EP0308728B1 - Verfahren zum Betreiben eines Durchlaufdampferzeugers - Google Patents

Verfahren zum Betreiben eines Durchlaufdampferzeugers Download PDF

Info

Publication number
EP0308728B1
EP0308728B1 EP88114622A EP88114622A EP0308728B1 EP 0308728 B1 EP0308728 B1 EP 0308728B1 EP 88114622 A EP88114622 A EP 88114622A EP 88114622 A EP88114622 A EP 88114622A EP 0308728 B1 EP0308728 B1 EP 0308728B1
Authority
EP
European Patent Office
Prior art keywords
heating surface
evaporator heating
steam generator
feed water
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88114622A
Other languages
English (en)
French (fr)
Other versions
EP0308728A1 (de
Inventor
Eberhard Dipl.-Ing. Wittchow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0308728A1 publication Critical patent/EP0308728A1/de
Application granted granted Critical
Publication of EP0308728B1 publication Critical patent/EP0308728B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/12Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating with superimposed recirculation during starting and low-load periods, e.g. composite boilers

Definitions

  • the invention relates to a method for operating a once-through steam generator in accordance with the preamble of patent claim 1.
  • Such a method is known from pages 751 to 753 from "VGB-Kraftwerkstechnik 56", number 12, Dec. 1976 and relates to the continuous steam generator with full load circulation of a combined gas / steam turbine system.
  • a constant amount of exhaust gas flows to the continuous steam generator regardless of its load from a gas turbine.
  • the excess air in the combustion chamber is always kept approximately the same size despite the different load of the continuous steam generator in that a partial flow of this exhaust gas from the gas turbine bypassing the combustion chamber and thus the first evaporator heating surface formed by the wall of this combustion chamber of the continuous steam generator on the flue gas side in front of the second evaporator heating surface in the convection space is introduced.
  • the feed water is constantly fed into both evaporator heating surfaces which are connected in parallel to each other, in proportions that always occur automatically.
  • the first evaporator heating surface formed by the wall of the combustion chamber absorbs less and less heat until this first evaporator heating surface only acts as feed water preheater at low load and most of the heat transfer to the second evaporator heating surface takes place in the convection room.
  • the invention is based on the task, in particular the drive power of the feed water pump for the once-through steam generator to reduce at full load of the continuous steam generator and thereby reduce the investment costs for a feed water pump, a feed water preheater and a feed water pipeline, but also to make the operation of the continuous steam generator more economical.
  • the method of the type mentioned in the introduction has the method steps according to the characterizing part of patent claim 1.
  • the feed water mass flow in the first evaporator heating surface forming the wall of the combustion chamber does not continue to rise above a certain load of the continuous steam generator, but that the increase in feed water mass flow required as the load increases further flows into the second evaporator heating surface located in the convection space.
  • the flow velocity and thus the friction pressure loss in the first evaporator heating surface do not increase further, and the feed water pump only has to overcome this friction pressure loss even at full load because of the second evaporator heating surface connected in parallel on the water side.
  • the second evaporator heating surface located in the convection space and switched off is not flowed through and is therefore not cooled, so that it in turn cannot cool the flue gas in the convection space.
  • the flue gas is therefore at a sufficiently high temperature so that a system connected downstream of the convection room and equipped with catalysts can work properly to remove nitrogen oxide from the flue gas.
  • Claims 2 and 3 are directed to advantageous developments of the method according to the invention.
  • the friction pressure loss to be overcome by the feed water pump insofar as it arises in the first evaporator heating surface, and thus also the output of the feed water pump can be set to the lowest possible value.
  • the continuous steam generator according to FIG 1 has a combustion chamber 2 with not shown, e.g. Coal dust burners that open into this combustion chamber 2.
  • the combustion chamber 2 is formed by a tube wall 3, which is a first evaporator heating surface.
  • the combustion chamber 2 is followed by a blasting chamber 4 with a horizontal train 5 on the flue gas side, which merges into a convection chamber 6 with a flue gas outlet channel 7.
  • the blasting chamber 4, the horizontal train 5 and the convection chamber 6 have steam-cooled, gas-tight tube walls.
  • High-pressure superheater and reheater heating surfaces 27 are arranged within the upper part of the blasting chamber 4, within the horizontal train 5 and within the upper part of the convection chamber 6.
  • a second evaporator heating surface 8 and an economizer heating surface 9 are also arranged within the convection space 6.
  • the flue gas outlet channel 7 leads to a system 10 containing catalysts for removing nitrogen oxide from the flue gas.
  • a feed water pipeline 11 with a feed water pump 12 and a feed water preheater 13 leads to the economiser heating surface 9.
  • the economizer heating surface 9 are connected on the water side via a pipe 14, which contains a flow meter 15, the pipe wall 3 forming the first evaporator heating surface and, via a further pipe 16, which contains a water control valve 17, the second evaporator heating surface 8 located in the convection chamber 6.
  • the second evaporator heating surface 8 with an upstream water control valve 17 and the tube wall 3 forming the first evaporator heating surface are connected in parallel on the water side and connected on the outlet side to a passage collector 18 which, as shown in FIG. 2, is in principle a tube into which the outlet 3a of the first evaporator heating surface and Outlet 8a of the second evaporator heating surface is located in a straight line of diameter of the tube opposite.
  • the tube wall of the blasting chamber 4 is followed by a water-steam separation container 19, the steam-side outlet 20 to a high-pressure superheater heating surface 27 and the water-side outlet 21, into which a pump 22 is connected, for lead the water-side entrance of the economiser heating surface 9.
  • This water-steam separation container 19 can also be connected behind the outputs of the tube wall 3 forming the first evaporator heating surface and the second evaporator heating surface 8.
  • the load of the continuous steam generator in percent of the full load is plotted on the abscissa and the feed water mass flow in the continuous steam generator in percent of the feed water mass flow at full load is plotted on the ordinate.
  • the solid line I represents the feed water mass flow through the pipeline 14 into the tube wall 3 forming the first evaporator heating surface and the dash-dotted line II represents the feed water mass flow through the pipeline 16 into the second evaporator heating surface 8, which is arranged in the convection space 6.
  • the water entering the two evaporator heating surfaces is also referred to as feed water.
  • the water control valve 17 is closed, and the feed water mass flow conveyed by the feed pump 12 through the pipe wall 3 forming the first evaporator heating surface is overlaid by a circulation water mass flow promoted by the pump 22, so that the total water mass flow through the pipe wall 3 is up to 40 at each partial load % of full load has the same value.
  • the water control valve 17 initially remains closed, the circulating water mass flow conveyed by the pump 22 is zero and the feed water mass flow through the tube wall 3 forming the first evaporator heating surface increases linearly with the load of the continuous steam generator.
  • the water control valve 17 Only when the flow meter 15 in the pipeline 14 a mass flow of feed water into the pipe wall 3, e.g. of 80% of the feed water mass flow in the continuous steam generator at full load indicates, the water control valve 17 is opened. When the load of the once-through steam generator is increased further, the water control valve 17 is always only opened so far that the feed water mass flow through the pipeline 14 into the pipe wall 3 always maintains the value 80% of the feed water mass flow in the flow steam generator at full load, while the part going beyond 80% this feed water mass flow is supplied to the second evaporator heating surface 8.
  • the friction pressure loss in the first evaporator heating surface consisting of the tube wall 3 is always greater than the friction pressure loss in the second evaporator heating surface 8 due to the strong heating in the combustion chamber 2 and the high flow rate required in the tubes of this tube wall 3, the friction pressure loss of the two increases on the water side evaporator heating surfaces connected in parallel at a load greater than 80% of the full load and even at full load of the once-through steam generator do not significantly depend on the friction pressure loss at 80% of the full load. As a result, the feed water pump output can be saved if the load of the once-through steam generator exceeds 80% of the full load.
  • the continuous steam generator according to FIG. 4 differs from that according to FIG. 1 in that the feed water mass flow for the second evaporator heating surface 8 is branched off in front of the economizer heating surface 9. Otherwise, the continuous steam generator according to FIG. 4 corresponds to that according to FIG. 1.
  • the economiser heating surface 9 can be made geometrically smaller than the continuous steam generator according to FIG. 1, so that the temperature of the flue gas that arrives at the system 10 is higher in the part-load range when the second evaporator heating surface 8 is switched off than in the continuous steam generator according to FIG. 1.
  • the water control valve 17 can still flow a small feed water mass flow into the second evaporator heating surface 8 in its closed position, so that this evaporator heating surface 8 is not heated to an unacceptably high degree in the flue gas at partial load.
  • the water control valve 17 is open above a certain partial load of the once-through steam generator, for example above 80% of the full load of the once-through steam generator, it can also be used as an injection valve for other heating surfaces which are connected downstream of the two evaporator heating surfaces on the water side.
  • the feed water mass flow into the once-through steam generator can therefore be briefly increased or reduced.
  • the water control valve 17 is opened or closed in the same cycle, so that the feed water mass flow into the first evaporator heating surface formed by the tube wall 3 is kept at the predetermined value.
  • the change in the feed water mass flow in the once-through steam generator has a very rapid effect on the temperature of the heating surfaces which are switched on the water side of the two evaporator heating surfaces, since the length of the tubes of the second evaporator heating surface 8 is considerably less than that of the tubes of the tube wall 3, which are the first Evaporator heating surface forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben eines Durchlaufdampferzeugers entsprechend dem Oberbegriff des Patentanspruches 1.
  • Ein derartiges Verfahren ist aus den Seiten 751 bis 753 aus "VGB-Kraftwerkstechnik 56", Heft 12, Dez. 1976 bekannt und bezieht sich auf den Durchlaufdampferzeuger mit Vollastumwälzung einer kombinierten Gas/Dampfturbinenanlage. Von einer Gasturbine strömt dem Durchlaufdampferzeuger unabhängig von seiner Last eine konstante Abgasmenge zu. Der Luftüberschuß in der Brennkammer wird trotz unterschiedlicher Last des Durchlaufdampferzeugers dadurch stets etwa gleich groß gehalten, daß ein Teilstrom dieses Abgases der Gasturbine unter Umgehung der Brennkammer und damit der durch die Wand dieser Brennkammer des Durchlaufdampferzeugers gebildeten ersten Verdampferheizfläche rauchgasseitig vor der zweiten Verdampferheizfläche in den Konvektionsraum eingeführt wird. Das Speisewasser wird ständig in beide zueinander parallelgeschaltete Verdampferheizflächen geleitet, und zwar in Anteilen, die sich stets von selbst einstellen.
  • Bei Vollast des Durchlaufdampferzeugers findet in beiden Verdampferheizflächen Verdampfung statt. Mit sinkender Last nimmt die erste, durch die Wand der Brennkammer gebildete Verdampferheizfläche immer weniger Wärme auf, bis diese erste Verdampferheizfläche bei Kleinlast nur noch als Speisewasservorwärmer wirkt und der größte Teil der Wärmeübertragung an die zweite Verdampferheizfläche im Konvektionsraum stattfindet.
  • Die Erfindung geht von der Aufgabe aus, die Antriebsleistung der Speisewasserpumpe für den Durchlaufdampferzeuger insbesondere bei Vollast des Durchlaufdampferzeugers zu verringern und dadurch die Investitionskosten für eine Speisewasserpumpe, einen Speisewasservorwärmer und eine Speisewasserrohrleitung zu senken, aber auch den Betrieb des Durchlaufdampferzeugers wirtschaftlicher zu gestalten.
  • Zur Lösung dieser Aufgabe hat das Verfahren der eingangs erwähnten Art erfindungsgemäß die Verfahrensschritte nach dem kennzeichnenden Teil des Patentanspruches 1.
  • Dadurch wird erreicht, daß der Speisewassermassenstrom in die erste, die Wand der Brennkammer bildende Verdampferheizfläche oberhalb einer bestimmten Last des Durchlaufdampferzeugers nicht weiter ansteigt, sondern daß der bei weiter steigender Last erforderliche Zuwachs des Speisewassermassenstromes in die zweite, im Konvektionsraum befindliche Verdampferheizfläche strömt. Dadurch steigen auch die Strömungsgeschwindigkeit und damit der Reibungsdruckverlust in der ersten Verdampferheizfläche nicht weiter an, und die Speisewasserpumpe hat auch bei Vollast wegen der wasserseitig parallelgeschalteten zweiten Verdampferheizfläche nur diesen Reibungsdruckverlust zu überwinden.
  • Ferner wird bei Teillast die zweite, im Konvektionsraum befindliche und abgeschaltete Verdampferheizfläche nicht durchströmt und dadurch nicht gekühlt, so daß sie ihrerseits auch das Rauchgas im Konvektionsraum nicht kühlen kann. Das Rauchgas hat deshalb eine ausreichend hohe Temperatur, so daß eine dem Konvektionsraum nachgeschaltete, mit Katalysatoren ausgestattete Anlage zur Beseitigung von Stickoxid aus dem Rauchgas einwandfrei arbeiten kann.
  • Die Patentansprüche 2 und 3 sind auf vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens gerichtet.
  • Durch die Weiterbildung nach Patentanspruch 2 können sich der von der Speisewasserpumpe zu überwindende Reibungsdruckverlust, soweit er in der ersten Verdampferheizfläche entsteht, und damit auch die Leistung der Speisewasserpumpe auf einen möglichst niedrigen Wert einstellen.
  • Durch die Weiterbildung nach Patentanspruch 3 können Temperaturschwankungen abgefangen werden, die bei Lastwechsel oder Feuerungsstörungen in anderen Heizflächen auftreten, die den beiden Verdampferheizflächen wasserseitig nachgeschaltet sind.
  • Die Erfindung und ihre Vorteile seien anhand der Zeichnung an zwei Ausführungsbeispielen näher erläutert.
    • FIG 1 zeigt schematisch einen Durchlaufdampferzeuger.
    • FIG 2 zeigt im Querschnitt einen Durchgangssammler des Durchlaufdampferzeugers nach FIG 1.
    • FIG 3 zeigt ein Diagramm zur Betriebsweise des Durchlaufdampferzeugers nach FIG 1 und FIG 2.
    • FIG 4 zeigt eine Abwandlung der Schaltung von Heizflächen im Konvektionsraum des Durchlaufdampferzeugers nach FIG 1.
  • Der Durchlaufdampferzeuger nach FIG 1 hat eine Brennkammer 2 mit nicht dargestellten, z.B. Kohlestaubbrennern, die in diese Brennkammer 2 münden. Die Brennkammer 2 ist durch eine Rohrwand 3 gebildet, die eine erste Verdampferheizfläche ist.
  • Der Brennkammer 2 ist rauchgasseitig ein Strahlraum 4 mit einem Horizontalzug 5 nachgeschaltet, der in einen Konvektionsraum 6 mit einem Rauchgasaustrittskanal 7 übergeht. Der Strahlraum 4, der Horizontalzug 5 und der Konvektionsraum 6 haben wasserdampfgekühlte, gasdichte Rohrwände.
  • Innerhalb des oberen Teiles des Strahlraumes 4, innerhalb des Horizontalzuges 5 und innerhalb des oberen Teiles des Konvektionsraumes 6 sind Hochdrucküberhitzer- und Zwischenüberhitzerheizflächen 27 angeordnet. Rauchgasseitig hinter diesen Hochdrucküberhitzer- und Zwischenüberhitzerheizflächen 27 sind innerhalb des Konvektionsraumes 6 ferner eine zweite Verdampferheizfläche 8 und eine Economiserheizfläche 9 angeordnet. Der Rauchgasaustrittskanal 7 führt zu einer Katalysatoren enthaltenden Anlage 10 zum Beseitigen von Stickoxid aus dem Rauchgas.
  • Zur Economiserheizfläche 9 führt eine Speisewasserrohrleitung 11 mit einer Speisewasserpumpe 12 und einem Speisewasservorwärmer 13.
  • Der Economiserheizfläche 9 sind wasserseitig über eine Rohrleitung 14, die einen Durchflußmesser 15 enthält, die die erste Verdampferheizfläche bildende Rohrwand 3 und über eine weitere Rohrleitung 16, die ein Wasserregelventil 17 enthält, die im Konvektionsraum 6 befindliche zweite Verdampferheizfläche 8 nachgeschaltet. Die zweite Verdampferheizfläche 8 mit vorgeschaltetem Wasserregelventil 17 und die die erste Verdampferheizfläche bildende Rohrwand 3 sind wasserseitig parallelgeschaltet und ausgangsseitig an einem Durchgangssammler 18 angeschlossen, der, wie FIG 2 zeigt, im Prinzip ein Rohr ist, in das der Ausgang 3a der ersten Verdampferheizfläche und der Ausgang 8a der zweiten Verdampferheizfläche sich in einer Durchmessergeraden des Rohres gegenüber befindlich münden.
  • Von diesem Durchgangssammler 18 gehen radial gerichtet die Rohrleitungen 4a zur Rohrwand des Strahlraumes 4 ab.
  • Der Rohrwand des Strahlraumes 4 ist ein Wasser-Dampf-Trennbehälter 19 nachgeschaltet, dessen dampfseitiger Ausgang 20 zu einer Hochdrucküberhitzerheizfläche 27 und dessen wasserseitiger Ausgang 21, in den eine Pumpe 22 geschaltet ist, zum wasserseitigen Eingang der Economiserheizfläche 9 führen. Dieser Wasser-Dampf-Trennbehälter 19 kann auch hinter die Ausgänge der die erste Verdampferheizfläche bildenden Rohrwand 3 und der zweiten Verdampferheizfläche 8 geschaltet sein.
  • Im Diagramm nach FIG 3 sind auf der Abszisse die Last des Durchlaufdampferzeugers in Prozent der Vollast und auf der Ordinate der Speisewassermassenstrom in den Durchlaufdampferzeuger in Prozent des Speisewassermassenstromes bei Vollast aufgetragen.
  • Die durchgezogene Linie I repräsentiert den Speisewassermassenstrom durch die Rohrleitung 14 in die die erste Verdampferheizfläche bildende Rohrwand 3 und die strichpunktierte Linie II den Speisewassermassenstrom durch die Rohrleitung 16 in die zweite Verdampferheizfläche 8, die im Konvektionsraum 6 angeordnet ist. Hierbei ist also auch das in die beiden Verdampferheizflächen eintretende Wasser als Speisewasser bezeichnet.
  • Bei Teillast kleiner als oder gleich z.B. 40% der Vollast ist das Wasserregelventil 17 geschlossen, und dem durch die Speisepumpe 12 geförderten Speisewassermassenstrom durch die die erste Verdampferheizfläche bildende Rohrwand 3 wird ein durch die Pumpe 22 geförderter Umwälzwassermassenstrom überlagert, so daß der Gesamtwassermassenstrom durch die Rohrwand 3 bei jeder Teillast bis zu 40% der Vollast den gleichen Wert hat.
  • Bei Teillast höher als 40% der Vollast bleibt das Wasserregelventil 17 zunächst noch geschlossen, der durch die Pumpe 22 geförderte Umwälzwassermassenstrom ist Null und der Speisewassermassenstrom durch die die erste Verdampferheizfläche bildende Rohrwand 3 steigt mit der Last des Durchlaufdampferzeugers linear an.
  • Erst wenn der Durchflußmesser 15 in der Rohrleitung 14 einen Speisewassermassenstrom in die Rohrwand 3, z.B. von 80% des Speisewassermassenstromes in den Durchlaufdampferzeuger bei Vollast anzeigt, wird das Wasserregelventil 17 geöffnet. Bei weiterer Steigerung der Last des Durchlaufdampferzeugers wird das Wasserregelventil 17 immer nur so weit geöffnet, daß der Speisewassermassenteilstrom durch die Rohrleitung 14 in die Rohrwand 3 stets den Wert 80% des Speisewassermassenstromes in den Durchlaufdampferzeuger bei Vollast konstant beibehält, während der über 80% hinausgehende Teil dieses Speisewassermassenstromes der zweiten Verdampferheizfläche 8 zugeführt wird.
  • Da der Reibungsdruckverlust in der aus der Rohrwand 3 bestehenden ersten Verdampferheizfläche aufgrund der starken Beheizung in der Brennkammer 2 und der deswegen erforderlichen hohen Durchströmungsgeschwindigkeit in den Rohren dieser Rohrwand 3 stets größer ist als der Reibungsdruckverlust in der zweiten Verdampferheizfläche 8, steigt der Reibungsdruckverlust der beiden wasserseitig parallelgeschalteten Verdampferheizflächen bei einer Last größer als 80% der Vollast und selbst bei Vollast des Durchlaufdampferzeugers nicht wesentlich über den Reibungsdruckverlust bei 80% der Vollast an. Dadurch kann bei einer 80% der Vollast übersteigenden Last des Durchlaufdampferzeugers Leistung der Speisewasserpumpe eingespart werden.
  • Entsprechend umgekehrt wird ausgehend von Vollast des Dampferzeugers mit sinkender Last des Durchlaufdampferzeugers verfahren und insbesondere das Wasserregelventil 17 immer nur so weit geschlossen, daß der Speisewasserstrom durch die Rohrleitung 14 in die Rohrwand 3 stets den Wert 80% des Speisewasserstromes in den Durchlaufdampferzeuger bei Vollast beibehält, bis schließlich eine Teillast von 80% der Vollast erreicht ist, bei der das Wasserregelventil 17 geschlossen ist.
  • Der Durchlaufdampferzeuger nach FIG 4 unterscheidet sich von dem nach FIG 1 dadurch, daß der Speisewassermassenstrom für die zweite Verdampferheizfläche 8 vor der Economiserheizfläche 9 abgezweigt wird. Im übrigen entspricht der Durchlaufdampferzeuger nach FIG 4 dem nach FIG 1.
  • Beim Durchlaufdampferzeuger nach FIG 4 kann die Economiserheizfläche 9 geometrisch kleiner ausgeführt sein als beim Durchlaufdampferzeuger nach FIG 1, so daß die Temperatur des Rauchgases, das zur Anlage 10 gelangt, im Teillastbereich bei ausgeschalteter zweiter Verdampferheizfläche 8 höher ist ist als beim Durchlaufdampferzeuger nach FIG 1.
  • Günstigerweise kann das Wasserregelventil 17 in seiner Verschlußstellung noch einen geringen Speisewassermassenstrom in die zweite Verdampferheizfläche 8 einströmen lassen, so daß sich diese Verdampferheizfläche 8 bei Teillast nicht unzulässig hoch im Rauchgas erhitzt.
  • Es ist umso vorteilhafter, je niedriger die Teillast des Durchlaufdampferzeugers ist, bei dem der Fluß des Speisewassermassenteilstromes in die zweite Verdampferheizfläche 8 durch Öffnen des Wasserregelventils 17 eingeschaltet wird. Mit einer nicht dargestellten Regeleinrichtung kann deshalb dem Speisewassermassenteilstrom in die erste Verdampferheizfläche ein Wert vorgegeben werden, der nicht überschritten werden darf und der z.B. konstant oder auch gerade so hoch sein kann, daß die Dampftemperatur am Ausgang der die erste Verdampferheizfläche bildenden Rohrwand 3 einen zulässigen Grenzwert nicht überschreitet.
  • Ist das Wasserregelventil 17 oberhalb einer bestimmten Teillast des Durchlaufdampferzeugers, z.B. oberhalb von 80% der Vollast des Durchlaufdampferzeugers, geöffnet, kann es auch als Einspritzventil für andere Heizflächen verwendet werden, die den beiden Verdampferheizflächen wasserseitig nachgeschaltet sind.
  • Bei Lastwechseln oder Feuerungsstörungen kann deshalb der Speisewassermassenstrom in den Durchlaufdampferzeuger kurzzeitig erhöht oder reduziert werden. Das Wasserregelventil 17 wird im gleichen Takt geöffnet oder geschlossen, so daß der Speisewassermassenteilstrom in die erste, durch die Rohrwand 3 gebildete Verdampferheizfläche auf dem vorgegebenen Wert gehalten wird. Die Änderung des Speisewassermassenstromes in den Durchlaufdampferzeuger wirkt sich auf die Temperatur der Heizflächen, die den beiden Verdampferheizflächen wasserseitig wachgeschaltet sind, sehr schnell aus, da die Länge der Rohre der zweiten Verdampferheizfläche 8 wesentlich geringer ist als die der Rohre der Rohrwand 3, die die erste Verdampferheizfläche bildet.

Claims (3)

1. Verfahren zum Betreiben eines Durchlaufdampferzeugers mit einer ersten Verdampferheizfläche, die durch die Rohrwand einer Brennkammer gebildet ist, sowie mit einer zur ersten Verdampferheizfläche wasserseitig parallelgeschalteten zweiten Verdampferheizfläche, die sich in einem der Brennkammer rauchgasseitig nachgeschalteten Konvektionsraum in Strömungsrichtung des Rauchgases gesehen hinter einer Überhitzerheizfläche befindet, dadurch gekennzeichnet, daß bei Überschreiten eines bestimmten Wertes eines Speisewassermassenstromes in den Durchlaufdampferzeuger der Fluß eines Speisewassermassenteilstromes in die zweite Verdampferheizfläche (8) durch Öffnen eines dieser zweiten Verdampferheizfläche (8) durchflußmäßig vorgeschalteten Wasserregelventiles (17) eingeschaltet und bei Unterschreiten dieses Wertes durch Schließen des Wasserregelventils (17) wieder ausgeschaltet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Speisewassermassenteilstrom in die zweite Verdampferheizfläche (8) mit dem Wasserregelventil (17) so eingestellt wird, daß der Speisewassermassenteilstrom in die erste Verdampferheizfläche einen vorgegebenen Wert nicht überschreitet.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Speisewassermassenstrom in den Durchlaufdampferzeuger kurzzeitig erhöht oder reduziert wird.
EP88114622A 1987-09-21 1988-09-07 Verfahren zum Betreiben eines Durchlaufdampferzeugers Expired - Lifetime EP0308728B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3731728 1987-09-21
DE3731728 1987-09-21

Publications (2)

Publication Number Publication Date
EP0308728A1 EP0308728A1 (de) 1989-03-29
EP0308728B1 true EP0308728B1 (de) 1991-06-05

Family

ID=6336504

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88114622A Expired - Lifetime EP0308728B1 (de) 1987-09-21 1988-09-07 Verfahren zum Betreiben eines Durchlaufdampferzeugers

Country Status (4)

Country Link
US (1) US4869210A (de)
EP (1) EP0308728B1 (de)
JP (1) JPH01107003A (de)
DE (1) DE3863153D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179871B2 (en) 2000-02-09 2007-02-20 Shell Oil Company Non-symmetrical ligands and catalyst systems thereof for ethylene oligomerization to linear alpha olefins
US9080467B2 (en) 2011-02-25 2015-07-14 Siemens Aktiengesellschaft Method for regulating a brief increase in power of a steam turbine

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0439765T3 (da) * 1990-01-31 1995-10-02 Siemens Ag En dampgenerator
AT394627B (de) * 1990-08-27 1992-05-25 Sgp Va Energie Umwelt Verfahren zum anfahren eines waermetauschersystems zur dampferzeugung sowie waermetauschersystem zur dampferzeugung
DE4142376A1 (de) * 1991-12-20 1993-06-24 Siemens Ag Fossil befeuerter durchlaufdampferzeuger
DE4303613C2 (de) * 1993-02-09 1998-12-17 Steinmueller Gmbh L & C Verfahren zur Erzeugung von Dampf in einem Zwangsdurchlaufdampferzeuger
US5713311A (en) * 1996-02-15 1998-02-03 Foster Wheeler Energy International, Inc. Hybrid steam generating system and method
BE1010594A3 (fr) * 1996-09-02 1998-11-03 Cockerill Mech Ind Sa Procede de conduite d'une chaudiere a circulation forcee et chaudiere pour sa mise en oeuvre.
DE19717158C2 (de) 1997-04-23 1999-11-11 Siemens Ag Durchlaufdampferzeuger und Verfahren zum Anfahren eines Durchlaufdampferzeugers
DE19721854A1 (de) * 1997-05-26 1998-12-03 Asea Brown Boveri Verbesserung des Abscheidegrades von Dampfverunreinigungen in einem Dampf-Wasser-Separator
US6213059B1 (en) * 1999-01-13 2001-04-10 Abb Combustion Engineering Inc. Technique for cooling furnace walls in a multi-component working fluid power generation system
DE19907451A1 (de) * 1999-02-22 2000-08-24 Abb Alstom Power Ch Ag Verfahren zum Anfahren eines Zwangdurchlauf-Abhitzekessels und Vorrichtung zur Durchführung des Verfahrens
US7037988B2 (en) 2000-10-03 2006-05-02 Shell Oil Company Process for the co-oligomerisation of ethylene and alpha olefins
ATE344268T1 (de) 2001-08-01 2006-11-15 Shell Int Research Liganden und diese enthaltende katalysatorsysteme fur die herstellung von linearen alpha-olefinen aus ethylen
US6675747B1 (en) * 2002-08-22 2004-01-13 Foster Wheeler Energy Corporation System for and method of generating steam for use in oil recovery processes
ES2260678T3 (es) 2002-09-25 2006-11-01 Shell Internationale Research Maatschappij B.V. Sistema cataliticos para la oligomerizacion de etileno a alfa-olefinas lineales.
ATE388158T1 (de) 2004-03-24 2008-03-15 Shell Int Research Übergangsmetallkomplexe
AR049714A1 (es) 2004-07-13 2006-08-30 Shell Int Research Proceso de preparacion de alfa olefinas lineales
EP2065641A3 (de) * 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betrieben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP2180251A1 (de) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Durchlaufdampferzeuger
EP2182278A1 (de) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Durchlaufdampferzeuger
DE102010028720A1 (de) * 2010-05-07 2011-11-10 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Dampferzeugers
US20120012036A1 (en) * 2010-07-15 2012-01-19 Shaw John R Once Through Steam Generator
DE102013215457A1 (de) 2013-08-06 2015-02-12 Siemens Aktiengesellschaft Durchlaufdampferzeuger in Zweizugkesselbauweise
JP6419888B1 (ja) * 2017-04-28 2018-11-07 三菱日立パワーシステムズ株式会社 発電プラント及びその運転方法
EP3495730B1 (de) 2017-12-08 2024-01-24 General Electric Technology GmbH Zwangsdurchlaufverdampfersysteme
EP3495731B1 (de) 2017-12-08 2022-02-16 General Electric Technology GmbH Einmaldurchlaufverdampfersysteme
EP3495732B1 (de) 2017-12-08 2024-02-14 General Electric Technology GmbH Zwangsdurchlaufverdampfersysteme
EP3495729B1 (de) * 2017-12-08 2020-11-25 General Electric Technology GmbH Zwangsdurchlaufverdampfersysteme

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB768201A (en) * 1955-03-24 1957-02-13 Babcox & Wilcox Ltd Improvements relating to forced flow once through tubulous vapour generating and superheating units and to the starting of turbines arranged to be supplied with vapour from such units
DE1146071B (de) * 1957-02-16 1963-03-28 Siemens Ag Einrichtung an einem Durchlauf-Dampferzeuger mit Nebenheizflaeche
US3220193A (en) * 1961-01-06 1965-11-30 Gilbert Associates Devices for improving operating flexibility of steam-electric generating plants
DK118672B (da) * 1964-03-13 1970-09-21 Siemens Ag Reguleringsapparat til tvangscirkulationskedler.
US3434460A (en) * 1966-11-30 1969-03-25 Combustion Eng Multicircuit recirculation system for vapor generating power plant
CH475509A (de) * 1967-05-23 1969-07-15 Sulzer Ag Zwangdurchlaufdampferzeuger mit Rezirkulation von Arbeitsmittel
CH532749A (de) * 1970-12-31 1973-01-15 Sulzer Ag Dampferzeuger
DE2818981C2 (de) * 1978-04-28 1982-12-23 Kraftwerk Union AG, 4330 Mülheim Durchlaufdampferzeuger und Verfahren zum Betreiben desselben
CH635184A5 (de) * 1978-12-22 1983-03-15 Sulzer Ag Dampferzeugeranlage.
DE2950622A1 (de) * 1979-12-15 1981-10-08 Evt Energie- Und Verfahrenstechnik Gmbh, 7000 Stuttgart Verfahren zum betreiben eines zwangdurchlaufdampferzeugers
DE3236979A1 (de) * 1982-10-06 1984-04-12 Deutsche Babcock Werke AG, 4200 Oberhausen Zwangsdurchlaufdampferzeuger und verfahren zu seiner inbetriebnahme

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179871B2 (en) 2000-02-09 2007-02-20 Shell Oil Company Non-symmetrical ligands and catalyst systems thereof for ethylene oligomerization to linear alpha olefins
US9080467B2 (en) 2011-02-25 2015-07-14 Siemens Aktiengesellschaft Method for regulating a brief increase in power of a steam turbine

Also Published As

Publication number Publication date
DE3863153D1 (de) 1991-07-11
JPH01107003A (ja) 1989-04-24
EP0308728A1 (de) 1989-03-29
US4869210A (en) 1989-09-26

Similar Documents

Publication Publication Date Title
EP0308728B1 (de) Verfahren zum Betreiben eines Durchlaufdampferzeugers
EP0425717B1 (de) Durchlaufdampferzeuger
DE102009036064B4 (de) rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP0591163B2 (de) Kombinierte gas- und dampfturbinenanlage
DE3804605A1 (de) Verfahren und anlage zur abhitzedampferzeugung
DE3782314T2 (de) Sperrdamppfsystem fuer eine dampfturbine.
DE1170423B (de) Verfahren und Anordnung zur Regelung der Dampftemperaturen in einem Zwangdurchlauf-dampferzeuger mit zwei im Rauchgaszug angeordneten Zwischenueberhitzern
DE4142376A1 (de) Fossil befeuerter durchlaufdampferzeuger
WO2004068032A1 (de) Dampferzeuger
DE1426697B2 (de) Zwangdurchlaufdampferzeuger mit einer Anordnung für das Anfahren und den Teillastbetrieb
EP0523466A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0931978B1 (de) Verfahren zur Vermeidung von Dampfbildung in einem Zwangsumlaufdampferzeuger
DE3616095C2 (de) Dampferzeuger mit katalytischer Rauchgasbehandlung und Verfahren beim Betrieb des Dampferzeugers
EP0110101B1 (de) Sattdampfturbinenanlage
DE1256652B (de) Zwangdurchlaufdampferzeuger
DE3808006C2 (de)
EP0643816B1 (de) Verfahren und vorrichtung zur einstellung der rauchgastemperatur am austritt eines dampferzeugers
EP0812407B1 (de) Verfahren und system zum anfahren eines durchlaufdampferzeugers
EP0549522B1 (de) Verfahren zum Betrieb eines Zwanglaufdampferzeugers und Zwanglaufdampferzeuger dazu
DE1141731B (de) Verfahren zum Erzeugen von ueberhitztem Dampf mit Hilfe eines dampfgekuehlten Reaktors und Atomkern-reaktoranlage zur Durchfuehrung dieses Verfahrens
EP2564117B1 (de) Dampferzeuger
DE3126321A1 (de) Anordnung zur vermeidung von ausdampfungen in dem economiser eines durchlauf-dampferzeugers
DE975112C (de) Dampftemperaturregelung bei einem Strahlungsdampferzeuger
DE1815969B2 (de) Ueberkritischer zwangsdurchlaufdampferzeuger
EP3472515B1 (de) Vertikaler abhitzedampferzeuger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19890425

17Q First examination report despatched

Effective date: 19900806

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3863153

Country of ref document: DE

Date of ref document: 19910711

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920907

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931119

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950601