EP2676072B1 - Verfahren zum betreiben eines durchlaufdampferzeugers - Google Patents
Verfahren zum betreiben eines durchlaufdampferzeugers Download PDFInfo
- Publication number
- EP2676072B1 EP2676072B1 EP12709060.3A EP12709060A EP2676072B1 EP 2676072 B1 EP2676072 B1 EP 2676072B1 EP 12709060 A EP12709060 A EP 12709060A EP 2676072 B1 EP2676072 B1 EP 2676072B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mass flow
- load
- evaporator
- circulating
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 22
- 230000003247 decreasing effect Effects 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000001816 cooling Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
- F22B29/12—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating with superimposed recirculation during starting and low-load periods, e.g. composite boilers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B35/00—Control systems for steam boilers
- F22B35/06—Control systems for steam boilers for steam boilers of forced-flow type
- F22B35/10—Control systems for steam boilers for steam boilers of forced-flow type of once-through type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B35/00—Control systems for steam boilers
- F22B35/06—Control systems for steam boilers for steam boilers of forced-flow type
- F22B35/10—Control systems for steam boilers for steam boilers of forced-flow type of once-through type
- F22B35/101—Control systems for steam boilers for steam boilers of forced-flow type of once-through type operating with superimposed recirculation during starting or low load periods, e.g. composite boilers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0324—With control of flow by a condition or characteristic of a fluid
- Y10T137/0374—For regulating boiler feed water level
Definitions
- the invention relates to a method for operating a continuous steam generator with an evaporator, in which a Lucasmassenstrom a flow medium with the aid of a feed pump to the evaporator and there is at least partially evaporated, wherein not evaporated flow medium deposited in a separator downstream of the evaporator and Umisselzmassenstrom the deposited flow medium is guided back into the evaporator with the aid of a circulation pump, so that the mass flow of the flow medium flowing through the evaporator, called the evaporator mass flow, is composed of the feed mass flow and the circulation mass flow.
- a method is for example in document DE 32 43 578 A1 oven beard.
- a forced flow steam generator In a forced flow steam generator, the passage of the usually supplied in the form of feed water flow medium is enforced by the usually provided preheater, the evaporator and the superheater by a correspondingly powerful feed water pump, short feed pump. Thus, the heating of the flow medium to the saturated steam temperature, the evaporation and subsequent overheating takes place continuously in one pass, so that no drum is needed.
- a forced once-through steam generator can also be operated in the supercritical range at pressures of 230 bar and more. With forced circulation boilers very large steam outputs can be generated in a relatively small space. Since the amount of flow medium in the system is relatively low, the system has a low inertia and thus allows a fast response to load changes.
- Fired forced flow evaporators with spiral around a combustion chamber wound evaporator tubes are usually designed for a mass flow density of the guided through the evaporator tubes flow medium of about 2000 kg / (sm 2 ) at 100% load (full load).
- the mass flow density in a vaporizer with smooth tubes at partial load should not fall below a value of about 800 kg / (sm 2 ) in order to avoid cooling problems on the tube walls by stratification of the flow.
- this value corresponds to a load value of 40% of the full load. This is then also the load case for which the evaporator minimum mass flow is defined. In start-up and low-load operation, it is ensured by the feedwater control that the evaporator minimum mass flow is always supplied to the evaporator.
- Non-evaporated water which is obtained especially in start-up and low-load operation, is usually separated from the vapor in a downstream of the evaporator water separator (short: separator) and to a water collection vessel (the so-called collection bottle or short bottle), while the steam usually a superheater is supplied.
- a circulating pump is used to recirculate the separated water and before the so-called economizer called feedwater in the feedwater mass flow (short: Lucasmassenstrom) integrate, so ultimately return it to the evaporator inlet.
- the evaporator mass flow is composed of the feed mass flow and the circulating mass flow, also referred to as recirculation mass flow.
- the invention is therefore based on the object of specifying a method for operating a continuous steam generator of the type mentioned above, which avoids the disadvantages mentioned, is thus designed with low purchase and operating costs for effective and safe part-load operation with sufficient cooling of the evaporator tubes. Furthermore, a continuous steam generator particularly suitable for carrying out the method should be specified.
- control characteristic also applies analogously to the case of sinking load. This means, for example, that in the low load interval the feed mass flow is reduced with decreasing load, etc.
- the invention is based on the consideration that, although it would be possible in principle to dispense with the Rezirkulationsnikklauf with the circulation pump, thus easily divert the water deposited in the separator when starting and in low load operation and discard (so-called drain operation).
- this would be disadvantageous from a thermodynamic and economic point of view and, moreover, would undesirably increase the thermal load on the superheater heating surfaces downstream of the evaporator because of the lower fluid temperatures at the inlet of the economiser and evaporator and the resulting lower production of cooling steam acting on the heating surfaces Start-up operation.
- the present invention is detached from the design guidelines for the recirculation mass flow, which have hitherto been valid and considered to be operationally reliable. It has been surprisingly found that the design mass flow for the circulation pump can be significantly reduced, at least in a low load interval compared to the previous level of knowledge, without having to accept any disadvantages.
- the evaporator minimum mass flow which in this case is effected almost exclusively by the circulating-mass flow, can be halved in comparison to the previously established value.
- the assurance of sufficient cooling of the evaporator tubes under these conditions - even if they are designed as smooth tubes - could be proven by appropriate thermo-hydraulic calculations and simulations.
- the previously customary values for the evaporator minimum mass flow are then predetermined again and achieved by appropriate control of the feed mass flow and the circulation mass flow.
- the transition between the two control scenarios is preferably continuous, in particular linear.
- the feed mass flow is increased linearly with increasing load in the low load interval.
- the circulation mass flow rate is kept constant, this means that the total evaporator mass flow - as already mentioned, the sum of the feed mass flow and the circulation mass flow - increases linearly with the load.
- the feed mass flow is increased linearly with increasing load even in the middle load interval, while the Umisselzmassenstrom is preferably reduced linearly with increasing load.
- the Umisselzmassenstrom is thereby reduced to the same extent as the feed mass flow is increased. This means that the sum of the two mass flows, namely the evaporator mass flow, remains constant in the middle load interval.
- the low load interval begins at zero load and preferably ends at about 20% of the designed full load.
- the low load interval is expediently followed immediately by the middle load interval, which preferably ends at approximately 40% of the design full load.
- the circulation mass flow in the low load interval is set to approximately 20% of the full load value of the evaporator mass flow.
- a value of Ummélzmassenstrom Why of about 400 kg / (sm 2 ) is particularly advantageous, corresponding to an evaporator mass flow density at full load of about 2000 kg / (sm 2 ).
- the circulation mass flow and the feed mass flow are adjusted in the middle load interval such that the evaporator mass flow always reaches at least 40% of the full load value in this interval.
- the evaporator mass flow in this load interval by opposite change is kept constant by supply current and circulating current (see above).
- a continuous steam generator with an evaporator is necessary, upstream of a feed pump and downstream of a separator for non-evaporated flow medium, the separator being connected to the water-side steam generator inlet via a return line into which a circulation pump is connected. and wherein an electronic control unit for the feed pump and the circulation pump is provided, which performs the method steps of the method described above.
- the return line expediently opens downstream of the feed pump and upstream of the feedwater preheater in the feed line.
- the separator is thus (indirectly) connected to the evaporator inlet via the feedwater preheater.
- control or regulation unit for the purpose mentioned advantageously a corresponding control or regulation program is implemented in terms of hardware and / or software.
- the control or regulation unit acts on the feed pump and the circulation pump and controls their delivery rate, ie the respective flow rate of the flow medium (feed water and separated water from the evaporator), by means of suitable manipulators, in accordance with prior operator input (for example startup, shutdown, partial load operation, etc.).
- suitable manipulators for example startup, shutdown, partial load operation, etc.
- the control or regulation unit is expediently supplied with the actual value of relevant operating variables, so that a corresponding readjustment can take place in the event of a deviation from the desired setpoint.
- the continuous steam generator is preferably fired directly by a number of burners.
- He preferably has one Combustion chamber or a throttle cable
- the surrounding wall is formed of a plurality of gas-tight welded together evaporator tubes, wherein at least a portion of the enclosure wall forms the actual evaporator (next to possibly other areas that form the feedwater or the superheater).
- the throttle cable is preferably designed as a vertical gas train and has at least in the evaporator section a spiral tube, that is spirally or helically within the enclosure wall about the longitudinal axis of the gas draft convoluted evaporator tubes on.
- the evaporator tubes are preferably smooth tubes; but there are also conceivable provided with a êtberippung pipes.
- the minimum mass flow density at the highest load in recirculation mode can be reduced from the typical smooth tube value of 800 kg / (sm 2 ) to about 500 kg / (sm 2 ). Therefore, an evaporator with internally finned tubes can be run in continuous operation at loads above 25% of full load when the full load mass flow density of the evaporator is 2000 kg / (sm 2 ). Even with the use of innenberippten pipes in a spiral evaporator, the circulation pump according to the invention can be dimensioned particularly compact. In a spiral evaporator with internally tipped tubes, the transition from recirculation to continuous operation is about 25% load rather than 40% load.
- the previous and following descriptions, which are numerically designed for a smooth-tube evaporator can be transferred to an evaporator with internally-tipped tubes, taking into account this constraint.
- the advantages achieved by the invention are, in particular, that an operation of a forced once-through steam generator with return of the deposited on or after the evaporator liquid flow medium (water) in the feedwater is made possible by the deliberate departure from previously relevant design principles (so-called Forced-circulation mixing system), in which despite a comparatively low selected Umicalzmassenstrom in the vicinity of the zero-load range, a high operational safety and sufficient pipe cooling is guaranteed.
- the circulation pump can be dimensioned particularly compact in this case and be correspondingly inexpensive to purchase.
- the in FIG. 1 illustrated flow steam generator 2 comprises an evaporator 4 for the evaporation of a flow medium M, which is preceded by a feedwater heater 6 also referred to as economizer flow side.
- the evaporator 4 comprises a plurality of fluidly connected in parallel, gas-tight welded together and designed as smooth tubes steam generator tubes which form a region of a peripheral wall of a combustion chamber in the manner of a spiral tube, which is heated via a number of burners (not shown in detail here).
- the evaporator 4 is followed by a superheater 8 with a number of Matterhitzersammlung inhabit flow medium side.
- the vapor D leaving the evaporator 4 via the evaporator outlet 16 is finally superheated in the superheater 8 and then supplied to its intended use, for example in a steam turbine.
- the flow medium M is not completely evaporated in the evaporator 4, but it remains at the evaporator outlet 16, a proportion of non-evaporated, liquid flow medium M, namely water W.
- This water content is in a flow medium side between the evaporator 4 and the superheater 8 connected separator 18 from the vapor portion, which is forwarded to the superheater 8, separated and separated.
- the separated water W is collected in a collecting vessel 20 connected to the separator 18, and from there, depending on the operating state, is guided to varying degrees via a return line 22 to the inlet of the feedwater pre-heater 6.
- a circulation pump 24 is connected in the return line 22, and the return line 22 is connected to the feed line 10 downstream of the feed pump 12 and upstream of the feedwater pre-heater 6. Excess water W is discharged from the collecting vessel 20 via a discharge line 26.
- the mass flow of the evaporator 4 flowing through the flow medium M namely the evaporator mass flow VM, is thus additively from the mass flow of supplied feedwater S, namely the feed mass flow SM, and the mass flow of previously separated water W, namely recirculated by means of the circulation pump 24 the Ummélzmassenstrom UM, together.
- mass flow colloquially also the term flow is used.
- a on the feed pump 12 and the circulation pump 24 and optionally not shown here adjusting or control valves in the line system of the flow medium M acting electronic control or regulating unit 28 is used for operating state-dependent control or regulation of these mass flows, especially during start-up or low load operation.
- a number of sensors connected to the control or regulation unit 28 are furthermore provided (not shown here).
- FIG. 2 shows the course of relevant characteristics according to a conventional control scheme.
- Plotted as a function of the load L here are Umisselzmassenstrom UM, the feed mass flow SM and the evaporator mass flow VM.
- the load values on the abscissa are each expressed as a percentage value of the maximum load, and similarly, the flow rate and mass flow values are indicated on the ordinate as the percentage values of the designed maximum evaporator mass flow VM at full load.
- the Umisselzmassenstrom UM increases steadily and in particular linearly to the value 0% (corresponding to 40% load) with increasing load from the output value of 40% (corresponding to 0% load), while the value of the feed mass flow SM in the corresponding load interval linearly from 0 % rises to 40%.
- the circulation mass flow UM remains at the value 0%, while the feed mass flow SM and thus the evaporator mass flow VM increase 100% up to the full load value (not shown in the diagram).
- the circulation pump 24 must therefore be designed for a comparatively high mass flow value of 40% of the evaporator mass flow VM at full load.
- FIG. 3 a shows FIG. 3 a with respect to the requirements of the circulation pump 24 improved control scheme in a too FIG. 2 analogue diagrammatic representation.
- control variant Similar to the through FIG. 2 is represented control variant the feed mass flow SM increased in the load interval between 0% and 40% load linearly from the value 0% to the value 40%.
- the Umisselzmassenstrom UM is now in a first load interval between 0% and 20% load, here referred to as low load interval I, on a opposite FIG. 2 reduced value of 20% kept constant. Only in the subsequent middle load interval II between 20% load and 40% load is the circulation mass flow reduced linearly to the value 0%.
- the evaporator flow in the low load interval I increases from the value of 20% linearly to the value of 40% and is maintained at 40% in the middle load interval II.
- the evaporator mass flow VM increases as in the previously discussed case of the feed mass flow SM and thus the evaporator mass flow VM to full load value 100%.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
- Jet Pumps And Other Pumps (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201110006390 DE102011006390A1 (de) | 2011-03-30 | 2011-03-30 | Verfahren zum Betreiben eines Durchlaufdampferzeugers und zur Durchführung des Verfahrens ausgelegter Dampferzeuger |
PCT/EP2012/054105 WO2012130588A1 (de) | 2011-03-30 | 2012-03-09 | Verfahren zum betreiben eines durchlaufdampferzeugers und zur durchführung des verfahrens ausgelegter dampferzeuger |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2676072A1 EP2676072A1 (de) | 2013-12-25 |
EP2676072B1 true EP2676072B1 (de) | 2017-10-18 |
Family
ID=45841471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12709060.3A Active EP2676072B1 (de) | 2011-03-30 | 2012-03-09 | Verfahren zum betreiben eines durchlaufdampferzeugers |
Country Status (9)
Country | Link |
---|---|
US (1) | US9194577B2 (ko) |
EP (1) | EP2676072B1 (ko) |
JP (1) | JP5818963B2 (ko) |
KR (1) | KR101960554B1 (ko) |
CN (1) | CN103459926B (ko) |
AU (1) | AU2012237306B2 (ko) |
DE (1) | DE102011006390A1 (ko) |
WO (1) | WO2012130588A1 (ko) |
ZA (1) | ZA201306812B (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140123914A1 (en) * | 2012-11-08 | 2014-05-08 | Vogt Power International Inc. | Once-through steam generator |
PT3086032T (pt) * | 2015-04-21 | 2021-01-29 | General Electric Technology Gmbh | Gerador de vapor de passagem única de sal fundido |
DE102017205382A1 (de) | 2017-03-30 | 2018-10-04 | Siemens Aktiengesellschaft | Wasserrückführung in vertikalen Zwangdurchlaufdampferzeugern |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1401348A1 (de) * | 1962-08-09 | 1969-10-02 | Continental Elektro Ind Ag | Brennstoff- bzw. Speisewassermengenregelungseinrichtung an Zwangdurchlaufkesseln |
FR1349790A (fr) * | 1963-03-07 | 1964-01-17 | Babcock & Wilcox France | Procédé pour l'exploitation d'un générateur de vapeur à circulation forcée avec une pompe de circulation auxiliaire |
AT258316B (de) * | 1964-02-28 | 1967-11-27 | Siemens Ag | Zwangdurchlaufkessel |
JPS4124881Y1 (ko) * | 1964-04-27 | 1966-12-20 | ||
NL6910208A (ko) * | 1969-07-03 | 1971-01-05 | ||
DE2735463C2 (de) * | 1977-08-05 | 1982-03-04 | Kraftwerk Union AG, 4330 Mülheim | Durchlaufdampferzeuger |
JPS5565803A (en) * | 1978-11-14 | 1980-05-17 | Mitsubishi Heavy Ind Ltd | Boiler device |
US4367628A (en) * | 1981-02-27 | 1983-01-11 | The United States Of America As Represented By The United States Department Of Energy | Low chemical concentrating steam generating cycle |
DE3243578C3 (de) * | 1982-11-25 | 1998-10-22 | Babcock Energie Umwelt | Verfahren zum Betreiben eines Zwangsdurchlaufdampferzeugers |
JPS62106804A (ja) | 1985-11-05 | 1987-05-18 | Kurita Water Ind Ltd | 抽出装置 |
JPS62237204A (ja) * | 1986-04-07 | 1987-10-17 | 三菱重工業株式会社 | 貫流ボイラの最低給水流量制御装置 |
TW212826B (ko) * | 1991-11-28 | 1993-09-11 | Sulzer Ag | |
BE1005793A3 (fr) * | 1992-05-08 | 1994-02-01 | Cockerill Mech Ind Sa | Chaudiere de recuperation de chaleur a circulation induite. |
DE4236835A1 (de) | 1992-11-02 | 1994-05-05 | Siemens Ag | Dampferzeuger |
DE19602680C2 (de) * | 1996-01-25 | 1998-04-02 | Siemens Ag | Durchlaufdampferzeuger |
UA42888C2 (uk) * | 1997-06-30 | 2001-11-15 | Сіменс Акціенгезелльшафт | Парогенератор, який працює на відхідному теплі |
DE19745272C2 (de) * | 1997-10-15 | 1999-08-12 | Siemens Ag | Gas- und Dampfturbinenanlage und Verfahren zum Betreiben einer derartigen Anlage |
JP2002106804A (ja) * | 2000-09-29 | 2002-04-10 | Ishikawajima Harima Heavy Ind Co Ltd | 変圧貫流ボイラの給水流量制御装置 |
EP1710498A1 (de) * | 2005-04-05 | 2006-10-11 | Siemens Aktiengesellschaft | Dampferzeuger |
JP4507098B2 (ja) * | 2005-05-20 | 2010-07-21 | 東京電力株式会社 | 超臨界圧定圧貫流ボイラの流体循環運転設備とその運転方法 |
US7587996B2 (en) * | 2006-06-07 | 2009-09-15 | Babcock & Wilcox Power Generation Group, Inc. | Circulation system for sliding pressure steam generator |
EP2255076B1 (de) * | 2008-02-26 | 2015-10-07 | Alstom Technology Ltd | Verfahren zur regelung eines dampferzeugers und regelschaltung für einen dampferzeuger |
EP2194320A1 (de) * | 2008-06-12 | 2010-06-09 | Siemens Aktiengesellschaft | Verfahren zum Betreiben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger |
EP2224164A1 (de) * | 2008-11-13 | 2010-09-01 | Siemens Aktiengesellschaft | Verfahren zum Betreiben eines Abhitzedampferzeugers |
DE102009012322B4 (de) * | 2009-03-09 | 2017-05-18 | Siemens Aktiengesellschaft | Durchlaufverdampfer |
US20140123914A1 (en) * | 2012-11-08 | 2014-05-08 | Vogt Power International Inc. | Once-through steam generator |
-
2011
- 2011-03-30 DE DE201110006390 patent/DE102011006390A1/de not_active Ceased
-
2012
- 2012-03-09 JP JP2014501516A patent/JP5818963B2/ja not_active Expired - Fee Related
- 2012-03-09 EP EP12709060.3A patent/EP2676072B1/de active Active
- 2012-03-09 AU AU2012237306A patent/AU2012237306B2/en not_active Expired - Fee Related
- 2012-03-09 KR KR1020137028267A patent/KR101960554B1/ko active IP Right Grant
- 2012-03-09 CN CN201280015660.6A patent/CN103459926B/zh active Active
- 2012-03-09 US US14/007,723 patent/US9194577B2/en not_active Expired - Fee Related
- 2012-03-09 WO PCT/EP2012/054105 patent/WO2012130588A1/de active Application Filing
-
2013
- 2013-09-10 ZA ZA2013/06812A patent/ZA201306812B/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN103459926A (zh) | 2013-12-18 |
KR20140024343A (ko) | 2014-02-28 |
US9194577B2 (en) | 2015-11-24 |
US20140014189A1 (en) | 2014-01-16 |
EP2676072A1 (de) | 2013-12-25 |
JP2014512501A (ja) | 2014-05-22 |
DE102011006390A1 (de) | 2012-10-04 |
CN103459926B (zh) | 2015-11-25 |
AU2012237306B2 (en) | 2016-09-08 |
WO2012130588A1 (de) | 2012-10-04 |
AU2012237306A1 (en) | 2013-11-07 |
JP5818963B2 (ja) | 2015-11-18 |
KR101960554B1 (ko) | 2019-03-20 |
ZA201306812B (en) | 2016-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0436536B1 (de) | Verfahren und anlage zur abhitzedampferzeugung | |
EP2297518B1 (de) | Verfahren zum betreiben eines durchlaufdampferzeugers sowie zwangdurchlaufdampferzeuger | |
EP2212618B1 (de) | Verfahren zum betreiben eines durchlaufdampferzeugers sowie zwangdurchlaufdampferzeuger | |
EP1848925B1 (de) | Dampferzeuger in liegender bauweise | |
DE3782314T2 (de) | Sperrdamppfsystem fuer eine dampfturbine. | |
DE102007052234A1 (de) | Verfahren zum Betreiben eines solarthermischen Kraftwerks und solarthermisches Kraftwerk | |
DE1170423B (de) | Verfahren und Anordnung zur Regelung der Dampftemperaturen in einem Zwangdurchlauf-dampferzeuger mit zwei im Rauchgaszug angeordneten Zwischenueberhitzern | |
DE3216298A1 (de) | Verfahren und vorrichtung zur steuerung der temperatur von ueberhitztem dampf | |
EP2438351B1 (de) | Durchlaufverdampfer | |
EP2321578B1 (de) | Durchlaufdampferzeuger | |
EP2676072B1 (de) | Verfahren zum betreiben eines durchlaufdampferzeugers | |
EP3017152B1 (de) | Gas-und-dampf-kombikraftwerk mit einem abhitzedampferzeuger und einer brennstoffvorwärmung | |
EP0808440B1 (de) | Verfahren und vorrichtung zum anfahren eines durchlaufdampferzeugers | |
DE2544799A1 (de) | Gasbeheizter dampferzeuger | |
DE69819566T2 (de) | Verdampfervorrichtung für eine Schwerölemulsion | |
DE2006409C3 (de) | Im Gleitdruckverfahren betriebener Zwanglaufdampferzeuger | |
DE69717165T2 (de) | Verfahren zum betrieb eines zwanglaufdampferzeugers und dampferzeuger zur ausführung des verfahrens | |
EP2567151B1 (de) | Verfahren zum betreiben eines dampferzeugers | |
EP2564117B1 (de) | Dampferzeuger | |
DE1965078B2 (de) | Verfahren zum gleitdruckbetrieb eines zwanglaufdampferzeu gers | |
EP2655811B1 (de) | Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine | |
EP1533565A1 (de) | Durchlaufdampferzeuger | |
DE1965078C (de) | Verfahren zum Gleitdruckbetrieb eines Zwanglauf da mpferzeugers | |
DE19702133A1 (de) | Durchlaufdampferzeuger und Verfahren zum Betreiben eines Durchlaufdampferzeugers | |
EP2900945B1 (de) | Verfahren zum flexiblen betrieb einer kraftwerksanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130919 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20170519 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 938288 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012011472 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180118 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180218 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180118 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180119 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012011472 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
26N | No opposition filed |
Effective date: 20180719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180331 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 938288 Country of ref document: AT Kind code of ref document: T Effective date: 20180309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120309 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502012011472 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220825 AND 20220831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20231228 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240328 Year of fee payment: 13 Ref country code: GB Payment date: 20240319 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240321 Year of fee payment: 13 |