DE102010041964A1 - Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine - Google Patents

Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine Download PDF

Info

Publication number
DE102010041964A1
DE102010041964A1 DE102010041964A DE102010041964A DE102010041964A1 DE 102010041964 A1 DE102010041964 A1 DE 102010041964A1 DE 102010041964 A DE102010041964 A DE 102010041964A DE 102010041964 A DE102010041964 A DE 102010041964A DE 102010041964 A1 DE102010041964 A1 DE 102010041964A1
Authority
DE
Germany
Prior art keywords
flow medium
steam
temperature
fossil
temperature setpoint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102010041964A
Other languages
English (en)
Inventor
Martin Effert
Frank Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE102010041964A priority Critical patent/DE102010041964A1/de
Priority to ES11767234.5T priority patent/ES2600899T3/es
Priority to US13/877,743 priority patent/US9080465B2/en
Priority to EP11767234.5A priority patent/EP2606206B1/de
Priority to KR1020137011549A priority patent/KR101841316B1/ko
Priority to DK11767234.5T priority patent/DK2606206T3/en
Priority to CN201180058426.7A priority patent/CN103249918B/zh
Priority to JP2013532167A priority patent/JP5855111B2/ja
Priority to PCT/EP2011/067294 priority patent/WO2012045730A2/de
Priority to PL11767234T priority patent/PL2606206T3/pl
Publication of DE102010041964A1 publication Critical patent/DE102010041964A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/165Controlling means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays

Abstract

Ein Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine mit einem vorgeschalteten fossil befeuerten Dampferzeuger (1) mit einer Anzahl von einen Strömungsweg (2) bildenden, von einem Strömungsmedium M durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen (4), bei dem in einer Druckstufe Strömungsmedium M aus dem Strömungsweg (2) abgezweigt und strömungsmediumsseitig vor einer Überhitzerheizfläche (4) der jeweiligen Druckstufe in den Strömungsweg eingespritzt wird, wobei ein für die Abweichung der Austrittstemperatur der strömungsmediumsseitig letzten Überhitzerheizfläche der jeweiligen Druckstufe von einem vorgegebenen Temperatursollwert charakteristischer erster Kennwert als Regelgröße für die Menge des eingespritzten Strömungsmediums M verwendet wird, soll den Wirkungsgrad des gesamten Dampfprozesses nicht über Gebühr beeinträchtigen. Gleichzeitig soll die kurzfristige Leistungssteigerung unabhängig von der Bauform des fossil befeuerten Dampferzeugers ohne invasive bauliche Modifikationen am Gesamtsystem ermöglicht werden. Dazu wird zur kurzfristigen Leistungserhöhung der Dampfturbine der Temperatursollwert reduziert und der Kennwert für den Zeitraum der Reduzierung des Temperatursollwerts temporär überproportional zur Abweichung erhöht.

Description

  • Die Erfindung betrifft ein Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine mit einem vorgeschalteten fossil befeuerten Dampferzeuger mit einer Anzahl von einen Strömungsweg bildenden, von einem Strömungsmedium durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen, bei dem in einer Druckstufe Strömungsmedium aus dem Strömungsweg abgezweigt und strömungsmediumsseitig vor einer Überhitzerheizfläche der jeweiligen Druckstufe in den Strömungsweg eingespritzt wird, wobei ein für die Abweichung der Austrittstemperatur der strömungsmediumsseitig letzten Überhitzerheizfläche der jeweiligen Druckstufe von einem vorgegebenen Temperatursollwert charakteristischer erster Kennwert als Regelgröße für die Menge des eingespritzten Strömungsmediums verwendet wird.
  • Ein fossil befeuerter Dampferzeuger erzeugt überhitzten Dampf mit Hilfe der durch Verbrennung fossiler Brennstoffe erzeugten Wärme. Fossil befeuerte Dampferzeuger kommen meist in Dampfkraftwerken zum Einsatz, die überwiegend der Stromerzeugung dienen. Der erzeugte Dampf wird dabei einer Dampfturbine zugeführt.
  • Analog zu den verschiedenen Druckstufen einer Dampfturbine umfasst auch der fossil befeuerte Dampferzeuger eine Mehrzahl von Druckstufen mit unterschiedlichen thermischen Zuständen des jeweils enthaltenen Wasser-Dampf-Gemisches. In der ersten (Hoch-)Druckstufe durchläuft das Strömungsmedium auf seinem Strömungsweg zunächst Economiser, die Restwärme zur Vorwärmung des Strömungsmediums nutzen, und anschließend verschiedene Stufen von Verdampfer- und Überhitzerheizflächen. Im Verdampfer wird das Strömungsmedium verdampft, danach eventuelle Restnässe in einer Abscheideeinrichtung abgetrennt und der übrig behaltene Dampf im Überhitzer weiter erhitzt. Danach strömt der überhitzte Dampf in den Hochdruckteil der Dampfturbine, wird dort entspannt und der folgenden Druckstufe des Dampferzeugers zugeführt. Dort wird er erneut überhitzt (Zwischenüberhitzer) und dem nächsten Druckteil der Dampfturbine zugeführt.
  • Aufgrund unterschiedlichster äußerer Einflüsse kann die an die Überhitzer übertragene Wärmeleistung stark schwanken. Daher ist es häufig notwendig, die Überhitzungstemperatur zu regeln. Üblicherweise wird dies meistens durch eine Einspritzung von Speisewasser vor oder nach einzelnen Überhitzerheizflächen zur Kühlung erreicht, d. h., eine Überströmleitung zweigt vom Hauptstrom des Strömungsmediums ab und führt zu dort entsprechend angeordneten Einspritzventilen. Die Einspritzung wird dabei üblicherweise über einen für die Temperaturabweichungen von einem vorgegebenen Temperatursollwert am Austritt des Überhitzers charakteristischen Kennwert geregelt.
  • Von modernen Kraftwerken werden nicht nur hohe Wirkungsgrade gefordert, sondern auch eine möglichst flexible Betriebsweise. Hierzu gehört außer kurzen Anfahrzeiten und hohen Laständerungsgeschwindigkeiten auch die Möglichkeit, Frequenzstörungen im Stromverbundnetz auszugleichen. Um diese Anforderungen zu erfüllen, muss das Kraftwerk in der Lage sein, Mehrleistungen von beispielsweise 5 und mehr innerhalb weniger Sekunden zur Verfügung zu stellen.
  • Derartige Leistungsänderungen eines Kraftwerksblockes im Sekundenbereich sind nur durch ein abgestimmtes Zusammenwirken von Dampferzeuger und Dampfturbine möglich. Der Beitrag, den der fossil befeuerte Dampferzeuger hierfür leisten kann, ist die Nutzung seiner Speicher, d. h. des Dampf- aber auch des Brennstoffspeichers, sowie schnelle Änderungen der Stellgrößen Speisewasser, Einspritzwasser, Brennstoff und Luft.
  • Dies kann beispielsweise durch das Öffnen teilweise angedrosselter Turbinenventile der Dampfturbine oder eines so genannten Stufenventils geschehen, wodurch der Dampfdruck vor der Dampfturbine abgesenkt wird. Dadurch wird Dampf aus dem Dampfspeicher des vorgeschalteten fossil befeuerten Dampferzeugers ausgespeichert und der Dampfturbine zugeführt. Mit dieser Maßnahme wird innerhalb weniger Sekunden ein Leistungsanstieg erreicht.
  • Eine permanente Androsselung der Turbinenventile zur Vorhaltung einer Reserve führt jedoch immer zu einem Wirkungsgradverlust, so dass für eine wirtschaftliche Fahrweise der Grad der Androsselung so gering wie unbedingt notwendig gehalten werden sollte. Zudem weisen einige Bauformen von fossil befeuerten Dampferzeugern, so z. B. Zwangdurchlauf-Dampferzeuger unter Umständen ein erheblich kleineres Speichervolumen auf als z. B. Naturumlauf-Dampferzeuger. Der Unterschied in der Größe des Speichers hat im oben beschriebenen Verfahren Einfluss auf das Verhalten bei Leistungsänderungen des Kraftwerksblocks.
  • Es ist daher Aufgabe der Erfindung, ein Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine mit einem vorgeschalteten fossil befeuerten Dampferzeuger der oben genannten Art anzugeben, bei dem der Wirkungsgrad des gesamten Dampfprozesses nicht über Gebühr beeinträchtigt wird. Gleichzeitig soll die kurzfristige Leistungssteigerung unabhängig von der Bauform des fossil befeuerten Dampferzeugers ohne invasive bauliche Modifikationen am Gesamtsystem ermöglicht werden.
  • Diese Aufgabe wird erfindungsgemäß gelöst, indem zur kurzfristigen Leistungserhöhung der Dampfturbine der Temperatursollwert reduziert und der Kennwert für den Zeitraum der Reduzierung des Temperatursollwerts temporär überproportional zur Abweichung erhöht wird.
  • Die Erfindung geht dabei von der Überlegung aus, dass zusätzliches Einspritzen von Speisewasser einen weiteren Beitrag zur kurzfristigen schnellen Leistungsänderung leisten kann. Durch diese zusätzliche Einspritzung im Bereich der Überhitzer kann nämlich der Dampfmassenstrom temporär erhöht werden. Wird eine Einspritzung jedoch unter Umgehung des sie üblicherweise kontrollierenden Dampftemperaturregelsystems ausgelöst, kann in diesem Fall ein unzulässig hoher Abfall der Dampftemperatur vor der Turbine nicht immer vermieden werden. Darüber hinaus muss bei der im Anschluss benötigten Neuaktivierung der kompletten Dampftemperaturregelung mit mehr oder minder starken Störungen des Regelbetriebs der Dampftemperatur gerechnet werden. Aus diesen genannten Gründen ist es daher günstiger, die im Lastbetrieb aktive Dampftemperaturregelung auch zur Bereitstellung der kurzfristigen Leistungsreserve zu nutzen. Die Einspritzung sollte daher ausgelöst werden, indem der Temperatursollwert reduziert wird. Ein Sprung des Temperatursollwerts ist über einen entsprechenden Kennwert mit einem Sprung der Reglerabweichung verknüpft, die den Regler dazu veranlasst, den Öffnungsgrad des Einspritzregelventils zu verändern. Somit kann eine Leistungserhöhung der Dampfturbine genau durch eine derartige Maßnahme, d. h. eine sprunghafte Reduktion des Temperatursollwerts, realisiert werden.
  • Diese Leistungserhöhung und damit auch der Einspritzmassenstrom sollen jedoch möglichst schnell bereitgestellt werden. Dabei können aber dämpfende Eigenschaften des Regelsystems hinderlich sein, die übermäßig schnelle Änderungen des Einspritzmassenstromes verhindern, was aus Stabilitätsgründen der Regelung im gewöhnlichen Lastbetrieb auch gewünscht ist, jedoch nicht bei einer schnell bereitzustellenden Leistungserhöhung. Daher sollte die Regelung für den Fall einer kurzfristigen Leistungserhöhung entsprechend angepasst werden. Dies ist in besonders einfacher Weise möglich, in dem das Regelsignal für den Einspritzmassenstrom entsprechend verstärkt wird, und zwar für den Zeitraum der erwünschten kurzfristigen Leistungserhöhung. Dazu wird der für die Abweichung der Austrittstemperatur der strömungsmediumsseitig letzten Überhitzerheizfläche von einem vorgegebenen Temperatursollwert charakteristische Kennwert für den Zeitraum der Reduzierung des Temperatursollwerts temporär überproportional zur Abweichung erhöht.
  • Im oben beschriebenen Verfahren wird in einem entsprechenden Regelsystem über ein Subtrahierglied ein Soll-Ist-Vergleich zwischen gewünschter und gemessener Dampftemperatur gemacht. Je nach eingesetztem Regelkonzept kann dieses Signal noch durch zusätzliche Informationen aus dem Prozess weiter modifiziert werden, bevor es im Anschluss als Eingangssignal (Regelabweichung) beispielsweise auf einen PI-Regler aufgeschaltet wird. Vorteilhafterweise kann zusätzlich die Temperatur unmittelbar nach dem Einspritzort des Strömungsmediums, d. h. am Eintritt der letzten Überhitzerheizflächen, als Regelgröße verwendet werden. Bei einer derartigen so genannten Zweikreisregelung werden schlagartige Änderungen des Einspritzmassenstroms, die durch einen Reglereingriff erfolgt sind, abgedämpft. Unter diesen Umständen kann die auf schnelle Eingriffe optimierte Regelung durch Verhinderung eines Überschwingens stabilisiert werden.
  • Für die Bereitstellung einer Sofortreserve über das Einspritzsystem ist diese dämpfende Wirkung der Zweikreisregelung jedoch eher hinderlich. Daher ist es insbesondere bei der Zweikreisregelung von besonderem Vorteil, die beschriebene verstärkende Anpassung des Kennwerts vorzunehmen. Die dadurch erzeugte regelseitige künstliche Erhöhung der Abweichung der tatsächlichen Temperatur zum vorgegebenen Sollwert erreicht nämlich, dass die anschließende Korrektur durch die Temperatur am Eintritt der letzten Überhitzerheizflächen, d. h. unmittelbar nach dem Einspritzort, bei der Zweikreisregelung verhältnismäßig geringer ausfällt. Dadurch bleibt eine größere Regelabweichung bestehen, die unmittelbar eine stärkere Reglerantwort, d. h. eine größere Erhöhung des Einspritzmassenstroms, zur Folge hat, was in diesem Fall erwünscht ist. Dadurch, dass der Kennwert jedoch nur für den Zeitraum der Reduzierung des Temperatursollwerts temporär überproportional erhöht wird, verschwindet der Einfluss dieser Überhöhung wieder, so dass die über den Sollwert eingestellte Dampftemperatur auch wirklich erreicht werden kann. Somit bleibt der Vorteil der Zweikreisregelung, unzulässige Dampftemperaturabfälle zu vermeiden, nach wie vor bestehen.
  • In besonders einfacher Weise kann die temporäre Erhöhung des Kennwerts erzeugt werden, indem vorteilhafterweise der für die Abweichung der Temperatur vom Sollwert charakteristische Kennwert aus der Summe dieser Abweichung und einem für die zeitliche Änderung des Temperatursollwerts charakteristischen zweiten Kennwert gebildet wird. Dabei ist in besonders vorteilhafter Ausgestaltung der zweite Kennwert im Wesentlichen die mit einem Verstärkungsfaktor multiplizierte zeitliche Änderung des Temperatursollwerts. Regeltechnisch wird dies realisiert, indem der vorgegebene Dampftemperatursollwert als Eingangssignal eines Differenzierglieds erster Ordnung verwendet wird und der Ausgang dieses Elements nach geeigneter Verstärkung von der Differenz aus gemessener und vorgegebener Temperatur am Heizflächenaustritt subtrahiert wird. Dadurch wird die gewünschte künstliche Erhöhung der Abweichung besonders einfach realisiert und über das zusätzliche Differenzierglied erster Ordnung wird der Einspritzmassenstrom und somit die zusätzlich entbundene Leistung über die Dampfturbine wesentlich schneller erhöht.
  • Aufgrund des differentiellen Charakters, d. h. die Berücksichtigung nur der zeitlichen Änderung des Sollwerts, nimmt der Einfluss einer derartigen Regelung auf das Gesamtsystem mit fortlaufender Zeit ab (Verschwindimpuls). Das bedeutet, dass das Differenzierglied keinen weiteren Einfluss auf die Regelabweichung hat und die tatsächliche über den Sollwert eingestellte Temperatur auch erreicht wird. Auch für den Fall, dass sich der Sollwert der Dampftemperatur nicht ändert (der Normfall im gewöhnlichen Lastbetrieb) hat eine derartige Ausgestaltung keinen Einfluss auf die restliche Regelstruktur. Somit treten im gewöhnlichen Lastbetrieb keine Unterschiede im Regelverhalten der Dampftemperaturregelung zwischen der Regelstruktur mit bzw. ohne dieses zusätzliche Differenzierglied auf.
  • In vorteilhafter Ausgestaltung wird ein Parameter eines der Kennwerte anlagenspezifisch bestimmt. Das heißt, die Höhe der Verstärkung, die Parameter des Differenzierglieds etc. sollten spezifisch anhand der im Einzelfall betroffenen Anlage bestimmt werden. Dies kann beispielsweise vorab mit Hilfe von Simulationsrechnungen oder aber während der Inbetriebsetzung der Regelung geschehen.
  • In vorteilhafter Ausgestaltung umfasst ein Regelsystem für einen fossil befeuerten Dampferzeuger mit einer Anzahl von einen Strömungsweg bildenden, von einem Strömungsmedium durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen Mittel zum Ausführen des Verfahrens. In weiterer vorteilhafter Ausgestaltung umfasst ein fossil befeuerter Dampferzeuger für ein Dampfkraftwerk ein derartiges Regelsystem sowie ein Dampfkraftwerk einen derartigen fossil befeuerten Dampferzeuger.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die gezielte Reduzierung des Dampftemperatursollwerts unter Verwendung des Einspritzregelverfahrens die in den stromab der Einspritzung gelegenen Metallmassen eingespeicherte thermische Energie für eine temporäre Leistungssteigerung der Dampfturbine genutzt werden kann. Kommen dabei die beschriebenen angepassten Regelverfahren zur Anwendung, sind für den Fall einer schlagartigen Reduzierung des Dampftemperatursollwerts wesentlich schnellere Leistungserhöhungen mit Hilfe des Einspritzsystems realisierbar. Dabei ist das Verfahren in jeder Druckstufe entweder einzeln oder in Kombination anwendbar, d. h. sowohl beim Frischdampf (Hochdruckstufe) als auch in der Zwischenüberhitzung (Mittel- oder Niederdruckstufe).
  • Durch die Integration in das bestehende Dampftemperaturregelsystem wird der abgesenkte Temperatursollwert bei guter Regelgüte der Temperaturregelung nach Öffnen der Einspritzarmaturen nicht nennenswert unterschritten. Somit wird einem unzulässig hohen Temperaturabfall des Dampfes am Turbineneintritt effektiv entgegengewirkt. An- und Abschaltprozesse der Regelung und der Koordination entfallen ebenfalls, da das Regelsystem dauerhaft aktiv bleiben kann.
  • Darüber hinaus ist das Verfahren zur Bereitstellung einer temporären Leistungssteigerung der Dampfturbine unabhängig von anderen Maßnahmen, so dass auch beispielsweise angedrosselte Turbinenventile zusätzlich geöffnet werden können, um die Leistungserhöhung der Dampfturbine noch zu verstärken. Die Wirksamkeit des Verfahrens bleibt durch diese parallelen Maßnahmen zum größten Teil unberührt.
  • Dabei ist hervorzuheben, dass bei einer fest vorgegebenen Anforderung an zusätzlicher Leistung der Androsselungsgrad der Turbinenventile vermindert werden kann, sollte die Verwendung des Einspritzsystems für die Leistungserhöhung zur Anwendung kommen. Die gewünschte Leistungsentbindung kann unter diesen Umständen dann auch mit geringerer, im günstigsten Fall sogar gänzlich ohne zusätzliche Androsselung erreicht werden. Somit kann die Anlage im gewöhnlichen Lastbetrieb, in der sie für eine Sofortreserve zur Verfügung stehen muss, mit einem vergleichsweise größeren Wirkungsgrad betrieben werden, was auch die betrieblichen Kosten vermindert.
  • Letztlich ist das Verfahren auch ohne invasive bauliche Maßnahmen zu realisieren, sondern lediglich durch zusätzliche Bausteine sind im Regelsystem vorzusehen oder zu implementieren. Dadurch werden höhere Anlagenflexibilität und -nutzen ohne zusätzliche Kosten erzielt.
  • Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
  • 1 strömungsmediumsseitig schematisch den Mitteldruckteil eines fossil befeuerten Dampferzeugers mit datenseitiger Verschaltung des Einspritzregelsystems mit Zweikreisregelung zur Nutzung für eine Sofortleistungsentbindung,
  • 2 ein Diagramm mit Simulationsergebnissen zur Verbesserung der Sofortreserve eines fossil befeuerten Dampferzeugers durch Erhöhung der Einspritzung von Hochdruck-Dampf, Zwischenüberhitzungs-Dampf und jeweils in beiden Drucksystemen in einem oberen Lastbereich, und
  • 3 ein Diagramm mit Simulationsergebnissen zur Verbesserung der Sofortreserve eines fossil befeuerten Dampferzeugers durch Erhöhung der Einspritzung von Hochdruck-Dampf, Zwischenüberhitzungs-Dampf und jeweils beiden Drucksystemen für einen unteren Lastbereich.
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • Vom fossil befeuerten Dampferzeuger 1 ist in der 1 beispielhaft der Mitteldruckteil dargestellt. Die Erfindung kann natürlich auch in anderen Druckstufen zur Anwendung kommen. Die 1 stellt schematisch einen Teil des Strömungswegs 2 des Strömungsmediums M dar, insbesondere die Überhitzerheizflächen 4. Die räumliche Anordnung der einzelnen Überhitzerheizflächen 4 im Heißgaskanal ist nicht dargestellt und kann variieren. Die dargestellten Überhitzerheizflächen 4 können jeweils stellvertretend für eine Mehrzahl seriell geschalteter Heizflächen stehen, die jedoch aufgrund der Übersichtlichkeit nicht differenziert dargestellt sind.
  • Das Strömungsmedium M wird vor dem Eintritt in den in der 1 dargestellten Teil im Hochdruckteil einer Dampfturbine entspannt. Das Strömungsmedium M kann dann optional in eine erste, nicht dargestellte Überhitzerheizfläche eintreten, bevor es den dargestellten Teil erreicht. Zunächst ist strömungsmediumsseitig ein Einspritzventil 6 angeordnet. Hier kann kühleres und unverdampftes Strömungsmedium M zur Regelung der Austrittstemperatur am Austritt 8 des Mitteldruckteils des fossil befeuerten Dampferzeugers 1 eingespritzt werden. Die in das Einspritzventil 6 eingebrachte Menge an Strömungsmedium M wird über ein Einspritzregelventil 10 geregelt. Das Strömungsmedium M wird dabei über eine zuvor im Strömungsweg 2 abzweigende Überströmleitung 12 zugeführt. Im Strömungsweg 2 sind weiterhin zur Regelung der Einspritzung mehrere Messeinrichtungen vorgesehen, nämlich eine Temperaturmesseinrichtung 14 und eine Druckmesseinrichtung 16 nach dem Einspritzventil 6 und vor den Überhitzerheizflächen 4, sowie eine Temperaturmesseinrichtung 18 nach den Überhitzerheizflächen 4.
  • Die übrigen Teile der 1 zeigen das Regelsystem 20 für die Einspritzung. Zunächst wird ein Temperatursollwert an einem Sollwertgeber 22 eingestellt. Dieser Temperatursollwert ist zusammen mit dem Ausgang der Temperaturmesseinrichtung 18 nach den Überhitzerheizflächen 4 auf ein Subtrahierglied 24 geschaltet, wo somit die Abweichung der Temperatur am Austritt der Überhitzerheizflächen 4 vom Sollwert gebildet wird. Diese Abweichung wird in einem Addierglied 26 korrigiert, wobei die Korrektur die Zeitverzögerung einer Temperaturänderung beim Durchlauf durch die Überhitzerheizflächen 4 modelliert. Dazu wird die Temperatur am Eintritt der Überhitzerheizflächen 4 aus der Temperaturmesseinrichtung 14 auf ein zeitverzögerndes PTn-Glied 28 geschaltet, das eingangsseitig dem Addierglied 26 zugeführt wird. Der Ausgang des Addierglieds 26 wird auf ein Maximumglied 30 geschaltet und im weiteren Verlauf zusammen mit dem Signal der Temperaturmesseinrichtung 14 auf ein Subtrahierglied 32.
  • Im Maximumglied 30 wird eingangsseitig ein weiterer Parameter berücksichtigt, nämlich dass die Temperatur einen gewissen Abstand zur druckabhängigen Siedetemperatur haben sollte. Dazu ist der an der Druckmesseinrichtung 16 gemessene Druck in ein Funktionsglied 34 geschaltet, dass die diesem Druck entsprechende Siedetemperatur des Strömungsmediums M ausgibt. In einem Addierglied 36 wird eine voreingestellte Konstante aus einem Geber 38 addiert, die beispielsweise 10°C betragen kann und einen Sicherheitsabstand zur Siedelinie gewährleistet. Die so ermittelte Mindesttemperatur wird an das Maximumglied 30 gegeben. Das im Maximumglied 30 ermittelte Signal wird über das Subtrahierglied 32 einem PI-Regelglied 40 zur Steuerung des Einspritzregelventils 10 aufgeschaltet.
  • Um das Einspritzsystem nicht nur zur Regelung der Austrittstemperatur, sondern auch zur Bereitstellung einer sofortigen Leistungsreserve nutzen zu können, umfasst dieses entsprechende Mittel zum Ausführen des Verfahrens zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine. Zunächst wird dazu der Temperatursollwert am Sollwertgeber 22 reduziert, was eine Erhöhung der Einspritzmenge zur Folge hat. Damit diese aber unmittelbar zu einer Leistungserhöhung führt, sollte eine schnelle Reglerantwort des PI-Regelglieds 40 gewährleistet sein. Die verursachte Abweichung der tatsächlichen Temperatur vom Temperatursollwert wird jedoch durch das PTn-Glied 28 kurz nach der Änderung abgemildert.
  • Um dies im Falle einer gewünschten schnellen Leistungserhöhung zu verhindern, ist das Signal des Sollwertgebers 22 für den Temperatursollwert auf ein ein Differenzierglied erster Ordnung (DT1) geschaltet. Hierfür ist ein PT1-Glied 42 eingangsseitig mit dem Signal des Sollwertgebers 22 beaufschlagt und ausgangsseitig zusammen mit dem ursprünglichen Signal des Sollwertgebers 22 auf ein Subtrahierglied 44 geschaltet, dessen Ausgang mit einem Multiplizierglied 46 verbunden ist, das das Signal um einen Faktor, z. B. 10 aus einem Geber 48 verstärkt. Dieses Signal wird über das Addierglied 50 in das Signal der Temperaturabweichung aus dem Subtrahierglied 24 gegeben. Im Falle einer Änderung des Sollwertes erzeugt die Verschaltung über das PT1-Glied 42 ein von Null verschiedenes Signal, das über das Multiplizierglied 46 verstärkt wird und den für die Abweichung charakteristischen Kennwert künstlich überproportional verstärkt. Das Signal über die Verschaltung des PTn-Glieds 28 ist verhältnismäßig dann kleiner und es wird eine schnellere Reglerantwort des PI-Reglerglieds 40 erzwungen. Somit wird schnell eine Dampfmengenerhöhung erreicht und die Leistung der nachgeschalteten Dampfturbine erhöht.
  • 2 zeigt nun ein Diagramm mit Simulationsergebnissen unter Ausnutzung des beschriebenen Regelverfahrens. Aufgetragen ist die prozentuale zusätzliche Leistung bezogen auf Volllast 52 gegen die Zeit 54 in Sekunden nach einer sprunghaften Reduzierung des Temperatursollwerts am Sollwertgeber 22 um 20°C für die jeweilige Stufe eines fossil befeuerten Dampferzeugers mit Hochdruck- und Zwischenüberhitzungs- oder Mitteldruckstufe bei 95% Last. Wie bereits erwähnt kann die oben beschriebene Schaltung mit dem PT1-Glied 42 zur überproportionalen Verstärkung des für die Abweichung charakteristischen Kennwerts in beiden Stufen zur Anwendung kommen. Die Kurvenzüge 56 und 58 zeigen die Ergebnisse für eine Modifikation des Hochdruckteils, die Kurvenzüge 60 und 62 die Ergebnisse für eine Modifikation der Zwischenüberhitzung und die Kurvenzüge 64 und 66 die Ergebnisse für eine Modifikation beider Stufen. Dabei zeigen die Kurvenzüge 56, 60 und 64 jeweils die Ergebnisse ohne PT1-Glied 42, also gemäß dem üblichen Regelsystem, die Kurvenzüge 58, 62 und 66 jeweils die Ergebnisse mit wie oben beschrieben verschalteten PT1-Glied 42.
  • In 2 ist erkennbar, dass die Maxima der Kurvenzüge 58, 62 und 66 jeweils einerseits höher als auch weiter links angeordnet sind als ihre jeweiligen entsprechenden Kurvenzüge 56, 60 und 64. Die zusätzlich entbundene Leistung ist damit einerseits höher, andererseits steht sie schneller zur Verfügung. Die Beschleunigung ist bei den Kurvenzügen 60, 62 der Zwischenüberhitzung geringer ausgeprägt, dafür ist eine signifikante relative Erhöhung der Leistung erkennbar, wenn auch auf absolut niedrigerem Niveau als im Hochdruckteil.
  • 3 ist gegenüber 2 nur geringfügig modifiziert und zeigt die simulierten Kurvenzüge 56, 58, 60, 62, 64, 66 für 40% Last, alle übrigen Parameter stimmen mit 2 überein, ebenso die Bedeutung der Kurvenzüge 56, 58, 60, 62, 64, 66.
  • Hier zeigen insbesondere die unmodifizierten Kurvenzüge 56, 60, 62 einen wesentlich flacheren Verlauf als in 2, d. h., es ist eine noch langsamere Reglerantwort des PI-Regelglieds 40 ersichtlich. Durch die beschriebene Verschaltung des PT1-Glieds 42 im Hochdruckteil ist das Maximum des Kurvenzugs 58 weiter links und höher als Kurvenzug 56, es ist also eine schnellere und höhere Leistungserhöhung erreicht. Der Kurvenzug 58 bleibt jedoch relativ flach.
  • Die Modifikation der Zwischenüberhitzung, dargestellt in Kurvenzug 62, zeigt ein ähnliches Verhalten, zusätzlich zeigt sich jedoch ein vergleichsweise hoher Leistungsanstieg ca. 60 Sekunden nach Änderung des Sollwerts, der danach rasch wieder abfällt, um in das Maximum des flachen Verlaufs überzugehen. Dieser Leistungsanstieg zeigt sich entsprechend auch bei einer Modifikation beider Druckstufen nach Kurvenzug 66 im Vergleich zu Kurvenzug 64.
  • Ein mit einem derartigen fossil befeuerten Dampferzeuger 1 ausgestattetes Dampfkraftwerk ist in der Lage, über eine sofortige Leistungsentbindung der Dampfturbine schnell eine Leistungserhöhung zu leisten, die zur Stützung der Frequenz des Verbundstromnetzes dient. Dadurch, dass diese Leistungsreserve durch eine Doppelnutzung der Einspritzarmaturen neben der üblichen Temperaturregelung erreicht wird, kann auch eine permanente Androsselung der Dampfturbinenventile zur Bereitstellung einer Reserve verringert werden oder ganz entfallen, wodurch ein besonders hoher Wirkungsgrad während des normalen Betriebs erreicht wird.

Claims (8)

  1. Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine mit einem vorgeschalteten fossil befeuerten Dampferzeuger (1) mit einer Anzahl von einen Strömungsweg (2) bildenden, von einem Strömungsmedium M durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen (4), bei dem in einer Druckstufe Strömungsmedium M aus dem Strömungsweg (2) abgezweigt und strömungsmediumsseitig vor einer Überhitzerheizfläche (4) der jeweiligen Druckstufe in den Strömungsweg eingespritzt wird, wobei ein für die Abweichung der Austrittstemperatur der strömungsmediumsseitig letzten Überhitzerheizfläche der jeweiligen Druckstufe von einem vorgegebenen Temperatursollwert charakteristischer erster Kennwert als Regelgröße für die Menge des eingespritzten Strömungsmedium M verwendet wird, wobei zur kurzfristigen Leistungserhöhung der Dampfturbine der Temperatursollwert reduziert und der Kennwert für den Zeitraum der Reduzierung des Temperatursollwerts temporär überproportional zur Abweichung erhöht wird.
  2. Verfahren nach Anspruch 1, bei dem zusätzlich die Temperatur unmittelbar nach dem Einspritzort des Strömungsmediums M als Regelgröße für die Menge des eingespritzten Strömungsmediums M verwendet wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der erste Kennwert aus der Summe der Abweichung und einem für die zeitliche Änderung des Temperatursollwerts charakteristischen zweiten Kennwert gebildet wird.
  4. Verfahren nach Anspruch 3, bei dem der zweite Kennwert im Wesentlichen die mit einem Verstärkungsfaktor multiplizierte zeitliche Änderung des Temperatursollwerts ist.
  5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem ein Parameter einer der Kennwerte anlagenspezifisch bestimmt wird.
  6. Regelsystem (20) für einen fossil befeuerten Dampferzeuger (1) mit einer Anzahl von einen Strömungsweg (2) bildenden, von einem Strömungsmedium M durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen (4) mit Mitteln zum Ausführen des Verfahrens nach einem der vorhergehenden Ansprüche.
  7. Fossil befeuerter Dampferzeuger (1) für ein Dampfkraftwerk mit einem Regelsystem (20) nach Anspruch 6.
  8. Dampfkraftwerk mit einem fossil befeuerten Dampferzeuger (1) nach Anspruch 7.
DE102010041964A 2010-10-05 2010-10-05 Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine Ceased DE102010041964A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE102010041964A DE102010041964A1 (de) 2010-10-05 2010-10-05 Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine
ES11767234.5T ES2600899T3 (es) 2010-10-05 2011-10-04 Procedimiento para la regulación de un incremento breve de potencia de una turbina de vapor
US13/877,743 US9080465B2 (en) 2010-10-05 2011-10-04 Method for controlling a short-term increase in power of a steam turbine
EP11767234.5A EP2606206B1 (de) 2010-10-05 2011-10-04 Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
KR1020137011549A KR101841316B1 (ko) 2010-10-05 2011-10-04 증기 터빈의 단기간 출력 상승을 조절하기 위한 방법
DK11767234.5T DK2606206T3 (en) 2010-10-05 2011-10-04 A method for controlling a short-term power increase of a steam turbine
CN201180058426.7A CN103249918B (zh) 2010-10-05 2011-10-04 短期提高汽轮机功率的控制方法
JP2013532167A JP5855111B2 (ja) 2010-10-05 2011-10-04 蒸気タービンの短期間の出力増大を調節するための方法
PCT/EP2011/067294 WO2012045730A2 (de) 2010-10-05 2011-10-04 Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
PL11767234T PL2606206T3 (pl) 2010-10-05 2011-10-04 Sposób regulacji krótkotrwałego zwiększenia mocy turbiny parowej

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010041964A DE102010041964A1 (de) 2010-10-05 2010-10-05 Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine

Publications (1)

Publication Number Publication Date
DE102010041964A1 true DE102010041964A1 (de) 2012-04-05

Family

ID=44773073

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010041964A Ceased DE102010041964A1 (de) 2010-10-05 2010-10-05 Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine

Country Status (10)

Country Link
US (1) US9080465B2 (de)
EP (1) EP2606206B1 (de)
JP (1) JP5855111B2 (de)
KR (1) KR101841316B1 (de)
CN (1) CN103249918B (de)
DE (1) DE102010041964A1 (de)
DK (1) DK2606206T3 (de)
ES (1) ES2600899T3 (de)
PL (1) PL2606206T3 (de)
WO (1) WO2012045730A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068087A1 (en) * 2013-11-07 2015-05-14 Sasol Technology Proprietary Limited Method and plant for co-generation of heat and power
WO2015068088A1 (en) * 2013-11-07 2015-05-14 Sasol Technology Proprietary Limited Method and plant for co-generation of heat and power
WO2015068086A1 (en) * 2013-11-07 2015-05-14 Sasol Technology Proprietary Limited Method and plant for co-generation of heat and power

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH704318B1 (de) * 2011-01-07 2016-03-15 Inducs Ag Induktionskochgerät zum temperaturgesteuerten Kochen.
US9080467B2 (en) 2011-02-25 2015-07-14 Siemens Aktiengesellschaft Method for regulating a brief increase in power of a steam turbine
CN106094740B (zh) * 2016-05-09 2019-05-21 国网江西省电力科学研究院 一种基于过热器蓄热前馈的火电机组负荷控制方法
DE102016218763A1 (de) * 2016-09-28 2018-03-29 Siemens Aktiengesellschaft Verfahren zur kurzfristigen Leistungsanpassung einer Dampfturbine eines Gas-und Dampfkraftwerks für die Primärregelung
US11346697B2 (en) * 2018-08-08 2022-05-31 Nordson Corporation System and method for remote metering station sensor calibration and verification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241701A (en) * 1979-02-16 1980-12-30 Leeds & Northrup Company Method and apparatus for controlling steam temperature at a boiler outlet
DE19749452A1 (de) * 1997-11-10 1999-05-20 Siemens Ag Verfahren zur schnellen Leistungsregelung einer Dampfkraftanlage sowie Dampfkraftanlage
DE19901656A1 (de) * 1999-01-18 2000-07-20 Abb Alstom Power Ch Ag Verfahren und Vorrichtung zur Regelung der Temperatur am Austritt eines Dampfüberhitzers

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189008A (en) * 1963-08-21 1965-06-15 Combustion Eng Method and apparatus for controlling a vapor generator operating at supercritical pressure
DK118672B (da) * 1964-03-13 1970-09-21 Siemens Ag Reguleringsapparat til tvangscirkulationskedler.
DE1297624B (de) * 1964-03-14 1969-06-19 Siemens Ag Dampfkraftanlage
CH552771A (de) 1972-06-12 1974-08-15 Sulzer Ag Zwangdurchlaufdampferzeuger.
CH557986A (de) * 1974-03-22 1975-01-15 Sulzer Ag Verfahren und vorrichtung zum regeln eines dampferzeugers.
CH582851A5 (de) * 1974-09-17 1976-12-15 Sulzer Ag
US4028884A (en) * 1974-12-27 1977-06-14 Westinghouse Electric Corporation Control apparatus for controlling the operation of a gas turbine inlet guide vane assembly and heat recovery steam generator for a steam turbine employed in a combined cycle electric power generating plant
FR2401380A1 (fr) 1977-08-23 1979-03-23 Sulzer Ag Generateur de vapeur a circulation forcee
US4144846A (en) 1977-09-27 1979-03-20 Sulzer Brothers Ltd. Forced-flow steam generator
JP2690511B2 (ja) 1988-08-12 1997-12-10 株式会社日立製作所 蒸気温度の制御方法、及び、同制御装置
JP2692978B2 (ja) 1989-08-31 1997-12-17 株式会社東芝 コンバインドサイクルプラントの起動運転方法
JP3673295B2 (ja) 1994-11-14 2005-07-20 バブコック日立株式会社 ボイラの再熱蒸気温度制御方法および装置
DE19750125A1 (de) * 1997-11-13 1999-03-11 Siemens Ag Verfahren und Vorrichtung zur Primärregelung eines Dampfkraftwerkblocks
US6474069B1 (en) * 2000-10-18 2002-11-05 General Electric Company Gas turbine having combined cycle power augmentation
EP2194320A1 (de) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP2224164A1 (de) 2008-11-13 2010-09-01 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Abhitzedampferzeugers
DE102010040623A1 (de) 2010-09-13 2012-03-15 Siemens Aktiengesellschaft Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241701A (en) * 1979-02-16 1980-12-30 Leeds & Northrup Company Method and apparatus for controlling steam temperature at a boiler outlet
DE19749452A1 (de) * 1997-11-10 1999-05-20 Siemens Ag Verfahren zur schnellen Leistungsregelung einer Dampfkraftanlage sowie Dampfkraftanlage
DE19901656A1 (de) * 1999-01-18 2000-07-20 Abb Alstom Power Ch Ag Verfahren und Vorrichtung zur Regelung der Temperatur am Austritt eines Dampfüberhitzers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068087A1 (en) * 2013-11-07 2015-05-14 Sasol Technology Proprietary Limited Method and plant for co-generation of heat and power
WO2015068088A1 (en) * 2013-11-07 2015-05-14 Sasol Technology Proprietary Limited Method and plant for co-generation of heat and power
WO2015068086A1 (en) * 2013-11-07 2015-05-14 Sasol Technology Proprietary Limited Method and plant for co-generation of heat and power
AU2014347766B2 (en) * 2013-11-07 2018-01-25 Sasol Technology Proprietary Limited Method and plant for co-generation of heat and power
US10233789B2 (en) 2013-11-07 2019-03-19 Sasol Technology Proprietary Limited Method and plant for co-generation of heat and power
US10302296B2 (en) 2013-11-07 2019-05-28 Sasol Technology Proprietary Limited Method and plant for co-generation of heat and power
US10502408B2 (en) 2013-11-07 2019-12-10 Sasol Technology Proprietary Limited Method and plant for co-generation of heat and power

Also Published As

Publication number Publication date
US20130186091A1 (en) 2013-07-25
JP5855111B2 (ja) 2016-02-09
CN103249918A (zh) 2013-08-14
WO2012045730A2 (de) 2012-04-12
ES2600899T3 (es) 2017-02-13
KR20140000239A (ko) 2014-01-02
PL2606206T3 (pl) 2017-04-28
WO2012045730A3 (de) 2013-03-07
KR101841316B1 (ko) 2018-03-22
EP2606206B1 (de) 2016-07-27
CN103249918B (zh) 2016-08-10
EP2606206A2 (de) 2013-06-26
US9080465B2 (en) 2015-07-14
JP2013543574A (ja) 2013-12-05
DK2606206T3 (en) 2016-11-21

Similar Documents

Publication Publication Date Title
EP2606206B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
EP2603672B1 (de) Abhitzedampferzeuger
DE102009036064B4 (de) rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP2614303B1 (de) Verfahren zum betreiben einer kombinierten gas- und dampfturbinenanlage sowie zur durchführung des verfahrens hergerichtete gas- und dampfturbinenanlage und entsprechende regelvorrichtung
EP2255076A2 (de) Verfahren zur regelung eines dampferzeugers und regelschaltung für einen dampferzeuger
EP2616643B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
EP1174591A1 (de) Verfahren zur Primärregelung mit einer kombinierten Gas- und Dampfturbinenanlage
DE3021375A1 (de) Regelanordnung fuer eine dampfturbine mit einen gleitenden oder konstanten druck aufweisenden kesseln
DE10001995A1 (de) Verfahren zur Einstellung bzw. Regelung der Dampftemperatur des Frischdampfes und/oder Zwischenüberhitzerdampfers in einem Verbundkraftwerk sowie Verbundkraftwerk zur Durchführung des Verfahrens
DE3304292A1 (de) Verfahren und vorrichtung zum ausregeln von netzfrequenzeinbruechen bei einem gleitdruckbetriebenen dampfkraftwerkblock
WO2018059840A1 (de) Verfahren zur kurzfristigen leistungsanpassung einer dampfturbine eines gas-und dampfkraftwerks für die primärregelung
DE2923288C2 (de)
DE102010043683A1 (de) Fossil befeuerter Dampferzeuger
EP3014178A2 (de) Betriebsverfahren für einen extern beheizten zwangdurchlaufdampferzeuger
EP2655811B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
DE102012102115A1 (de) Solarthermisches Kraftwerk und Verfahren zum Betreiben eines solarthermischen Kraftwerks
WO2016188671A1 (de) Wasser-dampf-kreislauf einer gas- und dampfturbinenanlage
DE102011006390A1 (de) Verfahren zum Betreiben eines Durchlaufdampferzeugers und zur Durchführung des Verfahrens ausgelegter Dampferzeuger
EP2409078B1 (de) Verfahren zur Auslegung eines Durchlaufverdampfers
EP2625390B1 (de) Fossil befeuerter dampferzeuger
DE102016212634A1 (de) Verfahren zur Sekundärfrequenzregelung einer fossil befeuerten Kraftwerksanlage
AT512176B1 (de) Abhitzedampferzeuger
DE102013226551A1 (de) Regeleinrichtung und Verfahren umfassend eine Dampfturbine
DE102019216179A1 (de) Verfahren zur Regelung der Eintrittstemperatur eines Arbeitsfluides einer Dampfturbine bei schwankender Bereitstellung thermischer Energie
DD141938A1 (de) Verfahren zum betreiben von turboaggregaten mit geregelter dampfentnahme

Legal Events

Date Code Title Description
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20120817