EP2625390B1 - Fossil befeuerter dampferzeuger - Google Patents

Fossil befeuerter dampferzeuger Download PDF

Info

Publication number
EP2625390B1
EP2625390B1 EP11766973.9A EP11766973A EP2625390B1 EP 2625390 B1 EP2625390 B1 EP 2625390B1 EP 11766973 A EP11766973 A EP 11766973A EP 2625390 B1 EP2625390 B1 EP 2625390B1
Authority
EP
European Patent Office
Prior art keywords
fossil
steam generator
pressure
supply line
fired steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11766973.9A
Other languages
English (en)
French (fr)
Other versions
EP2625390A2 (de
Inventor
Martin Effert
Frank Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL11766973T priority Critical patent/PL2625390T3/pl
Publication of EP2625390A2 publication Critical patent/EP2625390A2/de
Application granted granted Critical
Publication of EP2625390B1 publication Critical patent/EP2625390B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/24Control or safety means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating

Definitions

  • the invention relates to a fossil-fired steam generator for a steam power plant with a number of flow path forming, flowed through by a flow medium M economizer, evaporator and superheater heating in a plurality of pressure stages, in which in a high-pressure stage an overflow line is connected on the input side to the flow path and leads to a flow medium in a middle-pressure stage upstream of a superheater heating in the flow path arranged injection valve.
  • a fossil-fueled steam generator produces superheated steam using the heat generated by burning fossil fuels.
  • Fossil fueled steam generators are mostly used in steam power plants, which are mainly used for power generation.
  • the steam is fed to a steam turbine.
  • the fossil-fueled steam generator also comprises a plurality of pressure stages with different thermal states of the respectively contained water-steam mixture.
  • the flow medium In the first (high) pressure stage, the flow medium first passes through economizers on its flow path, using residual heat to preheat the flow medium, and then various stages of evaporator and superheater heating surfaces.
  • the evaporator the flow medium is evaporated, then separated any residual moisture in a separator and further heated the remaining steam in the superheater. Thereafter, the superheated steam flows into the high-pressure part of the steam turbine, where it is expanded and fed to the following pressure stage of the steam generator. There it is overheated again and fed to the next pressure part of the steam turbine.
  • the heat output transferred to the superheaters can fluctuate greatly. Therefore, it is often necessary to control the superheat temperature. Usually, this is achieved in the high-pressure stage as well as in the medium-pressure stages for reheating usually by injection of feed water before or after individual Matterhitzersammlung inhabit for cooling, ie, an overflow branches off from the main stream of the flow medium and leads to there correspondingly arranged injection valves.
  • the injection is usually controlled by the temperature deviation from a predetermined temperature setpoint at the outlet of the superheater of the respective pressure stage.
  • Modern power plants not only require high levels of efficiency but also the most flexible mode of operation possible. Apart from short start-up times and high load change speeds, this also includes the possibility of compensating for frequency disturbances in the power grid. To meet these requirements, the power plant must be able to provide more power, for example, 5% and more within a few seconds.
  • Such power changes of a power plant block in the second range are possible only by a coordinated interaction of steam generator and steam turbine.
  • the contribution that the fossil-fueled steam generator can make is the use of its storage, d. H. of the steam but also of the fuel storage, as well as rapid changes of the control variables feedwater, injection water, fuel and air.
  • the overflow line has two supply lines, of which the first branches off the flow medium side from a high-pressure preheater and the second fluid side branches off behind the high-pressure preheater.
  • the invention is based on the consideration that injections of feedwater can make a further contribution to the rapid change in performance.
  • additional injections in the superheater namely the steam mass flow can be increased.
  • injections are triggered by reducing the temperature setpoint at the outlet of the respective pressure stage. The higher the enthalpy level of the injection water, the more injection mass flow is needed to meet the newly required Temperature setpoint to achieve. Accordingly, results from a higher enthalpy of the injection water a comparatively larger amount of steam.
  • This should be counteracted by the enthalpy of the injection water can be controlled as needed. This can be achieved by mixing the injection water withdrawn behind a high-pressure preheater with a small proportion of injection water withdrawn before the high-pressure preheater, so that the desired enthalpy of the injection water can be adjusted in this way.
  • two supply lines each lead from the flow medium side before and behind a high-pressure preheater to the overflow line to the injection valve of the reheat.
  • the second supply line branches off from the flow medium side behind all high-pressure preheaters.
  • the greatest possible enthalpy for the injection water is ensured, so that an optimum with regard to the amount of steam and release of power is achieved.
  • Design branches off the first supply fluid side from all high-pressure preheaters. Because of the removal in the coldest area, a reduction in the temperature of the injection medium can be achieved, even at a small admixing amount, which ensures a sufficient distance to the boiling line. Overall, the greatest possible temperature variance can be achieved by removing before and after all high-pressure preheaters.
  • a check valve is arranged in one of the supply lines and arranged in the other supply line, a flow control valve.
  • the mixture is then in a particularly simple manner on the determination of the injection quantity on the one hand, which is adjusted by the injection control valve and is provided in part via the supply line with the check valve, the check valve prevents backflow from the high pressure path in the low pressure path.
  • the admixing of the medium of the other temperature is controlled via the flow control valve of the other supply line.
  • a check valve is arranged in the first supply line and arranged in the second supply line, a flow control valve. That is, the check valve is located in the supply line with the medium of the lower temperature level.
  • the first supply line branches off from a feed pump. Since under these circumstances, only upstream of the flow control valve, the flow medium has a relatively higher pressure, it is possible that the entire water path of the injector is at a relatively lower pressure level.
  • such an arrangement simplifies the control, and it is furthermore possible to use the currently used feed pumps with a corresponding branch for the reheat injection, since even in the present case, the cool medium can be coupled in the same place.
  • a flow measuring device is arranged downstream of the branch of the second supply line in the flow path flow medium side. Under these circumstances, the withdrawal quantity need not be taken into account for the feedwater control via additional measurement or separate balancing.
  • a steam power plant comprises such a fossil-fired steam generator.
  • the advantages achieved by the invention are, in particular, that a sufficient supercooling of the injection water can always be ensured by the mixing of injection water for reheating from leads before and after Hochlichvorskarn one hand, on the other hand with regard to the provision of an immediate reserve in absolutely safe injection operation without vapor formation a maximum can be realized on additional power relief via a correspondingly increased injection quantity.
  • the load of all the affected components such as injection point, heating surfaces and turbine can be reduced at the same power release compared to previous concepts, since for the same power release a lesser drop in temperature of the steam is expected.
  • interconnection and the associated increase in the power deduction by using the injection system is independent of other measures, so that, for example, throttled turbine valves can be additionally opened to increase the power increase of the steam turbine yet.
  • the effectiveness of the procedure remains largely unaffected by these parallel measures.
  • the degree of throttling of the turbine valves can be reduced, should the use of the injection system for increasing the power used.
  • the desired benefit release can be among these Circumstances then even with less, in the best case, even without any additional throttling can be achieved.
  • the plant can be operated in the usual load operation, where it must be available for an immediate reserve, with a relatively greater efficiency, which also reduces the operating costs.
  • FIG. 1 schematically represents a part of the flow path 6 of the flow medium M.
  • the flow medium M is first fed by a feed pump 8 in the high-pressure part 2.
  • Hochschervormaschinern 10 is first brought by Hochlichvormaschinern 10 to an elevated temperature, which can be operated for example with bleed steam.
  • economizer heating surfaces 12 in which flue gas waste heat is usually used for further heating of the flow medium
  • evaporator heating surfaces 14 in which the flow medium is evaporated by means of the heat obtained from fossil fuel.
  • the spatial arrangement of the individual heating surfaces 12, 14 in the hot gas duct is not shown and may vary.
  • the illustrated heating surfaces 12, 14 may each represent a plurality of serially connected heating surfaces, which are not shown differentiated due to the clarity.
  • an injection valve 18 is arranged on the flow medium side.
  • cooler and unevaporated flow medium M for controlling the outlet temperature at the outlet 20 of the medium-pressure part 4 of the fossil-fired steam generator 1 can be injected.
  • the introduced into the injection valve 18 amount of flow medium M is controlled by an injection control valve 22.
  • the flow medium M is supplied via a previously branched off in the flow path 2 overflow 24.
  • the injection system is designed for an increase in the enthalpy of the injection water as required.
  • the overflow line 24 has a first supply line 26, which branches off directly in the feed pump 8 and feeds flow medium M at a relatively low temperature to the overflow line 24. This ensures adequate subcooling of the injection medium.
  • the first supply line 26 also includes a check valve 28 which prevents backflow of fluid from the injection system.
  • the overflow line has a second supply line 30 whose flow is controlled by a flow control valve 32.
  • the second supply line branches off behind all high-pressure preheaters 10 in front of the economizer heating surfaces 12, so that here flow medium M is introduced into the overflow line 24 with a comparatively higher temperature.
  • the flow measuring device 34 is arranged in the flow path 6 behind both branches of the supply lines 26, 30, so that the quantity of the branched flow medium M for the feedwater control need not be taken into account here.
  • FIG. 2 shows an alternative embodiment, which is essentially the FIG. 1 corresponds, but here the locations of flow control valve 32 and check valve 28 are reversed.
  • the first supply line 26 thus has a control valve 32 and the second supply line 30 a check valve 28.
  • This embodiment is also possible, however, the entire injection path for higher pressures is interpreted.
  • an additional branch 36 is provided for the first supply line 26, since due to the higher pressure level, flow medium M can not be decoupled at any point of the feed pump 8.
  • FIG. 3 shows a diagram with simulation results using the interconnection described. Is applied the percent additional power in relation to full load 38 versus time 40 in seconds after a sudden decrease in the temperature setpoint for the temperature at the exit 20 of the mid-pressure member 4 by 20 ° C at 95% load.
  • the curve 42 shows the results without heated injection fluid, so according to the usual system, the curve 44, the results with as described above interconnected injection system.
  • the maximum of the curve 44 is higher than the curve 42. The additionally released power is thus higher.
  • FIG. 4 is opposite FIG. 3 only slightly modified and shows the simulated curves 42, 44 for 40% load, all other parameters coincide FIG. 3
  • both curves 42, 44 show a flat course and in addition a comparatively high power increase about 60 seconds after changing the setpoint, which then rapidly drops again to go to the maximum of the flat course ,
  • the curve 44 is higher in each time range than the curve 42.
  • a higher power deduction is also possible here, in spite of the load at only 40% sufficient subcooling of the injected medium is guaranteed.
  • a steam power plant equipped with such a fossil-fueled steam generator 1 is capable of rapidly increasing the output via an instant power output of the steam turbine, which serves to support the frequency of the composite power network.
  • This power reserve is achieved by a double use of the injection fittings in addition to the usual temperature control, a permanent throttling of the steam turbine valves to provide a reserve can be reduced or eliminated, whereby a particularly high efficiency is achieved during normal operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

  • Die Erfindung betrifft einen fossil befeuerten Dampferzeuger für ein Dampfkraftwerk mit einer Anzahl von einen Strömungsweg bildenden, von einem Strömungsmedium M durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen in einer Mehrzahl von Druckstufen, bei dem in einer Hochdruckstufe eine Überströmleitung eingangsseitig mit dem Strömungsweg verbunden ist und zu einem in einer Mitteldruckstufe strömungsmediumsseitig vor einer Überhitzerheizfläche im Strömungsweg angeordneten Einspritzventil führt.
  • Ein fossil befeuerter Dampferzeuger erzeugt überhitzten Dampf mit Hilfe der durch Verbrennung fossiler Brennstoffe erzeugten Wärme. Fossil befeuerte Dampferzeuger kommen meist in Dampfkraftwerken zum Einsatz, die überwiegend der Stromerzeugung dienen. Der Dampf wird dabei einer Dampfturbine zugeführt.
  • Die Druckschrift DE19849740 offenbart einen fossil befeuerten Dampferzeuger nach dem Stand der Technik.
  • Analog zu den verschiedenen Druckstufen einer Dampfturbine umfasst auch der fossil befeuerte Dampferzeuger eine Mehrzahl von Druckstufen mit unterschiedlichen thermischen Zuständen des jeweils enthaltenen Wasser-Dampf-Gemisches. In der ersten (Hoch-)Druckstufe durchläuft das Strömungsmedium auf seinem Strömungsweg zunächst Economiser, die Restwärme zur Vorwärmung des Strömungsmediums nutzen, und anschließend verschiedene Stufen von Verdampfer- und Überhitzerheizflächen. Im Verdampfer wird das Strömungsmedium verdampft, danach eventuelle Restnässe in einer Abscheideeinrichtung abgetrennt und der übrig behaltene Dampf im Überhitzer weiter erhitzt. Danach strömt der überhitzte Dampf in den Hochdruckteil der Dampfturbine, wird dort entspannt und der folgenden Druckstufe des Dampferzeugers zugeführt. Dort wird er erneut überhitzt und dem nächsten Druckteil der Dampfturbine zugeführt. Aufgrund unterschiedlichster äußerer Einflüsse kann die an die Überhitzer übertragene Wärmeleistung stark schwanken. Daher ist es häufig notwendig, die Überhitzungstemperatur zu regeln. Üblicherweise wird dies sowohl in der Hochdruckstufe als auch in den Mitteldruckstufen zur Zwischenüberhitzung meistens durch eine Einspritzung von Speisewasser vor oder nach einzelnen Überhitzerheizflächen zur Kühlung erreicht, d. h., eine Überströmleitung zweigt vom Hauptstrom des Strömungsmediums ab und führt zu dort entsprechend angeordneten Einspritzventilen. Die Einspritzung wird dabei üblicherweise über die Temperaturabweichung von einem vorgegebenen Temperatursollwert am Austritt des Überhitzers der jeweiligen Druckstufe geregelt.
  • Von modernen Kraftwerken werden nicht nur hohe Wirkungsgrade gefordert, sondern auch eine möglichst flexible Betriebsweise. Hierzu gehört außer kurzen Anfahrzeiten und hohen Laständerungsgeschwindigkeiten auch die Möglichkeit, Frequenzstörungen im Stromverbundnetz auszugleichen. Um diese Anforderungen zu erfüllen, muss das Kraftwerk in der Lage sein, Mehrleistungen von beispielsweise 5 % und mehr innerhalb weniger Sekunden zur Verfügung zu stellen.
  • Derartige Leistungsänderungen eines Kraftwerksblockes im Sekundenbereich sind nur durch ein abgestimmtes Zusammenwirken von Dampferzeuger und Dampfturbine möglich. Der Beitrag, den der fossil befeuerte Dampferzeuger hierfür leisten kann, ist die Nutzung seiner Speicher, d. h. des Dampf- aber auch des Brennstoffspeichers, sowie schnelle Änderungen der Stellgrößen Speisewasser, Einspritzwasser, Brennstoff und Luft.
  • Dies kann beispielsweise durch das Öffnen teilweise angedrosselter Turbinenventile der Dampfturbine oder eines so genannten Stufenventils geschehen, wodurch der Dampfdruck vor der Dampfturbine abgesenkt wird. Dampf aus dem Dampfspeicher des vorgeschalteten fossil befeuerten Dampferzeugers wird dadurch ausgespeichert und der Dampfturbine zugeführt. Mit dieser Maßnahme wird innerhalb weniger Sekunden ein Leistungsanstieg erreicht.
  • Eine permanente Androsselung der Turbinenventile zur Vorhaltung einer Reserve führt jedoch immer zu einem Wirkungsgradverlust, so dass für eine wirtschaftliche Fahrweise der Grad der Androsselung so gering wie unbedingt notwendig gehalten werden sollte. Zudem weisen einige Bauformen von fossil befeuerten Dampferzeugern, so z. B. Zwangdurchlauf-Dampferzeuger unter Umständen ein erheblich kleineres Speichervolumen auf als z. B. Naturumlauf-Dampferzeuger. Der Unterschied in der Größe des Speichers hat im oben beschriebenen Verfahren Einfluss auf das Verhalten bei Leistungsänderungen des Kraftwerksblocks.
  • Es ist daher Aufgabe der Erfindung, einen fossil befeuerten Dampferzeuger der oben genannten Art anzugeben, bei dem der Wirkungsgrad des Dampfprozesses nicht über Gebühr beeinträchtigt wird. Gleichzeitig soll die kurzfristige Leistungssteigerung unabhängig von der Bauform des fossil befeuerten Dampferzeugers ohne invasive bauliche Modifikationen am Gesamtsystem ermöglicht werden.
  • Diese Aufgabe wird erfindungsgemäß gelöst, indem die Überströmleitung zwei Zuleitungen hat, von denen die erste strömungsmediumsseitig vor einem Hochdruckvorwärmer abzweigt und die zweite strömungsmediumsseitig hinter dem Hochdruckvorwärmer abzweigt.
  • Die Erfindung geht dabei von der Überlegung aus, dass Einspritzungen von Speisewasser einen weiteren Beitrag zur schnellen Leistungsänderung leisten können. Durch zusätzliche Einspritzungen im Bereich der Überhitzer kann nämlich der Dampfmassenstrom erhöht werden. Regeltechnisch werden Einspritzungen dabei ausgelöst, indem der Temperatursollwert am Austritt der jeweiligen Druckstufe reduziert wird. Je höher dabei das Enthalpieniveau des Einspritzwassers ist, desto mehr Einspritzmassenstrom wird benötigt, um den neu geforderten Temperatursollwert zu erreichen. Demnach resultiert aus einem höheren Enthalpieniveau des Einspritzwassers eine vergleichsweise größere Dampfmenge.
  • Eine derartige Erhöhung der Enthalpie ist möglich, indem das Wasser nicht an der Speisepumpe selbst, d. h. vor den Hochdruckvorwärmern entnommen wird, sondern erst nach einem Hochdruckvorwärmer. Wird bei einer solchen Verschaltung der Temperatursollwert reduziert, hat dies also eine vergleichsweise größere Dampfmenge und somit eine größere Leistungsentbindung zur Folge. Dabei ist allerdings zu beachten, dass im gesamten Lastbereich das Einspritzwasser einen ausreichenden Abstand zur Siedelinie des Dampfes und somit eine zufriedenstellende Unterkühlung aufweist. Gerade bei der Zwischenüberhitzung ist es im unteren Lastbereich durchaus möglich, dass die Enthalpie hinter einem Hochdruckvorwärmer im Hinblick auf die gewünschte Unterkühlung des Einspritzwassers zu groß sein kann und sich im Fall offener Einspritzarmaturen an der Einspritzstelle unter Umständen Nassdampf bildet. Dieser Dampf kann im ungünstigsten Fall das Einspritzventil blockieren, so dass der Einspritzmassenstrom nicht aufrecht erhalten werden kann.
  • Dem sollte begegnet werden, indem die Enthalpie des Einspritzwassers bedarfsweise geregelt werden kann. Dies ist erreichbar, indem das hinter einem Hochdruckvorwärmer entnommene Einspritzwasser mit einem geringfügigen Anteil von vor dem Hochdruckvorwärmer entnommenen Einspritzwasser gemischt wird, so dass auf diesem Weg die gewünschte Enthalpie des Einspritzwassers eingestellt werden kann. Dazu führen zwei Zuleitungen jeweils von strömungsmediumsseitig vor und hinter einem Hochdruckvorwärmer zur Überströmleitung zum Einspritzventil der Zwischenüberhitzung.
  • Vorteilhafterweise zweigt dabei die zweite Zuleitung strömungsmediumsseitig hinter allen Hochdruckvorwärmern ab. Dadurch ist die größtmögliche Enthalpie für das Einspritzwasser gewährleistet, so dass ein Optimum hinsichtlich der Dampfmenge und Leistungsentbindung erzielt wird. In weiterer vorteilhafter Ausgestaltung zweigt die erste Zuleitung strömungsmediumsseitig vor allen Hochdruckvorwärmern ab. Durch die Entnahme im kältesten Bereich kann nämlich schon bei kleiner Beimischungsmenge eine Reduzierung der Temperatur des Einspritzmediums erreicht werden, die einen ausreichenden Abstand zur Siedelinie gewährleistet. Insgesamt ist durch die Entnahme vor und hinter allen Hochdruckvorwärmern die größtmögliche Temperaturvarianz erreichbar.
  • In vorteilhafter Ausgestaltung ist in einer der Zuleitungen eine Rückschlagklappe angeordnet und in der anderen Zuleitung ein Durchflussregelventil angeordnet. Die Mischung erfolgt dann in besonders einfacher Weise über die Bestimmung der Einspritzmenge einerseits, die durch das Einspritzregelventil eingestellt wird und zum Teil über die Zuleitung mit der Rückschlagklappe zur Verfügung gestellt wird, wobei die Rückschlagklappe ein Zurückströmen aus dem Hochdruckpfad in den Niederdruckpfad verhindert. Andererseits wird über das Durchflussregelventil der anderen Zuleitung die Beimischung des Mediums der jeweils anderen Temperatur geregelt.
  • In besonders vorteilhafter Ausgestaltung ist dabei in der ersten Zuleitung ein Rückschlagventil angeordnet und in der zweiten Zuleitung ein Durchflussregelventil angeordnet. Das heißt, die Rückschlagklappe befindet sich in der Zuleitung mit dem Medium des niedrigeren Temperaturniveaus. Vorteilhafterweise zweigt darüber hinaus die erste Zuleitung aus einer Speisepumpe ab. Da unter diesen Umständen nur stromauf des Durchflussregelventils das Strömungsmedium einen vergleichsweise höheren Druck hat, ist es so möglich, dass der gesamte Wasserpfad der Einspritzeinrichtung auf vergleichsweise niedrigerem Druckniveau liegt. Zudem vereinfacht eine derartige Anordnung die Regelung, und es ist desweiteren möglich, die heute üblich eingesetzten Speisepumpen mit entsprechendem Abzweig für die Zwischenüberhitzungs-Einspritzung zu verwenden, da auch für den vorliegenden Fall das kühle Medium an der gleichen Stelle ausgekoppelt werden kann.
  • In weiterer vorteilhafter Ausgestaltung ist im Strömungsweg strömungsmediumsseitig hinter dem Abzweig der zweiten Zuleitung eine Durchflussmesseinrichtung angeordnet. Die Entnahmemenge muss dann nämlich unter diesen Umständen für die Speisewasserregelung nicht über eine zusätzliche Messung oder eine separate Bilanzierung berücksichtigt werden.
  • In vorteilhafter Ausgestaltung umfasst ein Dampfkraftwerk einen derartigen fossil befeuerten Dampferzeuger.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die Mischung von Einspritzwasser für die Zwischenüberhitzung aus Zuleitungen vor und hinter Hochdruckvorwärmern einerseits stets eine ausreichende Unterkühlung des Einspritzwassers gewährleistet werden kann, andererseits hinsichtlich der Bereitstellung einer Sofortreserve bei absolut sicherem Einspritzbetrieb ohne Dampfbildung ein Maximum an zusätzlicher Leistungsentbindung über eine entsprechend erhöhte Einspritzmenge realisiert werden kann. Alternativ kann bei gleicher Leistungsentbindung im Vergleich zu bisherigen Konzepten die Belastung sämtlicher betroffener Bauteile wie Einspritzstelle, Heizflächen und Turbine reduziert werden, da für die gleiche Leistungsentbindung ein geringerer Temperaturabfall des Dampfes zu erwarten ist.
  • Darüber hinaus ist die Verschaltung und die damit verbundene Erhöhung der Leistungsentbindung durch Nutzung des Einspritzsystems unabhängig von anderen Maßnahmen, so dass auch beispielsweise angedrosselte Turbinenventile zusätzlich geöffnet werden können, um die Leistungserhöhung der Dampfturbine noch zu verstärken. Die Wirksamkeit des Verfahrens bleibt durch diese parallelen Maßnahmen zum größten Teil unberührt.
  • Dabei ist hervorzuheben, dass bei einer fest vorgegebenen Anforderung an zusätzlicher Leistung der Androsselungsgrad der Turbinenventile vermindert werden kann, sollte die Verwendung des Einspritzsystems für die Leistungserhöhung zur Anwendung kommen. Die gewünschte Leistungsentbindung kann unter diesen Umständen dann auch mit geringerer, im günstigsten Fall sogar gänzlich ohne zusätzliche Androsselung erreicht werden. Somit kann die Anlage im gewöhnlichen Lastbetrieb, in der sie für eine Sofortreserve zur Verfügung stehen muss, mit einem vergleichsweise größeren Wirkungsgrad betrieben werden, was auch die betrieblichen Kosten vermindert.
  • Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
  • FIG 1
    strömungsmediumsseitig schematisch den Hochdruck- und Mitteldruckteil eines fossil befeuerten Dampferzeugers mit optimierter Einspritzwasserzuleitung,
    FIG 2
    strömungsmediumsseitig schematisch den Hochdruck- und Mitteldruckteil eines fossil befeuerten Dampferzeugers mit Einspritzwasserzuleitung in alternativer Ausgestaltung,
    FIG 3
    ein Diagramm mit Simulationsergebnissen zur Verbesserung der Sofortreserve eines fossil befeuerten Dampferzeugers durch Erhöhung der Einspritzwasserenthalpie der Zwischenüberhitzung in einem oberen Lastbereich, und
    FIG 4
    ein Diagramm mit Simulationsergebnissen zur Verbesserung der Sofortreserve eines fossil befeuerten Dampferzeugers durch Erhöhung der Einspritzwasserenthalpie der Zwischenüberhitzung in einem unteren Lastbereich.
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • Vom fossil befeuerten Dampferzeuger 1 sind in der FIG 1 der Hochdruckteil 2 und der Mitteldruckteil 4 dargestellt. Die FIG 1 stellt schematisch einen Teil des Strömungswegs 6 des Strömungsmediums M dar. Das Strömungsmedium M wird zunächst durch eine Speisepumpe 8 in den Hochdruckteil 2 eingespeist. Dort wird es zunächst von Hochdruckvorwärmern 10 auf eine erhöhte Temperatur gebracht, die beispielsweise mit Anzapfdampf betrieben werden können. Anschließend folgen Economizerheizflächen 12, in denen üblicherweise Rauchgas-Abwärme zur weiteren Erwärmung des Strömungsmediums genutzt wird und Verdampferheizflächen 14, in denen das Strömungsmedium mit Hilfe der aus fossilem Brennstoff gewonnenen Wärme verdampft wird. Die räumliche Anordnung der einzelnen Heizflächen 12, 14 im Heißgaskanal ist nicht dargestellt und kann variieren. Die dargestellten Heizflächen 12, 14 können jeweils stellvertretend für eine Mehrzahl seriell geschalteter Heizflächen stehen, die jedoch aufgrund der Übersichtlichkeit nicht differenziert dargestellt sind.
  • Nach dem Austritt aus den Verdampferheizflächen 14 wird eventuell vorhandene Restnässe in einer nicht näher dargestellten Wasserabscheideeinrichtung abgeschieden und der verbleibende Dampf nicht näher dargestellten Überhitzerheizflächen zugeführt. Anschließend wird der überhitzte Dampf im Hochdruckteil einer Dampfturbine entspannt. Anschließend strömt das Strömungsmedium M in den Mitteldruckteil 4 des Dampferzeugers, wo es in einer Anzahl von Zwischenüberhitzerheizflächen 16 nochmals überhitzt wird und anschließend dem Mitteldruckteil der Dampfturbine zugeführt wird.
  • Vor den Zwischenüberhitzerheizflächen ist strömungsmediumsseitig ein Einspritzventil 18 angeordnet. Hier kann kühleres und unverdampftes Strömungsmedium M zur Regelung der Austrittstemperatur am Austritt 20 des Mitteldruckteils 4 des fossil befeuerten Dampferzeugers 1 eingespritzt werden. Die in das Einspritzventil 18 eingebrachte Menge an Strömungsmedium M wird über ein Einspritzregelventil 22 geregelt. Das Strömungsmedium M wird dabei über eine zuvor im Strömungsweg 2 abzweigende Überströmleitung 24 zugeführt.
  • Um das Einspritzsystem nicht nur zur Regelung der Austrittstemperatur, sondern auch zur Bereitstellung einer sofortigen Leistungsreserve nutzen zu können, ist das Einspritzsystem für eine bedarfsweise Erhöhung der Enthalpie des Einspritzwassers ausgelegt. Dazu hat die Überströmleitung 24 eine erste Zuleitung 26, die direkt in der Speisepumpe 8 abzweigt und Strömungsmedium M mit verhältnismäßig geringer Temperatur der Überströmleitung 24 zuführt. Damit ist immer eine ausreichende Unterkühlung des Einspritzmediums gewährleistet. Die erste Zuleitung 26 umfasst auch eine Rückschlagklappe 28, die einen Rückfluss von Medium aus dem Einspritzsystem verhindert.
  • Weiterhin hat die Überströmleitung eine zweite Zuleitung 30, deren Durchfluss über ein Durchflussregelventil 32 geregelt ist. Die zweite Zuleitung zweigt hinter allen Hochdruckvorwärmern 10 vor den Economizerheizflächen 12 ab, so dass hier Strömungsmedium M mit vergleichsweise höherer Temperatur in die Überströmleitung 24 eingebracht wird. Dadurch wird bei einer vergleichsweise größeren Einspritzung eine erhebliche Dampfmengenerhöhung erreicht und die Leistung der nachgeschalteten Dampfturbine erhöht. Die Durchflussmesseinrichtung 34 ist hierbei im Strömungsweg 6 hinter beiden Abzweigorten der Zuleitungen 26, 30 angeordnet, so dass die Menge des abgezweigten Strömungsmediums M für die Speisewasserregelung hier nicht berücksichtigt zu werden braucht.
  • FIG 2 zeigt eine alternative Ausführungsform, die im Wesentlichen der FIG 1 entspricht, allerdings sind hier die Orte von Durchflussregelventil 32 und Rückschlagklappe 28 vertauscht. Die erste Zuleitung 26 hat also eine Regelventil 32 und die zweite Zuleitung 30 eine Rückschlagklappe 28. Diese Ausführungsform ist ebenso möglich, allerdings ist der gesamte Einspritzpfad für höhere Drücke auszulegen. Darüber hinaus ist für die erste Zuleitung 26 ein zusätzlicher Abzweig 36 vorgesehen, da aufgrund des höheren Druckniveaus nicht an einer beliebigen Stelle der Speisepumpe 8 Strömungsmedium M ausgekoppelt werden kann.
  • FIG 3 zeigt ein Diagramm mit Simulationsergebnissen unter Ausnutzung der beschriebenen Verschaltung. Aufgetragen ist die prozentuale zusätzliche Leistung bezogen auf Volllast 38 gegen die Zeit 40 in Sekunden nach einer sprunghaften Reduzierung des Temperatursollwerts für die Temperatur am Austritt 20 des Mitteldruckteils 4 um 20 °C bei 95 % Last. Dabei zeigt der Kurvenzug 42 die Ergebnisse ohne erwärmtes Einspritzfluid, also gemäß dem üblichen System, der Kurvenzug 44 die Ergebnisse mit wie oben beschrieben verschaltetem Einspritzsystem. In FIG 2 ist erkennbar, dass das Maximum des Kurvenzugs 44 höher ist als der Kurvenzug 42. Die zusätzlich entbundene Leistung ist damit höher.
  • FIG 4 ist gegenüber FIG 3 nur geringfügig modifiziert und zeigt die simulierten Kurvenzüge 42, 44 für 40 % Last, alle übrigen Parameter stimmen mit FIG 3 überein, ebenso die Bedeutung der Kurvenzüge 42, 44. Hier zeigen beide Kurvenzüge 42, 44 einen flachen Verlauf sowie zusätzlich ein vergleichsweise hoher Leistungsanstieg ca. 60 Sekunden nach Änderung des Sollwerts, der danach rasch wieder abfällt, um in das Maximum des flachen Verlaufs überzugehen. Insgesamt liegt der Kurvenzug 44 in jedem Zeitbereich höher als der Kurvenzug 42. Somit ist auch hier eine höhere Leistungsentbindung möglich, wobei trotz der Last bei nur 40 % eine ausreichende Unterkühlung des eingespritzten Mediums gewährleistet ist.
  • Ein mit einem derartigen fossil befeuerten Dampferzeuger 1 ausgestattetes Dampfkraftwerk ist in der Lage, über eine sofortige Leistungsentbindung der Dampfturbine schnell eine Leistungserhöhung zu leisten, die zur Stützung der Frequenz des Verbundstromnetzes dient. Dadurch, dass diese Leistungsreserve durch eine Doppelnutzung der Einspritzarmaturen neben der üblichen Temperaturregelung erreicht wird, kann auch eine permanente Androsselung der Dampfturbinenventile zur Bereitstellung einer Reserve verringert werden oder ganz entfallen, wodurch ein besonders hoher Wirkungsgrad während des normalen Betriebs erreicht wird.

Claims (8)

  1. Fossil befeuerter Dampferzeuger (1) für ein Dampfkraftwerk mit einer Anzahl von einen Strömungsweg (2) bildenden, von einem Strömungsmedium M durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen (12, 14, 16) in einer Mehrzahl von Druckstufen (2, 4), bei dem in einer Hochdruckstufe (2) eine Überströmleitung (24) eingangsseitig mit dem Strömungsweg (2) verbunden ist und zu einem in einer Mitteldruckstufe (4) strömungsmediumsseitig vor einer Überhitzerheizfläche (16) im Strömungsweg (2) angeordneten Einspritzventil (18) führt, dadurch gekennzeichnet, dass die Überströmleitung (24) zwei Zuleitungen (26, 30) hat, von denen die erste strömungsmediumsseitig vor einem Hochdruckvorwärmer (10) abzweigt und die zweite strömungsmediumsseitig hinter dem Hochdruckvorwärmer (10) abzweigt.
  2. Fossil befeuerter Dampferzeuger (1) nach Anspruch 1, dadurch gekennzeichnet, dass die zweite Zuleitung (26) strömungsmediumsseitig hinter allen Hochdruckvorwärmern (10) abzweigt.
  3. Fossil befeuerter Dampferzeuger (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Zuleitung (30) strömungsmediumsseitig vor allen Hochdruckvorwärmern abzweigt.
  4. Fossil befeuerter Dampferzeuger (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einer der Zuleitungen (26, 30) eine Rückschlagklappe (28) angeordnet ist und in der anderen Zuleitung ein Durchflussregelventil (32) angeordnet ist.
  5. Fossil befeuerter Dampferzeuger (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der ersten Zuleitung (26) eine Rückschlagklappe (28) angeordnet ist und in der zweiten Zuleitung (30) ein Durchflussregelventil (32) angeordnet ist.
  6. Fossil befeuerter Dampferzeuger (1) nach Anspruch 5, dadurch gekennzeichnet, dass die erste Zuleitung (26) aus einer Speisepumpe (8) abzweigt.
  7. Fossil befeuerter Dampferzeuger (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Strömungsweg (2) strömungsmediumsseitig hinter dem Abzweig der zweiten Zuleitung (30) eine Durchflussmesseinrichtung (34) angeordnet ist.
  8. Dampfkraftwerk mit einem fossil befeuerten Dampferzeuger (1) nach einem der vorhergehenden Ansprüche.
EP11766973.9A 2010-10-05 2011-09-30 Fossil befeuerter dampferzeuger Active EP2625390B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11766973T PL2625390T3 (pl) 2010-10-05 2011-09-30 Opalana paliwami kopalnymi wytwornica pary

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010041962 DE102010041962B3 (de) 2010-10-05 2010-10-05 Fossil befeuerter Dampferzeuger
PCT/EP2011/067125 WO2012045677A2 (de) 2010-10-05 2011-09-30 Fossil befeuerter dampferzeuger

Publications (2)

Publication Number Publication Date
EP2625390A2 EP2625390A2 (de) 2013-08-14
EP2625390B1 true EP2625390B1 (de) 2015-10-28

Family

ID=44764142

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11766973.9A Active EP2625390B1 (de) 2010-10-05 2011-09-30 Fossil befeuerter dampferzeuger

Country Status (9)

Country Link
US (1) US9506376B2 (de)
EP (1) EP2625390B1 (de)
JP (1) JP5723013B2 (de)
KR (1) KR101817777B1 (de)
CN (1) CN103154443B (de)
DE (1) DE102010041962B3 (de)
DK (1) DK2625390T3 (de)
PL (1) PL2625390T3 (de)
WO (1) WO2012045677A2 (de)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK118672B (da) * 1964-03-13 1970-09-21 Siemens Ag Reguleringsapparat til tvangscirkulationskedler.
US3385270A (en) * 1967-02-03 1968-05-28 Siemens Ag Steam power plant with forced-flow boiler system, particularly for supercritical pressure, and a superimposed circulating system
CH582851A5 (de) 1974-09-17 1976-12-15 Sulzer Ag
DE3607210A1 (de) * 1986-03-05 1986-08-28 Jürgen Dipl.-Ing. Rimmelspacher (FH), 8068 Pfaffenhofen Dampferzeuger mit no(pfeil abwaerts)x(pfeil abwaerts)-minderungsanlage
DE4029991A1 (de) * 1990-09-21 1992-03-26 Siemens Ag Kombinierte gas- und dampfturbinenanlage
JP2955085B2 (ja) 1991-10-23 1999-10-04 三菱重工業株式会社 変圧貫流ボイラ
JPH06313506A (ja) 1993-04-30 1994-11-08 Babcock Hitachi Kk ボイラ過熱器スプレイ系統の切替方式
JPH07293809A (ja) 1994-04-22 1995-11-10 Babcock Hitachi Kk 過熱低減器の注水制御方法および装置
DE4432960C1 (de) 1994-09-16 1995-11-30 Steinmueller Gmbh L & C Verfahren zum Betrieb eines Dampfkraftwerkes und Dampfkraftwerk
JP3755910B2 (ja) 1994-10-25 2006-03-15 バブコック日立株式会社 再熱蒸気系減温器の注水制御装置
US6205762B1 (en) 1997-04-15 2001-03-27 Mitsubishi Heavy Industries, Ltd. Combined cycle power generating plant and method of supplying cooling steam for gas turbine in same
DE19749452C2 (de) * 1997-11-10 2001-03-15 Siemens Ag Dampfkraftanlage
JPH11350921A (ja) 1998-06-05 1999-12-21 Babcock Hitachi Kk 排熱回収ボイラ
DE19849740A1 (de) * 1998-10-28 2000-01-05 Siemens Ag Gas- und Dampfturbinenanlage
DE10227709B4 (de) * 2001-06-25 2011-07-21 Alstom Technology Ltd. Dampfturbinenanlage sowie Verfahren zu deren Betrieb
JP4131859B2 (ja) * 2004-06-11 2008-08-13 株式会社日立製作所 蒸気温度制御装置及び蒸気温度制御方法並びにこれらを用いた発電プラント
US8104283B2 (en) * 2007-06-07 2012-01-31 Emerson Process Management Power & Water Solutions, Inc. Steam temperature control in a boiler system using reheater variables

Also Published As

Publication number Publication date
WO2012045677A3 (de) 2013-01-17
DK2625390T3 (en) 2016-02-08
CN103154443B (zh) 2015-04-01
PL2625390T3 (pl) 2016-04-29
JP2013543573A (ja) 2013-12-05
US20130205785A1 (en) 2013-08-15
KR20130100148A (ko) 2013-09-09
KR101817777B1 (ko) 2018-02-21
EP2625390A2 (de) 2013-08-14
WO2012045677A2 (de) 2012-04-12
US9506376B2 (en) 2016-11-29
JP5723013B2 (ja) 2015-05-27
CN103154443A (zh) 2013-06-12
DE102010041962B3 (de) 2012-02-16

Similar Documents

Publication Publication Date Title
EP2603672B1 (de) Abhitzedampferzeuger
DE102009036064B4 (de) rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP2606206B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
DE112016003348B4 (de) Wasserversorgungssystem, wasserversorgungsverfahren, und dampf erzeugende anlage, die mit wasserversorgungssystem bereitgestellt wird
DE102008029941A1 (de) Dampfkraftanlage und Verfahren zur Regelung der Leistung einer Dampfkraftanlage
WO2011020776A2 (de) Solarthermisches kraftwerk mit wärmetauscher in der speisewasservorwärmstrecke und verfahren zum betrieb des kraftwerks
DE10001995A1 (de) Verfahren zur Einstellung bzw. Regelung der Dampftemperatur des Frischdampfes und/oder Zwischenüberhitzerdampfers in einem Verbundkraftwerk sowie Verbundkraftwerk zur Durchführung des Verfahrens
DE69220240T2 (de) Wasserdampfsystem für eine anlage mit mehreren kesseln
EP3269948B1 (de) Verfahren zur anpassung der leistung einer dampfturbinen-kraftwerksanlage und dampfturbinen-kraftwerksanlage
EP2616643B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
DE102011078193A1 (de) Zusätzliche Regelanzapfung für einen Vorwärmer zur Verbesserung der Anlagendynamik und Frequenzregelung bei einem Dampfkraftwerk
EP3017152B1 (de) Gas-und-dampf-kombikraftwerk mit einem abhitzedampferzeuger und einer brennstoffvorwärmung
EP3475539A1 (de) Verfahren zur kurzfristigen leistungsanpassung einer dampfturbine eines gas-und dampfkraftwerks für die primärregelung
DE102010043683A1 (de) Fossil befeuerter Dampferzeuger
EP1050667A1 (de) Kombianlage mit Zusatzfeuerung
EP2625390B1 (de) Fossil befeuerter dampferzeuger
EP2655811B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
WO2016188671A1 (de) Wasser-dampf-kreislauf einer gas- und dampfturbinenanlage
CH676630A5 (de)
WO2015024886A1 (de) Dampfkraftwerk und verfahren zum betrieb eines dampfkraftwerks
DE10124492B4 (de) Verfahren zum Betrieb eines Kombikraftwerkes bei unterschiedlichen Netzanforderungen
WO2014146846A2 (de) Verfahren zum betreiben eines solarthermischen kraftwerks
AT512176A4 (de) Abhitzedampferzeuger
DE19532081A1 (de) Verfahren zum Betrieb einer Kombianlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130322

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011008237

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01K0007220000

Ipc: F01K0007240000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 7/24 20060101AFI20150415BHEP

Ipc: F01K 7/22 20060101ALI20150415BHEP

INTG Intention to grant announced

Effective date: 20150518

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 758072

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011008237

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160201

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160128

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160228

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160229

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011008237

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20160920

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20160916

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 758072

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160930

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110930

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011008237

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220825 AND 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230920

Year of fee payment: 13

Ref country code: GB

Payment date: 20230926

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230928

Year of fee payment: 13