EP2690415B2 - Kraftmessvorrichtung mit Verschiebegewicht - Google Patents

Kraftmessvorrichtung mit Verschiebegewicht Download PDF

Info

Publication number
EP2690415B2
EP2690415B2 EP12177470.7A EP12177470A EP2690415B2 EP 2690415 B2 EP2690415 B2 EP 2690415B2 EP 12177470 A EP12177470 A EP 12177470A EP 2690415 B2 EP2690415 B2 EP 2690415B2
Authority
EP
European Patent Office
Prior art keywords
weight
force
load
measurement device
force measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12177470.7A
Other languages
English (en)
French (fr)
Other versions
EP2690415B1 (de
EP2690415A1 (de
Inventor
Andreas Metzger (Hr.)
Stephan Baltisberger (Hr.)
Hans-Rudolf Burkhard (Hr.)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mettler Toledo Schweiz GmbH
Original Assignee
Mettler Toledo Schweiz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46650376&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2690415(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mettler Toledo Schweiz GmbH filed Critical Mettler Toledo Schweiz GmbH
Priority to PL12177470.7T priority Critical patent/PL2690415T5/pl
Priority to EP12177470.7A priority patent/EP2690415B2/de
Priority to US13/946,215 priority patent/US9360362B2/en
Priority to CN201310305828.3A priority patent/CN103575369B/zh
Priority to JP2013150505A priority patent/JP6212313B2/ja
Publication of EP2690415A1 publication Critical patent/EP2690415A1/de
Publication of EP2690415B1 publication Critical patent/EP2690415B1/de
Application granted granted Critical
Publication of EP2690415B2 publication Critical patent/EP2690415B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G1/00Weighing apparatus involving the use of a counterweight or other counterbalancing mass
    • G01G1/18Balances involving the use of a pivoted beam, i.e. beam balances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G7/00Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups
    • G01G7/02Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups by electromagnetic action
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G21/00Details of weighing apparatus
    • G01G21/24Guides or linkages for ensuring parallel motion of the weigh-pans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G21/00Details of weighing apparatus
    • G01G21/26Counterweights; Poise-weights; Sets of weights; Holders for the reception of weights
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/14Devices for determining tare weight or for cancelling out the tare by zeroising, e.g. mechanically operated
    • G01G23/16Devices for determining tare weight or for cancelling out the tare by zeroising, e.g. mechanically operated electrically or magnetically operated

Definitions

  • the invention relates to a force measuring device for a gravimetric measuring instrument that operates according to the electromagnetic force compensation principle and has a sliding weight that is arranged on the weighing beam and can be displaced.
  • load cells which work according to the principle of electromagnetic force compensation, also known as Magnetic Force Restoration or MFR load cells for short
  • the weight of the item to be weighed is transmitted either directly or by one or more force transmission levers to an electromechanical measuring transducer, which measures the weight of the item to be weighed corresponding compensating force is generated and an electrical signal is made available, which is further processed by weighing electronics, the processing unit, and displayed.
  • an MFR load cell the weight of the goods to be weighed is measured using an electrical substitute variable. For various technical reasons, this measurement is subject to inaccuracies and therefore the relative resolution of an MFR load cell is limited. In addition, the relative resolution of an MFR load cell is also limited by the fact that it has a weighing beam, which can be excited to vibrate to a greater or lesser extent by underground vibrations. These oscillations can then appear in the weighing signal as disturbances that cannot be compensated for.
  • the weighing window of a force measuring device is the weight range in which the mass of the item to be weighed can be measured by changing the compensation force of the measuring sensor.
  • the width of this weight range is therefore determined and limited by the maximum compensation force of the sensor (the stronger the compensation force of a sensor, the wider the weighing window).
  • a counterweight is arranged on the end of the spool lever facing away from the shell carrier to balance all the weights attached to the scale mechanism. Taking into account the transmission ratio of the coil lever, the counterweight corresponds to the largest weight to be measured, including the weight of the pan support and the weighing pan.
  • the counterweight is positioned after the load cell has been manufactured and the fine adjustment of the scale mechanism is adjusted using a screw bolt.
  • the counterweight set in this way is usually locked and secured by the scale manufacturer, for example with a drop of sealing liquid, so that the counterweight does not shift or is shifted.
  • the mechanical zero point is the operating point of a force measuring device at which the load beam is balanced without a compensating force.
  • the measurement error of the electrical measurement variable is the smallest, i.e. the force measuring device achieves its highest resolution here.
  • the force measuring device is insensitive to vertical subsurface excitations at this load point.
  • a scale with a sliding weight is in GB 2 000 305 A shown. However, this scale does not work according to the principle of electromagnetic force compensation, but uses the sliding weight to determine the applied weight.
  • a balance detector consisting of a flexible band with four attached strain gauges measures the deflection of the balance beam. Depending on the deflection measured, an electric drive uses a spindle to move the displacement weight along the weighing beam in order to bring the weighing beam back into balance. The revolutions of the spindle are recorded via a decoder and the position of the shifting weight is determined. Based on the position of the shifting weight, the applied weight is finally calculated.
  • the object of the present invention is to create a force measuring device that works according to the electromagnetic force compensation principle, in which the mechanical zero point and the weighing window can be automatically and continuously adapted to the application needs of the load to be measured, and the load applied to the balance beam is minimal.
  • the object is achieved according to the invention with a force measuring device for a gravimetric measuring instrument that works according to the electromagnetic force compensation principle, with a fixed area and with a load receiving area, which are connected by parallel links.
  • the force-measuring device further comprises at least one weighing beam, which is connected to the load bearing area via a coupler acting on a first lever arm of the weighing beam, and which is connected to a measuring sensor arranged on the fixed area on a second lever arm of the weighing beam.
  • further levers can be arranged between the lever arms of the weighing beam and the load receiving area or the measuring sensor.
  • At least one shifting weight is arranged on at least one weighing beam, wherein the position of the shifting weight can be changed in a controlled manner by means of a drive using the measured variable detected by the sensor and/or a position measuring device interacting with the sensor.
  • the weighing range of a force-measuring device is understood to mean that weight range in which the mass of the goods to be weighed can be determined. Moving a sliding weight is equivalent to moving the weighing window. In addition, a fine positioning of the mechanical zero point at the operating point, and thus an optimal utilization of the weighing window, can be realized. This has the advantage that the best possible resolution of the force measuring device can be achieved at every operating point.
  • the inventive force measuring device can advantageously always be operated near the operating point that guarantees optimal robustness against vertical underground excitation, i.e. in the mechanical zero point.
  • Such a force-measuring device is preferably used when weighing items to be weighed in a container, since the initial load generated by the container restricts the weighing window, i.e. reduces the remaining weighing window.
  • the initial load also known as the tare load, is that part of a load that is not the subject of the weighing but cannot be separated from the actual load.
  • the preload is compensated by the shifting weight and the entire weighing window is again available for weighing the goods to be weighed.
  • the invention is suitable for mass comparators or force measuring devices of a microbalance, as it is often the case here that one also wants to tare them at the optimal operating point, because a weight force measurement with an operating point close to the mechanical zero point offers optimal robustness against vertical background excitations.
  • the products or items to be weighed that are transported via a conveyor belt are weighed during transport.
  • a conveyor belt is mounted on a force measuring device, on which the weight of the conveyor belt and the goods to be weighed acts.
  • Today's control cars are designed in such a way that the mass of the conveyor belt is compensated for by a counterforce, for example a counterweight.
  • the checkweigher which vibrates when the goods are driven on and off the conveyor belt, falsifies the weighing result or makes it necessary to reduce the number of weighings per unit of time in order to obtain a more accurate weighing result.
  • a force measuring device With a force measuring device according to the invention with a push-pull system, its operating point or mechanical zero point can be adapted to the item to be weighed and, if there is more than one displacement weight, the mass inertia of the counterforce or counterweight can also be adapted to that of the load-bearing area (including the item to be weighed). be adjusted. This minimizes the susceptibility to vibration and increases the possible number of weighings per unit of time. This adaptability is advantageous because the dynamic checkweigher can be used in several production lines or for different products or goods to be weighed.
  • the invention brings the advantage that different preloads, conveyor belts or weighing belts, can be combined with only one type of force measuring device. It simplifies the range of components for a dynamic checkweigher.
  • the invention is suitable both for force-measuring devices with measuring transducers that generate the compensation force according to the push principle and those that generate the compensating force according to the push-pull principle.
  • Their difference lies in the generation of the compensating force: a push system can generate the compensating force in only one direction, while a push-pull system is able to generate a compensating force in two opposite directions. To do this, it is necessary to adjust the mass of the second lever arm or to attach an additional weight to it, or to reduce the mass of the first lever or that of the load-bearing area.
  • the position of the mechanical zero point is always within the weighing window, which in turn improves the accuracy of the force measuring device.
  • the mechanical zero point is in the middle of the weighing window.
  • the deviation from the state of equilibrium is determined by a position measuring device and evaluated by a controller.
  • a processing unit now regulates the current for the measuring sensor (typically in the form of a coil), with which it generates a compensating force which corresponds to a counterforce to the weight of the weighing object.
  • the compensating force of the shifting weight should always be slightly smaller than the weight of the object being weighed.
  • the shifting weight is not shifted to the exact equilibrium position, because the remaining compensation force is then still provided by the measuring sensor. In particular, this also enables a precise measurement.
  • the remaining partial compensation force, which the sensor produces corresponds to about 2% to 8% of the total compensation force.
  • the entire compensating force can be provided by the displacement weight.
  • the weighing beam is that lever which is characterized in that at least one displacement weight is attached to this lever.
  • this can be any lever that appears suitable, and shifting weights can also be attached to several different levers.
  • shifting weights can provide a greater or lesser compensating force.
  • the design with two levers defined as weighing beams is advantageous, so that a coarse adjustment can be made on one weighing beam and a fine adjustment can be made on the other weighing beam.
  • the dead weight of the measuring sensor in particular the coil of an MFR load cell, should also be taken into account and advantageously counteracts the weight on the weighing pan.
  • a development of the invention provides that by changing the position of the sliding weight, the position of the weighing window of the force-measuring device can be changed and/or a load acting on the load-receiving area can be compensated for and/or the buoyancy of a load acting on the load-receiving area can be compensated and/or the sensitivity to rotational vibrations can be partially or fully compensated.
  • the invention provides that the position of the displacement weight can be changed in a controlled manner by means of the measured variable detected by the measuring sensor and/or a position measuring device which interacts with the measuring sensor.
  • a further development of the invention provides that the measuring sensor is designed as an electrical coil and the coil current flowing through the electromagnetic coil and generating the compensating force represents the measured variable for the positioning of the displacement weight.
  • the measured variable recorded in this way can be determined or determined directly as a manipulated variable for the position of the displacement weight if the operating point is within the weighing window.
  • a further embodiment of the invention provides that the position measuring device is an optoelectronic position sensor, with a light transmitter and a light receiver, which are arranged with a gap on the fixed area, as well as a diaphragm lug penetrating the gap and participating in the deflection of the moving parts, and its Sensor signal corresponds to a deflection of the interconnected movable parts of the scale from a zero position caused by the load being placed on the load-receiving area, and thereby represents the measured variable for the positioning of the shifting weight.
  • a particularly advantageous development of the invention provides that the position of the displacement weight can be recorded by means of a displacement measuring device as a position setting, as a preload compensation setting, as a lift compensation setting and/or as a rotation compensation setting of the at least one displacement weight and can be stored in a memory of a processing unit, e.g. in the form of a table or curve to be called up at a later point in time.
  • a processing unit e.g. in the form of a table or curve to be called up at a later point in time.
  • the processing unit of the force measuring device a container can be identified by a bar code or RFID chip by means of a detection device arranged in the load receiving area or by means of a detection device connected to the gravimetric measuring instrument, and the position setting assigned to the container and stored in a memory, and/or preload compensation setting and/or buoyancy compensation setting and/or or rotation compensation setting for the at least one displacement weight can be called up.
  • the setpoint setting can be automated and a possible error rate during operation can be minimized.
  • the subject matter of the invention is particularly preferred in the case of frequently changing containers.
  • the position of the at least one shifting weight can be stored in a memory so that the same initial load can be set again for a later measurement with the same container by shifting the shifting weight to the same position.
  • the positioning of the displacement weights by the processing unit is stored for each individual displacement weight and their relative positions to one another at all positions of the displacement path in a memory of the processing unit in order to be stored again at a later point in time to be approached.
  • the user of the operating unit only has to transmit a weight value for preload and/or lift compensation and/or rotation compensation to the processing unit.
  • An advantageous development of the invention provides that the center of mass of the at least one shifting weight is arranged on the level-neutral plane and the shifting weight can be shifted on this plane.
  • the balance beam is moment-free without a load and independent of an inclined one Ground always in balance. This level is called the level-neutral level.
  • Another aspect of the invention provides that at least two shifting weights are arranged on the level-neutral plane on the weighing beam and the shifting weights can be shifted on this plane independently of one another.
  • the optimal operating point and the positioning of the weighing window relative to it can be better adapted to the measuring project.
  • the mass inertia or the density (see density compensation in the detailed description) on the side of the sensor (second lever arm) can be adjusted to that side of the load bearing area (first lever arm).
  • a particularly advantageous development of the invention provides that the at least two displacement weights each have a different density and/or are designed to be exchangeable. As a result, not only the mass but also the density of the goods to be weighed on the side of the weighing beam facing the sensor (second lever arm) can be adapted to the side facing the load bearing area (first lever arm).
  • the exchangeable sliding weights have the advantage that the force measuring device can be adapted to the measuring tasks.
  • a preferred embodiment of the invention is characterized in that one or more displacement weights are displaceably arranged on more than the at least one weighing beam. This allows the optimal operating point and the positioning of the weighing window relative to it to be adjusted even more precisely to the measuring project, because the different leverage ratios mean that the shifting of shifting weights on one weighing beam can be used as a rough adjustment and on another as a fine adjustment.
  • a shifting weight is to be positioned by means of a linear drive or a piezoelectric drive or by means of a rotary drive via a spindle, and the shifting path of the shifting weight can be determined by the drive. All three variants of the drive have the advantage that very precise positioning can be achieved.
  • a preferred embodiment of the invention has an electric drive for positioning the at least one shifting weight, this drive itself being part of the shifting weight.
  • the positioning of the at least one shifting weight can thus be regulated by the processing unit and thus increases the degree of automation. This also optimizes the space requirement, as the drive also serves as a shifting weight due to its own weight.
  • a development of the invention provides that the at least one shifting weight is attached to the second lever arm via a coupling means, with which the weight applied by the shifting weight can be coupled in and out.
  • the advantage of this is that you can switch quickly and precisely between two weighing windows without moving the sliding weight, which in turn increases reproducibility.
  • a further advantageous development of the invention provides that the at least one displacement weight can be displaced in such a way that the weight of the displacement weight counteracts the compensation force of the measuring sensor. This makes it possible to shift the mechanical zero point of a push-pull system to and above zero load.
  • the state of a force measuring device in which there is no load is referred to as zero load placed on the load handling area. If the shifting weight is shifted beyond the zero load, the shifting weight can advantageously also be used to calibrate the force-measuring device and there is no need to install a complete calibration unit of a force-measuring device.
  • a method for positioning at least one displacement weight of a force-measuring device for a gravimetric measuring instrument takes place in one step by placing a tare load, e.g by bar code or RFID chip or by means of a recognition device connected to the gravimetric measuring instrument.
  • a target value in relation to the weighing window is entered by the user (or in other words the compensating force component of the measuring transducer is specified), or a target value is read from a memory of the processing unit by specifying the measurement project.
  • the at least one shifting weight is shifted by means of a drive and positioned in such a way that the measuring transducer generates the specified setpoint or compensating force component.
  • This method makes it possible to carry out two dependent measurements, for example when weighing filters, or individual measurements in a series of measurements which are a long time apart, so that the scales can be used for other purposes in the meantime. It must be ensured that the gravimetric measuring instrument is used with the same configurations or setting parameters as for the measurement from which it is to be assumed. This includes at least that the same target value (or compensation force component) is selected and the same calibration weight is applied.
  • a calibration weight can be a standardized and/or tested weight placed externally on the weighing pan or a calibration weight of a calibration unit built into the force-measuring device, which can switch the calibration weight on or off for this purpose.
  • a density value of the weighing object is additionally entered by the user or recognized by a bar code or RFID chip by means of a recognition device arranged in the load-carrying area or by means of a recognition device connected to the gravimetric measuring instrument, in order then, by shifting independently of one another, to determine the respective Adjust positions of at least two sliding weights.
  • figure 1 shows a schematic representation of a force-measuring device 1 according to the invention from the side in a sectional representation.
  • the force-measuring device 1 is supported on a base via the fixed area 11 .
  • the load to be measured is applied via a shell 16 to the load receiving area 12, which is connected to the fixed area 11 by two parallel links 14 and 15.
  • the variant shown here as an upper shell version is not mandatory.
  • the force-measuring device 1 can also be designed as a bottom shell.
  • the coupling 17 transfers the weight to the first lever arm 18 of the weighing beam 19, which is at the bearing point 21 (in the figure 1 covered by the sliding weight 23), which as a pair of two support points 21a and 21b (see figure 3 ) is defined, is stored.
  • the measuring sensor 22 Positioned on the outer end of the second lever arm 20 is the measuring sensor 22, which compensates for the reduced weight force with a compensating force.
  • the measurement variable recorded by the measurement sensor 22 can be used to determine the position of the displacement weight 23 along the weighing beam 19 .
  • the position of the displacement weight 23 can also be determined directly by the measured variable of the position measuring device 33 .
  • the position of the displacement weight 23 is measured and monitored by a displacement measuring device. This can also be used to control the displacement weight 23 to the position required for the compensating force by user specifications or by a detection device connected to the gravimetric measuring instrument.
  • the displacement range of the displacement weight 23 in a push-pull system begins at an initial position in which the maximum compensation force of the displacement weight 23 is rectified with the compensation force of the sensor 22, has a neutral position 27 from which the displacement weight 23 has no influence on the equilibrium behavior of the weighing beam 19 and ends at an end position in which the maximum compensation force of the displacement weight 23 counteracts the compensation force of the measuring sensor 22 .
  • the neutral position 27 is at the level of the support point 21 and at the same time the starting position of the displacement area.
  • the neutral position 27 corresponds to any intermediate value between the start position and the end position of the displacement range, depending on the design of the mechanics and the transducer 22 of the force measuring device 1.
  • the neutral position 27 corresponds to the Center of the weighing window, so the push-pull system has the same push and pull components.
  • the shifting range of the shifting weight 23 of a force measuring device with a push system begins at the neutral position 27, from which the shifting weight has no influence on the equilibrium behavior of the balance beam 19 has, and ends at an end position in which the maximum compensation force of the displacement weight 23 is rectified with the compensation force of the sensor 22.
  • the neutral position 27 of the shifting weight 23 is at the contact point 21 and can be shifted in the direction of the measuring sensor 22 .
  • the center of mass 28 of the displaceable mass is decisive in each case for determining the position. All movable and/or displaceable parts associated with the respective displacement weight 23 are combined in the center of mass 28 . If the shifting weight 23 is shifted relative to the measuring transducer 22, the latter is relieved or loaded accordingly in the generation of the compensating force, i.e. the weighing window is shifted towards heavier or lighter loads, or in other words the operating point of the force measuring device 1 is adjusted to the mechanical zero point. This is used in practice when weighing a dead load, for example a container for holding the item to be weighed. The weighing window can thus be ideally adapted to the measurement project. This applies to both the push and the push-pull system.
  • FIG. 2 Also shown in a simplified representation figure 2 the embodiment figure 1 , but with additional levers.
  • the load placed on the load receiving area 12 is transmitted to the first lever arm 18 of the weighing beam 19 via the coupler 17 and via a lever 29 connected in front of the weighing beam 19 .
  • a downstream lever 30 feeds the load from the second lever arm 20 to the measuring sensor 22 . Thanks to the bushing 31, the sensor 22 can be placed at a location that is easily accessible for maintenance and/or repair work.
  • the displacement weight 23 is shifted away from the measuring transducer 22 in order to be able to counteract a load acting on the load receiving area 12 . This does not change the effect that the measuring transducer 22 is relieved of the generation of the compensating force.
  • lever transmissions are advantageous in such a way that the dead weight of the measuring transducer 22 counteracts a load acting on the load receiving area 12 . It should be mentioned here again that it does not matter on which lever 29, 30 or weighing beam 19 the at least one displacement weight 23 is arranged, but a greater compensating force can be achieved through a greater force transmission. It is also possible to use several displacement weights 23 on more than one lever. Depending on the power transmission, a coarse and/or fine adjustment of the compensation force can be made be made.
  • the weighing beam 19 is designed with two displacement weights 23A and 23B, which can be displaced independently of one another along the displacement axes 26A and 26B in order, for example, to enable buoyancy compensation.
  • Buoyancy compensation has the same process flow as setpoint adjustment (see above).
  • the shifting weights 23A and 23B starting from their previous position, are shifted differently in the direction of the sensor 22 or in the direction of the load receiving area 12, depending on the individual density value, as will be explained below using an example.
  • Two displacement weights 23A and 23B with densities of 7 kg/dm 3 and 9 kg/dm 3 are mounted as an example.
  • a reference mass made of steel with a density of 7.8 kg/dm 3 .
  • the shifting weights 23A and 23B are at the same height and compensate for the weight according to the predefined measurement specifications, e.g the balance beam 19 in balance. If the air density were to change during this measurement over a longer period of time, both sides of the balance beam 19 would not experience the same changes in buoyancy, because the shifting weights 23A and 23B considered as a unit would have a density of 8.0 kg/dm 3 , i.e. 0.2 kg/dm 3 Deviation from the density of the reference mass. As a result, the measurement result of the force measuring device 1 would deviate from the actual value and make the measurement unusable.
  • the processing unit 35 now controls the displacement weights 23A and 23B individually, following the setpoint adjustment, on the basis of a formula stored in the memory of the processing unit 35 .
  • the lower-density shifting weight is moved toward the transducer 22 and the higher-density shifting weight toward the pads 21A and 21B, such that the common center of mass of the shifting weights 23A and 23B is not shifted. Due to the different distance between the shifting weights 23A and 23B, the shifting weights 23A and 23B together now have a density of 7.8 kg/dm 3 , which corresponds to the density of the reference mass and is equivalent to identical buoyancy to that of the reference mass.
  • the first sliding weight 23A is in the neutral position 27A, while the second sliding weight 23B counteracts a load acting on the load receiving area 12.
  • the shifting weight 23B would be in the position in which its compensating force counteracts a load acting on the load receiving area 12, and the other shifting weight 23A would be in the neutral position 27A in which its compensating force has no influence on the equilibrium behavior of the balance beam 19 has.
  • the displaceable weight shown in dashed lines would therefore be in a position in which its compensating force would also counteract a force acting on the load receiving area 12 .
  • the necessary additional weight attached to the second lever arm can be integrated in the sliding weight. This accordingly shifts the neutral position 27 of the displacement weight 23, 23A, 23B in the direction of the measuring sensor.
  • figure 4 shows a possible embodiment of a load cell 10 of a force measuring device 1, as a monolithic cell.
  • a guide 32 is attached to the side of the second lever arm 20 (largely concealed by the guide 32 ) of the weighing beam 19 , which extends the second lever arm 20 towards the sensor 22 and at the same time serves as a displacement axis 26 for the displacement weight 23 .
  • the same arrangement can also be applied on the opposite side to that shown in the figure, or on both sides at the same time.
  • the balance beam 19 is without a load Load moment-free and always in balance, regardless of a sloping surface.
  • the plane thus formed is called the level-neutral plane 25 .
  • the guide 32 should also be extended in the direction of the load receiving area 12 (shown in dashed lines) in order to enable the sliding weight 23 to be shifted via the bearing point 21 to a more distant starting position. In particular, this enables the shifting of the mechanical zero point (of a force-measuring device 1 working according to the push-pull principle) down to zero load. If the at least one displacement weight 23, 23A, 23B is displaced beyond the position which corresponds to the zero load, its weight counteracts the measuring sensor 22 and can thus be used as a calibration weight.
  • FIG. 5A and 5B A possible configuration of a weighing beam 19 is shown in Figure 5A and 5B shown.
  • the sensor 22, which generates the compensating force, is attached to one end.
  • the force generating center 24 shown through a point with a black and white pattern, lies on the level-neutral plane 25.
  • the respective centers of mass 28A and 28B of the two displacement weights 23A and 23B also lie on the level-neutral plane 25, as do the contact points 21A and 21B (in Figure 5A hidden).
  • the center of mass 28A of the shift weight 23A is shown at the same height as the bearing points 21A and 21B, so the shift weight 23A, in contrast to the shift weight 23B, which is shifted in the direction of the sensor 22, does not cause any moment on the weighing beam 19.
  • the dotted lines show shown which parts of the weighing beam 19 belong to the first lever arm 18 and which to the second lever arm 20.
  • the shift weight 23A can be shifted further away from the transducer 22.
  • FIG 6 shows an example of a displacement weight 23, which in the Figures 1 to 5 , 7 and 8 is shown as a displacement weight 23, 23A, 23B, 823, and is displaceable along a displacement axis 26, designed here as a round guide 32.
  • the displacement axis 26 which are suitable for guiding the displacement weight 23 along a displacement axis 26, for example a threaded spindle, a toothed rail or a grooved rail or other, in particular torsion-proof, profiles.
  • the drive for moving a sliding weight 23 can be designed as an electric rotary drive of a threaded spindle, or as a linear drive, or as a piezoelectric motor.
  • the motor can also be part of the sliding weight 23, 23A, 23B itself.
  • FIG. 12 illustrates the functional processes in the force-measuring device 1 according to the invention.
  • Today's force-measuring devices based on the MFR principle contain at least those elements that are shown within the dot-dash frame.
  • the processing unit 35 receives the size and direction of the deviation from the state of equilibrium from the position measuring device 33, usually designed as an optoelectronic sensor. From this information, the processing unit 35 controls the compensation force via the measuring sensor 22 . This process is constantly repeated, with the processing unit 35 calculating the weight of the weighing object from the measured variable of the measured value pickup 22 , which is communicated to the user on a display 34 .
  • At least one displacement weight 23 is arranged on a balance beam 19, with which the processing unit 35 can displace this by controlling a drive in order to also generate a compensation force.
  • the compensating force generated by the displacement weight 23 acts directly on the measuring sensor 22 and the measured variable of the measuring sensor 22 recorded in this way can directly be the manipulated variable for the position of the sliding weight 23 that can be determined or determined.
  • the processing unit 35 therefore has two options available for adapting the compensating force to the object to be weighed.
  • the effects achieved in this way consist of compensating for a load acting on the load-receiving area 12, or the buoyancy of this load, or changing the weighing window of the force-measuring device 1, or partially or completely compensating for the sensitivity to rotational vibrations, or several of the options just listed to be fulfilled at the same time.
  • the measured variable of the position measuring device 33 can also be determined or determined as the manipulated variable for the position of the displacement weight 23 .
  • a displacement measuring device detects and monitors the position of the displacement weight 23A, 23B along the displacement area.
  • the processing unit 35 therefore always knows the position at which the shifting weight 23A, 23B is located and can calculate the compensating force of the at least one shifting weight 23, 23A, 23B using stored position settings or preload compensation settings, buoyancy compensation settings and/or rotation compensation settings. Conversely, the processing unit 35 can use the above-mentioned stored settings to determine where the at least one displacement weight 23, 23A, 23B is to be positioned.
  • Figure 8A and 8B each show a further embodiment of the in figure 1 shown force measuring device 1.
  • Many components are similar to those in figure 1 and figure 2 and therefore have the same reference numbers. For the description of these components is therefore on the description of figures 1 and 2 referred.
  • the force measuring devices 2 show Figure 8A and 8B a shifting weight 823, which is arranged on the separate shifting weight lever 837 between the articulation point 838 and a coupling means 836.
  • the coupling means 836 is configured here as a unidirectional coupling means 836 that transmits a compressive force.
  • the position of the shifting weight 823 can preferably be changed, i.e. it can be shifted on the shifting weight lever 837 and fixed again.
  • the displaceable weight 823 designed in this way is thus part of an embodiment in which the force of the displaceable weight 823 transmitted to the second lever arm 820 via the coupling means 836 counteracts a load placed on the load-receiving area 12 .
  • Figure 8A and 8B differ only in the arrangement of the articulation point 838. While in Figure 8A the hinge point is on the fixed area 11, it is in Figure 8B attached to the load carrying area 12. Further design variants arise in the case of a coupling means that transmits tensile force.
  • FIG 9A and 9B is shown schematically along a horizontal axis, which corresponds to the weight of an applied load or the total compensating force of a force measuring device 1, how the weighing window A is changeable within the weighing range D of an inventive force measuring device 1.
  • a weighing range Force measuring device 1 is understood to mean that weight range in which the mass of the item to be weighed can be determined.
  • the areas A1, A2, A3 represent weighing windows of the force measuring device 1 at different positions. The respective width of these areas remains constant and is defined by the maximum compensation force of the measuring transducer 22 (generally the following applies: the stronger the compensating force of a measuring transducer, the wider it becomes corresponding weighing window).
  • a displacement of the weighing window A1 by the displacement distance B results in the weighing window A2.
  • the compensating force applied to the load now consists of a part of the displacement weight and a part of the measuring sensor 22 .
  • a shift B can be stepless and allows a continuous shift of the weighing window A.
  • the Figure 9B is the Figure 9A accordingly, shown for a push-pull system.
  • the weighing windows A1, A2 and A3 each have a push and a pull portion. This share is in Figure 9B shown symmetrically, but depending on the design of the measuring sensor 22 it can also have asymmetrical components, ie components of different sizes.
  • the mechanical zero point of such a force-measuring device 1 is in the transition from push to pull component.
  • the weighing window A2 is shifted by the displacement path B and advantageously positioned in such a way that the compensating force of the displacement weight 23 corresponds to the load applied, or in such a way that the force-measuring device 1 is operated in the mechanical zero point.
  • the shifting of a weighing window A is also used to carry out a preload compensation of a measuring vessel.
  • the maximum displacement C is reached when the displacement weight 23 is fully extended, and in addition to the weighing window A, the weighing range D of the force-measuring device results. While the weighing range of the MFR force-measuring devices that are in use today corresponds to the weighing window, the weighing range of a force-measuring device 1 according to the invention can be expanded by a multiple of the weighing window. The more precisely the displacement weights 23, 23A, 23B can be displaced, the heavier the displacement weights 23, 23A, 23B can be used, and the greater the weighing range.
  • FIG. 10A an example is used to show the process of setting a target value when weighing a specific measuring vessel for a push system (dotted line).
  • the diagram shows the compensation force of the measuring sensor 22 (F-axis) depending on the position of the at least one displacement weight 23 (P-axis).
  • F-axis the compensation force of the measuring sensor 22
  • P-axis the position of the at least one displacement weight 23
  • the processing unit 35 detects via the sensor 22 that the weighing window A is below the applied load (the sensor 22 generates the full compensation force; 100%) and the at least one sliding weight 23 is activated and shifted, with which the Compensation force component of the displacement weight 23 increases.
  • the measurement is again within the weighing window A, but at its upper end, i.e. with the maximum compensation force of the measuring sensor 22.
  • the at least one sliding weight 23 continues to move in a push system in the same direction until the measuring sensor 22 has another one Compensation force share of about 2% - 8% (value determined by user input or defined by the "weighing" function in the processing unit 35) of the total compensation force.
  • the force-measuring device 1 is now ready for weighing the item to be weighed, which would be placed on the pan 16 with the measuring vessel.
  • the remaining weighing window (92% - 98%) is now available for weighing a load.
  • the shifting weight 23 preferably continues to move after reaching the position X until the compensating force component of the measuring transducer 22 becomes vanishingly small, ie at the transition from push to pull compensating force component.
  • the force-measuring device 1 is then in the mechanical zero point and the measuring sensor 22 only regulates the smallest inaccuracies, such as temperature and wind influences, etc., for example.
  • Y lies the optimum operating point at which good regulation of the measured variable of the measuring sensor 22 can be achieved and the measured value can be determined precisely.
  • the transition from push to pull compensation force component is in Figure 10B shown symmetrically (50%-50%). However, this is not mandatory and depends on the design of the force measuring device 1 or the measuring transducer 22.
  • the shifting of a shifting weight 23, 23A, 23B and the associated positioning can take place in a wide variety of ways, on the one hand by means of the measured variable recorded by the measurement sensor 22 and/or the position measuring device 33 (as described above), and on the other hand by means of the shifting measuring device and suitable control of the drive of the displacement weights 23, 23A, 23B.
  • the user inputs the known mass of the measuring vessel or the standardized and/or tested calibration weight into the operating unit.
  • the processing unit 35 uses the position measuring device 33 to determine in which direction the displacement weight 23, 23A, 23B is to be displaced.
  • the drive can be controlled by the processing unit 35 at time intervals or in rotational or step increments, with a time interval or increment corresponding to a specific displacement of the displacement weight 23, 23A, 23B.
  • the processing unit 35 calculates the number of time intervals or rotational or step increments with which the drive of the displacement weight 23, 23A, 23B must be controlled in order to reach the position defined by the setpoint.
  • the memory of the processing unit 35 stores the displacement path to which a time interval or rotation or step increment corresponds. It is also possible to move the displacement weight 23, 23A, 23B directly to the position that corresponds to the user's specifications. To do this, the processing unit 35 accesses the setting parameters available to it, such as a position setting, a preload compensation setting, a lift compensation setting, and/or a rotation compensation setting.
  • the optimum operating point and the positioning of the weighing window relative to it depend on the user's measurement project. While a weighing window open to higher loads is required for the above-mentioned initial weighing, a weighing window designed for lower loads is required for a thermogravimetric measurement. For metrological measurements, it makes sense to adjust the weighing window symmetrically to the target load. The method of setpoint adjustment could also be applied to a metrological or thermogravimetric measurement, with the difference that the proportion of the compensating force of the sensor 22 to the total compensating force is different. In a thermogravimetric measurement, this proportion is approx.
  • the target value can be around 47% - 53%. This approximately central positioning of the weighing window A would allow the measuring project to have the measured value on both sides of the target value equally distant.
  • the optimal operating point is at the transition from push to pull compensation force component, i.e. at the mechanical zero point.
  • the positioning of the weighing window relative to the operating point is therefore dependent on the ratio of the push or pull component in the weighing window A.
  • These components can vary in size and are determined by the design of the measuring sensor 22 .
  • a symmetrical push-pull system is therefore a weighing window A, which consists of equal parts of push and pull parts.
  • the processing unit 35 shifts the at least one shifting weight 23 in the direction of the neutral position 27 until the compensating force of the shifting weight 23 is in a state of equilibrium with the applied load (point Z).
  • the measurement is now at the lower end of the weighing window A, ie the compensation force of the sensor 22 in a push system is equal to zero.
  • the compensating force component of the measuring transducer 22 decreases until the desired setpoint or the desired operating point is reached.
  • the compensation force of the sensor 22 is at its maximum in the pull portion and is decreasing with increasing displacement of the displacement weight in the direction of the neutral position 27.
  • the preferred, optimal operating point Y OPT is reached when the sensor 22 is not Must apply compensation force, ie the force measuring device 1 is in the mechanical zero point.
  • a setpoint value for the compensating force component can also be defined by the user or by the “weighing-in” function in the processing unit 35 using a push-pull system.
  • the connecting line between the points X and Z can also be interpreted as a ratio of the width of the weighing window to the width of the weighing area (coefficient ⁇ 1). If the line is flat (coefficient close to 1), the weight range in which the mass of the item to be weighed can be determined is slightly larger than the weight range in which the mass of the item to be weighed can be measured by changing the compensation force of the sensor 33. A larger ratio offers the advantage of achieving greater precision when fine-tuning the compensating force of the sliding weight 23, 23A, 23B. If the connecting line is steeper, the force-measuring device 1 has a correspondingly larger weighing range in relation to the weighing window and thus expands the field of application of a force-measuring device 1.
  • the gravimetric measuring instrument is used with the same configurations or setting parameters as with the first measurement, which should serve as a comparison measurement.
  • This can be defined in a SOP (Standard Operation Procedure).
  • the user Before weighing the goods to be weighed, the user must determine the compensation force component of the measuring sensor 22 (can be specified by measuring sensor 22 in a push-pull system), place a calibration body on it, whereupon the force-measuring device 1 positions the at least one displacement weight 23, 23A, 23B and saves the weight value.
  • the calibration body can be an externally applied, standardized and/or tested weight or a calibration weight built into the force-measuring device 1, which can be switched on or off for this purpose.
  • Density compensation can then be implemented if the density of the item to be weighed is between the two densities of the displacement weights 23A and 23B.
  • the extreme values of the density of the goods to be weighed i.e. the minimum or maximum density of the displacement weight 23A, 23B
  • only the one displacement weight 23A, 23B that has the corresponding density may change its position, while the other displacement weight 23A, 23B is in the neutral position remains.
  • the displacement range of the force-measuring device 1 is thus also inevitably reduced. Therefore, a prior evaluation of the displacement weights 23A and 23B must be adapted to the future use of the force-measuring device 1.
  • the at least one displacement weight 23, 23A, 23B can be exchanged.
  • a heavier shift weight 23, 23A, 23B gives a larger maximum shift range ( figure 9 , C).
  • a smaller shifting range C is created, but also a finer and thus more precise adjustment option if the new shifting weight 23, 23A, 23B is lighter than the one previously installed.
  • the density of the goods to be weighed can be taken into account by exchanging displacement weights of the same weight with different densities.
  • a first possibility is to move the displacement weights 23, 23A, 23B to an end stop and to adjust them using a value stored in the memory of the processing unit 35. Synchronization in the mechanical zero point is also possible. This has the additional advantage that the influence of a moment acting from the outside on the force-measuring device 1 is smallest here, ie the adjustment is most precise. The latter possibility proves to be particularly suitable for push-pull systems.

Description

  • Die Erfindung betrifft eine nach dem elektromagnetischen Kraftkompensationsprinzip arbeitende Kraftmessvorrichtung für ein gravimetrisches Messinstrument mit einem am Wägebalken angeordneten und verschiebbaren Verschiebegewicht.
  • Bei Wägezellen, welche nach dem Prinzip der elektromagnetischen Kraftkompensation arbeiten, im Englischen bekannt unter Magnetic Force Restauration oder abgekürzt MFR Wägezellen genannt, wird die Gewichtskraft des Wägeguts entweder direkt oder durch einen oder mehrere Kraftübertragungshebel zu einem elektromechanischen Messaufnehmer übertragen, welcher eine der Gewichtskraft des Wägeguts entsprechende Kompensationskraft erzeugt und dabei ein elektrisches Signal zur Verfügung stellt, das durch eine Wägeelektronik, der Prozesseinheit, weiterverarbeitet und zur Anzeige gebracht wird.
  • In einer MFR-Wägezelle wird die Gewichtskraft des Wägeguts durch eine elektrische Ersatzgrösse gemessen. Aus verschiedenen technischen Gründen unterliegt diese Messung Ungenauigkeiten und deshalb ist die relative Auflösung einer MFR-Wägezelle begrenzt. Darüber hinaus ist die relative Auflösung einer MFR-Wägezelle auch dadurch begrenzt, dass sie einen Wägebalken aufweist, welcher durch Untergrundvibrationen mehr oder weniger stark zum Schwingen angeregt werden kann. Diese Schwingungen können dann im Wägesignal als nicht kompensierbare Störungen in Erscheinung treten.
  • Aus dem Stand der Technik ist bekannt, dass man bei höchstauflösenden Kraftmessvorrichtungen, wie z.B. bei Massenkomparatoren, die Auflösungsbegrenzung, die durch den elektrischen Messprozess gegeben ist, schrittweise verschiebt, indem man am Wägebalken auf der Seite der Kompensationskraft, beziehungsweise auf der Seite des Messaufnehmers, bewusst mehr Masse anbringt, so dass der Wägebalken durch Auflegen von so genannten Substitutionsgewichten auf der Gegenseite, d.h. auf der Seite des Gehänges, ins Gleichgewicht kommt. Mit diesen Substitutionsgewichten lässt sich das Wägefenster der Kraftmessvorrichtung, das ohne diese Substitutionsgewichte von einer Minimal- bis zu einer Maximallast reichen würde, um die Last der Substitutionsgewichte verschieben. Solche Kraftmessvorrichtungen nennt man Fensterkomparator-Wägezellen und sind z.B. bekannt aus DE 2 621 483 B1 .
  • Im Bereich gravimetrischer Messinstrumente mit elektromagnetischer Kraftkompensation ist das Wägefenster einer Kraftmessvorrichtung jener Gewichtsbereich, in welchem durch die Änderung der Kompensationskraft des Messaufnehmers die Masse des Wägeguts gemessen werden kann. Die Breite dieses Gewichtsbereichs ist deshalb bestimmt und limitiert durch die maximale Kompensationskraft des Messaufnehmers (Je stärker die Kompensationskraft eines Messaufnehmers ist, umso breiter wird das Wägefenster).
  • Aus US 4 165 791 ist eine Waage bekannt bei der mit dem Auflegen beziehungsweise Abheben von Substitutionsgewichten der mechanische Nullpunkt, und damit zugleich das Wägefenster, einer Kraftmessvorrichtung verschoben werden kann. Für das Wägen einer unbekannten Gewichtskraft liegen alle Substitutionsgewichte am Gehänge auf und durch ein Gegengewicht wird diese Ausgangs-Nulllage ausbalanciert. Nach dem Auflegen des zu messenden Wägeguts wird gerade etwas weniger Gewichtskraft vom Gehänge entfernt als der entsprechenden Gewichtskraft des Wägeguts entspricht. Das verbleibende Ungleichgewicht wird durch eine elektromagnetische Spule kompensiert. Nachteilig dabei ist, dass dabei am Wägebalken immer viel Masse hängt, und diese reduziert die mechanische Robustheit der Wägezelle gegenüber Untergrundanregungen, insbesondere gegenüber rotativen Störanregungen. Um die Komplexität in der Ausführung zu reduzieren verwendet man bei Waagen mit Substitutionsgewichten wie sie die US 1 165 791 offenbart eine möglichst geringe Anzahl von Zusatzgewichten. Dies hat zur Folge, dass das Wägefenster nur in grossen Sprüngen verschoben werden kann.
  • In DE 2 803 978 A1 ist zum Ausgleich aller am Waagenmechanismus angehängten Gewichte am vom Schalenträger abgewandten Ende des Spulenhebels ein Gegengewicht angeordnet. Das Gegengewicht entspricht unter Berücksichtigung des Übersetzungsverhältnisses des Spulenhebels dem grössten zu messenden Gewicht einschliesslich des Eigengewichts des Schalenträgers und der Waagschale. Das Gegengewicht wird nach der Fertigung der Wägezelle positioniert und mittels eines Schraubenbolzens die Feineinstellung des Waagenmechanismus justiert. Das so eingestellte Gegengewicht wird meist durch den Waagenhersteller arretiert und gesichert, zum Beispiel durch einen Tropfen Versiegelungsflüssigkeit, damit sich das Gegengewicht nicht verschiebt oder verschiebt wird.
  • Der mechanische Nullpunkt ist der Betriebspunkt einer Kraftmessvorrichtung, bei dem der Wägebalken ohne Kompensationskraft ausbalanciert ist. In diesem Zustand ist der Messfehler der elektrischen Messgrösse am kleinsten, d.h. dass die Kraftmessvorrichtung hier ihre höchste Auflösung erreicht. Zudem ist die Kraftmessvorrichtung in diesem Lastpunkt unempfindlich gegenüber vertikalen Untergrundanregungen.
  • In DE 10 342 272 B3 wird eine Lösung offenbart, mit welcher bei der Kompensation einer Totlast die Eigenschwingungen des Übersetzungshebels mit einem Gegengewicht minimiert werden, so dass wechselnde Spulenkräfte sich nicht schwingungsanregend auswirken. Dies wird erreicht durch die Anordnung des Gegengewichtes oberhalb der Spule. Der so am Ort der Spule erzeugte Schwingungsknoten kann sich nicht mehr schwingungsanregend auswirken. Dabei ist das Gegengewicht auf die Totlast, hier die Waagschale, abgestimmt und es kann kein Einfluss auf eine Änderung dieser Totlast vorgenommen werden, um zum Beispiel einen Behälter als weitere Totlast zu berücksichtigen.
  • Eine Waage mit Verschiebegewicht ist in GB 2 000 305 A gezeigt. Diese Waage arbeitet jedoch nicht nach dem Prinzip der elektromagnetischen Kraftkompensation, sondern benützt das Verschiebegewicht zur Bestimmung der aufgelegten Gewichtskraft. Ein aus einem flexiblen Band mit vier aufgeklebten Dehnmessstreifen bestehender Gleichgewichtsdetektor misst die Auslenkung des Wägebalkens. Entsprechend der gemessenen Auslenkung verschiebt ein elektrischer Antrieb mittels einer Spindel das Verschiebegewicht entlang des Wägebalkens um den Wägebalken wieder ins Gleichgewicht zu bringen. Über einen Decoder werden die Umdrehungen der Spindel erfasst und die Position des Verschiebegewichts bestimmt. Anhand der Position des Verschiebegewichts wird schlussendlich die aufgelegte Gewichtskraft errechnet.
  • Die Aufgabe der vorliegenden Erfindung besteht in der Schaffung einer nach dem elektromagnetischen Kraftkompensationsprinzip arbeitenden Kraftmessvorrichtung, bei welcher deren mechanischer Nullpunkt und das Wägefenster automatisch und kontinuierlich an die Anwendungsbedürfnisse der zu messenden Last angepasst werden können und dabei die am Wägebalken angelegte Last minimal ist.
  • Die Aufgabe wird erfindungsgemäss mit einer nach dem elektromagnetischen Kraftkompensationsprinzip arbeitenden Kraftmessvorrichtung für ein gravimetrisches Messinstrument, mit einem feststehenden Bereich und mit einem Lastaufnahmebereich, welche durch Parallellenker verbunden sind, gelöst. Die Kraftmessvorrichtung umfasst weiter mindestens einen Wägebalken, welcher über eine an einem ersten Hebelarm des Wägebalkens angreifende Koppel mit dem Lastaufnahmebereich verbunden ist, und welcher an einem zweiten Hebelarm des Wägebalkens mit einem am feststehenden Bereich angeordneten Messaufnehmer verbunden ist. Dabei können zwischen den Hebelarmen des Wägebalkens und dem Lastaufnahmebereich bzw. dem Messaufnehmer weitere Hebel angeordnet sein. Am mindestens einen Wägebalken ist mindestens ein Verschiebegewicht angeordnet, wobei vermittels eines Antriebs die Position des Verschiebegewichts vermittels der durch den Messaufnehmer und/oder einer mit dem Messaufnehmer zusammenwirkenden Positionsmessvorrichtung erfassten Messgrösse gesteuert veränderbar ist.
  • Durch die Erfindung kann eine Vergrösserung des Wägebereichs erreicht werden. Als Wägebereich einer Kraftmessvorrichtung wird jener Gewichtsbereich verstanden, in welchem die Masse des Wägeguts bestimmt werden kann. Die Verschiebung eines Verschiebegewichts ist gleichbedeutend mit einer Verschiebung des Wägefensters. Zudem kann auch eine Feinplatzierung des mechanischen Nullpunkts am Betriebspunkt, und damit eine optimale Ausnutzung des Wägefensters, realisiert werden. Dies hat den Vorteil, dass die bestmögliche Auflösung der Kraftmessvorrichtung in jedem Betriebspunkt erreicht werden kann.
  • Bei einer Tarierung in diesem Betriebspunkt und einer Einwägung von kleinen Lasten, was bei Mikrowägezellen oft der Fall ist, kann die erfinderische Kraftmessvorrichtung vorteilhafterweise immer in der Nähe des Betriebspunkts betreiben werden, der optimale Robustheit gegenüber vertikaler Untergrundanregung garantiert, d.h. im mechanischen Nullpunkt.
  • Anstelle von Substitutionsgewichten und eines schweren Hebels, bedingt durch das Gegengewicht und die dadurch nötige stabile und steife Konstruktion des Hebels, können nun der mechanische Nullpunkt und das Wägefenster für die Anwendungsbedürfnisse stufenlos eingestellt werden, indem man das Verschiebegewicht entlang des Wägebalkens verschiebt.
  • Bevorzugt kommt eine solche Kraftmessvorrichtung bei der Verwiegung von Wägegütern in einem Behältnis zur Anwendung, da die durch das Behältnis erzeugte Vorlast das Wägefenster einschränkt, d.h. das verbleibende Wägefenster verkleinert. Die Vorlast, auch Taralast genannt, ist derjenige Teil eines Wägeguts, welcher nicht Gegenstand der Wägung ist, von der eigentlichen Last aber nicht getrennt werden kann. Durch das Verschiebegewicht wird die Vorlast kompensiert und das gesamte Wägefenster steht wieder für das Verwiegen des Wägeguts selbst zur Verfügung.
  • Die Erfindung eignet sich für Massenkomparatoren oder Kraftmessvorrichtungen einer Mikrowaage, da es hier oft der Fall ist, dass man diese im optimalen Betriebspunkt auch tarieren möchte, denn eine Gewichtskraftmessung mit einem Betriebspunkt nahe dem mechanischen Nullpunkt bietet optimale Robustheit gegenüber vertikalen Untergrundanregungen.
  • Bei dynamischen Kontrollwaagen werden die über ein Transportförderband geführten Produkte, bzw. Wägegüter, während des Transports verwogen. Dazu ist ein Förderband auf einer Kraftmessvorrichtung montiert, auf welche die Gewichtskraft des Förderbandes und des Wägeguts wirkt. Die heutigen Kontrollwagen werden so ausgelegt, dass die Masse des Förderbandes durch eine Gegenkraft, zum Beispiel einem Gegengewicht, kompensiert wird. Die vom Wägegut beim Befahren und Verlassen des Förderbandes in Schwingung gesetzte Kontrollwaage verfälscht das Wägeresultat oder macht es nötig die Anzahl Wägungen pro Zeiteinheit zu reduzieren um ein genaueres Wägeresultat zu erhalten. Mit einer erfindungsgemässen Kraftmessvorrichtung mit Push-Pull-System kann deren Betriebspunkt, bzw. mechanischer Nullpunkt an das Wägegut angepasst werden und, wenn mehr als ein Verschiebegewicht vorhanden ist, auch die Massenträgheit der Gegenkraft bzw. des Gegengewichts an diejenige des Lastaufnahmebereichs (inklusive Wägegut) angepasst werden. Dies minimiert die Schwingungsanfälligkeit und erhöht die mögliche Anzahl Wägungen pro Zeiteinheit. Vorteilhaft ist diese Anpassungsmöglichkeit deshalb, weil so die dynamische Kontrollwaage in mehreren Produktionslinien oder für verschiedene Produkte bzw. Wägegüter eingesetzt werden kann.
  • Zudem bringt die Erfindung den Vorteil, dass verschiedene Vorlasten, Förderbänder beziehungsweise Wägebänder, mit nur einem Typ einer Kraftmessvorrichtung kombiniert werden können. Es vereinfacht so das Sortiment der Bauelemente für eine dynamische Kontrollwaage.
  • Die Erfindung eignet sich sowohl für Kraftmessvorrichtungen mit Messaufnehmer, welche nach dem Push-Prinzip und solche, die nach dem Push-Pull-Prinzip die Kompensationskraft erzeugen. Ihr Unterschied liegt in der Erzeugung der Kompensationskraft: ein Push-System kann die Kompensationskraft in nur eine Richtung erzeugen, während ein Push-Pull-System in der Lage ist eine Kompensationskraft in zwei entgegengesetzte Richtungen zu erzeugen. Es ist dazu von Nöten die Masse des zweiten Hebelarms anzupassen beziehungsweise an diesem ein Zusatzgewicht anzubringen, oder die Masse des ersten Hebels oder die des Lastaufnahmebereichs zu verkleinern. Somit ist bei einem Push-Pull-System die Position des mechanischen Nullpunktes immer innerhalb des Wägefensters, was wiederum die Genauigkeit der Kraftmessvorrichtung verbessert. Speziell bei symmetrischen Push-Pull-Systemen liegt der mechanische Nullpunkt in der Mitte des Wägefensters.
  • Eine Kompensation der Vorlast im Sinne dieser Erfindung soll nachfolgend anhand eines Beispiels einer Sollwerteinstellung (wie anhand der Figur 10 detailliert beschrieben wird) für eine Einwägung näher erläutert werden.
  • In einer MFR-Wägezelle wird durch eine Positionsmessvorrichtung die Abweichung zum Gleichgewichtszustand ermittelt und durch eine Steuerung ausgewertet. Eine Verarbeitungseinheit regelt nun den Strom für den Messaufnehmer (typischerweise als Spule ausgebildet) womit dieser eine Kompensationskraft erzeugt, welche einer Gegenkraft der Gewichtskraft des Wägeobjekts entspricht. Für eine gute Regelung des Gleichgewichtszustandes in einem Push-System muss ständig ein wenig Strom durch den Messaufnehmer fliessen, das heisst die Kompensationskraft des Verschiebegewichts soll immer etwas kleiner als die Gewichtskraft des Wägeobjekts sein. Aus diesem Grund wird das Verschiebegewicht nicht bis zur exakten Gleichgewichtsposition verschoben, denn die verbleibende Kompensationskraft wird dann noch vom Messaufnehmer erbracht. Dies ermöglicht insbesondere auch eine präzise Messung. Die verbleibende Teilkompensationskraft, welche der Messaufnehmer erbringt, entspricht etwa 2% bis 8% der gesamten Kompensationskraft. In einem Push-Pull-System kann hingegen die gesamte Kompensationskraft vom Verschiebegewicht erbracht werden.
  • Als Wägebalken wird im Sinne dieser Anmeldung derjenige Hebel benannt, welcher sich dadurch auszeichnet, dass an diesem Hebel mindestens ein Verschiebegewicht angebracht ist. Dies kann im Falle einer mehrfachen Hebelübertragung jeder als geeignet erscheinender Hebel sein, auch können an mehreren verschiedenen Hebeln Verschiebegewichte angebracht sein. Je nach gewählter Kraftübersetzung, Auswahl des Hebels als Wägebalken und natürlich der jeweiligen Verschiebegewichte, kann das Verschiebegewicht eine grössere oder geringere Kompensationskraft erbringen. Vorteilhaft ist die Auslegung mit zwei als Wägebalken definierten Hebeln, so dass am einen Wägebalken eine Grobeinstellung und am anderen Wägebalken eine Feineinstellung vorgenommen werden kann. Das Eigengewicht des Messaufnehmers, insbesondere der Spule einer MFR-Wägezelle, sollte dabei auch in Betracht gezogen werden und ist vorteilhafterweise der Gewichtskraft auf der Waagschale entgegenwirkend.
  • Eine Weiterbildung der Erfindung sieht vor, dass durch die Veränderung der Position des Verschiebegewichts die Position des Wägefensters der Kraftmessvorrichtung veränderbar ist und/oder eine auf den Lastaufnahmebereich wirkende Last kompensierbar ist und/oder der Auftrieb einer auf den Lastaufnahmebereich wirkenden Last kompensierbar ist und/oder die Empfindlichkeit auf rotative Schwingungen teilweise oder ganz kompensierbar ist.
  • Die Erfindung sieht vor, dass die Position des Verschiebegewichts vermittels der durch den Messaufnehmer und/oder einer mit dem Messaufnehmer zusammenwirkenden Positionsmessvorrichtung erfassten Messgrösse gesteuert veränderbar ist.
  • Eine Weiterbildung der Erfindung sieht vor, dass der Messaufnehmer als elektrische Spule ausgestaltet ist und wobei der durch die elektromagnetische Spule fliessende und die Kompensationskraft erbringende Spulenstrom die Messgrösse für die Positionierung des Verschiebegewichts darstellt. Die dabei erfasste Messgrösse kann unmittelbar als Stellgrösse für die Position des Verschiebegewichts bestimmbar bzw. bestimmt sein, wenn sich der Betriebspunkt innerhalb des Wägefensters befindet.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Positionsmessvorrichtung ein optoelektronischer Lagesensor ist, mit einem Lichtsender und einem Lichtempfänger, welche mit einem Zwischenraum auf dem feststehenden Bereich angeordnet sind, sowie eine den Zwischenraum durchsetzende und die Auslenkung der beweglichen Teile mitmachende Blendenfahne, und dessen Sensorsignal eine durch das Auflegen der Last auf den Lastaufnahmebereich verursachten Auslenkung der miteinander verbundenen beweglichen Teile der Waage aus einer Null-Lage entspricht, und dabei die Messgrösse für die Positionierung des Verschiebegewichts darstellt.
  • Eine besonders vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Position des Verschiebegewichts vermittels einer Verschiebemessvorrichtung als Positionseinstellung, als Vorlastkompensationseinstellung, als Auftriebskompensationseinstellung und/oder als Rotationskompensationseinstellung des mindestens einen Verschiebegewichts erfasst und in einem Speicher einer Verarbeitungseinheit abgelegt werden kann, z.B. in Form einer Tabelle oder Kurve, um zu einem späteren Zeitpunkt abrufbar zu sein. Dies hat den Vorteil, dass z.B. mehrere Wägegefässe in einer Datenbank abgelegt werden können und so beim Einwägen Zeit gespart werden kann.
  • Eine andere vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Verarbeitungseinheit der Kraftmessvorrichtung mittels einer am Lastaufnahmebereich angeordneten Erkennungsvorrichtung ein Behältnis durch Strichcode oder RFID-Chip oder mittels einer mit dem gravimetrischen Messinstrument in Verbindung stehenden Erkennungsvorrichtung erkennbar ist, und die dem Behältnis zugeordnete und in einem Speicher abgelegte Positionseinstellung, und/oder Vorlastkompensationseinstellung und/oder Auftriebskompensationseinstellung und/oder Rotationskompensationseinstellung für das mindestens eine Verschiebegewicht abrufbar ist. So kann die Sollwerteinstellung automatisiert und eine mögliche Fehlerquote bei der Bedienung kann minimiert werden.
  • Besonders bevorzugt ist der Erfindungsgegenstand bei häufig wechselnden Behältnissen. Die Position des mindestens einen Verschiebegewichts kann in einem Speicher gespeichert werden, damit für eine spätere Messung mit demselben Behältnis dieselbe Vorlast wieder eingestellt werden kann, indem das Verschiebegewicht an dieselbe Position verschoben wird.
  • Die Positionierung der Verschiebegewichte durch die Verarbeitungseinheit, aufgrund einer Vorlastkompensation und/oder die Auftriebskompensation und/oder Rotationskompensation, ist für jedes einzelne Verschiebegewicht und deren Relativpositionen zu einander, auf allen Positionen des Verschiebeweges in einem Speicher der Verarbeitungseinheit abgelegt, um zu einem späteren Zeitpunkt erneut angefahren werden zu können. So muss der Benutzer der Bedienungseinheit lediglich einen Gewichtswert für eine Vorlast- und/oder Auftriebskompensation und/oder Rotationskompensation an die Verarbeitungseinheit übermitteln.
  • Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass der Massenschwerpunkt des mindestens einen Verschiebegewichts auf der niveauneutralen Ebene angeordnet ist und das Verschiebegewicht auf dieser verschiebbar ist.
  • Wenn die Drehachse und der Massenschwerpunkt des Wägebalkens (mit Spule aber ohne Verschiebegewichte), die Verbindung des ersten Hebelarms mit der Koppel, und der Krafterzeugungsmittelpunkt des Messaufnehmers, zusammen auf einer Ebene liegen, so ist der Wägebalken ohne aufgelegte Last momentfrei und unabhängig von einem schiefen Untergrund stets im Gleichgewicht. Diese Ebene wird niveauneutrale Ebene genannt.
  • Ein anderer Aspekt der Erfindung sieht vor, dass am Wägebalken mindestens zwei Verschiebegewichte auf der niveauneutralen Ebene angeordnet sind und die Verschiebegewichte auf dieser unabhängig voneinander verschiebbar sind. Damit lassen sich durch zwei kleinere Verschiebegewichte, in der Summe dem oben erwähnten einen Verschiebegewicht entsprechend, der optimale Betriebspunkt, sowie die Positionierung des Wägefensters relativ zu diesem, dem Messvorhaben besser anpassen. Insbesondere kann so die Massenträgheit oder die Dichte (siehe Dichtekompensation in der Detailbeschreibung) auf der Seite des Messaufnehmers (zweiter Hebelarm) an diejenige Seite des Lastaufnahmebereiches (erster Hebelarm) angepasst werden.
  • Eine besonders vorteilhafte Weiterbildung der Erfindung sieht vor, dass die mindestens zwei Verschiebegewichte je eine unterschiedliche Dichte aufweisen und/oder auswechselbar ausgestaltet sind. Dadurch lassen sich nicht nur die Masse, sondern auch die Dichte des Wägeguts auf der, dem Messaufnehmer zugewandten Seite des Wägebalkens (zweiter Hebelarm) an die, dem Lastaufnahmebereich zugewandte Seite (erster Hebelarm) anpassen. Die auswechselbaren Verschiebegewichte haben den Vorteil, dass die Kraftmessvorrichtung an die Messaufgaben angepasst werden kann.
  • Eine bevorzugte Ausführungsform der Erfindung zeichnet sich dadurch aus, dass an mehr als dem mindestens einen Wägebalken je ein oder mehrere Verschiebegewichte verschiebbar angeordnet sind. Damit lassen sich der optimale Betriebspunkt, sowie die Positionierung des Wägefensters relativ zu diesem, dem Messvorhaben noch genauer anpassen, denn durch die unterschiedlichen Hebelübersetzungen kann die Verschiebung von Verschiebegewichten am einen Wägebalken als Grobeinstellung und die an einem anderen als Feineinstellung verwendet werden.
  • Weiter soll in einer Ausführungsform der Erfindung die Positionierung eines Verschiebegewichts mittels eines Linearantriebs oder eines piezoelektrischen Antriebs oder mittels Drehantrieb über eine Spindel erfolgen und dabei durch den Antrieb der Verschiebeweg des Verschiebegewichts bestimmbar ist. Alle drei Varianten des Antriebs haben den Vorteil, dass eine sehr genaue Positionierung erreicht werden kann.
  • Eine bevorzugte Ausführungsform der Erfindung weist einen elektrischen Antrieb zur Positionierung des mindestens einen Verschiebegewichts auf, wobei dieser Antrieb selbst Teil des Verschiebegewichts ist. Die Positionierung des mindestens einen Verschiebegewichts kann dadurch von der Verarbeitungseinheit geregelt werden und erhöht so den Automatisierungsgrad. Dadurch wird auch der Platzbedarf optimiert, indem der Antrieb durch sein Eigengewicht zugleich als Verschiebegewicht dient.
  • Eine Weiterbildung der Erfindung sieht vor, dass das mindestens eine Verschiebegewicht über ein Einkoppelungsmittel am zweiten Hebelarm angebracht ist, mit welchem das vom Verschiebegewicht aufgebrachte Gewicht einkoppelbar und auskoppelbar ist. Dies hat den Vorteil, dass zwischen zwei Wägefenstern schnell und präzise gewechselt werden kann, ohne das Verschiebegewicht zu bewegen, was wiederum die Reproduzierbarkeit erhöht.
  • Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass das mindestens eine Verschiebegewicht derart verschiebbar ist, dass die Gewichtskraft des Verschiebegewichts der Kompensationskraft des Messaufnehmers entgegenwirkend ist. Dies ermöglicht es den mechanischen Nullpunkt eines Push-Pull-Systems auch an und über die Nulllast zu verschieben. Als Nulllast bezeichnet man den Zustand einer Kraftmessvorrichtung bei dem keine Last auf den Lastaufnahmebereich aufgelegt ist. Wird das Verschiebegewicht über die Nulllast verschoben, kann das Verschiebegewicht vorteilhafterweise auch zur Kalibrierung der Kraftmessvorrichtung verwendet werden und es entfällt der Einbau einer kompletten Kalibriereinheit einer Kraftmessvorrichtung.
  • In einem Verfahren zur Positionierung von mindestens einem Verschiebegewicht einer Kraftmessvorrichtung für ein gravimetrisches Messinstrument erfolgt diese Positionierung indem in einem Schritt eine Taralast, z.B. ein Kalibriergewicht aufgelegt, oder ein Gewichtswert durch den Benutzer eingegeben wird, oder eine Identifikation der Taralast mittels einer am Lastaufnahmebereich angeordneten Erkennungsvorrichtung durch Strichcode oder RFID-Chip oder mittels einer mit dem gravimetrischen Messinstrument in Verbindung stehenden Erkennungsvorrichtung stattfindet. In einem anderen Schritt wird ein Sollwert in Bezug auf das Wägefenster durch den Benutzer eingegeben (oder anders gesagt wird der Kompensationskraftanteil des Messaufnehmers festgelegt), oder ein Sollwert wird aus einem Speicher der Verarbeitungseinheit durch Festlegung des Messvorhabens ausgelesen. In einem nächsten Schritt wird das mindestens eine Verschiebegewicht mittels eines Antriebs verschoben und so positioniert, dass der Messaufnehmer den festgelegten Sollwert, beziehungsweise Kompensationskraftanteil erzeugt.
  • Dieses Verfahren ermöglicht es zwei abhängige Messungen, zum Beispiel bei Wägungen von Filtern, oder einzelne Messungen einer Messreihe, welche zeitlich lange auseinander liegen durchzuführen, so dass die Waage zwischenzeitlich anderweitig gebraucht werden kann. Es muss dabei sichergestellt werden, dass das gravimetrische Messinstrument mit denselben Konfigurationen, beziehungsweise Einstellungsparameter, verwendet wird wie bei der Messung, von welcher ausgegangen werden soll. Dazu gehört mindestens, dass derselbe Sollwert (bzw. Kompensationskraftanteil) gewählt und dasselbe Kalibriergewicht aufgelegt wird. Ein Kalibriergewicht kann ein extern auf die Waagschale aufgelegtes, genormt und/oder geprüftes Gewicht sein oder ein Kalibriergewicht einer innerhalb der Kraftmessvorrichtung eingebauten Kalibriereinheit sein, welche zu diesem Zweck das Kalibriergewicht zu oder weggeschalten kann.
  • In einem weiteren Verfahren wird zusätzlich ein Dichtewert des Wägeobjekts durch den Benutzer eingegeben oder mittels einer am Lastaufnahmebereich angeordneten Erkennungsvorrichtung durch Strichcode oder RFID-Chip oder mittels einer mit dem gravimetrischen Messinstrument in Verbindung stehenden Erkennungsvorrichtung erkannt, um danach, durch voneinander unabhängiges Verschieben, die jeweiligen Positionen von mindestens zwei Verschiebegewichten anzupassen.
  • Im Folgenden wird der Erfindungsgegenstand anhand von bevorzugten Ausführungsbeispielen, welche in den beiliegenden Zeichnungen dargestellt sind erläutert. Es zeigen:
  • Fig. 1
    Eine schematische Schnittdarstellung einer oberschaligen Kraftmessvorrichtung mit einem Verschiebegewicht;
    Fig. 2
    eine schematische Schnittdarstellung einer oberschaligen Kraftmessvorrichtung mit einem Verschiebegewicht und mit weiteren Hebeln;
    Fig. 3
    eine Schnittansicht durch die Fig. 1 an der Stelle der niveauneutralen Ebene in einer Ausführung mit zwei Verschiebegewichten;
    Fig. 4
    eine Kraftmesszelle einer Kraftmessvorrichtung mit Verschiebegewicht;
    Fig. 5A & Fig. 5B
    einen Wägebalken in seitlicher Darstellung (5A) und einer Aufsicht (5B) einer Kraftmessvorrichtung mit Verschiebegewichten;
    Fig. 6
    eine dreidimensionale Ansicht eines Ausführungsbeispiels eines Verschiebegewichts;
    Fig. 7
    ein Blockdiagramm mit dessen Hilfe der Funktionsablauf einer erfindungsgemässen Kraftmessvorrichtung beschrieben wird;
    Fig. 8A & Fig. 8B
    je eine vereinfachte Darstellung eines Ausführungsbeispiels einer Kraftmessvorrichtung mit einem Einkoppelungsmittel für das Verschiebegewicht;
    Fig. 9A & Fig. 9B
    ein einachsiges-Diagramm zur Wägefensterverschiebung in einem Push-System (9A), und in einem Push-Pull-System (9B);
    Fig. 10A & Fig. 10B
    ein zweiachsiges-Diagramm zur Solllastpositionierung innerhalb eines Wägefensters für ein Push-System (10A), und für ein Push-Pull-System (10B).
  • Merkmale mit gleicher Funktion und ähnlicher Ausgestaltung sind in der folgenden Beschreibung mit denselben Bezugszeichen versehen. Im Folgenden werden beide Messprinzipien behandelt namentlich jenes anhand eines Push-Systems und jenes anhand eines Push-Pull-Systems.
  • Figur 1 zeigt eine schematische Darstellung einer erfindungsgemässen Kraftmessvorrichtung 1 von der Seite in einer Schnittdarstellung. Über den feststehenden Bereich 11 ist die Kraftmessvorrichtung 1 auf einer Unterlage abgestützt. Auf den Lastaufnahmebereich 12, welcher durch zwei Parallellenker 14 und 15 mit dem feststehenden Bereich 11 verbunden ist, wird die zu messende Last über eine Schale 16 aufgelegt. Die hier gezeigte Variante als oberschalige Ausführung ist nicht zwingend. Die Kraftmessvorrichtung 1 kann ebenso als unterschalig ausgeführt werden. Die Koppel 17 überträgt die Gewichtskraft auf den ersten Hebelarm 18 des Wägebalkens 19, welcher an der Lagerstelle 21 (in der Figur 1 durch das Verschiebegewicht 23 verdeckt), welche als ein Paar von zwei Auflagestellen 21a und 21b (siehe Figur 3) definiert ist, gelagert ist. Am zweiten Hebelarm 20 ist an seinem äusseren Ende der Messaufnehmer 22 positioniert, welcher die untersetzte Gewichtskraft mit einer Kompensationskraft kompensiert. Die erfasste Messgrösse des Messaufnehmers 22 kann verwendet werden, um die Position des Verschiebegewichts 23 entlang des Wägebalkens 19 zu bestimmen. Die Bestimmung der Position des Verschiebegewichts 23 kann aber auch direkt durch die Messgrösse der Positionsmessvorrichtung 33 bestimmt werden. Gemessen und überwacht wird die Position des Verschiebegewichts 23 durch eine Verschiebemessvorrichtung. Diese kann auch dazu dienen das Verschiebegewicht 23 durch Vorgaben des Benutzers, oder einer mit dem gravimetrischen Messinstrument in Verbindung stehenden Erkennungsvorrichtung, an die für die Kompensationskraft nötige Position zu steuern.
  • Der Verschiebebereich des Verschiebegewichts 23 in einem Push-Pull-System beginnt an einer Anfangsposition, bei welcher die maximale Kompensationskraft des Verschiebegewichts 23 mit der Kompensationskraft des Messaufnehmers 22 gleichgerichtet ist, besitzt eine neutrale Position 27, von welcher das Verschiebegewicht 23 keinen Einfluss auf das Gleichgewichtsverhalten des Wägebalkens 19 hat, und endet an einer Endposition, bei welcher die maximale Kompensationskraft des Verschiebegewicht 23 der Kompensationskraft des Messaufnehmers 22 entgegenwirkt. Die neutrale Position 27 ist bei einem Push-System auf Höhe der Auflagestelle 21 und zugleich die Anfangsposition des Verschiebebereichs. Für ein Push-Pull-System entspricht die neutrale Position 27 irgendeinem Zwischenwert zwischen der Anfangsposition und der Endposition des Verschiebebereichs, je nach Auslegung der Mechanik und des Messaufnehmers 22 der Kraftmessvorrichtung 1. Bei einem symmetrischen Push-Pull-System entspricht die neutrale Position 27 der Mitte des Wägefensters, das Push-Pull-System besitzt also gleiche Push- wie Pull-Anteile.
  • Dadurch, dass der Messaufnehmer 22 in einem Push-System die Kompensationskraft in nur eine Richtung erzeugen kann, beginnt der Verschiebebereich des Verschiebgewichts 23 einer Kraftmessvorrichtung mit Push-System an der neutralen Position 27, von welcher das Verschiebegewicht keinen Einfluss auf das Gleichgewichtsverhalten des Wägebalkens 19 hat, und endet an einer Endposition, bei welcher die maximale Kompensationskraft des Verschiebegewicht 23 mit der Kompensationskraft des Messaufnehmers 22 gleichgerichtet ist. Wird die in Figur 1 dargestellte Kraftmessvorrichtung als Push-System betrachtet ist die neutrale Position 27 des Verschiebegewichts 23 an der Auflagestelle 21, und kann in Richtung des Messaufnehmers 22 verschoben werden.
  • Für die Positionsbestimmung ist jeweils der Massenschwerpunkt 28 der verschiebbaren Masse massgebend. Im Massenschwerpunkt 28 sind alle dem jeweiligen Verschiebegewicht 23 zugehörigen beweglichen und/oder verschiebbaren Teile zusammengefasst. Wird das Verschiebegewicht 23 relativ zum Messaufnehmer 22 verschoben wird dieser in der Erzeugung der Kompensationskraft entsprechend entlastet oder belastet, d.h. das Wägefenster wird hin zu schwereren beziehungsweise leichteren Lasten verschoben, oder anders gesagt wird damit der Betriebspunkt der Kraftmessvorrichtung 1 an den mechanischen Nullpunkt angepasst. Praktisch genutzt wird dies bei einer Einwägung einer Totlast, zum Beispiel eines Gefässes für die Aufnahme des Wägeguts. Das Wägefenster kann so ideal an das Messvorhaben angepasst werden. Dies gilt sowohl für das Push- wie auch für das Push-Pull-System.
  • In ebenfalls vereinfachter Darstellung zeigt Figur 2 die Ausführungsform aus Figur 1, jedoch mit zusätzlichen Hebeln. Die am Lastaufnahmebereich 12 aufgelegte Last wird über die Koppel 17 und über einen dem Wägebalken 19 vorgeschalteten Hebel 29 an den ersten Hebelarm 18 des Wägebalkens 19 übertragen. Vom zweiten Hebelarm 20 führt ein nachgeschalteter Hebel 30 die Last dem Messaufnehmer 22 zu. Dank der Durchführung 31 kann der Messaufnehmer 22 an einem für Wartungs- und/oder Reparaturarbeiten gut zugänglichen Ort platziert werden. Anders als in Figur 1 wird in der Darstellung der Figur 2 das Verschiebegewicht 23 jedoch vom Messaufnehmer 22 weg verschoben, um einer auf den Lastaufnahmebereich 12 wirkenden Last entgegen wirken zu können. Der Effekt, dass der Messaufnehmer 22 in der Erzeugung der Kompensationskraft entlastet wird, ändert sich dadurch nicht. Bei der Verwendung von weiteren Hebeln 29 bzw. 30 ist also darauf zu achten, dass sich die Verschieberichtung zu schwereren bzw. leichteren Lasten entsprechend der Anzahl der Hebelübersetzungen wechselt. Vorteilhaft ist die Auslegung der Hebelübersetzungen so, dass das Eigengewicht des Messaufnehmers 22 einer auf den Lastaufnahmebereich 12 wirkenden Last entgegenwirkt. Es sei hier nochmals erwähnt, dass es keine Rolle spielt an welchem Hebel 29, 30, beziehungsweise Wägebalken19, das mindestens eine Verschiebegewicht 23 angeordnet ist, jedoch kann durch eine grössere Kraftübersetzung eine grössere Kompensationskraft erreicht werden. Möglich ist auch die Verwendung von mehreren Verschiebegewichten 23 an mehr als einem Hebel. Je nach Kraftübersetzung kann so eine Grob- und/oder eine Feineinstellung der Kompensationskraft vorgenommen werden.
  • In der stark schematisierten Schnittdarstellung der Figur 3 ist der Wägebalken 19 mit zwei Verschiebegewichten 23A und 23B ausgeführt, welche unabhängig voneinander entlang der Verschiebeachsen 26A und 26B verschoben werden können, um z.B. eine Auftriebskompensation zu ermöglichen. Eine Auftriebskompensation hat denselben Verfahrensablauf wie eine Sollwerteinstellung (siehe weiter oben). Anschliessend an das Positionieren der Verschiebegewichte 23A und 23B wird, nach Übermittlung der Dichte des Wägeobjekts an die Verarbeitungseinheit 35 (in Figur 3 nicht dargestellt) durch den Benutzer oder mittels einer mit dem gravimetrischen Messinstrument in Verbindung stehenden Erkennungsvorrichtung, die Anpassung vorgenommen. Dabei werden die Verschiebegewichte 23A und 23B, ausgehend von Ihrer vorherigen Position je nach individuellem Dichtewert unterschiedlich in Richtung des Messaufnehmers 22 oder in Richtung des Lastaufnahmebereiches 12 verschoben, wie folgend anhand eines Beispiels erklärt wird.
  • Als Beispiel seien zwei Verschiebegewichte 23A und 23B mit den Dichten 7 kg/dm3 und 9 kg/dm3 montiert. Dies in Voraussicht eine Referenzmasse aus Stahl mit einer Dichte von 7.8 kg/dm3 zu verwiegen. Nach der Sollwerteinstellung, wie weiter oben beschrieben, sind die Verschiebegewichte 23A und 23B auf selber Höhe und kompensieren die Gewichtskraft nach den vordefinierten Messvorgaben, z.B. als metrologische Messung je zur Hälfte durch die Verschiebegewichte 23A, 23B und durch den Messaufnehmer 22. Zu diesem Zeitpunkt ist der Wägebalken 19 im Gleichgewicht. Würde sich bei dieser Messung über längere Dauer nun die Luftdichte ändern, bekämen nicht beide Seiten des Wägebalkens 19 dieselben Auftriebsänderungen mit, denn die Verschiebegewichte 23A und 23B als eine Einheit betrachtet, hätten eine Dichte von 8.0 kg/dm3, also 0.2 kg/dm3 Abweichung von der Dichte der Referenzmasse. Als Folge würde das Messresultat der Kraftmessvorrichtung 1 vom tatsächlichen Wert abweichen und die Messung unbrauchbar machen.
  • Um den Auftrieb zu kompensieren steuert nun die Verarbeitungseinheit 35 im Anschluss an die Sollwerteinstellung die Verschiebegewichte 23A und 23B aufgrund einer im Speicher der Verarbeitungseinheit 35 hinterlegten Formel einzeln an. Das Verschiebegewicht mit niederer Dichte wird in Richtung des Messaufnehmers 22 bewegt und dasjenige mit höherer Dichte in Richtung der Auflagestellen 21A und 21B, in der Weise, dass der gemeinsame Massenschwerpunkt der Verschiebegewichte 23A und 23B nicht verschoben wird. Durch den unterschiedlichen Abstand der Verschiebegewichte 23A und 23B besitzen die Verschiebegewichte 23A und 23B zusammen betrachtet nun eine Dichte von 7.8 kg/dm3, was der Dichte der Referenzmasse entspricht und gleichbedeutend ist mit identischem Auftrieb wie derjenige der Referenzmasse.
  • Betrachtet man die Kraftmessvorrichtung 1 aus Figur 3 als Push-System so befindet sich das erste Verschiebegewicht 23A gerade in der neutralen Position 27A, während das zweite Verschiebegewicht 23B einer auf den Lastaufnahmebereich 12 wirkenden Last entgegenwirkt.
  • Unter der Annahme, die Kraftmessvorrichtung 1 aus Figur 3 sei ein symmetrisches Push-Pull-System, wäre das Verschiebegewicht 23B in der Position, in welcher dessen Kompensationskraft einer auf den Lastaufnahmebereich 12 wirkenden Last entgegenwirkt, und das andere Verschiebegewicht 23A wäre gerade in der neutralen Position 27A, in welcher dessen Kompensationskraft keinen Einfluss auf das Gleichgewichtsverhalten des Wägebalkens 19 hat. Das gestrichelt dargestellte Verschiebegewicht wäre demnach in einer Position, in welcher dessen Kompensationskraft einer auf den Lastaufnahmebereich 12 wirkenden Kraft ebenfalls entgegenwirkt.
  • In einer nach dem Push-Pull-Prinzip arbeitende Kraftmessvorrichtung 1 kann das nötige, am zweiten Hebelarm angebrachte Zusatzgewicht im Verschiebegewicht integriert sein. Dies verschiebt demnach die neutrale Position 27 des Verschiebegewichts 23, 23A, 23B in Richtung des Messaufnehmers.
  • Figur 4 zeigt eine mögliche Ausgestaltung einer Kraftmesszelle 10 einer Kraftmessvorrichtung 1, als monolithische Zelle. Am zweiten Hebelarm 20 (weitestgehend von der Führung 32 verdeckt) des Wägebalkens 19 ist seitlich eine Führung 32 angebracht, welche den zweiten Hebelarm 20 zum Messaufnehmer 22 hin verlängert und zugleich als Verschiebeachse 26 des Verschiebegewichts 23 dient. Die selbige Anordnung kann ebenfalls auf der der in der Figur gezeigten gegenüberliegenden Seite angebracht sein oder auf beiden Seiten gleichzeitig. Wenn die Drehachse und der Massenschwerpunkt des Wägebalkens 19 (mit Spule aber ohne Verschiebegewichte), die Verbindung des ersten Hebelarms 18 mit der Koppel 17, und der Krafterzeugungsmittelpunkte 24 des Messaufnehmers 22, alle zusammen auf einer Ebene liegen, so ist der Wägebalken 19 ohne aufgelegte Last momentfrei und unabhängig von einem schiefen Untergrund stets im Gleichgewicht. Die so gebildete Ebene wird niveauneutrale Ebene 25 genannt.
  • Für eine Kraftmesszelle 10 mit einem nach dem Push-Pull-Prinzip arbeitenden Messaufnehmers 22 sollte die Führung 32 auch in Richtung des Lastaufnahmebereiches 12 verlängert werden (gestrichelt dargestellt) um eine Verschiebung des Verschiebegewichts 23 über die Lagerstelle 21 bis an eine entferntere Anfangsposition zu ermöglichen. Dies ermöglicht insbesondere die Verschiebung des mechanischen Nullpunktes (einer Kraftmessvorrichtung 1 nach dem Push-Pull-Prinzip arbeitend) bis zur Nulllast hin. Wird das mindestens eine Verschiebegewicht 23, 23A, 23B über die Position, welche der Nulllast entspricht, verschoben, wirkt dessen Gewichtskraft dem Messaufnehmer 22 entgegen und kann so als Kalibriergewicht eingesetzt werden.
  • Eine mögliche Ausgestaltung eines Wägebalkens 19 wird in Figur 5A und 5B gezeigt. Am einen Ende ist der Messaufnehmer 22 angebracht, welcher die Kompensationskraft erzeugt. Der Krafterzeugungsmittelpunkt 24, dargestellt durch einen Punkt mit schwarz-weisser Musterung, liegt auf der niveauneutralen Ebene 25. Ebenfalls liegen die jeweiligen Massenschwerpunkte 28A und 28B der beiden Verschiebegewichte 23A und 23B auf der niveauneutralen Ebene 25, wie auch die Auflagestellen 21A und 21B (in Figur 5A verdeckt). In beiden Figuren 5A und 5B ist der Massenschwerpunkt 28A des Verschiebegewicht 23A auf gleicher Höhe wie die Lagerstellen 21A und 21B dargestellt, das Verschiebegewicht 23A bewirkt also, im Gegensatz zum Verschiebegewicht 23B, welches in Richtung Messaufnehmer 22 verschoben ist, kein Moment auf den Wägebalken 19. Mit den gepunkteten Linien wird gezeigt welche Teile des Wägebalkens 19 zum ersten Hebelarm 18 gehören, und welche zum zweiten Hebelarm 20. In Fig. 5B ist zu sehen, dass das Verschiebegewicht 23A noch weiter vom Messaufnehmer 22 weg verschoben werden kann.
  • Figur 6 zeigt ein Beispiel eines Verschiebegewichts 23, welches in den Figuren 1 bis 5, 7 und 8 jeweils als Verschiebegewicht 23, 23A, 23B, 823 dargestellt ist, und entlang einer Verschiebeachse 26, hier als runde Führung 32 ausgestaltet, verschiebbar ist. Für die Verschiebeachse 26 gibt es weitere Ausführungsformen, welche geeignet sind, das Verschiebegewicht 23 entlang einer Verschiebeachse 26 zu führen, zum Beispiel eine Gewindespindel, eine Zahnschiene oder eine Nutschiene oder weitere, insbesondere verdrehsichere Profile. Der Antrieb zur Verschiebung eines Verschiebegewichts 23 kann als elektrischer Drehantrieb einer Gewindespindel, oder als Linearantrieb, oder als piezoelektrischer Motor ausgebildet sein. Ebenfalls kann der Motor Teil des Verschiebegewichts 23, 23A, 23B selbst sein.
  • Das Blockdiagram aus Figur 7 veranschaulicht die Funktionsabläufe in der erfindungsgemässen Kraftmessvorrichtung 1. Heute gebräuchliche Kraftmessvorrichtungen nach dem MFR-Prinzip beinhalten mindestens jene Elemente, die innerhalb der strichpunktierten Umrahmung dargestellt sind. Im Normalbetrieb, d.h. einer gebräuchlichen MFR- Kraftmessvorrichtung entsprechend, erhält die Verarbeitungseinheit 35 von der Positionsmessvorrichtung 33, meist als optoelektronischer Sensor ausgestaltet, die Grösse und Richtung der Abweichung zum Gleichgewichtszustand. Aus diesen Informationen steuert die Verarbeitungseinheit 35 über den Messaufnehmer 22 die Kompensationskraft. Dieser Prozess wiederholt sich ständig, wobei die Verarbeitungseinheit 35 aus der Messgrösse des Messwertaufnehmers 22 die Gewichtskraft des Wägeobjekts berechnet welche auf einer Anzeige 34 dem Benutzer mitgeteilt wird.
  • Im Kompensationsbetrieb einer Kraftmessvorrichtung 1 nach erfinderischer Lösung ist mindestens ein Verschiebegewicht 23 an einem Wägebalken 19 angeordnet, mit welchem die Verarbeitungseinheit 35 durch Ansteuern eines Antriebs dieses verschieben kann, um ebenfalls eine Kompensationskraft zu erzeugen. Die vom Verschiebegewicht 23 erzeugte Kompensationskraft wirkt dabei direkt auf den Messaufnehmer 22 und die dabei erfasste Messgrösse des Messaufnehmers 22 kann unmittelbar die Stellgrösse für die Position des Verschiebegewichts 23 bestimmbar bzw. bestimmt sein. Der Verarbeitungseinheit 35 stehen also zwei Möglichkeiten zur Verfügung, um die Kompensationskraft an das zu wägende Objekt anzupassen. Die dabei erzielten Wirkungen bestehen darin eine auf den Lastaufnahmebereich 12 wirkende Last, oder den Auftrieb dieser Last, zu kompensieren, oder das Wägefenster der Kraftmessvorrichtung 1 zu verändern, oder die Empfindlichkeit auf rotative Schwingungen teilweise oder ganz zu kompensieren, oder mehrere der eben aufgezählten Möglichkeiten gleichzeitig zu erfüllen. Als Stellgrösse für die Position des Verschiebegewichts 23 kann auch die Messgrösse der Positionsmessvorrichtung 33 bestimmbar bzw. bestimmt sein.
  • Eine Verschiebemessvorrichtung erfasst und überwacht die Position des Verschiebegewichts 23A, 23B entlang des Verschiebebereichs. So weiss die Verarbeitungseinheit 35 ständig an welcher Position sich das Verschiebegewicht 23A, 23B befindet, und kann durch hinterlegte Positionseinstellungen, oder Vorlastkompensationseinstellungen, Auftriebskompensationseinstellungen und/oder Rotationskompensationseinstellungen die Kompensationskraft des mindestens einen Verschiebegewichts 23, 23A, 23B berechnen. In umgekehrter Weise kann die Verarbeitungseinheit 35 anhand der oben erwähnten, hinterlegten Einstellungen, bestimmen wo das mindestens eine Verschiebegewicht 23, 23A, 23B zu positionieren ist.
  • Figur 8A und 8B zeigen je eine weitere Ausgestaltung der in Figur 1 gezeigten Kraftmessvorrichtung 1. Viele Bauteile gleichen jenen in Figur 1 und Figur 2 und weisen daher dieselben Bezugszeichen auf. Für die Beschreibung dieser Bauteile sei daher auf die Beschreibung der Figuren 1 und 2 verwiesen.
  • Im Unterschied zur Ausgestaltung gemäss Figur 1, weisen die Kraftmessvorrichtungen 2 aus Figur 8A und 8B ein Verschiebegewicht 823 auf, welches am separaten Verschiebegewichtshebel 837 zwischen der Gelenkstelle 838 und einem Einkoppelungsmittel 836 angeordnet ist. Das Einkoppelungsmittel 836 ist hier als unidirektionales, eine Druckkraft übertragendes Einkoppelungsmittel 836 ausgestaltet. Vorzugsweise kann die Position des Verschiebegewichts 823 verändert werden, dieses also auf dem Verschiebegewichtshebel 837 verschoben und wieder fixiert werden. Das derart ausgestaltete Verschiebegewicht 823 ist so Teil einer Ausführungsform, bei welcher die über das Einkoppelungsmittel 836 auf den zweiten Hebelarm 820 übertragene Kraft des Verschiebegewichts 823 einer auf den Lastaufnahmebereich 12 aufgelegten Last entgegenwirkt. Figur 8A und 8B unterscheiden sich lediglich in der Anordnung der Gelenkstelle 838. Während sich in Figur 8A der Gelenkpunkt am feststehenden Bereich 11 befindet, ist er in Figur 8B am Lastaufnahmebereich 12 angebracht. Weitere Ausführungsvarianten ergeben sich bei einem auf Zugkraft übertragenden Einkoppelungsmittel.
  • In Figur 9A und 9B ist schematisch entlang einer horizontalen Achse, welche der Gewichtskraft einer aufgelegten Last oder der Gesamtkompensationskraft einer Kraftmessvorrichtung 1 entspricht, dargestellt, wie das Wägefenster A innerhalb des Wägebereichs D einer erfinderischen Kraftmessvorrichtung 1 veränderbar ist. Als Wägebereich einer Kraftmessvorrichtung 1 wird jener Gewichtsbereich verstanden, in welchem die Masse des Wägeguts bestimmt werden kann. Die Bereiche A1, A2, A3 stellen Wägefenster der Kraftmessvorrichtung 1 an verschiedenen Positionen dar. Die jeweilige Breite dieser Bereiche bleibt konstant und wird definiert durch die maximale Kompensationskraft des Messaufnehmers 22 (Generell gilt: je stärker die Kompensationskraft eines Messaufnehmers ist, umso breiter wird das entsprechende Wägefenster).
  • Ist das mindestens eine Verschiebegewicht 23 eines Push-Systems in seiner neutralen Position 27 so entspricht dies dem Wägefenster A1 in Figur 9A. Eine Verschiebung des Wägefensters A1 um den Verschiebeweg B ergibt das Wägefenster A2. Die der aufgelegten Last entgegengebrachte Kompensationskraft setzt sich nun aus einem Teil des Verschiebegewichts und aus einem Teil des Messaufnehmers 22 zusammen. Eine Verschiebung B kann stufenlos erfolgen und ermöglicht eine kontinuierliche Verschiebung des Wägefensters A.
  • Die Figur 9B ist, der Figur 9A entsprechend, für ein Push-Pull-System dargestellt. Die Wägefenster A1, A2 und A3 besitzen je einen Push- und einen Pull-Anteil. Dieser Anteil ist in Figur 9B symmetrisch dargestellt, kann aber je nach Auslegung des Messaufnehmers 22 auch asymmetrische, d.h. unterschiedlich grosse Anteile aufweisen. Im Übergang von Push- zu Pull-Anteil liegt der mechanische Nullpunkt einer solchen Kraftmessvorrichtung 1. Das Wägefenster A2 ist um den Verschiebeweg B verschoben und vorteilhaft so positioniert, dass die Kompensationskraft des Verschiebegewichts 23 der aufgelegten Last entspricht, beziehungsweise so, dass die Kraftmessvorrichtung 1 im mechanischen Nullpunkt betrieben wird. Die Verschiebung eines Wägefensters A wird auch angewendet um eine Vorlastkompensation eines Messgefässes vorzunehmen.
  • Die maximale Verschiebung C ist erreicht bei vollständig ausgefahrenem Verschiebegewicht 23 und in Addition mit dem Wägefenster A ergibt sich der Wägebereich D der Kraftmessvorrichtung. Während bei heute gebräuchlichen MFR-Kraftmessvorrichtungen der Wägebereich dem Wägefenster entspricht, lässt sich bei einer erfindungsgemässen Kraftmessvorrichtung 1 der Wägebereich um ein vielfaches des Wägefensters erweitern. Je genauer die Verschiebbarkeit der Verschiebegewichte 23, 23A, 23B erfolgt, umso schwerere Verschiebegewichte 23, 23A, 23B können verwendet werden, und umso grösser wird der Wägebereich.
  • Anhand der Figur 10A soll anhand eines Beispiels der Ablauf einer Sollwerteinstellung bei einer Einwägung eines spezifischen Messgefässes für ein Push-System gezeigt werden (gepunktete Linie). Das Diagramm zeigt die Kompensationskraft des Messaufnehmers 22 (F-Achse) in Abhängigkeit zur Position des mindestens einen Verschiebegewichtes 23 (P-Achse). Als Ausgangslage ist ein Messgefäss auf der Schale 16 platziert, welches von der Kraftmessvorrichtung 1 nicht gemessen werden kann, da es zu schwer und somit ausserhalb des Wägefensters A liegt. Durch Starten des Einwägevorgangs erfasst die Verarbeitungseinheit 35 über den Messaufnehmer 22, dass das Wägefenster A unterhalb der aufgelegten Last ist (Der Messaufnehmer 22 erbringt die volle Kompensationskraft; 100%) und es erfolgt die Ansteuerung und Verschiebung des mindestens einen Verschiebegewichts 23, mit welcher der Kompensationskraftanteil des Verschiebegewichts 23 zunimmt. Ab Punkt X gelangt die Messung wieder innerhalb des Wägefensters A jedoch an dessen oberen Ende, d.h. bei noch maximaler Kompensationskraft des Messaufnehmers 22. Das mindestens eine Verschiebegewicht 23 verfährt aber, in einem Push-System, in dieselbe Richtung weiter bis der Messaufnehmer 22 noch einen Kompensationskraftanteil von ca. 2% - 8% (Wert bestimmt durch Eingabe des Benutzers oder durch Funktion "Einwägung" in der Verarbeitungseinheit 35 definiert) der Gesamtkompensationskraft leistet. Die Kraftmessvorrichtung 1 ist nun bereit zum Wägen des Wägeguts, welches mit dem Messgefäss auf die Schale 16 gelegt würde. Zum Wägen einer Last steht nun das restliche Wägefenster (92% - 98%) zur Verfügung.
  • In einem Push-Pull-System, gemäss Figur 10B, verfährt das Verschiebegewicht 23 ab Erreichen der Position X vorzugsweise solange weiter bis der Kompensationskraftanteil des Messaufnehmers 22 verschwindend klein wird, d.h. an den Übergang von Push- zu Pull-Kompensationskraftanteil. Die Kraftmessvorrichtung 1 befindet sich dann im mechanischen Nullpunkt und der Messaufnehmer 22 regelt nur noch kleinste Ungenauigkeiten, wie zum Beispiel Temperatur- und Windeinflüsse etc., aus. In diesem Punkt Y liegt der optimale Betriebspunkt, an dem eine gute Regelung der Messgrösse des Messaufnehmers 22 erreicht werden kann und der Messwert genau bestimmt werden kann. Der Übergang von Push- zu Pull-Kompensationskraftanteil ist in Figur 10B symmetrisch dargestellt (50%-50%). Dies ist jedoch nicht zwingend und ist abhängig von der Auslegung der Kraftmessvorrichtung 1 bzw. des Messaufnehmers 22.
  • Die Verschiebung eines Verschiebegewichts 23, 23A, 23B, und die damit verbundene Positionierung, kann auf verschiedenste Arten erfolgen, zum einen mittels der vom Messaufnehmer 22 und/oder der Positionsmessvorrichtung 33 erfassten Messgrösse (wie oben beschrieben), und zum anderen mittels der Verschiebemessvorrichtung und geeigneter Ansteuerung des Antriebs der Verschiebegewichte 23, 23A, 23B.
  • Der Benutzer gibt als Vorgabe an der Bedienungseinheit die bekannte Masse des Messgefässes oder des genormten und/oder geprüften Kalibriergewichts ein. Nachdem das Messgefäss oder das extern aufgelegte, genormte und/oder geprüfte Kalibriergewicht auf der Schale 16 platziert wurde, erkennt die Verarbeitungseinheit 35 anhand der Positionsmessvorrichtung 33 in welche Richtung das Verschiebegewicht 23, 23A, 23B zu verschieben ist. Die Ansteuerung des Antriebs durch die Verarbeitungseinheit 35 kann in Zeitintervallen oder in Dreh- oder Schrittinkrementen erfolgen, dabei entspricht ein Zeitintervall oder Inkrement einer bestimmten Verschiebung des Verschiebegewichts 23, 23A, 23B. Bei Erreichen von Punkt X (oder Punkt Z) ist das obere (bzw. das untere) Ende des Wägefensters erreicht. Ab hier berechnet die Verarbeitungseinheit 35 mit wie vielen Zeitintervallen oder Dreh- oder Schrittinkrementen der Antrieb des Verschiebegewichts 23, 23A, 23B angesteuert werden muss, um die durch den Sollwert definierte Position zu erreichen. Dafür ist im Speicher der Verarbeitungseinheit 35 abgelegt, welchem Verschiebeweg ein Zeitintervall oder Dreh- oder Schrittinkrement entspricht. Auch möglich ist ein direktes Verschieben des Verschiebegewichts 23, 23A, 23B an die Position, welche den Vorgaben des Benutzers entspricht. Dazu greift die Verarbeitungseinheit 35 auf die ihr zur Verfügung stehenden Einstellungsparameter zurück, wie zum Beispiel einer Positionseinstellung, einer Vorlastkompensationseinstellung, einer Auftriebskompensationseinstellung, und/oder einer Rotationskompensationseinstellung.
  • Der optimale Betriebspunkt und die Positionierung des Wägefensters relativ zu diesem sind in einem Push-System abhängig vom Messvorhaben des Benutzers. Während für die schon erwähnte Einwägung ein zu höheren Lasten offenes Wägefenster nötig ist, ist für eine thermogravimetrische Messung ein für niedrigere Lasten ausgerichtetes Wägefenster nötig. Für die metrologischen Messungen liegt es nahe, das Wägefenster symmetrisch an die Solllast anzupassen. Das Verfahren einer Sollwerteinstellung könnte auch bei einer metrologischen oder thermogravimetrischen Messung angewendet werden, mit dem Unterschied, dass der Anteil der Kompensationskraft des Messaufnehmers 22 zur Gesamtkompensationskraft unterschiedlich ist. So liegt dieser Anteil bei einer thermogravimetrischen Messung bei ca. 92% - 98%, da im Verlauf der Messung die Masse des Wägeguts abnimmt und so das Wägefenster A zu leichteren Lasten ausgerichtet sein sollte. Bei einer metrologischen Messung kann der Sollwert etwa bei 47% - 53% liegen. Diese in etwa mittige Positionierung des Wägefensters A würde es dem Messvorhaben ermöglichen, dass der Messwert nach beiden Seiten des Sollwertes gleich entfernt liegen kann.
  • Für ein Push-Pull-System liegt der optimale Betriebspunkt am Übergang von Push- zu Pull-Kompensationskraftanteil, also im mechanischen Nullpunkt. Somit ist die Positionierung des Wägefensters relativ zum Betriebspunkt abhängig vom Verhältnis des Push- bzw. Pull-Anteils im Wägefenster A. Diese Anteile können unterschiedlich gross sein und sind durch die Auslegung des Messaufnehmers 22 bestimmt. Ein symmetrisches Push-Pull-System ist demnach ein Wägefenster A, welches aus gleichen Teilen Push- sowie Pull-Anteilen besteht.
  • Ebenfalls kann die Situation auftreten, dass das mindestens eine Verschiebegewicht 23 an seiner maximal verschobenen Position ist, d.h. der Fahrweg zu 100% ausgenutzt ist, demnach das Messgefäss zu leicht für eine Wägung ist, und somit unterhalb des Wägefensters A liegt. In diesem Fall (in der Figur 10A als strichpunktierte Linie dargestellt) verschiebt die Verarbeitungseinheit 35 das mindestens eine Verschiebegewicht 23 in Richtung der neutralen Position 27 bis die Kompensationskraft des Verschiebegewichts 23 im Gleichgewichtszustand mit der aufgelegten Last ist (Punkt Z). Die Messung ist nun am unteren Ende des Wägefensters A, d.h. die Kompensationskraft des Messaufnehmers 22 in einem Push-System ist gleich null. Mit zunehmender Verschiebung des Verschiebegewichts 23 weiter in Richtung der neutralen Position 27 nimmt der Kompensationskraftanteil des Messaufnehmers 22 ab bis der gewünschte Sollwert oder der gewünschte Betriebspunkt erreicht ist.
  • Unterschiedlich dazu ist bei einem Push-Pull-System (siehe Figur 10B) der Zustand des Messaufnehmers im Punkt Z: Die Kompensationskraft des Messaufnehmers 22 ist maximal im Pull-Anteil und ist abnehmend mit zunehmender Verschiebung des Verschiebegewichts in Richtung der neutralen Position 27. Der bevorzugte, optimale Betriebspunkt YOPT ist erreicht, wenn der Messaufnehmer 22 keine Kompensationskraft aufbringen muss, d.h. die Kraftmessvorrichtung 1 sich im mechanischen Nullpunkt befindet. Es kann aber auch mit einem Push-Pull-System ein Sollwert des Kompensationskraftanteils durch den Benutzer oder durch die Funktion "Einwägung" in der Verarbeitungseinheit 35 definiert werden.
  • In den Figuren 10A und 10B kann die Verbindungslinie zwischen den Punkten X und Z auch als ein Verhältnis von Wägefensterbreite zu Wägebereichsbreite interpretiert werden (Koeffizient < 1). Verläuft die Linie flach (Koeffizient nahe bei 1) so ist der Gewichtsbereich, in welchem die Masse des Wägeguts bestimmt werden kann, ein wenig grösser als der Gewichtsbereich, in welchem durch die Änderung der Kompensationskraft des Messaufnehmers 33 die Masse des Wägeguts gemessen werden kann. Ein grösseres Verhältnis bietet den Vorteil eine höhere Präzision bei der Feineinstellung der Kompensationskraft des Verschiebegewichts 23, 23A, 23B zu erreichen. Ist die Verbindungslinie steiler so hat die Kraftmessvorrichtung 1 einen, im Verhältnis zum Wägefenster, dementsprechend grösseren Wägebereich und erweitert somit das Einsatzgebiet einer Kraftmessvorrichtung 1.
  • Liegen zwei abhängige Messungen, zum Beispiel bei Wägungen von Filtern, oder einzelne Messungen einer Messreihe zeitlich lange auseinander, so dass die Waage zwischenzeitlich anderweitig gebraucht wird, muss sichergestellt werden, dass das gravimetrische Messinstrument mit denselben Konfigurationen, beziehungsweise Einstellungsparameter, verwendet wird, wie bei der ersten Messung, welche als Vergleichsmessung dienen sollte. Dies kann in einem SOP (Standard Operation Procedure) definiert werden. Dabei muss der Benutzer vor dem Wägen des Wägeguts den Kompensationskraftanteil des Messaufnehmers 22 festlegen (kann bei einem Push-Pull-System durch Messaufnehmer 22 vorgegeben sein), einen Kalibrierkörper auflegen, worauf die Kraftmessvorrichtung 1 das mindestens eine Verschiebegewicht 23, 23A, 23B positioniert und den Gewichtswert speichert. Diese beiden Tätigkeiten müssen vor der Referenzmessung und vor der Anschlussmessung gemacht werden um einen Bezugspunkt für diese Vergleichsmessung zu haben. Der Kalibrierkörper kann ein extern aufgelegtes, genormt und/oder geprüftes Gewicht sein oder ein in der Kraftmessvorrichtung 1 eingebautes Kalibriergewicht, welches zu diesem Zweck zu- oder weggeschaltet werden kann.
  • Bei Langzeitmessungen, wie zum Beispiel einer metrologischen Messung, hat eine Veränderung der Umgebungstemperatur, des Luftdrucks und/oder der Luftfeuchte einen Einfluss auf die Messung. Diese Veränderungen manifestieren sich in einer Änderung der Luftdichte. Nach dem archimedischen Prinzip würde bei unterschiedlicher Dichte von Wägegut und Verschiebegewicht 23 eine Abweichung durch Auftriebsänderung auftreten, sobald die Luftdichte nicht konstant bleibt. Um dieses Problem zu lösen sind mindestens zwei Verschiebegewichte 23A und 23B mit unterschiedlichen Dichten am Wägebalken 19 angeordnet. Durch unterschiedliches Positionieren der Verschiebegewichte 23A und 23B kann nicht nur die Gewichtskraft sondern auch die dem Wägegut entsprechende Dichte am zweiten Hebelarm 20 nachgebildet werden wie sie am ersten Hebelarm 18 angreift. Eine Dichtekompensation ist dann realisierbar wenn die Dichte des Wägeguts zwischen den beiden Dichten der Verschiebegewichte 23A und 23B liegt. Bei den Extremwerten der Dichte des Wägeguts, d.h. der minimalen oder maximalen Dichte des Verschiebegewichts 23A, 23B, darf dann nur das eine Verschiebegewicht 23A, 23B die Position verändern, welches die entsprechende Dichte aufweist, während das andere Verschiebegewicht 23A, 23B in der neutralen Position verbleibt. Es verkleinert sich damit auch zwangsläufig der Verschiebebereich der Kraftmessvorrichtung 1. Daher ist eine vorherige Evaluation der Verschiebegewichte 23A und 23B auf den zukünftigen Gebrauch der Kraftmessvorrichtung 1 anzupassen. Möglich wäre auch eine Reihe von Gewichten (mehr als zwei) vorzusehen mit unterschiedlichen Dichten, welche bei Nichtgebrauch sich in der neutralen Position 27 befinden, und so ohne Einfluss auf den Wägebalken sind. Je nach Messgutdichte kommen sie zur Anwendung wenn die Auswahl geeignet erscheint.
  • Um das Einsatzgebiet der Kraftmessvorrichtung 1 zu vergrössern kann das mindestens eine Verschiebegewicht 23, 23A, 23B ausgetauscht werden. Zum Beispiel ergibt ein schwereres Verschiebegewicht 23, 23A, 23B einen grösseren maximalen Verschiebebereich (Figur 9, C). Ein kleinerer Verschiebebereich C entsteht, aber auch eine feinere und damit präzisere Einstellungsmöglichkeit, wenn das neue Verschiebegewicht 23, 23A, 23B leichter ist als das vorher montierte. Mit dem Auswechseln von gleich schweren Verschiebegewichten mit unterschiedlichen Dichten kann die Dichte des Wägeguts berücksichtigt werden.
  • Der Einsatz von mehreren Verschiebegewichten 23, 23A, 23B erfordert es, diese zu synchronisieren. Eine erste Möglichkeit ist die Verschiebegewichte 23, 23A, 23B an einen Endanschlag zu fahren und durch einen im Speicher der Verarbeitungseinheit 35 abgelegten Wert abzugleichen. Weiter ist auch eine Synchronisation im mechanischen Nullpunkt möglich. Dies hat zusätzlich den Vorteil, dass hier der Einfluss eines von aussen auf die Kraftmessvorrichtung 1 wirkenden Moments am kleinsten ist, das heisst das Abgleichen am genausten wird. Letztere Möglichkeit erweist sich für Push-Pull-Systeme als besonders geeignet.
  • Obwohl die Erfindung durch die Darstellung eines spezifischen Ausführungsbeispiels beschrieben worden ist, ist es offensichtlich, dass zahlreiche weitere Ausführungsvarianten in Kenntnis der vorliegenden Erfindung geschaffen werden können, beispielsweise indem die Merkmale der einzelnen Ausführungsbeispiele miteinander kombiniert und/oder einzelne Funktionseinheiten der Ausführungsbeispiele ausgetauscht werden.
  • Bezugszeichenliste
  • 1
    Kraftmessvorrichtung
    2
    Kraftmessvorrichtung mit Einkoppelungselement
    10
    Kraftmesszelle
    11
    feststehender Bereich
    12
    Lastaufnahmebereich
    14
    oberer Parallellenker
    15
    unterer Parallellenker
    16
    Schale
    17
    Koppel
    18
    erster Hebelarm
    19
    Wägebalken
    20, 820
    Zweiter Hebelarm
    21, 21A,
    21B Auflagestelle
    22
    Messaufnehmer
    23, 23A, 23B, 823
    Verschiebegewicht
    24
    Krafterzeugungsmittelpunkt der Spule
    25
    niveauneutrale Ebene
    26, 26A, 26B
    Verschiebeachse
    27, 27A, 27B
    Neutrale Position
    28, 28A, 28B
    Massenschwerpunkt des Verschiebegewichtes
    29
    vorgeschalteter Hebel
    30
    nachgeschalteter Hebel
    31
    Durchführung
    32
    Führung
    33
    Positionsmessvorrichtung
    34
    Anzeige
    35
    Verarbeitungseinheit
    836
    Einkoppelungsmittel
    837
    Verschiebegewichtshebel
    838
    Gelenkstelle
    A
    Wägefenster
    A1
    Wägefenster bei neutraler Position des Verschiebegewichts
    A2
    Wägefenster bei verschobenem Verschiebegewicht Wägefenster bei maximaler Verschiebung des
    A3
    Verschiebegewicht
    B
    Verschiebung
    C
    Maximale Verschiebung bzw. maximaler Verschiebebereich
    D
    Wägebereich
    XA
    Gleichgewichtszustand bei voller Kompensationskraft des Messaufnehmers
    XB
    Gleichgewichtszustand bei voller Push-Kompensationskraft
    Y
    Betriebspunkt nach einer Einwägung
    YOPT
    Optimaler Betriebspunkt einer Kraftmessvorrichtung als Push-Pull-System
    ZA
    Gleichgewichtszustand bei voller Kompensationskraft der Verschiebegewichte
    ZB
    Gleichgewichtszustand bei voller Pull-Kompensationskraft
    FSoll TGM
    Teilkompensationskraft des Messaufnehmers bei einer thermogravimetrischen Messung
    FSoll MET
    Teilkompensationskraft des Messaufnehmers bei einer metrologischen Messung
    FSoll EW
    Teilkompensationskraft des Messaufnehmers bei einem Einwägevorgang

Claims (16)

  1. Kraftmessvorrichtung (1), nach dem elektromagnetischen Kraftkompensationsprinzip arbeitend, für ein gravimetrisches Messinstrument mit einem feststehenden Bereich (11) und mit einem Lastaufnahmebereich (12), welche durch Parallellenker (14, 15) verbunden sind, mit mindestens einem Wägebalken (19), welcher über eine an einem ersten Hebelarm (18) des Wägebalkens (19) angreifende Koppel (17) direkt oder durch weitere Hebel (29) mit dem Lastaufnahmebereich (12) verbunden ist, und welcher an einem zweiten Hebelarm (20) des Wägebalkens (19) direkt oder durch weitere Hebel (30) mit einem am feststehenden Bereich (11) angeordneten Messaufnehmer (22) verbunden ist, wobei am mindestens einen Wägebalken (19) mindestens ein Verschiebegewicht (23) angeordnet ist, dadurch gekennzeichnet, dass vermittels eines Antriebs die Position des Verschiebegewichts (23) vermittels der durch den Messaufnehmer (22) und/oder einer mit dem Messaufnehmer (22) zusammenwirkenden Positionsmessvorrichtung (33) erfassten Messgrösse gesteuert veränderbar ist.
  2. Kraftmessvorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass durch die Veränderung der Position des Verschiebegewichts (23) die Position des Wägefensters der Kraftmessvorrichtung (1) veränderbar ist und/oder eine auf den Lastaufnahmebereich (12) wirkende Last kompensierbar ist und/oder der Auftrieb einer auf den Lastaufnahmebereich (12) wirkenden Last kompensierbar ist und/oder die Empfindlichkeit auf rotative Schwingungen teilweise oder ganz kompensierbar ist.
  3. Kraftmessvorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Messaufnehmer (22) eine im Feld eines Permanentmagneten beweglich angeordnete elektromagnetische Spule ist und wobei der durch die elektromagnetische Spule fliessende und die Kompensationskraft erbringende Spulenstrom die Messgrösse für die Positionierung des Verschiebegewichts (23, 23A, 23B) darstellt.
  4. Kraftmessvorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Positionsmessvorrichtung (33) ein optoelektronischer Lagesensor ist, mit einem Lichtsender und einem Lichtempfänger, welche mit einem Zwischenraum auf dem feststehenden Bereich (11) angeordnet sind, sowie eine den Zwischenraum durchsetzende und die Auslenkung der beweglichen Teile der Kraftmessvorrichtung (1) mitmachende Blendenfahne, dessen Ausgangssignal durch das Auflegen der Last auf den Lastaufnahmebereich (12) verursachten Auslenkung der miteinander verbundenen beweglichen Teile der Kraftmessvorrichtung (1) aus einer Null-Lage entspricht, und dabei die Messgrösse für die Positionierung des Verschiebegewichts (23, 23A, 23B) darstellt.
  5. Kraftmessvorrichtung (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Position des Verschiebegewichts (23, 23A, 23B) vermittels einer Verschiebemessvorrichtung als Positionseinstellung, als Vorlastkompensationseinstellung, als Auftriebskompensationseinstellung und/oder als Rotationskompensationseinstellung des mindestens einen Verschiebegewichts (23) erfasst und in einem Speicher einer Verarbeitungseinheit (35) abgelegt werden kann, um zu einem späteren Zeitpunkt abrufbar zu sein.
  6. Kraftmessvorrichtung (1) nach einem der Ansprüche 1 bis 5 , dadurch gekennzeichnet, dass die Verarbeitungseinheit (35) der Kraftmessvorrichtung (1) mittels einer am Lastaufnahmebereich (12) angeordneten Erkennungsvorrichtung ein Behältnis durch Strichcode oder RFID-Chip oder mittels einer mit dem gravimetrischen Messinstrument in Verbindung stehenden Erkennungsvorrichtung erkennbar ist, und die dem Behältnis zugeordnete und in einem Speicher abgelegte Positionseinstellung, und/oder Vorlastkompensationseinstellung und/oder Auftriebskompensationseinstellung und/oder Rotationskompensationseinstellung für das mindestens eine Verschiebegewicht (23, 23A, 23B) abrufbar ist.
  7. Kraftmessvorrichtung (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Massenschwerpunkt (28) des mindestens einen Verschiebegewichts (23) auf der niveauneutralen Ebene (25) angeordnet ist und das Verschiebegewicht (23) auf dieser verschiebbar ist.
  8. Kraftmessvorrichtung (1) nach Anspruch 4, dadurch gekennzeichnet, dass am Wägebalken (19) mindestens zwei Verschiebegewichte (23A, 23B) auf der niveauneutralen Ebene (25) angeordnet sind und die Verschiebegewichte auf dieser unabhängig voneinander verschiebbar sind.
  9. Kraftmessvorrichtung (1) nach Anspruch 8, dadurch gekennzeichnet, dass die mindestens zwei Verschiebegewichte (23A, 23B) je eine unterschiedliche Dichte aufweisen und/oder auswechselbar ausgestaltet sind.
  10. Kraftmessvorrichtung (1) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass an mehr als dem mindestens einen Wägebalken (19) je ein oder mehrere Verschiebegewichte (23, 23A, 23B) verschiebbar angeordnet sind.
  11. Kraftmessvorrichtung (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Positionierung des mindestens einen Verschiebegewichts (23, 23A, 23B) mittels eines Linearantrieb oder eines piezoelektrischen Antriebs oder mittels eines Drehantriebs über eine Spindel erfolgt und dabei durch den Antrieb der Verschiebeweg des Verschiebegewichts (23, 23A, 23B) bestimmbar ist.
  12. Kraftmessvorrichtung (1) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Kraftmessvorrichtung (1) einen elektrischen Antrieb zur Positionierung des mindestens einen Verschiebegewichts (23, 23A, 23B) aufweist und dieser Antrieb selbst Teil des Verschiebegewichts (23, 23A, 23B) ist.
  13. Kraftmessvorrichtung (1) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das mindestens eine Verschiebegewicht (823) über ein Einkoppelungsmittel (836) am Wägebalken (19) angeordnet ist, mit welchem das vom Verschiebegewicht (823) aufgebrachte Gewicht einkoppelbar und auskoppelbar ist.
  14. Kraftmessvorrichtung (1) nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das mindestens eine Verschiebegewicht (23, 23A, 23B) derart verschiebbar ist, dass die Gewichtskraft des Verschiebegewichts (23, 23A, 23B) der Kompensationskraft des Messaufnehmers (22) entgegenwirkend ist.
  15. Verfahren zur Positionierung von mindestens einem Verschiebegewicht (23, 23A, 23B) einer Kraftmessvorrichtung (1) für ein gravimetrisches Messinstrument nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Positionierung von mindestens einem Verschiebegewicht (23, 23A, 23B) die folgenden Schritte aufweist:
    - Auflegen einer Taralast auf den Lastaufnahmebereich (12) oder Eingabe eines Gewichtswertes durch den Benutzer oder Identifikation einer Taralast mittels einer am Lastaufnahmebereich (12) angeordneten Erkennungsvorrichtung durch Strichcode oder RFID-Chip oder mittels einer mit dem gravimetrischen Messinstrument in Verbindung stehenden Erkennungsvorrichtung,
    - Eingabe eines Sollwertes in Bezug auf das Wägefenster durch den Benutzer, oder auslesen des selbigen aus einem Speicher der Verarbeitungseinheit (35) durch Festlegung des Messvorhabens
    - Verschiebung des mindestens einen Verschiebegewichts (23, 23A, 23B) vermittels eines Antriebs an die entsprechende Position gemäss der Eingabe des Sollwertes.
  16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass zusätzlich ein Dichtewert des Wägeobjekts durch den Benutzer eingegeben wird oder mittels einer am Lastaufnahmebereich (12) angeordneten Erkennungsvorrichtung durch Strichcode oder RFID-Chip oder mittels einer mit dem gravimetrischen Messgerät in Verbindung stehenden Erkennungsvorrichtung erkannt wird, und dass nach dem Verschieben die jeweiligen Positionen von mindestens zwei Verschiebegewichten (23A, 23B) unabhängig voneinander angepasst werden.
EP12177470.7A 2012-07-23 2012-07-23 Kraftmessvorrichtung mit Verschiebegewicht Active EP2690415B2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL12177470.7T PL2690415T5 (pl) 2012-07-23 2012-07-23 Siłomierz z ciężarkiem przesuwnym
EP12177470.7A EP2690415B2 (de) 2012-07-23 2012-07-23 Kraftmessvorrichtung mit Verschiebegewicht
JP2013150505A JP6212313B2 (ja) 2012-07-23 2013-07-19 送り錘を有する力測定デバイス
CN201310305828.3A CN103575369B (zh) 2012-07-23 2013-07-19 具有滑动配重的测力装置
US13/946,215 US9360362B2 (en) 2012-07-23 2013-07-19 Force-measuring device with sliding weight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12177470.7A EP2690415B2 (de) 2012-07-23 2012-07-23 Kraftmessvorrichtung mit Verschiebegewicht

Publications (3)

Publication Number Publication Date
EP2690415A1 EP2690415A1 (de) 2014-01-29
EP2690415B1 EP2690415B1 (de) 2018-06-20
EP2690415B2 true EP2690415B2 (de) 2022-05-18

Family

ID=46650376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12177470.7A Active EP2690415B2 (de) 2012-07-23 2012-07-23 Kraftmessvorrichtung mit Verschiebegewicht

Country Status (5)

Country Link
US (1) US9360362B2 (de)
EP (1) EP2690415B2 (de)
JP (1) JP6212313B2 (de)
CN (1) CN103575369B (de)
PL (1) PL2690415T5 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201315715D0 (en) * 2013-09-04 2013-10-16 Metryx Ltd Method and device for determining information relating to the mass of a semiconductor wafer
CN105253371B (zh) * 2015-10-15 2017-05-17 日照市中医医院 一种药品自动称重分装装置
CN105466540A (zh) * 2015-12-13 2016-04-06 倪德米 双反弹的称重装置
PL3208583T3 (pl) * 2016-02-19 2020-01-31 Mettler-Toledo Gmbh Urządzenie do przenoszenia siły z oddzielnym ramieniem dźwigni czujnika położenia
DE102016106048B4 (de) * 2016-04-02 2024-02-08 Minebea Intec Aachen GmbH & Co. KG Wägeaufnehmer
CN105982772B (zh) * 2016-05-18 2018-04-20 赵嘉义 颈椎治疗装置
WO2018053310A1 (en) 2016-09-16 2018-03-22 Robert Moran Speed tracker
US11198050B1 (en) 2016-09-16 2021-12-14 Robert Moran Speed tracker
CN109870226A (zh) * 2017-12-04 2019-06-11 梅特勒-托利多仪器(上海)有限公司 称重传感器及其杠杆
CN109870218A (zh) * 2017-12-04 2019-06-11 梅特勒-托利多仪器(上海)有限公司 称重传感器组件及包括其的电子天平
CN108801415B (zh) * 2018-03-29 2021-10-22 湖南三德科技股份有限公司 一种样品称量方法
CN108480228B (zh) * 2018-04-02 2020-04-07 郑丛 一种可根据包裹重量进行自动分类的装置
CN108956373B (zh) * 2018-08-01 2023-11-07 湖北理工学院 一种密度自动测量装置及方法
CN109238408A (zh) * 2018-09-20 2019-01-18 南京至泰生物医药科技有限公司 生物制药用高精准原辅料称量装置
JP7152774B2 (ja) * 2019-03-13 2022-10-13 株式会社タニタ 重量測定装置
JP7395173B2 (ja) * 2019-08-28 2023-12-11 株式会社松井製作所 水分判定装置、水分判定システム及び水分判定方法
DE102020104645A1 (de) 2020-02-21 2021-08-26 Minebea Intec Aachen GmbH & Co. KG Kontrollwaage
US11268843B2 (en) * 2020-06-30 2022-03-08 K2R2 Llc Powder dispensing fixture
DE102021132094B3 (de) 2021-12-06 2023-03-30 Technische Universität Ilmenau, Körperschaft des öffentlichen Rechts Wägevorrichtung
DE102021132093B3 (de) 2021-12-06 2023-01-12 Sartorius Lab Instruments Gmbh & Co. Kg Wägevorrichtung und Verfahren zu deren Betrieb

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100985A (en) 1976-10-08 1978-07-18 Mettler Instrumente Ag Vibration-resistant balance
US4165791A (en) 1977-02-28 1979-08-28 Denver Instrument Company Automatic weight switching mechanism for substitution type analytical balances
US5092416A (en) 1990-03-14 1992-03-03 Mettler - Toledo Ag Weighing apparatus with adjustable crossbar support
DE10134281A1 (de) 2001-07-13 2003-01-30 Sartorius Gmbh Waage mit Antenne zum Abfragen von Wägeobjekten mit Transpondern
DE102004024109A1 (de) 2004-05-14 2005-12-08 Garvens Automation Gmbh Verfahren zum Wiegen eines Produktes, Wägesystem und Bestückungsvorrichtung
JP2006337207A (ja) 2005-06-02 2006-12-14 Shimadzu Corp 電子天びん
US20080053249A1 (en) 2006-09-05 2008-03-06 Mettler-Toledo Ag Force-measuring device and reference unit
DE60130529T2 (de) 2000-09-29 2008-06-19 Anritsu Industrial Solutions Co., Ltd., Atsugi Elektronische Waage
JP2010139315A (ja) 2008-12-10 2010-06-24 Anritsu Sanki System Co Ltd 電子平衡式はかり及び重量選別装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1165791A (en) 1911-09-28 1915-12-28 Mcclave Brooks Co Conveyer system.
JPS5340348B2 (de) * 1972-10-14 1978-10-26
JPS49106856A (de) * 1973-02-12 1974-10-09
JPS52104162A (en) * 1976-02-25 1977-09-01 Tokyo Electric Co Ltd Load cell weight scale
DE2621483C2 (de) 1976-05-14 1978-02-16 Sartorius-Werke GmbH (und vormals Göttinger Präzisionswaagenfabrik GmbH), 3400 Göttingen Elektromagnetisch kompensierende Balkenwaage
DE2826511A1 (de) * 1977-06-17 1979-01-11 Pitney Bowes Automatische praezisionswaage
CH625616A5 (en) * 1977-09-27 1981-09-30 Bosch Geb Scales
JPS6139945Y2 (de) * 1979-02-09 1986-11-15
CH645463A5 (de) * 1980-06-06 1984-09-28 Mettler Instrumente Ag Waage mit elektromagnetischer kraftkompensation.
JPS57200824A (en) * 1981-06-05 1982-12-09 Yamato Scale Co Ltd Balance
DE3340512A1 (de) * 1983-11-09 1985-05-15 Sartorius GmbH, 3400 Göttingen Elektrische waage
CH670703A5 (de) * 1986-06-06 1989-06-30 Mettler Instrumente Ag
CH671101A5 (de) * 1986-12-16 1989-07-31 Mettler Instrumente Ag
CH673153A5 (de) * 1986-12-24 1990-02-15 Sartorius Gmbh
CN87106455A (zh) * 1987-09-23 1988-05-18 李元明 衡器自动平衡新方法
US4802541A (en) * 1988-03-11 1989-02-07 Pitney Bowes Inc. Weighing scale with voice coil
JP2518123B2 (ja) * 1992-03-31 1996-07-24 株式会社島津製作所 電子天秤
JP3279052B2 (ja) * 1994-04-22 2002-04-30 株式会社島津製作所 電子天びん
DE19845023A1 (de) * 1998-09-30 2000-04-06 Mettler Toledo Gmbh Kraftmeßvorrichtung, insbesondere Wägezelle
CN2364441Y (zh) * 1999-01-23 2000-02-16 吴梅初 自动衡器
JP2002296101A (ja) * 2001-03-30 2002-10-09 Anritsu Corp 電子天秤
DE10342272B3 (de) * 2003-09-12 2004-09-16 Sartorius Ag Wägesystem nach dem Prinzip der elektromagnetischen Kraftkompensation
JP2007107957A (ja) * 2005-10-12 2007-04-26 Ishida Co Ltd 計量装置
US7416119B1 (en) * 2005-12-21 2008-08-26 Ncr Corporation Methods and apparatus for automatically determining and deducting weight of containers for products
DE102006002711C5 (de) * 2006-01-19 2009-11-12 Wipotec Wiege- Und Positioniersysteme Gmbh Wägeaufnehmer
EP2336736B1 (de) * 2009-12-21 2015-04-15 Mettler-Toledo AG Kraftübertragungsvorrichtung mit koppelbarem Kalibriergewicht
PL2607866T3 (pl) * 2011-12-22 2015-05-29 Mettler Toledo Gmbh Ogniwo obciążnikowe według zasady elektromagnetycznej kompensacji siły z optoelektronicznym czujnikiem pozycji

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100985A (en) 1976-10-08 1978-07-18 Mettler Instrumente Ag Vibration-resistant balance
US4165791A (en) 1977-02-28 1979-08-28 Denver Instrument Company Automatic weight switching mechanism for substitution type analytical balances
US5092416A (en) 1990-03-14 1992-03-03 Mettler - Toledo Ag Weighing apparatus with adjustable crossbar support
DE60130529T2 (de) 2000-09-29 2008-06-19 Anritsu Industrial Solutions Co., Ltd., Atsugi Elektronische Waage
DE10134281A1 (de) 2001-07-13 2003-01-30 Sartorius Gmbh Waage mit Antenne zum Abfragen von Wägeobjekten mit Transpondern
DE102004024109A1 (de) 2004-05-14 2005-12-08 Garvens Automation Gmbh Verfahren zum Wiegen eines Produktes, Wägesystem und Bestückungsvorrichtung
JP2006337207A (ja) 2005-06-02 2006-12-14 Shimadzu Corp 電子天びん
US20080053249A1 (en) 2006-09-05 2008-03-06 Mettler-Toledo Ag Force-measuring device and reference unit
JP2010139315A (ja) 2008-12-10 2010-06-24 Anritsu Sanki System Co Ltd 電子平衡式はかり及び重量選別装置

Also Published As

Publication number Publication date
CN103575369B (zh) 2018-06-08
JP2014021125A (ja) 2014-02-03
JP6212313B2 (ja) 2017-10-11
US20140020960A1 (en) 2014-01-23
PL2690415T5 (pl) 2022-10-10
PL2690415T3 (pl) 2018-12-31
EP2690415B1 (de) 2018-06-20
US9360362B2 (en) 2016-06-07
CN103575369A (zh) 2014-02-12
EP2690415A1 (de) 2014-01-29

Similar Documents

Publication Publication Date Title
EP2690415B2 (de) Kraftmessvorrichtung mit Verschiebegewicht
EP2336736B1 (de) Kraftübertragungsvorrichtung mit koppelbarem Kalibriergewicht
EP2298687B1 (de) System zum Erfassen der Lastmasse einer an einem Hubseil eines Kranes hängenden Last
EP2860501B1 (de) Wägezelle mit einer Vorrichtung zur Korrektur exzentrischer Belastungsfehler und Verfahren zur Korrektur exzentrischer Belastungsfehler
EP2784453B1 (de) Digitale Wägezellenlinearisierung
EP2153183B1 (de) Justierbare parallelführung insbesondere für ein gravimetrisches messinstrument
EP2533024B1 (de) Kraftübertragungsvorrichtung mit koppelbarem Kalibriergewicht
DE60130529T2 (de) Elektronische Waage
EP2993449B1 (de) Waage mit frei schwebender Waagschale
EP1701144B1 (de) Vorrichtung zum Wiegen gleichgearteter Wägegüter
EP2673602B1 (de) Wägezelle sowie verfahren zum justieren einer wägezelle
DE3908430C2 (de)
EP3667265B1 (de) Kalibriergewichtsanordnung für ein gravimetrisches messgerät
WO2016155869A1 (de) Elektrodynamische levitationseinrichtung, verwendung derselben und verfahren zu ihrem betrieb
CH712349A2 (de) Elektromagnetisch kompensierende Balkenwaage, Verfahren zu deren Kalibrierung und Verfahren zur Bestimmung eines Testgewichts.
EP2434264A1 (de) Kraftübertragungsvorrichtung mit koppelbarem Kalibriergewicht
DE102005007866A1 (de) Verfahren und Vorrichtung zum Wiegen von Produkten
EP2610595B1 (de) Wägebrücke
EP1189043A1 (de) Wägeaufnehmer mit Justiergewicht
DE3927475C2 (de)
EP0371322A2 (de) Oberflächenprüfeinrichtung
DE2858119C2 (de)
DE60022358T2 (de) Bandwaage zur steuerung der mineralwolleoberflächendichte
DE1598318C3 (de) Meßfühler für die Oberflächenspannung von Flüssigkeiten
WO2018197478A1 (de) Kalibrierung einer förder- und dosiervorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140716

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: METTLER-TOLEDO GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180118

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1010938

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012012909

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180921

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502012012909

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180723

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180723

26 Opposition filed

Opponent name: WIPOTEC GMBH

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180820

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1010938

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180620

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20220518

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502012012909

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230627

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230725

Year of fee payment: 12

Ref country code: CH

Payment date: 20230801

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230726

Year of fee payment: 12