EP2751494B1 - Verfahren zum betrieb eines flüssigkeit-luft wärmeaustauschgeräts - Google Patents

Verfahren zum betrieb eines flüssigkeit-luft wärmeaustauschgeräts Download PDF

Info

Publication number
EP2751494B1
EP2751494B1 EP12758795.4A EP12758795A EP2751494B1 EP 2751494 B1 EP2751494 B1 EP 2751494B1 EP 12758795 A EP12758795 A EP 12758795A EP 2751494 B1 EP2751494 B1 EP 2751494B1
Authority
EP
European Patent Office
Prior art keywords
air
heat exchanger
liquid
temperature
exchanger stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12758795.4A
Other languages
English (en)
French (fr)
Other versions
EP2751494A2 (de
Inventor
Alexandr Sologubenko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mentus Holding AG
Original Assignee
Mentus Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mentus Holding AG filed Critical Mentus Holding AG
Publication of EP2751494A2 publication Critical patent/EP2751494A2/de
Application granted granted Critical
Publication of EP2751494B1 publication Critical patent/EP2751494B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/221Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • F24F2013/225Means for preventing condensation or evacuating condensate for evacuating condensate by evaporating the condensate in the cooling medium, e.g. in air flow from the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate

Definitions

  • the invention relates to a method for operating a liquid-air heat exchange device.
  • the method is suitable for operating a liquid-air heat exchange apparatus having a passive heat exchange stage in which the air is passed through a first flow channel extending in the vertical direction and the liquid through a second flow channel, the two flow channels in this stage are separated by a thermally passive partition.
  • thermally passive means that the exchange of heat takes place without doing any work.
  • the flow channels contain a plurality of fins, which are in good thermal communication with the thermally passive partition. The distances between the fins in the air flow channel are small relative to the size of their surface, so that the heat exchange is efficient.
  • the air has a high relative humidity, it may happen, especially on hot summer days, that the dew point temperature of the air is higher than the temperature of the liquid. This causes moisture contained in the air to precipitate as condensate on the fins. Since the size of the heat exchange device is usually subject to narrow limits, it is difficult to form the slats so that the resulting water drips completely and drains, especially in vertical guidance of the air flow. As a result, the water increasingly clogs up the interstices between the lamellae and, as a result of the resulting air resistance, makes the further effective cooling of the air impossible.
  • Out GB 2461365 is a central heating system with at least one radiator known, which can also be used for cooling.
  • cooling mode the liquid circulating through the radiator is deprived of heat by means of a heat exchanger.
  • the extracted heat is released by means of a second heat exchanger to a heat storage.
  • the two heat exchangers are part of a compressor-driven heat pump.
  • the dew point of the air is detected, and when the detected dew point temperature approaches the temperature of the radiator, cooling performance is reduced.
  • the invention has for its object to solve the above problem.
  • the invention relates to the operation of a liquid-air heat exchange apparatus having a first flow channel for the air and a second flow channel for the liquid.
  • the heat exchange apparatus includes a first passive heat exchange stage in which the first flow channel and the second flow channel are separated by a thermally passive partition, and optionally a second active heat exchange stage in which the air is actively cooled, i. by pumping heat from one side to the other, cooled or heated.
  • the thermally passive partition consists of a heat-conducting material.
  • a suitable condensate drainage system is advantageously installed.
  • the first and second flow channels may also each be a plurality of parallel flow channels.
  • the air flow channel or channels contain lamellae.
  • the determination of the dew point temperature of the air from the measured temperature T and the measured humidity of the air can be done for example by means of a Mollier diagram.
  • h-x-diagram of the air h denotes the enthalpy, x the absolute humidity
  • the condition of whether the dew point temperature of the air is higher than the temperature of the liquid is checked periodically or aperiodically by performing the first part of the process.
  • pulsed operation periodically following a phase of accumulation, a phase of condensate removal follows by evaporation, while the cooling of the air continues uninterrupted.
  • pulsed operation allows for a temporary accumulation of water between the fins, it still prevents condensate blockage of the fins that would block the air flow, minimizing the water flow switch time and thereby increasing the efficiency of the faucet Heat exchange device.
  • the heat exchange device is equipped with the necessary temperature and humidity sensors.
  • the step of preventing the liquid from flowing through the first heat exchanging stage causes the Liquid also does not flow through the second heat exchange stage and that the second heat exchange stage is turned off, or the step of preventing the liquid from flowing through the first heat exchange stage, according to a second variant, causes the liquid to bypass the first heat exchange stage (Bypass). so that it can still flow through the second heat exchanger stage.
  • the Fig. 1 and 2 show schematically in side view and in plan the necessary for the understanding of the invention parts of a liquid-air heat exchange device 1 with a first, passive heat exchange stage 2 and, optionally, a downstream, active heat exchange stage 3.
  • the first heat exchange stage 2 comprises at least one, preferably a plurality of flow channels 4 for the air and at least one, preferably a plurality of flow channels 5 for the liquid.
  • the flow channels 4 for the air and the flow channels for the liquid 5 are arranged in alternating sequence and separated by thermally passive, heat well-conducting partitions.
  • the flow channels 4 for the air contain a plurality of fins 6, which are in good thermal communication with the thermally passive partitions. The distances between the fins 6 are small so that the heat exchange between the air and the liquid is efficient.
  • the flow channels 4 for the air in this example extend in the vertical direction.
  • the optional second, active heat exchange stage 3 can be designed in various ways. For example, it may include a refrigeration cycle with a compressor in which a cooling fluid circulates, with the air exchanging heat with the refrigeration circuit.
  • the second heat exchange stage 3 is designed so that heat between the liquid and the air can be exchanged by supplying electrical energy, namely by means of at least one Peltier element 10.
  • the second heat exchange stage 3 includes at least one flow channel 7 for the air, at least one flow channel 8 for the liquid and the at least one interposed Peltier element 10, which pumps heat from the liquid to the air when the air is to be heated, and which pumps heat from the air to the liquid when the air is to be cooled.
  • the liquid in this example does not undergo any change in state of aggregation.
  • the air flows between parallel blades 9, which are in good thermal contact with the at least one Peltier element 10.
  • the heat exchange device 1 also comprises a valve 11 and optionally a bypass line 12, whose purpose is described below.
  • thermoelectric element is often used in the art as a synonym, the term “thermoelectric element” or the term “Peltier heat pump”.
  • the thermoelectric elements are based in particular on the Peltier effect, but they can also be based on another thermoelectric effect, such as the principle known as thermo-tunneling ("thermo-tunneling").
  • the heat exchange device 1 has an inlet 13 and an outlet 14, which can be connected to an external fluid circuit.
  • the circulating liquid in the liquid circuit is heated or cooled by an external, central device to a predetermined temperature.
  • the liquid used is usually water or a water-based liquid; but it can also be used any other suitable liquid.
  • the flow channels 4 for the air extend in the vertical direction.
  • the flow channels for the liquid are designed as a conduit system which connects the inlet 13 and the outlet 14 with each other.
  • the heat exchange device 1 also includes a fan and the necessary baffles and guide elements for the positive guidance of the air through the first heat exchanger stage 2 and, if present, the second heat exchanger stage 3, and a flow 15 for condensate accumulating in the second heat exchanger stage 3.
  • the flow direction of the liquid is represented by arrows 16, the flow direction of the air by arrows 17.
  • the heat exchange device 1 further comprises the sensors necessary for the operation according to the invention, namely at least one temperature sensor 18 for measuring the temperature and a humidity sensor 19 for measuring the humidity of the air, which are arranged in front of the first heat exchanger stage 2, a temperature sensor 20 for the measurement the temperature of the air, which is arranged after the first heat exchanger stage 2, and a control unit 21.
  • the temperature of the liquid is either measured by means of a temperature sensor 22, for example arranged at the inlet or transmitted from the external, central device to the control unit 21.
  • the control unit 21 evaluates the data transmitted by the sensors and controls both the flow of the liquid through the first heat exchanger stage 2 and the at least one Peltier element 10.
  • the Fig. 3 shows three superimposed diagrams illustrating the function of time t following features of the inventive method by way of example.
  • the middle diagram shows the flow of the liquid through the first heat exchanger stage 2.
  • the flow of the liquid through the first heat exchanger stage 2 is allowed for a predetermined time period T 1 and then interrupted, wherein the interruption of the flow of liquid through the first heat exchanger stage 2 either by Closing of the valve 11 or, if the bypass line 12 is present, by switching the valve 11 takes place, so that the liquid flows through the bypass line 12 and thus is guided past the first heat exchanger stage 2.
  • the lower diagram shows the current flowing through the at least one Peltier element 10 in the event that the interruption of the flow of the liquid through the first heat exchange stage also causes the interruption of the flow of the liquid through the second heat exchange stage 3.
  • the current flowing through the at least one Peltier element 10 is switched off either simultaneously or with a time delay when the flow of liquid through the first heat exchange stage 2 is interrupted, so that the at least one Peltier element 10 does not overheat. In the other case, that the flow of the liquid through the second heat exchange stage 3 is not interrupted, the at least one Peltier element 10 is not turned off.
  • the upper diagram shows the course of the temperature of the air after exiting the first heat exchanger stage 2, i. the course of the temperature sensor 20 measured temperature.
  • a first temperature increase 23 in the example of 18 ° C to about 22 ° C
  • an approximately constant level 24 in the example of about 22 ° C to about 27 ° C.
  • the pulse operation is very clearly visible. Since the duration of the individual cycles (one cycle comprises a sequence of phases AD) is typically in the range of a few or several tens of minutes and the dew point temperature of the air usually changes only slowly, the dew point temperature only has to recur now and then during pulse operation measured once every half an hour or per hour, or at other intervals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Air Conditioning Control Device (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein Verfahren zum Betrieb eines Flüssigkeit-Luft Wärmeaustauschgeräts.
  • Hintergrund der Erfindung
  • Das Verfahren eignet sich zum Betrieb eines Flüssigkeit-Luft Wärmeaustauschgeräts, das eine passive Wärmeaustauschstufe aufweist, in der die Luft durch einen ersten Strömungskanal, der in vertikaler Richtung verläuft, und die Flüssigkeit durch einen zweiten Strömungskanal geführt werden, wobei die beiden Strömungskanäle in dieser Stufe durch eine thermisch passive Trennwand getrennt sind. Der Begriff "thermisch passiv" bedeutet, dass der Austausch von Wärme ohne Verrichtung von Arbeit erfolgt. Die Strömungskanäle enthalten eine Vielzahl von Lamellen, die mit der thermisch passiven Trennwand in guter thermischer Verbindung sind. Die Abstände zwischen den Lamellen im Strömungskanal für die Luft sind relativ zur Größe ihrer Oberfläche gering, damit der Wärmeaustausch effizient ist.
  • Wenn die Luft eine hohe relative Luftfeuchtigkeit aufweist, kann es, insbesondere an heissen Sommertagen, vorkommen, dass die Taupunkttemperatur der Luft höher ist als die Temperatur der Flüssigkeit. Dies führt dazu, dass in der Luft enthaltene Feuchtigkeit sich als Kondensat an den Lamellen niederschlägt. Da die Baugrösse des Wärmeaustauschgeräts in der Regel engen Grenzen unterliegt, ist es schwierig, die Lamellen so auszubilden, dass das entstandene Wasser vollständig abtropft und abfliesst, insbesondere bei vertikaler Führung des Luftstroms. Dies führt dazu, dass das Wasser die Zwischenräume zwischen den Lamellen zusehends verstopft und infolge des entstehenden Luftwiderstandes die weitere wirksame Kühlung der Luft verunmöglicht.
  • Aus GB 2461365 ist ein zentrales Heizsystem mit mindestens einem Radiator bekannt, das auch zum Kühlen benutzt werden kann. Im Kühlbetrieb wird der Flüssigkeit, die durch den Radiator zirkuliert, mittels eines Wärmetauschers Wärme entzogen. Die entzogene Wärme wird mittels eines zweiten Wärmetauschers an einen Wärmespeicher abgegeben. Die beiden Wärmetauscher sind Teil einer kompressorbetriebenen Wärmepumpe. Um zu verhindern, dass am Radiator Feuchtigkeit kondensieren kann, wird durch Messung von Temperatur und Feuchtigkeit in der Umgebung des Radiators der Taupunkt der Luft ermittelt und dann, wenn sich die ermittelte Taupunkttemperatur der Temperatur des Radiators annähert, die Kühlleistung verringert.
  • Aus EP 508766 ist ein Verfahren zum Steuern einer Klimaanlage bekannt, bei dem im Kühlbetrieb diejenige Temperatur ermittelt wird, bei der an einem Testelement Kondensation von Wasser auftritt, und bei dem dann dafür gesorgt wird, dass die Temperatur der Kühlflüssigkeit höher ist als die Kondensationstemperatur. Dies erfolgt beispielsweise durch Stoppen des Kühlbetriebs.
  • Die aus diesem Stand der Technik bekannten Lösungen haben alle zum Ziel, das Ansammlung von Kondensat zu verhindern, und erreichen dies durch eine Reduzierung der Kühlleistung oder eine Unterbrechung des Kühlbetriebs.
  • Kurze Beschreibung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, das genannte Problem zu beheben.
  • Die genannte Aufgabe wird erfindungsgemäss gelöst durch die Merkmale des Anspruchs 1. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.
  • Die Erfindung betrifft den Betrieb eines Flüssigkeit-Luft Wärmeaustauschgeräts, das einen ersten Strömungskanal für die Luft und einen zweiten Strömungskanal für die Flüssigkeit aufweist. Das Wärmeaustauschgerät enthält eine erste passive Wärmeaustauschstufe, in der der erste Strömungskanal und der zweite Strömungskanal durch eine thermisch passive Trennwand getrennt sind, und fakultativ eine zweite aktive Wärmeaustauschstufe, in der die Luft auf aktive Weise, d.h. durch Pumpen von Wärme von einer Seite auf die andere, gekühlt oder erwärmt wird. Die thermisch passive Trennwand besteht aus einem Wärme gut leitenden Material. In der zweiten Wärmeaustauschstufe ist mit Vorteil ein passendes Kondensatablaufsystem eingebaut. Der erste und zweite Strömungskanal können auch jeder eine Vielzahl von parallel verlaufenden Strömungskanälen sein. Der bzw. die Strömungskanäle für die Luft enthalten Lamellen.
  • Die Erfindung schlägt ein Verfahren vor, um die genannte Aufgabe zu lösen. Das Verfahren umfasst zwei Teile, nämlich einen ersten Teil, in dem ermittelt wird, ob die Taupunkttemperatur der Luft höher als die Temperatur der Flüssigkeit ist. Dies erfolgt durch folgende Schritte:
    • Ermitteln der Taupunkttemperatur der Umgebungsluft, d.h. der Taupunkttemperatur der Luft bevor sie in die erste Wärmeaustauschstufe eintritt,
    • Vergleichen der ermittelten Taupunkttemperatur der Luft mit der gemessenen oder von einem übergeordneten Steuergerät übermittelten Temperatur der Flüssigkeit.
  • Die Taupunkttemperatur der Luft kann beispielsweise ermittelt werden durch:
    • Messen der Temperatur der Luft und der Feuchtigkeit der Luft vor dem Eintritt der Luft in die erste Wärmeaustauschstufe, sowie anschließendes
    • Bestimmen der Taupunkttemperatur der Luft aus der gemessenen Temperatur und der gemessenen Feuchtigkeit der Luft.
  • Die Bestimmung der Taupunkttemperatur der Luft aus der gemessenen Temperatur T und der gemessenen Feuchtigkeit der Luft kann beispielsweise mittels eines Mollier-Diagramms erfolgen.
  • Die Taupunkttemperatur, bezeichnet als Tp1, kann alternativ durch Berechnung mittels der Gleichung T p 1 = 241.2 * ln phi 100 + 4222.03716 * T 241.2 + T 17.5043 - ln phi 100 - 17.5043 * T 241.2 + T
    Figure imgb0001
    ermittelt werden, wobei die Masseinheit der Temperaturen T und Tp1 Grad Celsius ist und die Luftfeuchtigkeit phi als relative, in Prozenten angegebene Luftfeuchtigkeit einzusetzen ist.
  • Es können auch zwei andere Grössen des h-x-Diagramms der Luft (h bezeichnet die Enthalpie, x die absolute Feuchtigkeit) gemessen werden, beispielsweise zwei aus der Trockenkugeltemperatur, Feuchtkugeltemperatur, spezifische Enthalpie und Dichte der Luft, und daraus die Taupunkttemperatur der Luft ermittelt werden.
  • Wenn und solange die Taupunkttemperatur der Luft höher als die Temperatur der Flüssigkeit ist, wird der zweite Teil des Verfahrens durchgeführt, der darin besteht, das Wärmeaustauschgerät in einem als Pulsbetrieb bezeichneten Betriebsmodus zu betreiben. Der Pulsbetrieb umfasst die folgenden, sich laufend in der gleichen Reihenfolge wiederholenden Schritte:
    • die Flüssigkeit während einer vorbestimmten Zeitdauer durch die erste Wärmeaustauschstufe strömen lassen,
    • Verhindern, dass die Flüssigkeit durch die erste Wärmeaustauschstufe strömt, und Messen und Überwachen der Lufttemperatur nach dem Austritt aus der ersten Wärmeaustauschstufe, wobei die nach dem Austritt aus der ersten Wärmeaustauschstufe gemessene Lufttemperatur einen ersten Temperaturanstieg anzeigt, dann eine gewisse Zeit auf einem in guter Näherung konstanten Niveau bleibt, das der Feuchtkugeltemperatur der Zuluft entspricht, und dann einen zweiten Temperaturanstieg anzeigt,
    • Detektieren des zweiten Temperaturanstiegs und Beenden des Verhinderns, dass die Flüssigkeit durch die erste Wärmeaustauschstufe strömt, nachdem der zweite Temperaturanstieg detektiert wurde, und
    • Wiederholen dieser Schritte solange die Taupunkttemperatur der Luft höher ist als die Temperatur der Flüssigkeit.
  • Im Pulsbetrieb wird die Bedingung, ob die Taupunkttemperatur der Luft höher als die Temperatur der Flüssigkeit ist, periodisch oder aperiodisch überprüft, indem der erste Teil des Verfahrens durchgeführt wird.
  • Im Pulsbetrieb folgt periodisch auf eine Phase der Ansammlung eine Phase der Entfernung von Kondensat durch Verdunsten, während die Kühlung der Luft ununterbrochen weitergeht. Der Pulsbetrieb lässt zwar eine temporäre Ansammlung von Wasser zwischen den Lamellen zu, verhindert aber dennoch die Verstopfung der Lamellen durch Kondensat, die zu einer Sperrung des Luftstroms führen würde, reduziert die Zeit der Wasserflussauschaltung auf ein Minimum und erhöht dadurch die Effizienz des Wärmeaustauschgeräts.
  • Damit das erfindungsgemässe Verfahren durchgeführt werden kann, ist das Wärmeaustauschgerät mit den dazu notwendigen Temperatur- und Feuchtigkeitssensoren ausgerüstet.
  • Wenn das Wärmeaustauschgerät eine zweite, aktive Stufe umfasst, in der Wärme zwischen der Flüssigkeit und der Luft durch Zufuhr von Energie gepumpt wird, dann bewirkt der Schritt des Verhinderns, dass die Flüssigkeit durch die erste Wärmeaustauschstufe strömt, gemäss einer ersten Variante zudem, dass die Flüssigkeit auch nicht durch die zweite Wärmeaustauschstufe strömt und dass die zweite Wärmeaustauschstufe ausgeschaltet wird, oder der Schritt des Verhinderns, dass die Flüssigkeit durch die erste Wärmeaustauschstufe strömt, bewirkt gemäss einer zweiten Variante, dass die Flüssigkeit an der ersten Wärmeaustauschstufe vorbei geführt wird (Bypass), so dass sie dennoch durch die zweite Wärmeaustauschstufe strömen kann.
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und anhand der Zeichnung näher erläutert. Die Figuren sind nicht massstäblich gezeichnet.
  • Beschreibung der Figuren
  • Fig. 1, 2
    zeigen schematisch in seitlicher Ansicht bzw. in Aufsicht die für das Verständnis der Erfindung erforderlichen Teile eines Flüssigkeit-Luft Wärmeaustauschgeräts, das für den Betrieb gemäss dem erfindungsgemässen Verfahren eingerichtet ist, und
    Fig. 3
    zeigt drei Diagramme zur Illustration des erfindungsgemässen Verfahrens.
    Detaillierte Beschreibung der Erfindung
  • Die Fig. 1 und 2 zeigen schematisch in seitlicher Ansicht bzw. in Aufsicht die für das Verständnis der Erfindung erforderlichen Teile eines Flüssigkeit-Luft Wärmeaustauschgeräts 1 mit einer ersten, passiven Wärmeaustauschstufe 2 und, fakultativ, einer nachgeschalteten, aktiven Wärmeaustauschstufe 3. Die erste Wärmeaustauschstufe 2 umfasst mindestens einen, bevorzugt mehrere Strömungskanäle 4 für die Luft und mindestens einen, bevorzugt mehrere Strömungskanäle 5 für die Flüssigkeit. Die Strömungskanäle 4 für die Luft und die Strömungskanäle für die Flüssigkeit 5 sind in alternierender Reihenfolge angeordnet und durch thermisch passive, Wärme gut leitende Trennwände getrennt. Die Strömungskanäle 4 für die Luft enthalten eine Vielzahl von Lamellen 6, die mit den thermisch passiven Trennwänden in guter thermischer Verbindung sind. Die Abstände zwischen den Lamellen 6 sind gering, damit der Wärmeaustausch zwischen der Luft und der Flüssigkeit effizient ist. Die Strömungskanäle 4 für die Luft verlaufen bei diesem Beispiel in vertikaler Richtung.
  • Die fakultative zweite, aktive Wärmeaustauschstufe 3 kann auf verschiedene Weisen ausgebildet sein. Sie kann beispielsweise einen Kühlkreislauf mit einem Kompressor enthalten, in dem eine Kühlflüssigkeit zirkuliert, wobei die Luft mit dem Kühlkreislauf Wärme austauscht.
  • Bei dem in den Fig. 1 und 2 gezeigten Beispiel ist die zweite Wärmeaustauschstufe 3 so ausgebildet, dass Wärme zwischen der Flüssigkeit und der Luft durch Zufuhr von elektrischer Energie ausgetauscht werden kann, nämlich mittels mindestens einem Peltierelement 10. Die zweite Wärmeaustauschstufe 3 enthält mindestens einen Strömungskanal 7 für die Luft, mindestens einen Strömungskanal 8 für die Flüssigkeit und das mindestens eine dazwischen angeordnete Peltierelement 10, das Wärme von der Flüssigkeit zur Luft pumpt, wenn die Luft erwärmt werden soll, und das Wärme von der Luft zur Flüssigkeit pumpt, wenn die Luft abgekühlt werden soll. Die Flüssigkeit erfährt bei diesem Beispiel keine Aggregatszustandsänderung. Im gezeigten Beispiel strömt die Luft zwischen parallel angeordneten Lamellen 9, die in gutem thermischen Kontakt mit dem mindestens einen Peltierelement 10 sind.
  • Das Wärmeaustauschgerät 1 umfasst zudem ein Ventil 11 und fakultativ eine Bypassleitung 12, deren Zweck weiter unten beschrieben ist.
  • Für den Begriff "Peltierelement" wird in der Fachwelt oft wie ein Synonym der Begriff "thermoelektrisches Element" oder der Begriff "Peltier-Wärmepumpe" verwendet. Die thermoelektrischen Elemente basieren insbesondere auf dem Peltier-Effekt, sie können aber auch auf einem anderen thermoelektrischen Effekt wie beispielsweise dem als Thermotunnelung (engl. "thermo tunneling") bekannten Prinzip beruhen.
  • Das Wärmeaustauschgerät 1 weist einen Einlass 13 und einen Auslass 14 auf, die an einen externen Flüssigkeitskreislauf anschliessbar sind. Die im Flüssigkeitskreislauf zirkulierende Flüssigkeit wird von einem externen, zentralen Gerät auf eine vorbestimmte Temperatur erwärmt oder gekühlt. Die verwendete Flüssigkeit ist üblicherweise Wasser oder eine Flüssigkeit auf Wasserbasis; es kann aber auch jede andere geeignete Flüssigkeit verwendet werden. Die Strömungskanäle 4 für die Luft verlaufen in senkrechter Richtung. Die Strömungskanäle für die Flüssigkeit sind als Leitungssystem ausgelegt, das den Einlass 13 und den Auslass 14 miteinander verbindet. Das Wärmeaustauschgerät 1 enthält zudem ein Gebläse sowie die nötigen Leitbleche und Führungselemente für die Zwangsführung der Luft durch die erste Wärmeaustauschstufe 2 und, sofern vorhanden, die zweite Wärmeaustauschstufe 3, sowie einen Ablauf 15 für in der zweiten Wärmeaustauschstufe 3 anfallendes Kondensat. Die Strömungsrichtung der Flüssigkeit ist durch Pfeile 16, die Strömungsrichtung der Luft durch Pfeile 17 dargestellt.
  • Das Wärmeaustauschgerät 1 umfasst weiter die für den erfindungsgemässen Betrieb notwendigen Sensoren, nämlich mindestens einen Temperatursensor 18 für die Messung der Temperatur und einen Feuchtigkeitssensor 19 für die Messung der Feuchtigkeit der Luft, die vor der ersten Wärmeaustauschstufe 2 angeordnet sind, einen Temperatursensor 20 für die Messung der Temperatur der Luft, der nach der ersten Wärmeaustauschstufe 2 angeordnet ist, und ein Steuergerät 21. Die Temperatur der Flüssigkeit wird entweder mittels eines beispielsweise beim Einlass angeordneten Temperatursensors 22 gemessen oder vom externen, zentralen Gerät an das Steuergerät 21 übermittelt. Das Steuergerät 21 wertet die von den Sensoren übermittelten Daten aus und steuert sowohl den Durchfluss der Flüssigkeit durch die erste Wärmeaustauschstufe 2 als auch das mindestens eine Peltierelement 10.
  • Die Fig. 3 zeigt drei übereinander angeordnete Diagramme, die in Funktion der Zeit t folgende Merkmale des erfindungsgemässen Verfahrens anhand eines Beispiels illustrieren.
  • Das mittlere Diagramm zeigt den Durchfluss der Flüssigkeit durch die erste Wärmeaustauschstufe 2. Der Durchfluss der Flüssigkeit durch die erste Wärmeaustauschstufe 2 wird jeweils während einer vorbestimmten Zeitdauer T1 zugelassen und dann unterbrochen, wobei das Unterbrechen des Durchflusses der Flüssigkeit durch die erste Wärmeaustauschstufe 2 entweder durch Schliessen des Ventils 11 oder, wenn die Bypassleitung 12 vorhanden ist, durch Umschalten des Ventils 11 erfolgt, so dass die Flüssigkeit durch die Bypassleitung 12 strömt und somit an der ersten Wärmeaustauschstufe 2 vorbei geführt wird.
  • Das untere Diagramm zeigt den durch das mindestens eine Peltierelement 10 fliessenden Strom im Fall, dass das Unterbrechen des Durchflusses der Flüssigkeit durch die erste Wärmeaustauschstufe auch das Unterbrechen des Durchflusses der Flüssigkeit durch die zweite Wärmeaustauschstufe 3 bewirkt. Der durch das mindestens eine Peltierelement 10 fliessende Strom wird jeweils dann, wenn der Durchfluss der Flüssigkeit durch die erste Wärmeaustauschstufe 2 unterbrochen wird, entweder gleichzeitig oder mit einer zeitlichen Verzögerung ausgeschaltet, damit das mindestens eine Peltierelement 10 nicht überhitzt. Im anderen Fall, dass der Durchfluss der Flüssigkeit durch die zweite Wärmeaustauschstufe 3 nicht unterbrochen wird, wird das mindestens eine Peltierelement 10 nicht ausgeschaltet.
  • Das obere Diagramm zeigt den Verlauf der Temperatur der Luft nach dem Austritt aus der ersten Wärmeaustauschstufe 2, d.h. den Verlauf der vom Temperatursensor 20 gemessenen Temperatur. Deutlich erkennbar sind ein erster Temperaturanstieg 23 (im Beispiel von 18 °C auf ca. 22 °C), ein annähernd konstantes Niveau 24 und ein zweiter Temperaturanstieg 25 (im Beispiel von ca. 22 °C auf ca. 27 °C).
  • Der im oberen Diagramm gezeigte Verlauf der Temperatur besteht aus den folgenden, sich wiederholenden Phasen A-D:
    • Phase A: Der Durchfluss der Flüssigkeit durch die erste Wärmeaustauschstufe 2 ist nicht unterbrochen:
      • Die Luft wird gekühlt, im Beispiel auf ca. 18 °C. Im Laufe der Zeit kondensiert Wasser zwischen den Lamellen 6, das den Strömungswiderstand der Luft zunehmend erhöht.
    • Phasen B bis D: Der Durchfluss der Flüssigkeit durch die erste Wärmeaustauschstufe 2 ist unterbrochen. Phase B: Die Temperatur der Luft steigt an auf das annähernd konstante Niveau 24.
    • Phase C: Die Temperatur der Luft verharrt auf dem Niveau 24, da das zwischen den Lamellen 6 angesammelte Wasser verdunstet und dabei die Luft adiabatisch kühlt.
    • Phase D: Die Temperatur der Luft steigt weiter an, sobald das Wasser zwischen den Lamellen 6 verdunstet ist.
  • In der Fig. 3 ist der Pulsbetrieb sehr gut erkennbar. Da die Dauer der einzelnen Zyklen (ein Zyklus umfasst eine Abfolge der Phasen A-D) typischerweise im Bereich von einigen oder einigen 10 Minuten liegt und sich die Taupunkttemperatur der Luft in der Regel nur langsam verändert, muss die Taupunkttemperatur während des Pulsbetriebs nur ab und zu wieder gemessen werden, zum Beispiel einmal pro halbe Stunde oder pro Stunde, oder auch in anderen Zeitabständen.

Claims (4)

  1. Verfahren zum Betrieb eines Flüssigkeit-Luft Wärmeaustauschgeräts, bei dem zumindest in einer ersten, passiven Wärmeaustauschstufe (2) Luft durch mindestens einen ersten Strömungskanal (4) strömt, der Lamellen (6) aufweist, und eine Flüssigkeit durch mindestens einen zweiten Strömungskanal (5) strömt, der von dem mindestens einen ersten Strömungskanal (4) durch eine thermisch passive Trennwand getrennt ist, wobei das Verfahren folgende Schritte beinhaltet:
    Ermitteln der Taupunkttemperatur der Umgebungsluft,
    Bestimmen, ob die Taupunkttemperatur der Umgebungsluft höher ist als die Temperatur der Flüssigkeit, und wenn dies der Fall ist Betreiben des Wärmeaustauschgeräts in einem als Pulsbetrieb bezeichneten Betriebsmodus gemäss den folgenden Schritten:
    die Flüssigkeit während einer vorbestimmten Zeitdauer durch die erste Wärmeaustauschstufe (2) strömen lassen,
    Verhindern, dass die Flüssigkeit durch die erste Wärmeaustauschstufe (2) strömt, und Messen und Überwachen der Temperatur der Luft nach dem Austritt der Luft aus der ersten Wärmeaustauschstufe, wobei die nach dem Austritt aus der ersten Wärmeaustauschstufe (2) gemessene Temperatur der Luft einen ersten Temperaturanstieg anzeigt, dann eine gewisse Zeit auf einem annähernd konstanten Niveau bleibt, und dann einen zweiten Temperaturanstieg anzeigt,
    Detektieren des zweiten Temperaturanstiegs und Beenden des Verhinderns, dass die Flüssigkeit durch die erste Wärmeaustauschstufe (2) strömt, nachdem der zweite Temperaturanstieg detektiert wurde, und
    Wiederholen dieser Schritte solange die Taupunkttemperatur der Umgebungsluft höher ist als die Temperatur der Flüssigkeit.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Taupunkttemperatur der Umgebungsluft ermittelt wird durch
    Messen der Temperatur der Luft und der Feuchtigkeit der Luft vor dem Eintritt der Luft in die erste Wärmeaustauschstufe (2), und
    Bestimmen der Taupunkttemperatur der Luft aus der gemessenen Temperatur und der gemessenen Feuchtigkeit der Luft.
  3. Verfahren nach Anspruch 1 oder 2, bei dem in einer zweiten, aktiven Wärmeaustauschstufe (3) Wärme zwischen der Flüssigkeit und der Luft durch Zufuhr von Energie gepumpt wird, dadurch gekennzeichnet, dass der Schritt des Verhinderns, dass die Flüssigkeit durch die erste Wärmeaustauschstufe (2) strömt, auch bewirkt, dass die Flüssigkeit nicht durch die zweite Wärmeaustauschstufe (3) strömt und dass die zweite Wärmeaustauschstufe (3) ausgeschaltet wird.
  4. Verfahren nach Anspruch 1 oder 2, bei dem in einer zweiten, aktiven Wärmeaustauschstufe (3) Wärme zwischen der Flüssigkeit und der Luft durch Zufuhr von Energie ausgetauscht wird, dadurch gekennzeichnet, dass der Schritt des Verhinderns, dass die Flüssigkeit durch die erste Wärmeaustauschstufe (2) strömt, bewirkt, dass die Flüssigkeit an der ersten Wärmeaustauschstufe (2) vorbei geführt wird, so dass sie dennoch durch die zweite Wärmeaustauschstufe (3) strömen kann.
EP12758795.4A 2011-08-31 2012-08-23 Verfahren zum betrieb eines flüssigkeit-luft wärmeaustauschgeräts Not-in-force EP2751494B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01423/11A CH705453B1 (de) 2011-08-31 2011-08-31 Verfahren zum Betrieb eines Flüssigkeit-Luft-Wärmeaustauschgeräts.
PCT/EP2012/066409 WO2013030080A2 (de) 2011-08-31 2012-08-23 Verfahren zum betrieb eines flüssigkeit-luft wärmeaustauschgeräts

Publications (2)

Publication Number Publication Date
EP2751494A2 EP2751494A2 (de) 2014-07-09
EP2751494B1 true EP2751494B1 (de) 2015-12-30

Family

ID=46845710

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12758795.4A Not-in-force EP2751494B1 (de) 2011-08-31 2012-08-23 Verfahren zum betrieb eines flüssigkeit-luft wärmeaustauschgeräts

Country Status (10)

Country Link
US (1) US20140216710A1 (de)
EP (1) EP2751494B1 (de)
JP (1) JP2014529054A (de)
KR (1) KR20140059215A (de)
CN (1) CN103765121B (de)
BR (1) BR112014004693A2 (de)
CH (1) CH705453B1 (de)
ES (1) ES2565815T3 (de)
RU (1) RU2014112116A (de)
WO (1) WO2013030080A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026349B1 (fr) * 2014-09-30 2018-01-12 Valeo Systemes Thermiques Echangeur de chaleur d'un dispositif de climatisation et de chauffage en particulier d'un vehicule automobile
CN111939421A (zh) * 2020-07-24 2020-11-17 天津怡和嘉业医疗科技有限公司 通气治疗设备
CN114383285B (zh) * 2021-12-06 2023-10-20 青岛海尔空调器有限总公司 用于空调控制的方法、装置、空调及存储介质
US20240045394A1 (en) * 2022-08-03 2024-02-08 Baltimore Aircoil Company, Inc. Drift detection apparatus, system, and method

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4006500A1 (de) * 1990-03-02 1991-09-05 Bayerische Motoren Werke Ag Vorrichtung zur verhinderung des beschlags an den innenflaechen von fahrzeugfensterscheiben
FI88650C (fi) * 1991-04-09 1993-06-10 Halton Oy Foerfarande vid reglering av en luftkonditioneringsanlaeggning och en luftkonditioneringsanlaeggning enligt detta foerfarande
JPH06307679A (ja) * 1993-04-27 1994-11-01 Matsushita Electric Ind Co Ltd 輻射冷房装置
JP3351307B2 (ja) * 1997-08-08 2002-11-25 日立プラント建設株式会社 冷媒自然循環式熱交換システム
US6470697B2 (en) * 2000-04-27 2002-10-29 Denso Corporation Air-conditioning system for vehicles
JP3565138B2 (ja) * 2000-05-31 2004-09-15 ダイキン工業株式会社 空調装置
JP4043756B2 (ja) * 2001-10-29 2008-02-06 三菱電機株式会社 空気調和装置及びその制御方法
US6705089B2 (en) * 2002-04-04 2004-03-16 International Business Machines Corporation Two stage cooling system employing thermoelectric modules
KR20040017920A (ko) * 2002-08-22 2004-03-02 엘지전자 주식회사 열교환기의 응축수 배출장치
JP4014491B2 (ja) * 2002-11-07 2007-11-28 シャープ株式会社 空気調和装置
JP2005178405A (ja) * 2003-12-16 2005-07-07 Zexel Valeo Climate Control Corp 空調装置
JP3709482B2 (ja) * 2004-03-31 2005-10-26 ダイキン工業株式会社 空気調和システム
CN101044358B (zh) * 2004-07-21 2010-04-14 欧文斯科宁知识产权资产有限公司 用于垂直设施的利用冷凝物毛细作用的保温系统
US7574871B2 (en) * 2004-10-27 2009-08-18 Research Products Corporation Systems and methods for whole-house dehumidification based on dew point measurements
CN2844754Y (zh) * 2005-12-19 2006-12-06 上海约顿机房设备有限公司 一种精确控制温湿度的空调
US8301335B2 (en) * 2008-05-28 2012-10-30 Chrysler Group Llc Efficient AC operation using dew-point temperature
GB0812169D0 (en) * 2008-07-03 2008-08-13 Lester Stephen Water and room heater
US8297069B2 (en) * 2009-03-19 2012-10-30 Vette Corporation Modular scalable coolant distribution unit
JP5296655B2 (ja) * 2009-10-23 2013-09-25 株式会社日立ハイテクノロジーズ ガスの温湿度調節方法及びガス供給装置
US20110259573A1 (en) * 2010-04-26 2011-10-27 Gac Corporation Cooling system
US7905096B1 (en) * 2010-05-26 2011-03-15 International Business Machines Corporation Dehumidifying and re-humidifying air cooling for an electronics rack
US20120090808A1 (en) * 2010-10-18 2012-04-19 Alcatel-Lucent Usa, Incorporated Liquid cooling of remote or off-grid electronic enclosures
CH704462B1 (de) * 2011-02-14 2015-01-15 Mentus Holdig Ag Flüssigkeit-Luft-Wärmeaustauschgerät mit Peltierelementen.
JP2013088031A (ja) * 2011-10-18 2013-05-13 Hitachi Plant Technologies Ltd 冷却システムとその制御方法

Also Published As

Publication number Publication date
CN103765121B (zh) 2016-07-06
CH705453A1 (de) 2013-03-15
CN103765121A (zh) 2014-04-30
ES2565815T3 (es) 2016-04-07
WO2013030080A2 (de) 2013-03-07
EP2751494A2 (de) 2014-07-09
RU2014112116A (ru) 2015-10-10
BR112014004693A2 (pt) 2017-03-28
KR20140059215A (ko) 2014-05-15
JP2014529054A (ja) 2014-10-30
CH705453B1 (de) 2015-06-30
US20140216710A1 (en) 2014-08-07
WO2013030080A3 (de) 2013-06-06

Similar Documents

Publication Publication Date Title
DE102016123330B4 (de) Laservorrichtung mit Funktion zur Verhinderung einer Kondensation
DE69634942T2 (de) Regelkreis für Latenzkühlmittel für Klimaanlage
EP2751494B1 (de) Verfahren zum betrieb eines flüssigkeit-luft wärmeaustauschgeräts
WO2012075975A1 (de) Heiz-/kühleinrichtung und verfahren zum betreiben einer heiz-/kühleinrichtung
DE112016006864T5 (de) Klimaanlage
EP0484358B1 (de) Verfahren zur umsetzung von sonnenenergie in warme sowie einrichtung zur durchfuhrung des verfahrens
WO2012110461A1 (de) Raumklimagerät mit einem flüssigkeit-luft wärmeaustauschgerät mit peltierelementen
DE1778989B2 (de) Anlage zum Heizen und Kühler von mehreren Räumen mit unterschiedlichem Wärmebedarf oder Kühlbedarf
DE2415324A1 (de) Anordnung zur beheizung und kuehlung von gebaeuden
DE102010021742A1 (de) Vorrichtung zum Trocknen von Schüttgut in wenigstens einem Vorratsbehälter
DE102017100653A1 (de) Wärmepumpeneinrichtung mit Enteisungsfunktion
EP2402698A1 (de) Verfahren zur Funktionsüberwachung und/oder Steuerung eines Kühlsystems und entsprechendes Kühlsystem
DE2520319A1 (de) Verfahren und vorrichtung zum entfrosten eines verdampfers in einer waermepumpe
DE102021122987A1 (de) Kühl- und Heizvorrichtung und Enteisungsbetriebsverfahren hierfür
DE69728012T2 (de) Absorptionsüberkonzentrationsregelung
DE602004012905T2 (de) Energie sparende klimaprüfkammer und betriebsverfahren
AT522875B1 (de) Verfahren zur Regelung eines Expansionsventils
DE112019007732T5 (de) Klimaanlage
DE102012109198B4 (de) Verfahren zur Steuerung des Abtauens eines Kältemittelverdampfers
EP1813897A2 (de) Verfahren zur Regelung eines Kühlgerätes
EP3480534B1 (de) Heizungsanlage und steuerverfahren für eine heizungsanlage
EP0033756A1 (de) Verfahren und Vorrichtung zur Regelung einer Heizungsanlage mit einer Einrichtung zur Gewinnung von Wärme aus einem Absorber
EP3988881B1 (de) Verfahren zum betrieb einer wärmeübertrageranordnung
EP1916490B1 (de) Abtausteuerverfahren
EP0321670B1 (de) Vorrichtung zur Ansteuerung des Expansionsventils der Kälteeinrichtung bei einer Kraftfahrzeug-Klimaanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140331

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150730

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150915

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 767675

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012005594

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2565815

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160407

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160331

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWALTSBUERO DR. URS FALK, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160430

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160502

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160822

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012005594

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160831

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160825

Year of fee payment: 5

26N No opposition filed

Effective date: 20161003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160819

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160823

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160823

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170829

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: AIRON TECHNOLOGIES AG, CH

Free format text: FORMER OWNER: SAA (SWITZERLAND) AG, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: SAA (SWITZERLAND) AG, CH

Free format text: FORMER OWNER: MENTUS HOLDING AG, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170822

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012005594

Country of ref document: DE

Owner name: AIRON TECHNOLOGIES AG, CH

Free format text: FORMER OWNER: MENTUS HOLDING AG, CHAM, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170823

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012005594

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 767675

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180823

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: QUO AG, CH

Free format text: FORMER OWNER: AIRON TECHNOLOGIES AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200724

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831