EP2655811B1 - Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine - Google Patents

Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine Download PDF

Info

Publication number
EP2655811B1
EP2655811B1 EP12705819.6A EP12705819A EP2655811B1 EP 2655811 B1 EP2655811 B1 EP 2655811B1 EP 12705819 A EP12705819 A EP 12705819A EP 2655811 B1 EP2655811 B1 EP 2655811B1
Authority
EP
European Patent Office
Prior art keywords
power
fossil
steam
steam generator
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12705819.6A
Other languages
English (en)
French (fr)
Other versions
EP2655811A2 (de
Inventor
Frank Thomas
Jan BRÜCKNER
Martin Effert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL12705819T priority Critical patent/PL2655811T3/pl
Publication of EP2655811A2 publication Critical patent/EP2655811A2/de
Application granted granted Critical
Publication of EP2655811B1 publication Critical patent/EP2655811B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/003Emergency feed-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/02Applications of combustion-control devices, e.g. tangential-firing burners, tilting burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays

Definitions

  • the invention relates to a method for controlling a short-term increase in output of a steam turbine with an upstream fossil-fueled continuous steam generator with a number of a flow path forming, flowed through by a flow medium economizer, evaporator and superheater heating, and for example from the US 6301895 B1 known.
  • a fossil-fueled steam generator produces superheated steam using the heat generated by burning fossil fuels.
  • Fossil fueled steam generators are mostly used in steam power plants, which are mainly used for power generation.
  • the generated steam is fed to a steam turbine.
  • the fossil-fueled steam generator also comprises a plurality of pressure stages with different thermal states of the respectively contained water-steam mixture.
  • the flow medium In the first (high) pressure stage, the flow medium first passes through economizers on its flow path, using residual heat to preheat the flow medium, and then various stages of evaporator and superheater heating surfaces.
  • the evaporator the flow medium is evaporated, then separated any residual moisture in a separator and further heated the remaining steam in the superheater. Thereafter, the superheated steam flows into the high-pressure part of the steam turbine, where it is expanded and fed to the following pressure stage of the steam generator. There it is again superheated (reheater) and fed to the next pressure part of the steam turbine.
  • the heat output transferred to the superheaters can fluctuate greatly. Therefore It is often necessary to regulate the overheating temperature. Usually, this is usually achieved by an injection of feedwater before or after individual Matterhitzersammlung inhabit for cooling, ie, an overflow branches off from the main stream of the flow medium and leads to there correspondingly arranged injection coolers. In this case, the injection is usually regulated by means of valves via a characteristic value characteristic of the temperature deviations from a predetermined temperature setpoint at the outlet of the superheater.
  • Modern power plants not only require high levels of efficiency but also the most flexible mode of operation possible. Apart from short start-up times and high load change speeds, this also includes the possibility of compensating for frequency disturbances in the power grid. To meet these requirements, the power plant must be able to provide more power of, for example, 5% and more in relation to full load within a few seconds.
  • Such power changes of a power plant block in the second range are possible only by a coordinated interaction of steam generator and steam turbine.
  • the contribution that the fossil-fueled steam generator can make is the use of its storage, d. H. of the steam but also of the fuel storage, as well as rapid changes of the control variables feedwater, injection water, fuel and air.
  • This additional power can be released in a relatively short time, so that the delayed power increase can be at least partially compensated by the increase in the firing capacity.
  • the entire block makes by this measure immediately a jump in performance and can also permanently maintain or exceed this level of performance by a subsequent increase in the firing capacity, provided that the system was at the time of additionally requested power reserves in the partial load range.
  • This object is achieved according to the invention by increasing the flow of the flow medium through the fossil-fired steam generator for short-term increase in output of the steam turbine.
  • the invention is based on the consideration that the introduced heat output into the steam generator is determined by the firing capacity and only has a comparatively slow effect in the event of a sudden change.
  • An additional benefit payment in the steam turbine should therefore be made by using the heat energy stored in the heating surfaces of the steam generator.
  • the withdrawal of this heat requires a lowering of the average material temperature. This should be done by increasing the flow, i. H. the amount of flow medium flowing through per unit of time can be achieved. Due to the higher flow with comparatively lower medium temperatures, the average material temperature of all heating surfaces is lowered by this measure and as a result thermal energy is released from all these heating surfaces and released in the steam turbine in the form of additional power.
  • the enthalpy desired value at the outlet of an evaporator heating surface is reduced for a short-term increase in output of the steam turbine.
  • the setpoint for the specific enthalpy is used in the control system of the steam generator as a control variable for determining the setpoint for the flow of the flow medium.
  • This switching action has two effects: First, the basic setpoint for the evaporator flow rate calculated in the feedwater setpoint determination increases. Secondly, the enthalpy correction controller - in particular if the reduction takes place particularly quickly (abruptly) - increases its output signal by means of a now greater control deviation in order to reduce the enthalpy at the evaporator outlet as quickly as possible. As a result, the feedwater quantity at the beginning of this measure even increases disproportionately and it is a particularly rapid withdrawal of heat from the heating surfaces with the associated glossentitati in the steam turbine possible.
  • the enthalpy target value is reduced to a predetermined minimum enthalpy value.
  • the Swiss-Shuna is dimensioned such that in all load conditions of the fossil-fired steam generator complete evaporation of the flow medium is achieved in the evaporator heating.
  • the enthalpy at the evaporator outlet is not lowered too far and consequently a seizure of residual water in a downstream separator can be safely avoided.
  • a maximum increase in additional feed water and thus additional performance relief should be achieved with the safest possible driving.
  • the parameters of the measures taken are matched to the required power release in the steam turbine and optimized.
  • the amount and / or duration of the reduction of the enthalpy target value are determined on the basis of the required power increase.
  • flow medium removed in the flow path in the region of a superheater heating surface of the steam generator is injected for short-term increase in output of the steam turbine. Namely, such injections can make a further contribution to the short-term rapid power change.
  • the additional injection in the superheater namely the steam mass flow can be temporarily increased.
  • the stored thermal energy is also used for a temporary increase in power of the steam turbine.
  • the heat input is increased in the fossil-fired steam generator, that is, increases the firing capacity of the burner.
  • a temperature reduction at the evaporator outlet can be favorably influenced or even completely avoided by the described method, since the measure acts as a Vorhaltsignal on the feed water.
  • the method not only allows a short-term increase in performance, but is also used for faster adjustment of a longer-term performance increase.
  • a control system for a fossil-fired steam generator with a number of flow-forming, flowed through by a flow medium economizer, evaporator and superheater heating means comprises means for carrying out the method.
  • a fossil-fired steam generator for a steam power plant comprises such a control system and a steam power plant such a fossil-fired steam generator.
  • the advantages achieved by the invention are, in particular, that by the short-term increase in the amount of feed water, a particularly fast power release in the steam turbine downstream steam turbine is made possible by using the heat energy stored in all heating surfaces.
  • this measure can only be implemented without invasive structural measures with minimal adjustments to the feedwater control concept, so that no additional costs are incurred despite considerably increased system flexibility.
  • the stored thermal energy of the economizer, the evaporator and the first superheater heating surfaces which are located on the flow medium side before the first injection, can be used as additional energy source.
  • a much larger reservoir of stored thermal energy is available for the additionally requested power.
  • either a greater increase in power (peak) can be generated, or an additionally released power can be maintained longer at a lower level.
  • FIG. 1 shows a diagram with simulation results using the control method in a fossil-fired steam generator, ie a sudden reduction of enthalpy target value at the evaporator outlet to increase the feedwater quantity at constant held firing performance.
  • Plotted is the percent additional power in terms of full load 1 versus time 2 in seconds after a sudden reduction in the setpoint of evaporator specific enthalpy by 100 kJ / kg at 95% load. This reduction provides in the control concept for an increase in the feedwater flow rate.
  • Curve 4 shows the result without additional use of injections, while curves 6 and 8 represent the results for additional use of injections in the high-pressure stage or in the high-pressure and medium-pressure stage.
  • curves 10, 12, 14 show the results without increasing the amount of feedwater, but by using only the injections in high-pressure stage (curve 10), medium pressure stage (curve 12) and two pressure levels (curve 14).
  • the injection is achieved by reducing the setpoint for live steam temperature and, if appropriate, reheaction temperature by 20 K.
  • FIG. 2 is opposite FIG. 1 only slightly modified and shows the simulated curves 4, 6, 8, 10, 12, 14 for 40% load, all other parameters coincide FIG. 1 the same applies to the curves 4, 6, 8, 10, 12, 14.
  • the curves 4, 6, 10 show a substantially flatter course than in FIG. 1 that is, there is a slower increase in power at a lower level. Also, the power surplus due to the feedwater flow increase is less pronounced, albeit still significant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Control Of Turbines (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine mit einem vorgeschalteten fossil befeuerten Durchlaufdampferzeuger mit einer Anzahl von einen Strömungsweg bildenden, von einem Strömungsmedium durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen, sowie beispielsweise aus der US 6301895 B1 bekannt.
  • Ein fossil befeuerter Dampferzeuger erzeugt überhitzten Dampf mit Hilfe der durch Verbrennung fossiler Brennstoffe erzeugten Wärme. Fossil befeuerte Dampferzeuger kommen meist in Dampfkraftwerken zum Einsatz, die überwiegend der Stromerzeugung dienen. Der erzeugte Dampf wird dabei einer Dampfturbine zugeführt.
  • Analog zu den verschiedenen Druckstufen einer Dampfturbine umfasst auch der fossil befeuerte Dampferzeuger eine Mehrzahl von Druckstufen mit unterschiedlichen thermischen Zuständen des jeweils enthaltenen Wasser-Dampf-Gemisches. In der ersten (Hoch-)Druckstufe durchläuft das Strömungsmedium auf seinem Strömungsweg zunächst Economiser, die Restwärme zur Vorwärmung des Strömungsmediums nutzen, und anschließend verschiedene Stufen von Verdampfer- und Überhitzerheizflächen. Im Verdampfer wird das Strömungsmedium verdampft, danach eventuelle Restnässe in einer Abscheideeinrichtung abgetrennt und der übrig behaltene Dampf im Überhitzer weiter erhitzt. Danach strömt der überhitzte Dampf in den Hochdruckteil der Dampfturbine, wird dort entspannt und der folgenden Druckstufe des Dampferzeugers zugeführt. Dort wird er erneut überhitzt (Zwischenüberhitzer) und dem nächsten Druckteil der Dampfturbine zugeführt.
  • Aufgrund unterschiedlichster äußerer Einflüsse kann die an die Überhitzer übertragene Wärmeleistung stark schwanken. Daher ist es häufig notwendig, die Überhitzungstemperatur zu regeln. Üblicherweise wird dies meistens durch eine Einspritzung von Speisewasser vor oder nach einzelnen Überhitzerheizflächen zur Kühlung erreicht, d. h., eine Überströmleitung zweigt vom Hauptstrom des Strömungsmediums ab und führt zu dort entsprechend angeordneten Einspritzkühlern. Die Einspritzung wird dabei üblicherweise über einen für die Temperaturabweichungen von einem vorgegebenen Temperatursollwert am Austritt des Überhitzers charakteristischen Kennwert mit Hilfe von Armaturen geregelt.
  • Von modernen Kraftwerken werden nicht nur hohe Wirkungsgrade gefordert, sondern auch eine möglichst flexible Betriebsweise. Hierzu gehört außer kurzen Anfahrzeiten und hohen Laständerungsgeschwindigkeiten auch die Möglichkeit, Frequenzstörungen im Stromverbundnetz auszugleichen. Um diese Anforderungen zu erfüllen, muss das Kraftwerk in der Lage sein, Mehrleistungen von beispielsweise 5 % und mehr bezogen auf Volllastleistung innerhalb weniger Sekunden zur Verfügung zu stellen.
  • Derartige Leistungsänderungen eines Kraftwerksblockes im Sekundenbereich sind nur durch ein abgestimmtes Zusammenwirken von Dampferzeuger und Dampfturbine möglich. Der Beitrag, den der fossil befeuerte Dampferzeuger hierfür leisten kann, ist die Nutzung seiner Speicher, d. h. des Dampf- aber auch des Brennstoffspeichers, sowie schnelle Änderungen der Stellgrößen Speisewasser, Einspritzwasser, Brennstoff und Luft.
  • Dies kann beispielsweise durch das Öffnen teilweise angedrosselter Turbinenventile der Dampfturbine oder eines so genannten Stufenventils geschehen, wodurch der Dampfdruck vor der Dampfturbine abgesenkt wird. Dampf aus dem Dampfspeicher des vorgeschalteten fossil befeuerten Dampferzeugers wird dadurch ausgespeichert und der Dampfturbine zugeführt. Mit dieser Maßnahme wird innerhalb weniger Sekunden ein Leistungsanstieg erreicht.
  • Diese zusätzliche Leistung kann in relativ kurzer Zeit freigesetzt werden, so dass die verzögerte Leistungserhöhung durch die Erhöhung der Feuerungsleistung zumindest teilweise kompensiert werden kann. Der gesamte Block macht durch diese Maßnahme unmittelbar einen Leistungssprung und kann durch eine nachfolgende Erhöhung der Feuerungsleistung auch dieses Leistungsniveau dauerhaft halten bzw. überschreiten, vorausgesetzt die Anlage befand sich zum Zeitpunkt der zusätzlich angeforderten Leistungsreserven im Teillastbereich.
  • Eine permanente Androsselung der Turbinenventile zur Vorhaltung einer Reserve führt jedoch immer zu einem Wirkungsgradverlust, so dass für eine wirtschaftliche Fahrweise der Grad der Androsselung so gering wie unbedingt notwendig gehalten werden sollte. Zudem weisen einige Bauformen von fossil befeuerten Dampferzeugern, so z. B. Zwangdurchlaufdampferzeuger unter Umständen ein erheblich kleineres Speichervolumen auf als z. B. Naturumlauf-Dampferzeuger. Der Unterschied in der Größe des Speichers hat im oben beschriebenen Verfahren Einfluss auf das Verhalten bei Leistungsänderungen des Kraftwerksblocks. Darüber hinaus darf insbesondere im oberen Lastbereich durch die Androsselung der Auslegungsdruck im gesamten Dampferzeuger nicht überschritten werden, so dass diese Maßnahme im oberen Lastbereich nur begrenzt bzw. gar nicht angewendet werden kann.
  • Es ist daher Aufgabe der Erfindung, ein Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine anzugeben, das in besonderem Maße geeignet ist, eine kurzfristige Leistungssteigerung einer nachgeschalteten Dampfturbine zu ermöglichen, ohne dass dabei der Wirkungsgrad des Dampfprozesses über Gebühr beeinträchtigt wird.
  • Diese Aufgabe wird erfindungsgemäß gelöst, indem zur kurzfristigen Leistungserhöhung der Dampfturbine der Fluss des Strömungsmediums durch den fossil befeuerten Dampferzeuger erhöht wird.
  • Die Erfindung geht von der Überlegung aus, dass die eingebrachte Wärmeleistung in den Dampferzeuger durch die Feuerungsleistung bestimmt wird und sich bei einer plötzlichen Änderung nur vergleichsweise langsam auswirkt. Eine zusätzliche Leistungsentbindung in der Dampfturbine sollte daher durch eine Nutzung der in den Heizflächen des Dampferzeugers eingespeicherten Wärmeenergie erfolgen. Die Ausspeicherung dieser Wärme erfordert ein Absenken der mittleren Materialtemperatur. Dies sollte durch eine Erhöhung der Flusses, d. h. der durchströmenden Menge an Strömungsmedium pro Zeiteinheit erreicht werden. Durch diese Maßnahme wird auf Grund der höheren Durchströmung mit vergleichsweise geringeren Mediumstemperaturen die mittlere Materialtemperatur aller Heizflächen abgesenkt und infolgedessen thermische Energie aus all diesen Heizflächen ausgespeichert und in der Dampfturbine in Form zusätzlicher Leistung entbunden.
  • In vorteilhafter Ausgestaltung wird zur kurzfristigen Leistungserhöhung der Dampfturbine der Enthalpiesollwert am Austritt einer Verdampferheizfläche reduziert. Der Sollwert für die spezifische Enthalpie wird im Regelsystem des Dampferzeugers als Regelgröße für die Ermittlung des Sollwerts für den Fluss des Strömungsmediums verwendet. Diese Umschaltmaßnahme bewirkt zwei Effekte: Erstens vergrößert sich der in der Speisewassersollwertermittlung berechnete Grundsollwert für den Verdampferdurchfluss. Zweitens erhöht der Enthalpiekorrekturregler - insbesondere wenn die Reduzierung besonders schnell (schlagartig) erfolgt - durch eine nun größer anstehende Regelabweichung sein Ausgangssignal, um die Enthalpie am Verdampferaustritt möglichst zügig zu reduzieren. Dadurch steigt die Speisewassermenge zu Beginn dieser Maßnahme sogar überproportional an und es ist eine besonders schnelle Ausspeicherung von Wärme aus den Heizflächen mit der verbundenen Leistungsentbindung in der Dampfturbine möglich.
  • Vorteilhafterweise wird der Enthalpiesollwert auf einen vorgegebenen Mindestenthalpiewert reduziert. Dadurch ist einerseits in allen Lastzuständen eine maximale Leistungsentbindung bei gleichzeitiger Erhaltung der Betriebssicherheit gewährleistet.
  • In besonders vorteilhafter Ausgestaltung wird der Mindestenthalpiewert derart bemessen, dass in allen Lastzuständen des fossil befeuerten Dampferzeugers eine vollständige Verdampfung des Strömungsmediums in den Verdampferheizflächen erreicht wird. Insbesondere im unterkritischen Betrieb sollte nämlich gewährleistet sein, dass die Enthalpie am Verdampferaustritt nicht zu weit abgesenkt wird und infolgedessen ein Anfall von Restwasser in einer nachgeschalteten Abscheideeinrichtung sicher vermieden werden kann. Somit ist bei möglichst sicherer Fahrweise ein maximaler Anstieg an zusätzlichem Speisewasser und damit zusätzlicher Leistungsentbindung zu erzielen.
  • Dabei ist hervorzuheben, dass je höher die tatsächliche Enthalpie am Verdampferaustritt im Stationärbetrieb gewählt wird, d. h. je größer der Abstand zur fest vorgegebenen Mindestenthalpie ist, desto mehr thermische Energie kann auch ausgespeichert werden, d. h. desto mehr Dampfturbinenleistung kann kurzfristig generiert werden. Demnach ist bei einer auf diese Maßnahme zugeschnittenen Kesselauslegung ein möglichst großer Abstand zur Mindestenthalpie im Stationärbetrieb bzw. im Frequenzstützbetrieb anzustreben. Dabei ist allerdings zu berücksichtigen, dass unter den genannten Umständen nur durch ein geeignetes Kesseldesign unzulässig hohe Temperaturschieflagen am Verdampferaustritt zu vermeiden sind. Darüber hinaus sind auch die auftretenden transienten Belastungen in der Auslegung bzw. für das bestehende Dampferzeugerdesign zu berücksichtigen, die je nach Größe und Häufigkeit zu einer entsprechenden Materialermüdung führen können. Hier sei aber erwähnt, dass insbesondere im überkritischen Dampferzeugerbetrieb, bei dem die größtmögliche Reduktion der Verdampferaustrittsenthalpie realisiert werden kann, auf Grund der Wasser-Dampf-Eigenschaften des Strömungsmedium mit nur moderaten Temperaturreduzierungen am Verdampferaustritt zu rechnen ist, und sich somit die Materialbelastung des Verdampfers entsprechend in Grenzen hält.
  • Vorteilhafterweise werden die Parameter der getroffenen Maßnahmen auf die geforderte Leistungsentbindung in der Dampfturbine abgestimmt und optimiert. Dazu werden Höhe und/oder Dauer der Reduzierung des Enthalpiesollwerts anhand der benötigten Leistungserhöhung bestimmt.
  • In alternativer oder zusätzlicher vorteilhafter Ausgestaltung wird zur kurzfristigen Leistungserhöhung der Dampfturbine im Strömungsweg entnommenes Strömungsmedium im Bereich einer Überhitzerheizfläche des Dampferzeugers eingespritzt. Derartige Einspritzungen können nämlich einen weiteren Beitrag zur kurzfristigen schnellen Leistungsänderung leisten. Durch diese zusätzliche Einspritzung im Bereich der Überhitzer kann nämlich der Dampfmassenstrom temporär erhöht werden. Hierbei wird ebenfalls die eingespeicherte thermische Energie für eine temporäre Leistungssteigerung der Dampfturbine genutzt. Es ergibt sich so der zusätzliche Vorteil, dass über eine geeignete Koordination aller zur Verfügung stehenden Maßnahmen ein besonders hoher Leistungsüberschuss schnell und möglichst lange auf konstantem Niveau gehalten werden kann. Durch Staffelung der einzelnen Maßnahmen ist auch die Materialbelastung positiv beeinflussbar.
  • In weiterer vorteilhafter Ausgestaltung wird die Wärmezufuhr in den fossil befeuerten Dampferzeuger erhöht, d. h. die Feuerungsleistung der Brenner erhöht. Somit kann durch das beschriebene Verfahren eine Temperaturverminderung am Verdampferaustritt günstig beeinflusst oder sogar völlig vermieden werden, da die Maßnahme wie ein Vorhaltsignal auf das Speisewasser wirkt. Somit ermöglicht das Verfahren nicht nur eine kurzfristige Leistungserhöhung, sondern ist auch zur schnelleren Einstellung einer längerfristigen Leistungserhöhung einsetzbar.
  • In vorteilhafter Ausgestaltung umfasst ein Regelsystem für einen fossil befeuerten Dampferzeuger mit einer Anzahl von einen Strömungsweg bildenden, von einem Strömungsmedium durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen Mittel zum Ausführen des Verfahrens. In weiterer vorteilhafter Ausgestaltung umfasst ein fossil befeuerter Dampferzeuger für ein Dampfkraftwerk ein derartiges Regelsystem sowie ein Dampfkraftwerk einen derartigen fossil befeuerten Dampferzeuger.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die kurzfristige Erhöhung der Speisewassermenge eine besonders schnelle Leistungsentbindung in der dem Dampferzeuger nachgeschalteten Dampfturbine durch Nutzung der in allen Heizflächen gespeicherten Wärmeenergie ermöglicht wird. Zusätzlich ist diese Maßnahme ohne invasive bauliche Maßnahmen nur mit minimalen Anpassungen des Speisewasserregelkonzepts durchführbar, so dass trotz erheblich erhöhter Anlagenflexibilität keine zusätzlichen Kosten verursacht werden.
  • Darüber hinaus kann im Vergleich zur Nutzung der Einspritzungen als leistungserhöhende Maßnahme auch auf die eingespeicherte thermische Energie des Economisers, des Verdampfers und der ersten Überhitzerheizflächen, die strömungsmediumsseitig noch vor der ersten Einspritzung lokalisiert sind, als zusätzliche Energiequelle zurückgegriffen werden. Es steht somit für die zusätzlich angeforderte Leistung ein wesentlich größeres Reservoir an gespeicherter thermischer Energie zur Verfügung. Infolgedessen kann entweder ein größerer Leistungsanstieg (Peak) generiert werden, oder aber eine zusätzlich entbundene Leistung kann auf niedrigerem Niveau länger aufrechterhalten werden.
  • Insbesondere im oberen Lastbereich, bei dem beispielsweise eine Androsselung der Turbinenventile auf ein bestimmtes Maß beschränkt sein muss, um den maximalen Auslegungsdruck im Hochdruckteil nicht zu überschreiten, kann im Bedarfsfall durch das beschriebene Verfahren ein hoher Leistungsüberschuss gewährleistet werden. Und gerade im oberen Lastbereich kommen die Vorteile dieser Maßnahme zu Geltung, da sich hier die Temperaturänderungen am Verdampferaustritt auf Grund der Wasser-Dampf-Eigenschaften des Strömungsmediums in tolerablen Grenzen bewegen.
  • Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
  • FIG 1
    ein Diagramm mit Simulationsergebnissen zur Verbesserung der Sofortreserve eines fossil befeuerten Durchlaufdampferzeugers durch Erhöhung der Speisewassermenge zusammen mit Einspritzung von Hochdruck-Dampf, Zwischenüberhitzungs-Dampf und jeweils in beiden Drucksystemen in einem oberen Lastbereich, und
    FIG 2
    ein Diagramm mit Simulationsergebnissen zur Verbesserung der Sofortreserve eines fossil befeuerten Durchlaufdampferzeugers durch Erhöhung der Speisewassermenge zusammen mit Einspritzung von Hochdruck-Dampf, Zwischenüberhitzungs-Dampf und jeweils in beiden Drucksystemen in einem unteren Lastbereich.
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • FIG 1 zeigt ein Diagramm mit Simulationsergebnissen unter Ausnutzung des Regelverfahrens in einem fossil befeuerten Dampferzeuger, d. h. eine sprunghafte Reduzierung des Enthalpiesollwerts am Verdampferaustritt zur Erhöhung der Speisewassermenge bei konstant gehaltener Feuerungsleistung. Aufgetragen ist die prozentuale zusätzliche Leistung bezogen auf Volllast 1 gegen die Zeit 2 in Sekunden nach einer sprunghaften Reduzierung des Sollwerts der spezifischen Enthalpie am Verdampferaustritt um 100 kJ/kg bei 95 % Last. Diese Reduzierung sorgt im Regelkonzept für eine Erhöhung der Speisewasserdurchflussmenge. Kurvenzug 4 zeigt das Ergebnis ohne zusätzliche Nutzung von Einspritzungen, während Kurvenzüge 6 und 8 die Ergebnisse für eine zusätzliche Nutzung von Einspritzungen in der Hochdruckstufe bzw. in der Hochdruck- und Mitteldruckstufe darstellen. Zum Vergleich sind weitere Kurvenzüge 10, 12, 14 dargestellt, die die Ergebnisse ohne Erhöhung der Speisewassermenge, sondern durch alleinige Nutzung der Einspritzungen in Hochdruckstufe (Kurvenzug 10), Mitteldruckstufe (Kurvenzug 12) und beiden Druckstufen (Kurvenzug 14) zeigen. Die Einspritzung wird dabei jeweils durch Reduktion des Sollwerts für Frischdampftemperatur und gegebenenfalls Zwischenüberhitzungs-Temperatur um 20 K erreicht wurden.
  • In FIG 1 ist erkennbar, dass die Maxima der Kurvenzüge 4, 6 und 8 höher angeordnet sind als die der Kurvenzüge 10, 12 und 14. Die zusätzlich entbundene Leistung ist damit höher. Insbesondere eine Kombination der Maßnahmen in Bezug auf Speisewasser und Einspritzungen zeigt eine signifikante Leistungserhöhung (Kurvenzüge 6, 8). Bereits Kurvenzug 4 zeigt aber, dass bei der hohen Last in FIG 1 die Erhöhung des Speisewasserdurchflusses die größte Leistungsausbeute aller Einzelmaßnahmen (Vergleich der Kurvenzüge 10, 12, 14) zeigt. Die Nutzung von Einspritzungen sorgt jedoch für eine noch schnellere Bereitstellung zusätzlicher Leistung, wie an den weiter links in der Grafik liegenden Peaks der entsprechenden Kurvenzüge erkennbar ist.
  • FIG 2 ist gegenüber FIG 1 nur geringfügig modifiziert und zeigt die simulierten Kurvenzüge 4, 6, 8, 10, 12, 14 für 40 % Last, alle übrigen Parameter stimmen mit FIG 1 überein, ebenso die Bedeutung der Kurvenzüge 4, 6, 8, 10, 12, 14. Hier zeigen insbesondere die Kurvenzüge 4, 6, 10 einen wesentlich flacheren Verlauf als in FIG 1, d. h., es erfolgt eine langsamere Leistungserhöhung in geringerer Höhe. Auch ist der Leistungsüberschuss durch die Speisewasserdurchflusserhöhung geringer ausgeprägt, wenngleich noch immer signifikant.
  • Lediglich die Modifikation der Zwischenüberhitzung, dargestellt in Kurvenzug 12 zeigt einen vergleichsweise hohen Leistungsanstieg ca. 60 Sekunden nach Änderung des Sollwerts, der danach rasch wieder abfällt, um in das Maximum des flachen Verlaufs überzugehen. Dieser Leistungsanstieg zeigt sich entsprechend auch bei einer Modifikation beider Druckstufen nach Kurvenzug 8 und 14. In allen Fällen zeigt sich aber, dass die Erhöhung der Leistung bei einer Erhöhung der Speisewassermenge die größte Leistungsausbeute bei höherer Dauer ermöglicht, wobei dieser Effekt insbesondere im hohen Lastbereich ausgeprägt ist.

Claims (6)

  1. Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine mit einem vorgeschalteten fossil befeuerten Durchlaufdampferzeuger mit einer Anzahl von einen Strömungsweg bildenden, von einem Strömungsmedium durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen, bei dem zur kurzfristigen Leistungserhöhung der Dampfturbine der Fluss des Strömungsmediums durch den fossil befeuerten Durchlaufdampferzeuger erhöht wird, wobei ein Enthalpiesollwert am Austritt einer Verdampferheizfläche als Regelgröße für die Ermittlung des Sollwerts für den Fluss des Strömungsmediums durch den fossil befeuerten Durchlaufdampferzeuger verwendet wird und zur kurzfristigen Leistungserhöhung der Dampfturbine der Enthalpiesollwert reduziert wird.
  2. Verfahren nach Anspruch 1, bei dem der Enthalpiesollwert auf einen vorgegebenen Mindestenthalpiewert reduziert wird.
  3. Verfahren nach Anspruch 2, bei dem der Mindestenthalpiewert derart bemessen wird, dass in allen Lastzuständen des fossil befeuerten Durchlaufdampferzeugers eine vollständige Verdampfung des Strömungsmediums in den Verdampferheizflächen erreicht wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem Höhe und/oder Dauer der Reduzierung des Enthalpiesollwerts anhand der benötigten Leistungserhöhung bestimmt werden.
  5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem zur kurzfristigen Leistungserhöhung der Dampfturbine im Strömungsweg entnommenes Strömungsmedium im Bereich einer Überhitzerheizfläche des fossil befeuerten Durchlaufdampferzeugers eingespritzt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Wärmezufuhr in den fossil befeuerten Durchlaufdampferzeuger erhöht wird.
EP12705819.6A 2011-02-25 2012-02-10 Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine Active EP2655811B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12705819T PL2655811T3 (pl) 2011-02-25 2012-02-10 Sposób regulacji krótkookresowego wzrostu mocy turbiny parowej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011004712 2011-02-25
PCT/EP2012/052312 WO2012113662A2 (de) 2011-02-25 2012-02-10 Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine

Publications (2)

Publication Number Publication Date
EP2655811A2 EP2655811A2 (de) 2013-10-30
EP2655811B1 true EP2655811B1 (de) 2015-10-14

Family

ID=45757393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12705819.6A Active EP2655811B1 (de) 2011-02-25 2012-02-10 Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine

Country Status (8)

Country Link
US (1) US9080467B2 (de)
EP (1) EP2655811B1 (de)
JP (1) JP5815753B2 (de)
KR (1) KR101818090B1 (de)
CN (1) CN103492678B (de)
DK (1) DK2655811T3 (de)
PL (1) PL2655811T3 (de)
WO (1) WO2012113662A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016218763A1 (de) 2016-09-28 2018-03-29 Siemens Aktiengesellschaft Verfahren zur kurzfristigen Leistungsanpassung einer Dampfturbine eines Gas-und Dampfkraftwerks für die Primärregelung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933002A (de) 1972-08-04 1974-03-26
FR2401380A1 (fr) * 1977-08-23 1979-03-23 Sulzer Ag Generateur de vapeur a circulation forcee
EP0308728B1 (de) 1987-09-21 1991-06-05 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Durchlaufdampferzeugers
DE4117796A1 (de) 1991-05-30 1993-01-21 Ver Energiewerke Ag Verfahren zur dampftemperaturregelung an ueberhitzern von dampfanlagen
DK0639253T3 (da) * 1992-05-04 1997-06-16 Siemens Ag Dampgenerator med tvungent gennemløb
DE19749452C2 (de) * 1997-11-10 2001-03-15 Siemens Ag Dampfkraftanlage
DE19750125A1 (de) 1997-11-13 1999-03-11 Siemens Ag Verfahren und Vorrichtung zur Primärregelung eines Dampfkraftwerkblocks
US6230480B1 (en) * 1998-08-31 2001-05-15 Rollins, Iii William Scott High power density combined cycle power plant
US6766646B1 (en) 2003-11-19 2004-07-27 General Electric Company Rapid power producing system and method for steam turbine
US7690201B2 (en) * 2005-11-07 2010-04-06 Veritask Energy Systems, Inc. Method of efficiency and emissions performance improvement for the simple steam cycle
EP2194320A1 (de) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
DE102010041964A1 (de) * 2010-10-05 2012-04-05 Siemens Aktiengesellschaft Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine
US9316122B2 (en) * 2010-12-20 2016-04-19 Invensys Systems, Inc. Feedwater heater control system for improved Rankine cycle power plant efficiency
US9091182B2 (en) * 2010-12-20 2015-07-28 Invensys Systems, Inc. Feedwater heater control system for improved rankine cycle power plant efficiency

Also Published As

Publication number Publication date
JP2014508272A (ja) 2014-04-03
KR20140007857A (ko) 2014-01-20
AU2012219798A1 (en) 2013-08-29
DK2655811T3 (en) 2016-01-11
CN103492678B (zh) 2016-03-09
KR101818090B1 (ko) 2018-01-12
JP5815753B2 (ja) 2015-11-17
US9080467B2 (en) 2015-07-14
PL2655811T3 (pl) 2016-03-31
WO2012113662A2 (de) 2012-08-30
US20130327043A1 (en) 2013-12-12
CN103492678A (zh) 2014-01-01
WO2012113662A3 (de) 2013-03-21
EP2655811A2 (de) 2013-10-30

Similar Documents

Publication Publication Date Title
EP2603672B1 (de) Abhitzedampferzeuger
EP2606206B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
DE102009036064B4 (de) rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP2614303B1 (de) Verfahren zum betreiben einer kombinierten gas- und dampfturbinenanlage sowie zur durchführung des verfahrens hergerichtete gas- und dampfturbinenanlage und entsprechende regelvorrichtung
EP3025031B1 (de) Verfahren zum betreiben einer dampfturbinenanlage
DE102008029941A1 (de) Dampfkraftanlage und Verfahren zur Regelung der Leistung einer Dampfkraftanlage
DE10001995A1 (de) Verfahren zur Einstellung bzw. Regelung der Dampftemperatur des Frischdampfes und/oder Zwischenüberhitzerdampfers in einem Verbundkraftwerk sowie Verbundkraftwerk zur Durchführung des Verfahrens
EP3269948B1 (de) Verfahren zur anpassung der leistung einer dampfturbinen-kraftwerksanlage und dampfturbinen-kraftwerksanlage
EP2616643B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
WO2013000720A2 (de) Zusätzliche regelanzapfung für einen vorwärmer zur verbesserung der anlagendynamik und frequenzregelung bei einem dampfkraftwerk
EP3475539A1 (de) Verfahren zur kurzfristigen leistungsanpassung einer dampfturbine eines gas-und dampfkraftwerks für die primärregelung
EP2655811B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
WO2015039831A2 (de) Gas-und-dampf-kombikraftwerk mit einem abhitzedampferzeuger
EP3014178A2 (de) Betriebsverfahren für einen extern beheizten zwangdurchlaufdampferzeuger
DE102010043683A1 (de) Fossil befeuerter Dampferzeuger
EP2676072B1 (de) Verfahren zum betreiben eines durchlaufdampferzeugers
EP2625390B1 (de) Fossil befeuerter dampferzeuger
WO2016188671A1 (de) Wasser-dampf-kreislauf einer gas- und dampfturbinenanlage
EP2900945B1 (de) Verfahren zum flexiblen betrieb einer kraftwerksanlage
DE102016212634A1 (de) Verfahren zur Sekundärfrequenzregelung einer fossil befeuerten Kraftwerksanlage
WO2014146846A2 (de) Verfahren zum betreiben eines solarthermischen kraftwerks
DE102019216179A1 (de) Verfahren zur Regelung der Eintrittstemperatur eines Arbeitsfluides einer Dampfturbine bei schwankender Bereitstellung thermischer Energie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130725

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150515

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 755260

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012004909

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160107

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151014

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160214

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160115

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160215

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012004909

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

26N No opposition filed

Effective date: 20160715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 755260

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012004909

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220825 AND 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20230220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230206

Year of fee payment: 12

Ref country code: IT

Payment date: 20230221

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 13

Ref country code: GB

Payment date: 20240220

Year of fee payment: 13