur à flux croisés avec un autre liquide, par exemple de l'eau.
5 Dans un exemple typique de cartes serveur, on évacue grâce au circuit principal les calories formées au niveau des processeurs, à distance de la carte serveur, dans un circuit de circulation d'eau conventionnel (Fig 7). La quantité de fluide de travail à l'intérieur du système de transfert thermique est constante car le système présente une étanchéité globale vis-à-vis de l'environnement. En fonction du 10 volume disponible dans le circuit et les évaporateurs, ainsi que la quantité de remplissage initial, le régime d'écoulement diphasique dans la canalisation principale peut être soit stratifié, soit annulaire, laminaire ou turbulent, avec des poches de vapeur de taille plus ou moins importante. Le régime d'écoulement et le design de la zone d'injection seront choisis de façon à obtenir l'effet d'entrainement le plus efficace possible en minimisant les pertes 15 visqueuses pour les gammes de température et de puissance envisagées. En particulier, la conduite principale peut être, sur certaines portions, d'une section telle que les phases vapeurs et liquides se séparent, se stratifient, naturellement soit par l'action de la gravité soit par l'action d'une force centrifuge ou de tout autres dispositifs de séparation qui seraient mis en oeuvre en fonction des conditions d'environnement sous gravité ou en 20 apesanteur et en fonction des caractéristiques de l'écoulement. L'intérêt de cette séparation des phases est de permettre de véhiculer des grands débits volume de vapeur, à grande vitesse vapeur, par rapport au faible débit volume liquide tel que généralement requis dans les systèmes de transport diphasique. Cette séparation des phases permet de diminuer de façon appréciable la perte de charge de la conduite principale. Le ratio théorique du débit vapeur / 25 débit liquide est proportionnel au rapport de densité entre le liquide et celui de la vapeur. On comprend l'avantage qu'apport cette séparation des phases sachant que le rapport de densité pour les fluides hautes pressions peut être de 10 alors que pour les fluides basses pressions il peut monter à 100 voire 1000. Dans les boucles diphasiques, c'est souvent la perte de charge vapeur qui est prédominante. Les injecteurs seraient préférentiellement disposés dans la phase 30 vapeur, laquelle par effet direct ou d'entrainement communique une partie de la quantité de mouvement à la phase liquide. La canalisation diphasique pourrait être de forme quelconque pour permettre cette séparation des phases. Depuis une forme ovoïde qui permettrait à la vapeur de se localiser préférentiellement dans la partie élargie du haut de la canalisation et la partie liquide dans la partie rétrécie du bas de la canalisation. La canalisation principale 3032027 7 pourrait même se composer de plusieurs parties en parallèles. Une canalisation vapeur et une autre liquide. Dans ce cas particulier, les pertes de charges vapeurs exerceraient un effet de pompage sur des sections de ligne disposées parallèlement à la conduite principale. Le ou les lignes secondaires parallèles, à basse vitesse de circulation, étant aménagées pour être 5 occupées préférentiellement de liquide tout en permettant l'entraînement d'éventuelles bulles vapeurs. Comme illustré dans un cas plus complet à la figure 2, le système de transfert thermique permet d'évacuer les calories de plusieurs sources chaudes 9 au moyen de plusieurs 10 ensembles évaporateur respectifs 2,2', identiques ou simplement similaires dans le principe. On note que ces ensembles évaporateur sont tous disposés en dérivation de la conduite principale, à des positions différentes successives le long de ce circuit principal. Avantageusement, grâce à cette configuration, on obtient une addition des effets d'entraînement par les injections de vapeur rapides, qui sont disposées en série le long du 15 circuit principal (à l'inverse de la configuration des évaporateurs agencés en parallèle de l'art antérieur). De plus, il s'avère que, grâce à cette invention, on peut utiliser comme fluide de travail des fluides diélectriques conventionnels de type réfrigérant, permettant ainsi de remplacer les fluides classiques de l'art antérieur, utilisés dans les boucles diphasiques, qui sont soit 20 inflammables soit risqués pour l'environnement. Il est ainsi possible d'utiliser une plus large variété de fluides diphasiques, sur une plage donnée de températures opérationnelles prescrites. On peut aussi prévoir plusieurs ensembles évaporateur 4 sur le circuit principal ; dans un exemple, on peut avoir en alternance un évaporateur suivi d'un condenseur et ainsi de suite, et 25 bien entendu on comprend de la figure 2 que le nombre de condenseurs peut être quelconque vis-à-vis du nombre d'évaporateurs. De même, l'ordre et la position relative des différents évaporateurs et condenseurs, ainsi que l'espace qui les sépare, peuvent être quelconques. Comme illustré à la figure 3, l'évaporateur 4 comprend une plaque chaude 40 recevant des calories de la source chaude 9 et dans laquelle on a pratiqué des rainures 31 ou canaux de 30 vapeur facilitant l'évacuation de la vapeur 7V qui se forme à cet endroit par vaporisation. L'élément poreux 3, aussi appelé mèche primaire, se trouve au contact de la plaque chaude 40 (côté rainures). Il procure un effet de pompage comme connu dans l'art du fait du remplissage des interstices de la structure poreuse 3 par du fluide en phase liquide. L'élément poreux 3 peut être fabriqué en inox, en nickel, en céramique ou même en cuivre (cf plus loin).
3032027 8 Dans la zone d'arrivée de liquide 30, le fluide en phase liquide provient de la canalisation d'admission 21 ; un souci connu dans l'art est d'empêcher qu'un bouchon de phase vapeur ne bloque l'admission de liquide, et tarisse ainsi l'approvisionnement en phase liquide de la zone de vaporisation et ne désamorce le pompage capillaire. En effet, des bulles de vapeur peuvent 5 se former dans la zone d'arrivée du liquide soit en raison d'une mauvaise étanchéité capillaire soit en raison d'un flux thermique parasite (échauffement 'parasite' coté liquide). Ainsi le flux parasite peut être considéré comme une source de chaleur annexe. Dans l'art connu, on essaie au maximum d'empêcher que des bulles de vapeur se forment du côté admission de l'élément poreux afin d'éviter la rupture de l'alimentation liquide de la 10 mèche principale de l'évaporateur par la formation d'un bouchon vapeur ; mais ici, compte tenu de la configuration avec le circuit principal en boucle, on peut tolérer la formation de telles bulles de gaz, à condition qu'elles puissent 'remonter le courant' de la canalisation d'admission 21 pour revenir vers la conduite principale 11. À cet effet on peut utiliser la gravité si elle règne dans le lieu d'application, en formant un 15 siphon en local dans lequel les bulles de gaz remontent et le liquide descend, comme ceci est illustré à la figure 3. On peut aussi prévoir, alternativement ou en plus, une mèche secondaire 32, optionnelle, qui se trouve du côté opposé de la mèche primaire par rapport à la plaque chaude 40. Cette mèche secondaire 32 s'étend dans le corps de l'évaporateur, et peut s'étendre également dans 20 la canalisation d'admission 21 au moins en partie ; en fait, la mèche secondaire 32 est interposée entre la mèche primaire 3 et la conduite 11 du circuit principal. Cette mèche secondaire 32 forme un canal pour évacuer les éventuelles bulles de gaz qui se seraient formées à cet endroit c'est-à-dire du mauvais côté de la mèche primaire 3 ; ainsi on évite qu'un éventuel bouchon de vapeur empêche l'alimentation continue en fluide liquide 25 depuis la conduite principale jusqu'à la mèche primaire 3 de l'évaporateur 4. La mèche secondaire 32 peut être formée par un treillis métallique comme ceci est illustré à la figure 4. Il se forme, dans les coins ou au niveau des intersections des fils de maille de la mèche secondaire, des ménisques 39 de liquide qui assurent une bonne alimentation en liquide de la mèche primaire.
30 Comme on tolère la formation de bulles de vapeur du côté admission (liquide) de l'élément poreux, avantageusement il n'est pas nécessaire de prévoir une étanchéité capillaire parfaite pour séparer les espaces de part et d'autre de l'élément poreux 3. Par conséquent, les contraintes de fabrication et le coût de l'évaporateur peuvent être diminués.
3032027 9 Un flux de chaleur parasite, quelle que soit l'orientation de l'évaporateur, peut être compensé par la gestion de l'évacuation des bulles de vapeur formées du côté admission de l'élément poreux. De même, lors des phases de démarrage, il n'est nul besoin de pressuriser le circuit 5 principal car même si des bulles de vapeur se forment dans l'évaporateur du mauvais côté de l'élément poreux, ces bulles seront ramenées vers le circuit principal, puis condensées dans le circuit principal. Sur la configuration illustrée à la figure 3, la plaque chaude 40 se trouve au-dessus de la source chaude 9 à refroidir, l'élément poreux 3 se trouve au-dessus de la plaque chaude 40, et 10 la zone d'arrivée de liquide 30 contenant la mèche secondaire optionnelle se trouve au-dessus de l'élément poreux 3. Sur la figure 6, une autre disposition de l'évaporateur comprend la plaque chaude 40 recevant des calories par le dessus, avec les rainures 31 disposées sur le dessous au contact de l'élément poreux 3 puis encore en dessous la mèche secondaire 32.
15 L'arrivée de liquide vers l'élément poreux est repérée par les flèches 38a, 38b, alors que l'évacuation d'éventuelles bulles de vapeur et/ou de gaz non condensable rejoint la poche de vapeur 12 selon les flèches repérées 37b, 37a. Comme exposé ci-dessus, et contrairement aux dispositions de l'art antérieur, le flux thermique parasite est toléré par le système et n'a pas de conséquences sur ses performances.
20 Avantageusement, comme illustré, l'orientation de l'évaporateur par rapport à la gravité peut être quelconque, du fait de la présence de la mèche secondaire 32 qui assure l'alimentation liquide par pompage capillaire et accessoirement l'échappement de vapeur (cf. ci-dessus). De même, l'absence d'impact des caractéristiques de conductivité thermique de la mèche poreuse 3 permet d'utiliser du cuivre (déconseillé dans l'art antérieur car trop bon conducteur 25 thermique) comme élément poreux ce qui améliore fortement les performances de la zone de vaporisation. Avantageusement selon la présente invention, les positions relatives de l'ensemble évaporateur 2 et de la canalisation principale 11 peuvent être telles que, comme illustré à la figure 6, au moment du démarrage, les rainures de l'évaporateur ne sont pas remplies de 30 liquide. Alors, le démarrage est facilité par la présence de vapeur dans les rainures. La mèche secondaire contribue quant à elle à la bonne alimentation en liquide de la zone d'arrivée de liquide et au retour des bulles de vapeur vers la conduite principale. L'invention présentée ici peut être utilisée en situation de microgravité c'est-à-dire dans l'espace, mais aussi bien sûr en situation de gravité (application terrestre). L'invention peut 3032027 10 bien entendu être utilisée à bord d'engins de transport (routier, ferroviaire, aérien,..) qui subissent des accélérations dans une ou plusieurs directions, la mèche secondaire 32 permettant de gérer l'alimentation en fluide liquide et le retour d'éventuelles bulles de vapeur. Comme illustré à la figure 5B, la canalisation de sortie peut être raccordée par une forme 5 de raccord en Y repérée 63 ; comme illustré à la figure 5A, la canalisation de sortie peut être raccordée avec une arrivée perpendiculaire 61 et un coude 62. On remarque que pour obtenir l'effet d'entraînement recherché, il suffit que la direction d'injection de la vapeur G ait une composante principale selon la direction circonférentielle F, même si elle comporte aussi une autre composante, radiale, comme dans le cas de figure 5B.
10 L'injection de vapeur se fait au moyen d'une buse d'éjection 60, qui peut présenter une forme cylindrique ou une forme conique. L'injecteur 60 en sortie d'évaporateur pourrait être avantageusement constitué d'un orifice à section auto-ajustable permettant à la fois de développer un maximum de quantité de mouvement lors des faibles débits, faibles charges thermiques, de l'évaporateur tout en 15 limitant sa perte de charge en deçà de la pression de pompage capillaire de l'évaporateur pour les grands débits. Cet auto-ajustement peut être obtenu utilement par l'effet ressort d'une lame de fermeture de l'injecteur, par la dilatation thermique d'un bilame, ou par tout autre dispositif produisant le même effet. On peut aussi avoir plusieurs buses d'injection. Dans une variante, non représentée aux 20 figures, les buses d'injection peuvent être formées par les extrémités des rainures 31 collectrices de vapeur de l'évaporateur, qui débouchent en oblique directement dans la conduite principale ; ainsi on pourrait avoir autant de buses d'injection que de rainures 31 collectrices. Dans une configuration particulière, on peut prévoir un réservoir 6 (cf Fig 2) raccordé 25 fluidiquement à la conduite principale ; ce réservoir optionnel sert de vase d'expansion pour l'excédent de fluide de travail en fonction de la température opérationnelle ; ce réservoir sert également pour pouvoir contrôler activement le cas échéant la température de saturation Tsat qui prévaut à l'interface vapeur-liquide dans ce réservoir, et qui influe par conséquent sur les température et pression d'équilibre dans l'ensemble du système.
30 Pour des sources chaudes auxiliaires 98 de moindre puissance, au lieu de leur adjoindre un évaporateur capillaire, on a aussi la possibilité de former un pont thermique 8, par une pièce à bon coefficient de conduction thermique, un pont thermique classique ou par un caloduc classique. Les calories sont transférées vers le fluide de travail 7 principalement par ébullition 3032027 11 convective au niveau du contact entre le pont thermique 8 et la canalisation principale 11; cette ébullition convective s'opère avec un bon coefficient d'échange thermique. La figure 7 illustre l'utilisation d'un système de transfert thermique tel qu'expliqué ci-dessus dans le cas de son application à une carte serveur 90 multiprocesseurs, qui comprend 5 plusieurs processeurs 9 à refroidir par évaporateur capillaire et optionnellement aussi des composants secondaires comme des mémoires 98 à refroidir par pont thermique 8. Comme illustré sur la figure 7, chaque processeur 9 est surmonté d'un ensemble évaporateur 2, 2A, 2B, 2C, le circuit principal 11 s'étend le long de la carte 90 et passe au voisinage de chacun des évaporateurs, soit sur le côté, soit sur le dessus. Par ailleurs, des 10 ponts thermiques relient thermiquement les barrettes mémoire 98 au circuit principal 11. Par ailleurs, un condenseur 5 est disposé sur une extrémité de la carte 90 et permet un échange thermique entre le fluide de travail 7 du circuit principal et un circuit d'eau général 95 commun par exemple à plusieurs cartes serveur. Toutefois, il faut bien noter que l'invention peut être appliquée dans un système de type 15 quelconque, électronique ou autre, stationnaire ou mobile, dans tous domaines techniques. Avantageusement selon la présente invention, on propose un système modulaire c'est-à-dire un circuit principal qui peut être standardisé sur lequel on peut venir greffer en parallèle un nombre variable d'évaporateurs selon la configuration de la carte serveur à traiter. Comme ceci est notamment illustré par les figures 1 et 2, on peut ajouter ou retirer un ensemble 20 évaporateur sans changer la conception et le design du reste du système. Selon de possibles implémentations, la dimension transversale de la conduite principale peut aller de 2 mm à 25 mm et sa section peut aller de 3 mm2 à 10 cm2 ; la dimension transversale de la buse d'injection peut être de même dimension, de dimension plus petite, ou de dimension significativement plus petite. Le rapport entre la section de la buse et la section 25 de la conduite principale peut aller de 1 à 1/30. Selon de possibles implémentations, la vitesse de l'écoulement diphasique dans la conduite générale peut aller de hais à 100 m/s. Selon de possibles implémentations, le fluide utilisé peut être du méthanol, de l'éthanol, de l'acétone, du R245fa, du HFE-7200, du R134A, ou leurs équivalents.
30 La figure 8 illustre une portion du circuit principal 11 qui appartient à un ensemble condenseur 5 ; dans cette portion, la canalisation principale est subdivisée en plusieurs sous-canaux 50, ce qui permet d'accroître les échanges thermiques en limitant les pertes de charge hydraulique au travers de cette zone. La distribution de l'écoulement diphasique en provenance de la conduite principale est réalisée par un distributeur 51 suivant l'état de l'art 3032027 12 de manière à assurer la répartition la plus homogène possible des phases liquide et vapeur dans chacune des branches 50 (titre vapeur).

Claims (12)

  1. REVENDICATIONS1. Système de transfert thermique (10) comprenant : - un circuit principal (1) en boucle de fluide, le circuit principal étant dépourvu de moyens de pompage mécanique ou capillaire ou gravitaire, avec une direction de circulation (F) de boucle de fluide, - au moins un ensemble évaporateur (2) agencé en dérivation du circuit principal avec - au moins une canalisation d'admission (21), prélevant du fluide liquide sur le circuit principal, - un évaporateur (4) incluant un élément poreux (3) à pompage capillaire couplé à une source chaude à refroidir, - au moins une canalisation de sortie (22) ayant une buse d'éjection qui injecte le fluide en phase principalement vapeur dans le circuit principal au moins selon la direction de circulation de boucle, - au moins un ensemble condenseur (5), comprenant une portion du circuit principal de boucle et un échangeur de chaleur couplé à une source froide, pour évacuer des calories.
  2. 2. Système selon la revendication 1, dans lequel le fluide est sous forme essentiellement diphasique dans le circuit principal (1) en boucle, à savoir sous forme vapeur et sous forme 20 liquide.
  3. 3. Système selon l'une des revendications 1-2, dans lequel on trouve plusieurs ensembles évaporateur (2,2') agencés en dérivation du circuit principal. 25
  4. 4. Système selon l'une des revendications 1-3, soumis à la gravité terrestre, dans lequel le circuit principal (1) en boucle s'étend dans un plan sensiblement horizontal par rapport à la gravité,
  5. 5. Système selon la revendication 4, dans lequel le (ou les) évaporateur(s) est (sont) 30 positionné(s) en contrebas du circuit principal.
  6. 6. Système selon la revendication 4, dans lequel le (ou les) évaporateur(s) est (sont) positionné(s) au-dessus du circuit principal. 3032027 14
  7. 7. Système selon l'une des revendications 1-6, dans lequel il est prévu dans un ou plusieurs évaporateurs une mèche secondaire (32) interposée entre l'élément poreux et la conduite principale. 5
  8. 8. Système selon l'une des revendications 1-7, dans lequel la buse d'éjection (60) est disposée à l'intérieur la conduite principale.
  9. 9. Système selon l'une des revendications 1-7, dans lequel la buse d'éjection (60) est disposée 10 de manière pariétale sur la paroi de la conduite principale.
  10. 10. Système selon l'une des revendications 1-9, comportant en outre un réservoir commun branché sur la boucle principale. 15
  11. 11. Système selon l'une des revendications 1-10, dans lequel, au niveau de l'un des ensembles condenseur (5), la conduite principale comprend une portion formée par une pluralité de sous-canaux (50) arrangés en parallèle.
  12. 12. Système selon l'une des revendications 1-11, comportant en outre un ou plusieurs pont(s) thermique(s) (8) reliant thermiquement la conduite principale avec une ou plusieurs source(s) de chaleur annexe(s) (98).25
FR1550591A 2015-01-27 2015-01-27 Boucle diphasique de refroidissement a evaporateurs satellites Expired - Fee Related FR3032027B1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
FR1550591A FR3032027B1 (fr) 2015-01-27 2015-01-27 Boucle diphasique de refroidissement a evaporateurs satellites
EP15766100.0A EP3250870B1 (fr) 2015-01-27 2015-09-11 Boucle diphasique de refroidissement a evaporateurs satellites
US15/546,618 US10352623B2 (en) 2015-01-27 2015-09-11 Diphasic cooling loop with satellite evaporators
JP2017536554A JP6578361B2 (ja) 2015-01-27 2015-09-11 サテライト型エバポレータ冷却二相ループ
ES15766100T ES2699092T3 (es) 2015-01-27 2015-09-11 Bucle difásico de refrigeración de evaporadores de satélite
PCT/EP2015/070883 WO2016119921A1 (fr) 2015-01-27 2015-09-11 Boucle diphasique de refroidissement a evaporateurs satellites
CN201580073254.9A CN107208980B (zh) 2015-01-27 2015-09-11 具有卫星式蒸发器的环路热管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1550591A FR3032027B1 (fr) 2015-01-27 2015-01-27 Boucle diphasique de refroidissement a evaporateurs satellites

Publications (2)

Publication Number Publication Date
FR3032027A1 true FR3032027A1 (fr) 2016-07-29
FR3032027B1 FR3032027B1 (fr) 2017-01-13

Family

ID=53269647

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1550591A Expired - Fee Related FR3032027B1 (fr) 2015-01-27 2015-01-27 Boucle diphasique de refroidissement a evaporateurs satellites

Country Status (7)

Country Link
US (1) US10352623B2 (fr)
EP (1) EP3250870B1 (fr)
JP (1) JP6578361B2 (fr)
CN (1) CN107208980B (fr)
ES (1) ES2699092T3 (fr)
FR (1) FR3032027B1 (fr)
WO (1) WO2016119921A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108662932A (zh) * 2017-03-29 2018-10-16 深圳市迈安热控科技有限公司 环状多孔热管及热交换装置
CN108089618B (zh) * 2017-12-11 2019-06-18 北京空间机电研究所 一种航天光学遥感器节能型控温环路热管装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492266A (en) * 1981-10-22 1985-01-08 Lockheed Missiles & Space Company, Inc. Manifolded evaporator for pump-assisted heat pipe
US20020007937A1 (en) * 2000-06-30 2002-01-24 Kroliczek Edward J. Phase control in the capillary evaporators
US20120132402A1 (en) * 2009-07-13 2012-05-31 Fujitsu Limited Loop heat pipe and startup method for the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898231A (en) * 1985-09-30 1990-02-06 Kabushiki Kaisha Toshiba Heat-pipe system and method of and apparatus for controlling a flow rate of a working fluid in a liquid pipe of the heat pipe system
JPH05283571A (ja) * 1992-03-31 1993-10-29 Toshiba Corp 熱輸送装置
US5725049A (en) * 1995-10-31 1998-03-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Capillary pumped loop body heat exchanger
CN2413255Y (zh) * 2000-01-25 2001-01-03 陈东 热环
US7549461B2 (en) * 2000-06-30 2009-06-23 Alliant Techsystems Inc. Thermal management system
CN103189708B (zh) * 2010-11-01 2015-04-01 富士通株式会社 环形热管以及利用该环形热管的电子设备
US20120198859A1 (en) * 2011-02-03 2012-08-09 Iberica del Espacio, S.A., Thermal control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492266A (en) * 1981-10-22 1985-01-08 Lockheed Missiles & Space Company, Inc. Manifolded evaporator for pump-assisted heat pipe
US20020007937A1 (en) * 2000-06-30 2002-01-24 Kroliczek Edward J. Phase control in the capillary evaporators
US20120132402A1 (en) * 2009-07-13 2012-05-31 Fujitsu Limited Loop heat pipe and startup method for the same

Also Published As

Publication number Publication date
JP2018503053A (ja) 2018-02-01
FR3032027B1 (fr) 2017-01-13
US10352623B2 (en) 2019-07-16
JP6578361B2 (ja) 2019-09-18
ES2699092T3 (es) 2019-02-07
WO2016119921A1 (fr) 2016-08-04
EP3250870A1 (fr) 2017-12-06
EP3250870B1 (fr) 2018-10-10
CN107208980B (zh) 2019-04-12
US20180023900A1 (en) 2018-01-25
CN107208980A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
EP3207324B1 (fr) Caloduc plat avec fonction reservoir
EP3368959B1 (fr) Equipement informatique avec bloc d'alimentation électrique refroidi
EP0832411B1 (fr) Boucle a pompage capillaire de transport de chaleur
EP1293428B1 (fr) Dispositif de transfert de chaleur
EP2344827B1 (fr) Dispositif de régulation thermique à réseau de caloducs capillaires interconnectés
EP2032440B1 (fr) Dispositif de regulation thermique passive a base de boucle fluide diphasique a pompage capillaire avec capacite thermique
EP2181301B1 (fr) Dispositif passif de regulation thermique a micro boucle fluide a pompage capillaire
EP3355019B1 (fr) Dispositif de refroidissement
EP2756252B1 (fr) Dispositif de transport de chaleur à pompage capillaire
FR2752291A1 (fr) Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide
EP3011249B1 (fr) Refroidissement de composants électroniques et/ou électriques par caloduc pulsé et élément de conduction thermique
FR2965903A3 (fr) Systeme de transfert de chaleur
FR3106621A1 (fr) Turbomachine pour aéronef équipée d’un système thermo-acoustique.
EP3250870B1 (fr) Boucle diphasique de refroidissement a evaporateurs satellites
WO2021123554A1 (fr) Dispositif de régulation thermique pour un composant électrique
EP3975677A1 (fr) Module de puissance électrique avec système de refroidissement
EP3194874B1 (fr) Caloduc et procédé de réalisation d'un caloduc.
EP3640467A1 (fr) Turbomachine equipee d'un systeme thermo-acoustique
WO2019220035A1 (fr) Évaporateur d'une boucle fluide et boucle fluide comprenant un tel évaporateur
FR3009377A1 (fr) Evaporateur a dispositif anti-retour pour boucle diphasique
FR2741427A1 (fr) Circuit de transfert de chaleur a deux phases
WO2018127548A1 (fr) Dispositif de diffusion thermique

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20160729

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

ST Notification of lapse

Effective date: 20200906