WO2004068032A1 - Dampferzeuger - Google Patents

Dampferzeuger Download PDF

Info

Publication number
WO2004068032A1
WO2004068032A1 PCT/EP2003/013879 EP0313879W WO2004068032A1 WO 2004068032 A1 WO2004068032 A1 WO 2004068032A1 EP 0313879 W EP0313879 W EP 0313879W WO 2004068032 A1 WO2004068032 A1 WO 2004068032A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam generator
flow medium
flow
riser pipe
steam
Prior art date
Application number
PCT/EP2003/013879
Other languages
English (en)
French (fr)
Inventor
Joachim Franke
Rudolf Kral
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to BR0318082-4A priority Critical patent/BR0318082A/pt
Priority to CA2514871A priority patent/CA2514871C/en
Priority to US10/543,602 priority patent/US7270086B2/en
Priority to DK03780136T priority patent/DK1588095T3/da
Priority to DE50305717T priority patent/DE50305717D1/de
Priority to AU2003288240A priority patent/AU2003288240B2/en
Priority to EP03780136A priority patent/EP1588095B1/de
Priority to JP2004567305A priority patent/JP4549868B2/ja
Publication of WO2004068032A1 publication Critical patent/WO2004068032A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines

Definitions

  • the invention relates to a steam generator, in which an evaporator flow heating surface is arranged in a heating gas duct through which the heating gas can flow in an approximately horizontal direction and which comprises a number of steam generator pipes connected in parallel with the flow through a flow medium, and which is designed such that a another steam generator tube of the same evaporator once-through heating surface has a multi-heated steam generator tube which has a higher throughput of the flow medium than the other steam generator tube.
  • the heat contained in the relaxed working fluid or heating gas from the gas turbine is used to generate steam for the steam turbine.
  • the heat transfer takes place in a waste heat steam generator connected downstream of the gas turbine, in which usually one
  • the heating surfaces are connected to the water-steam cycle of the steam turbine.
  • the water-steam cycle usually comprises several, e.g. B. three, pressure levels, each pressure level can have an evaporator heating surface.
  • a once-through steam generator is not subject to any pressure limitation, so that live steam pressures far above the critical pressure of water (P ⁇ ri «* 221 bar) - where there are only slight differences in density between liquid-like and steam-like medium - are possible.
  • a high live steam pressure promotes high thermal efficiency and thus low CO 2 emissions from a fossil-fired power plant.
  • a continuous steam generator has a simple construction in comparison to a circulation steam generator and can therefore be produced with particularly little effort.
  • the use of a steam generator designed according to the continuous flow principle as waste heat steam generator of a gas and steam turbine system is therefore particularly favorable in order to achieve a high overall efficiency of the gas and steam turbine system with a simple construction.
  • a heat recovery steam generator in a horizontal design offers particular advantages in terms of manufacturing effort, but also with regard to required maintenance work, in which the heating medium or heating gas, i.e. the exhaust gas from the gas turbine, is guided through the steam generator in an approximately horizontal flow direction.
  • the steam generator tubes of a heating surface can, however, be exposed to very different heating depending on their positioning.
  • different heating of individual steam generator tubes can lead to a merging of steam streams with widely differing steam parameters and thus to undesired losses in efficiency, in particular to a comparatively reduced effectiveness of the heating surface concerned and a reduced steam generation, lead.
  • a steam generator which is suitable for a horizontal design and also has the advantages of a continuous steam generator.
  • the known steam generator is designed with regard to its evaporator flow heating surface in such a way that a steam generator pipe which is more heated in comparison to a further steam generator tube of the same evaporator flow heating surface has a higher throughput of the flow medium in comparison to the further steam generator pipe.
  • the evaporator flow heating surface of the known steam generator thus shows a self-stabilizing behavior which, without the need for external influence, also leads to an adaptation of the outlet-side temperatures to differently heated temperatures , steam generator pipes connected in parallel on the flow medium side.
  • the known steam generator is comparatively complex in terms of construction, in particular with regard to the water and / or steam-side distribution of the flow medium.
  • the invention is therefore based on the object of specifying a steam generator of the type mentioned above which can be produced with particularly little effort and which has a particularly high mechanical stability even under different thermal loads.
  • This object is achieved according to the invention in that one or each of the steam generator tubes has an approximately vertically arranged riser pipe section through which the flow medium can flow in the upward direction, an approximately vertically arranged down pipe section downstream of the flow medium and through which the flow medium can flow in the downward direction, and an upstream pipe section downstream of the downflow pipe section flowable further riser pipe section comprises.
  • the invention is based on the consideration that in a steam generator that can be produced with particularly little assembly and production effort, for a particularly stable operating behavior that is particularly insensitive to differences in the thermal load, the design principle of a natural circulation characteristic used for the known steam generator Evaporator continuous heating surface should be consistently expanded and further improved.
  • the evaporator continuous heating surface should be designed for an application with a comparatively low mass flow density with a comparatively lower loss of friction pressure.
  • the heating surface is designed to carry out all process stages of complete evaporation, that is to say preheating, evaporation and at least partially overheating, in only one stage, that is to say without intermediate components for collecting and / or distributing the flow medium. Additional heating surfaces for preheating the feed water or for further overheating are generally provided.
  • each steam generator tube comprises three segments connected in series on the flow medium side.
  • the steam generator tubes of the evaporator once-through heating surface are each divided into at least three segments (of parallel tubes), the first segment comprising all riser tube sections and flowing through in the upward direction.
  • the second segment encompasses all pieces of downpipe and is flowed through in the downward direction, so that the flow is automatically supported by the weight of the flow medium.
  • the downpipe pieces forming the second segment of each steam generator tube in the heating gas channel are in
  • Seen heating gas direction arranged behind the riser pipe pieces assigned to them.
  • the third segment includes all further riser pipe sections and is flowed through in the upward direction.
  • the segments of the or each steam generator tube are positioned in the heating gas channel in such a way that the heating requirement of each segment - in particular with regard to the level in the evaporation process provided there - is adapted to a particular extent to the local heat supply in the heating gas channel.
  • the further riser pipe sections of each steam generator pipe forming the third segment are expediently arranged in the heating gas channel in the heating gas direction, respectively between the riser pipe sections of the first segment and the downcomer pipe sections of the second segment assigned to them.
  • the steam generator tubes are expediently positioned spatially in the heating gas duct in such a way that the first segment or riser pipe section, seen on the flow medium side, on the hot gas side, upstream of the third segment or further riser pipe section, seen on the flow medium side, and the second segment or down pipe section, downstream of the heating gas side, seen on the flow medium side seen from the flow medium side third segment or further riser pipe.
  • the first riser piece which serves for partial preheating and for the most part already evaporation of the flow medium, is thus exposed to comparatively strong heating by the heating gas in the “hot flue gas area”.
  • the arrangement of the downpipe section in the comparatively cold flue gas area and the arrangement of the second riser pipe section between the first riser pipe section and the downpipe section, that is to say on the flue gas side in front of the downpipe section, thus achieve a particularly high efficiency of the heating surface as a whole with high operational safety, with this first riser pipe sections fulfilled the function of a pre-evaporator.
  • Such an arrangement is particularly suitable for expansion compensation in the event of thermal alternating loading; that the riser pipe section and the down pipe section or that The downpipe piece and the overflow piece connecting the further riser pipe piece serve here as an expansion bend, which can easily compensate for relative changes in length of the riser pipe piece and / or the downpipe piece and / or the further riser pipe piece.
  • the overflow piece thus deflects the steam generator tubes in the upper region of a first evaporator stage given by the riser tube sections with direct continuation and redirection in the lower region of a second evaporator stage formed by the downpipe sections, as well as deflecting and continuing the steam generator pipes in the lower region of the second evaporator stage placed in a third evaporator stage formed by the further riser pipe sections.
  • each overflow piece is advantageously laid within the heating gas duct.
  • the overflow piece can also be guided outside the heating gas duct, in particular if a drainage collector is to be connected to the overflow piece for reasons of possibly necessary drainage of the evaporator once-through heating surface.
  • the steam generator tubes can be combined within the heating gas channel into rows of tubes, each of which comprises a number of steam generator tubes arranged next to one another perpendicular to the heating gas direction.
  • the steam generator tubes are advantageously guided in such a way that the riser tube pieces forming the most heated tube row, that is to say the first tube row seen in the heating gas direction, are assigned to the downcomer pipe sections with the weakest heating or last tube row viewed in the heating gas direction.
  • the downpipe and riser pipe sections of a plurality of steam generator pipes in the heating gas channel are expediently positioned relative to one another in such a way that a downpipe section lying comparatively far back in the heating gas direction is assigned a further riser pipe section which is relatively far forward in the heating gas direction.
  • Such an arrangement feeds the comparatively strongly heated further riser pipe sections with comparatively weakly preheated flow medium flowing out of the down pipe sections.
  • the respective steam generator pipe is advantageously designed such that it only comprises a riser pipe section and a down pipe section downstream of the flow medium side and a further riser pipe section downstream of the flow medium side.
  • the steam generator is expediently used as a heat recovery steam generator in a gas and steam turbine plant.
  • the steam generator is advantageously connected downstream of a gas turbine on the hot gas side. In this circuit, additional firing for increasing the heating gas temperature can be expediently arranged behind the gas turbine.
  • the advantages achieved by the invention are, in particular, that the three-stage design of the steam generator tubes with a riser pipe that can be flowed through in the upward direction, a downcomer pipe that can be flowed through in the downward direction and a further riser pipe section that can be flowed through in the upward direction on the flow medium side, that is to say partially Preheating, evaporation and partial overheating, a particularly simple design can be achieved in just one step and without the interposition of components for collecting or distributing.
  • Heated evaporator systems with downward flow usually lead to flow instabilities, which are not tolerable, especially when used in forced-flow evaporators.
  • the comparatively low frictional pressure loss can reliably achieve a natural circulation characteristic of the steam generator tube, which leads to a comparatively higher throughput of the flow medium in the multi-heated steam generator tube when heating a steam generator tube in comparison to another steam generator tube ,
  • This natural circulation characteristic ensures a sufficiently stable and reliable flow through the steam generator tubes even when using the downward flow segments.
  • Such a characteristic can also be achieved with particularly low structural and assembly costs, in that the downpipe piece is connected directly to the respective downpipe piece or the further downpipe piece is connected directly to the downpipe piece assigned to it and without the intermediary of a complex collector or distributor system.
  • the steam generator thus has a particularly stable
  • both the riser pipe section and the downcomer pipe section and the further riser pipe section downstream of each steam generator pipe can each be fastened in a hanging construction in the area of the housing ceiling of the heating gas duct, free longitudinal expansion in each case being permitted in the lower area.
  • Such longitudinal expansions caused by thermal effects are now compensated for by the respective downpipe piece with the riser pipe piece or by the overflow piece connecting the further riser pipe piece to the downpipe piece, so that no stresses occur due to thermal effects.
  • the steam generator 1 is connected in the manner of a heat recovery steam generator downstream of a gas turbine, not shown.
  • the steam generator 1 has a surrounding wall 2 which forms a heating gas duct 6 for the exhaust gas from the gas turbine, through which the heating gas direction x can flow, in an approximately horizontal direction indicated by the arrows 4.
  • a heating gas duct 6 for the exhaust gas from the gas turbine, through which the heating gas direction x can flow, in an approximately horizontal direction indicated by the arrows 4.
  • evaporator continuous heating surface 8 Arranged in the heating gas channel 6 are a number of heating surfaces designed according to the continuous flow principle, also referred to as evaporator continuous heating surface 8, which are provided for the evaporation of the flow medium.
  • evaporator continuous heating surface 8 In the exemplary embodiment according to the figure, only one evaporator continuous heating surface 8 is shown, but a larger number of evaporator continuous heating surfaces can also be provided.
  • the evaporator system formed from the evaporator once-through heating surface 8 can be acted upon with flow medium W, which evaporates once through the evaporator once-through heating surface 8 and is discharged after exiting from the evaporator once-through heating surface 8 as already superheated steam D and is only required for further overheating superheater heating surfaces is fed.
  • the evaporator system formed from the evaporator once-through heating surface 8 is connected to the water-steam circuit (not shown) of a Da turbine.
  • a number of further heating surfaces 10, schematically indicated in FIG. 1, are connected in the water-steam circuit of the steam turbine.
  • the heating surfaces 10 can be, for example, superheaters, medium-pressure evaporators, low-pressure evaporators and / or preheaters.
  • the continuous flow evaporator heating surface 8 of the steam generator 1 according to the figure comprises, in the manner of a tube bundle, a plurality of steam generator tubes 12 which are connected in parallel to flow through the flow medium W, in each case a plurality of steam generator tubes 12 are arranged next to one another as seen in the heating gas direction x. Only one of the steam generator tubes 12 arranged next to one another in this way is visible.
  • a common distributor 16 is connected upstream and a common outlet header 18 downstream of the steam generator tubes 12 arranged next to one another.
  • the distributors 16 are in turn connected on the input side to a main distributor 20, the outlet collectors 18 being connected on the output side to a common main collector 22.
  • the evaporator continuous heating surface 8 is designed such that it is suitable for feeding the steam generator tubes 12 with a comparatively low mass flow density, the steam generator tubes 12 having a natural circulation characteristic. With this natural circulation characteristic, a steam generator tube 12 which is more heated in comparison to a further steam generator tube 12 of the same evaporator once-through heating surface 8 has a higher throughput of the flow medium W in comparison to the further steam generator tube 12.
  • the evaporator continuous heating surface 8 comprises three segments connected in series on the flow medium side. In the first segment, each steam generator tube 12 of the evaporator once-through heating surface 8 comprises an approximately vertically arranged flow medium W in
  • each riser pipe section 24 comprises a down pipe section 26, which is arranged approximately vertically and downstream of the riser pipe section 24 on the flow medium side and through which the flow medium W can flow in the downward direction.
  • each steam generator pipe 12 comprises an approximation section downstream of the down pipe section 26 vertically arranged further riser pipe piece 28 through which the flow medium W can flow in the upward direction.
  • the segment formed by the further riser pipe pieces 28 is arranged between the segment formed by the first riser pipe pieces 24 and the segment formed by the down pipe pieces 26. This ensures a construction that is particularly adapted to the needs of the heating of the flow medium and to the heating conditions in the heating gas channel 6.
  • the downpipe piece 26 is connected to the riser pipe piece 24 assigned to it via an overflow piece 30.
  • the further riser pipe section 28 is connected to the down pipe section 26 assigned to it via an overflow piece 30.
  • the overflow pieces 30 are guided within the heating gas channel 6.
  • the overflow pieces 30 can also be guided outside the heating gas channel 6. This can be particularly advantageous in the event that drainage of the evaporator continuous heating surface 8 is to be provided for design or operational reasons.
  • a downpipe piece 26 with the additional riser piece 28 assigned to it and the overflow piece 30 connecting them has an almost U-shaped shape, the legs of the U through the downpipe piece 26 and the further riser piece 28 and the connecting elbow through the Overflow piece 30 are formed.
  • the geodetic one produces
  • both riser pieces 24, 28 and the downpipe piece 26 are suspended or fastened to the ceiling of the heating gas duct 6 in the manner of a hanging construction.
  • the spatially lower end of the respective riser pipe section 24 and the lower end of the respective downcomer section 26 and the further riser pipe section 28, which are each connected by their overflow piece 30, are not directly spatially fixed in the heating gas duct 6. Length extensions of these segments of the steam generator tubes 12 can thus be tolerated without risk of damage, the respective overflow piece 30 acting as an expansion bend.
  • This arrangement of the steam generator tubes 12 is thus mechanically particularly flexible and insensitive to differential stresses with regard to thermal stresses.
  • the downpipe pieces 26 and the further riser pipe pieces 28 of a plurality of steam generator pipes 12 in the heating gas channel 6 are positioned relative to one another in such a way that a downpipe piece 26, seen comparatively at the rear in the heating gas direction x, is each assigned riser pipe pieces 24, 28, which are located comparatively far forward in the heating gas direction x.
  • a downpipe piece 26 seen comparatively at the rear in the heating gas direction x
  • riser pipe pieces 24, 28 which are located comparatively far forward in the heating gas direction x.
  • a multiple heating of a number of steam generator tubes 12 leads locally to an increased supply of flow medium W into this row of steam generator tubes 12, so that due to the corresponding increased cooling effect automatically adjusts the respective temperature values.
  • the live steam flowing into the main collector 22 is thus particularly homogeneous with regard to its steam parameters, regardless of the individually traversed row of pipes 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)
  • Drying Of Solid Materials (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Devices For Medical Bathing And Washing (AREA)

Abstract

Ein Dampferzeuger (1), bei dem in einem in einer annähernd horizontalen Heizgasrichtung (x) durchströmbaren Heizgaskanal (6) eine Verdampfer-Durchlaufheizfläche (8) angeordnet ist, die eine Anzahl von zur Durchströmung eines Strömungsmediums (W) parallel geschalteten Dampferzeugerrohren (12) umfasst, und die derart ausgelegt ist, dass ein im Vergleich zu einem weiteren Dampferzeugerrohr (12) derselben Verdampfer-Durchlaufheizfläche (8) mehrbeheiztes Dampferzeugerrohr (12) einen im Vergleich zum weiteren Dampferzeugerrohr (12) höheren Durchsatz des Strömungsmediums (W) aufweist, soll mit besonders geringem Aufwand herstellbar sein und auch bei unterschiedlicher thermischer Belastung eine besonders hohe mechanische Stabilität aufweisen. Dazu umfasst erfindungsgemäß das oder jedes Dampferzeugerrohr (12) jeweils ein annähernd vertikal angeordnetes, vom Strömungsmedium (W) in Aufwärtsrichtung durchströmbares Steigrohrstück (24), ein diesem strömungsmediumsseitig nachgeschaltetes, in Abwärtsrichtung durchströmbares Fallrohrstück (26) und ein letzterem strömungsmediumsseitig nachgeschaltetes, annähernd vertikal angeordnetes und vom Strömungsmedium (W) in Aufwärtsrichtung durchströmbares weiteres Steigrohrstück (28), wobei vorteilhafterweise das weitere Steigrohrstück (28) des jeweiligen Dampferzeugerrohrs (12) im Heizgaskanal (6) in Heizgasrichtung (x) gesehen zwischen dem ihm zugeordneten Steigrohrstück (24) und dem ihm zugeordneten Fallrohrstück (26) angeordnet ist.

Description

Beschreibung
Dampferzeuger
Die Erfindung betrifft einen Dampferzeuger, bei dem in einem in einer annähernd horizontalen Heizgasrichtung durchströmbarem Heizgaskanal eine Verdampfer-Durchlaufheizfläche angeordnet ist, die eine Anzahl von zur Durchströmung eines Strömungsmediums parallel geschalteten Dampferzeugerrohren um- fasst, und die derart ausgelegt ist, dass ein im Vergleich zu einem weiteren Dampferzeugerrohr der selben Verdampfer- Durchlaufheizfläche mehrbeheiztes Dampferzeugerrohr einen im Vergleich zum weiteren Dampferzeugerrohr höheren Durchsatz des Strömungsmediums aufweist.
Bei einer Gas- und Dampfturbinenanlage wird die im entspannten Arbeitsmittel oder Heizgas aus der Gasturbine enthaltene Wärme zur Erzeugung von Dampf für die Dampfturbine genutzt. Die Wärmeübertragung erfolgt in einem der Gasturbine nachge- schalteten Abhitzedampferzeuger, in dem üblicherweise eine
Anzahl von Heizflächen zur Wasservorwärmung, zur Verdampfung des Wassers und zur Dampfüberhitzung angeordnet ist. Die Heizflächen sind in den Wasser-Dampf-Kreislauf der Dampfturbine geschaltet. Der Wasser-Dampf-Kreislauf umfasst üblicher- weise mehrere, z. B. drei, Druckstufen, wobei jede Druckstufe eine Verdampferheizfläche aufweisen kann.
Für den der Gasturbine als Abhitzedampferzeuger heizgasseitig nachgeschalteten Dampferzeuger kommen mehrere alternative Auslegungskonzepte, nämlich die Auslegung als Durchlaufdampferzeuger oder die Auslegung als Umlaufdampferzeuger, in Betracht. Bei einem Durchlaufdampferzeuger führt die Beheizung von als Verdampferrohren vorgesehenen Dampferzeugerrohren zu einer Verdampfung des Strömungsmediums in den Dampferzeuger- röhren in einem einmaligen Durchlauf. Im Gegensatz dazu wird bei einem Natur- oder Zwangumlaufdampferzeuger das im Umlauf geführte Wasser bei einem Durchlauf durch die Verdampferrohre nur teilweise verdampft. Das dabei nicht verdampfte Wasser wird nach einer Abtrennung des erzeugten Dampfes für eine weitere Verdampfung den selben Verdampferrohren erneut zugeführt .
Ein Durchlaufdampferzeuger unterliegt im Gegensatz zu einem Natur- oder Zwangumlaufdampferzeuger keiner Druckbegrenzung, so dass Frischdampfdrücke weit über dem kritischen Druck von Wasser (Pκri «* 221 bar) - wo es nur noch geringe Dichteunter- schiede gibt zwischen flüssigkeitsähnlichem und dampfähnlichem Medium - möglich sind. Ein hoher Frischdampfdruck begünstigt einen hohen thermischen Wirkungsgrad und somit niedrige Cθ2-Emissionen eines fossilbeheizten Kraftwerks. Zudem weist ein Durchlaufdampferzeuger im Vergleich zu einem Umlaufdamp- ferzeuger eine einfache Bauweise auf und ist somit mit besonders geringem Aufwand herstellbar. Die Verwendung eines nach dem Durchlaufprinzip ausgelegten Dampferzeugers als Abhitzedampferzeuger einer Gas- und Dampfturbinenanlage ist daher zur Erzielung eines hohen Gesamtwirkungsgrades der Gas- und Dampfturbinenanlage bei einfacher Bauweise besonders günstig.
Besondere Vorteile hinsichtlich des Herstellungsaufwands, aber auch hinsichtlich erforderlicher Wartungsarbeiten bietet ein Abhitzedampferzeuger in liegender Bauweise, bei dem das beheizende Medium oder Heizgas, also das Abgas aus der Gasturbine, in annähernd horizontaler Strömungsrichtung durch den Dampferzeuger geführt ist. Bei einem Durchlaufdampferzeu- ger in liegender Bauweise können die Dampferzeugerrohre einer Heizfläche jedoch je nach ihrer Positionierung einer stark unterschiedlichen Beheizung ausgesetzt sein. Insbesondere bei ausgangsseitig mit einem gemeinsamen Sammler verbundenen Dampferzeugerrohren kann eine unterschiedliche Beheizung einzelner Dampferzeugerrohre zu einer Zusammenführung von Dampfströmen mit stark voneinander abweichenden Dampfparametern und somit zu unerwünschten Wirkungsgradverlusten, insbesondere zu einer vergleichsweise verringerten Effektivität der betroffenen Heizfläche und einer dadurch reduzierten Dampfer- zeugung, führen. Eine unterschiedliche Beheizung benachbarter Dampferzeugerrohre kann zudem, insbesondere im Einmündungsbereich von Sammlern, zu Schäden an den Dampferzeugerrohren oder dem Sammler führen. Die an sich wünschenswerte Verwen- düng eines in liegender Bauweise ausgeführten Durchlaufdamp- ferzeugers als Abhitzedampferzeuger für eine Gasturbine kann somit erhebliche Probleme hinsichtlich einer ausreichend stabilisierten Strömungsführung mit sich bringen.
Aus der EP 0 944 801 Bl ist ein Dampferzeuger bekannt, der für eine Auslegung in liegender Bauweise geeignet ist und zudem die genannten Vorteile eines Durchlaufdampferzeugers aufweist. Dazu ist der bekannte Dampferzeuger hinsichtlich seiner Verdampfer-Durchlaufheizfläche derart ausgelegt, dass ein im Vergleich zu einem weiteren Dampferzeugerrohr derselben Verdampfer-Durchlaufheizfläche mehrbeheiztes Dampferzeuger- rohr einen im Vergleich zum weiteren Dampferzeugerrohr höheren Durchsatz des Strömungsmediums aufweist. Die Verdampfer- Durchlaufheizflache des bekannten Dampferzeugers zeigt somit in der Art der Strömungscharakteristik einer Naturumlauf er- dampferheizfläche (Naturumlaufcharakteristik) bei auftretender unterschiedlicher Beheizung einzelner Dampferzeugerrohre ein selbststabilisierendes Verhalten, das ohne das Erfordernis äußerer Einflussnahme zu einer Angleichung der austritts- seitigen Temperaturen auch an unterschiedlich beheizten, stromungsmediumsseitig parallel geschalteten Dampferzeugerrohren führt. Allerdings ist der bekannte Dampferzeuger in konstruktiver Hinsicht, insbesondere im Hinblick auf die Wasser- und/oder dampfseitige Verteilung des Strömungsmediums, vergleichsweise aufwendig.
Der Erfindung liegt daher die Aufgabe zugrunde, einen Dampferzeuger der oben genannten Art anzugeben, der mit besonders geringem Aufwand herstellbar ist, und der auch bei unter- schiedlicher thermischer Belastung eine besonders hohe mechanische Stabilität aufweist. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass eines oder jedes der Dampferzeugerrohre jeweils ein annähernd vertikal angeordnetes, vom Strömungsmedium in Aufwärtsrichtung durchströmbares Steigrohrstück, ein diesem stromungsmediumsseitig nachgeschaltetes, annähernd vertikal angeordnetes und vom Strömungsmedium in Abwärtsrichtung durchstrombares Fallrohrstück und ein dem Fallrohrstück stromungsmediumsseitig nachgeschaltetes, in Aufwärtsrichtung durchströmbares weiteres Steigrohrstück umfasst.
Die Erfindung geht dabei von der Überlegung aus, dass in einem mit besonders geringem Montage- und Fertigungsaufwand herstellbaren Dampferzeuger für ein besonders stabiles und gegenüber Unterschieden in der thermischen Belastung beson- ders unempfindliches Betriebsverhalten das bei dem bekannten Dampferzeuger angewandte Auslegungsprinzip einer Naturumlauf- charakteristijc für eine Verdampfer-Durchlaufheizfläche konsequent ausgebaut und weiter verbessert werden sollte. Die Verdampfer-Durchlaufheizfläche sollte dabei für eine Beaufschla- gung mit vergleichsweise geringer Massenstromdichte mit vergleichsweise geringerem Reibungsdruckverlust ausgelegt sein.
Eine besonders einfache und somit auch robuste Bauweise ist dabei erreichbar, indem die Heizfläche besonders im Hinblick auf Sammlung und Verteilung des Strömungsmediums besonders einfach ausgeführt ist. Dabei ist die Heizfläche für die Durchführung von allen Prozessabschnitten der vollständigen Verdampfung, also von Vorwärmung, Verdampfung und zumindest teilweise Überhitzung, in lediglich einer einzigen Stufe, al- so ohne zwischengeschaltete Komponenten zum Sammeln und/oder Verteilen des Strömungsmediums, geeignet ausgebildet. Zusätzliche Heizflächen zur Vorwärmung des Speisewassers oder zur weiteren Überhitzung sind im Allgemeinen vorgesehen. Um dabei einerseits überhaupt alle die genannten Prozessabschnitte vollständig im jeweiligen Dampferzeugerrohr vornehmen zur können und andererseits ausreichende Flexibilität bei der Anpassung der Dampferzeugerrohre an die Erfordernisse dieser Prozessabschnitte und die Verfahren im Heizgaskanal zu ermöglichen, umfasst jedes Dampferzeugerrohr drei stromungsmediumsseitig hintereinandergeschaltete Segmente.
Um die bei dieser Auslegung zudem angestrebte Naturumlaufcharakteristik der Durchströmung zu unterstützen, ist eine Aufteilung der Dampferzeugerrohre der Verdampfer-Durchlaufheizfläche in jeweils zumindest drei Segmente (von parallelen Rohren) vorgesehen, wobei das erste Segment alle Steigrohr- stücke umfasst und in Aufwärtsrichtung durchströmt wird. Entsprechend umfasst das zweite Segment alle Fallrohrstücke und wird in Abwärtsrichtung durchströmt, so dass selbsttätig durch das Eigengewicht des Strömungsmediums die Strömung unterstützt wird. Dabei sind die das zweite Segment bildenden Fallrohrstücke jedes Dampferzeugerrohrs im Heizgaskanal in
Heizgasrichtung gesehen jeweils hinter den ihnen zugeordneten Steigrohrstücken angeordnet. Das dritte Segment umfasst alle weiteren Steigrohrstücke und wird in Aufwärtsrichtung durchströmt.
In besonders vorteilhafter Ausgestaltung sind die Segmente des oder jedes Dampferzeugerrohrs im Heizgaskanal derart positioniert, dass der Beheizungsbedarf jedes Segments - insbesondere im Hinblick auf die dort jeweils vorgesehene Stufe im Verdampfungsprozess - in besonderen Maße an das lokale Wärmeangebot im Heizgaskanal angepasst ist. Dazu sind die das dritte Segment bildenden weiteren Steigrohrstücke jedes Dampferzeugerrohrs zweckmäßigerweise im Heizgaskanal in Heizgasrichtung gesehen jeweils zwischen den ihnen zugeordneten Steigrohrstücken des ersten und den Fallrohrstücken des zweiten Segments angeordnet. Mit anderen Worten: Zweckmäßigerweise sind die Dampferzeugerrohre im Heizgaskanal räumlich derart positioniert, dass das stromungsmediumsseitig gesehen erste Segment oder Steigrohrstück heizgasseitig stromaufwärts vom stromungsmediumsseitig gesehen dritten Segment oder weiteren Steigrohrstück und das stromungsmediumsseitig gesehen zweite Segment oder Fallrohrstück heizgasseitig stromabwärts vom stromungsmediumsseitig gesehen dritten Segment oder weiteren Steigrohrstück angeordnet ist.
Bei einer derartigen Anordnung ist somit das jeweils erste Steigrohrstück, das einer teilweisen Vorwärmung und zum großen Teil bereits einer Verdampfung des Strömungsmediums dient, einer vergleichsweise starken Beheizung durch das Heizgas im „heißen Rauchgasgebiet* ausgesetzt. Dadurch ist sichergestellt, dass im gesamten Lastbereich aus dem jeweili- gen ersten Steigrohrstück Strömungsmedium mit vergleichsweise hohen Dampfanteil abströmt. Dies führt bei der nachfolgenden Einleitung in das nachgeschaltete Fallrohrstück dazu, dass im Fallrohrstück ein für die Strömungsstabilität ungünstiges Aufsteigen von Dampfblasen entgegen der Strömungsrichtung des Strömungsmediums konsequent vermieden wird. Durch die Anordnung des Fallrohrstücks im vergleichsweise kalten Rauchgasbereich und die Anordnung des zweiten Steigrohrstücks zwischen dem ersten Steigrohrstück und dem Fallrohrstück, also rauch- gasseitig vor dem Fallrohrstück, wird somit bei hoher be- trieblicher Sicherheit ein besonders hoher Wirkungsgrad der Heizfläche insgesamt erreicht, wobei das erste Steigrohrstücke die Funktion eines Vorverdampfers erfüllt.
Ein besonders einfacher Aufbau der Verdampfer-Durchlaufheiz- fläche einerseits sowie eine besonders geringe mechanische
Belastung der Verdampfer-Durchlaufheizfläche auch bei unterschiedlicher thermischer Beaufschlagung andererseits ist erreichbar, indem in weiterer oder alternativer vorteilhafter Ausgestaltung das Steigrohrstück eines oder jedes Dampferzeu- gerrohrs mit dem ihm zugeordneten Fallrohrstück sowie das Fallrohrstück eines oder jedes Dampferzeugerrohres mit dem ihm zugeordneten weiteren Steigrohrstück stromungsmediumsseitig über je ein Überströmstück verbunden ist.
Eine derartige Anordnung ist besonders zur Dehnungskompensa- tion bei thermischer Wechselbelastung geeignet; dass das Steigrohrstück und das Fallrohrstück beziehungsweise das Fallrohrstück und das weitere Steigrohrstück verbindende Überströmstück dient hierbei nämlich als Dehnungsbogen, der relative Längenänderungen des Steigrohrstücks und/oder des Fallrohrstücks und/oder des weiteres Steigrohrstücks ohne weiteres kompensieren kann. Durch das Überströmstück ist somit eine Umlenkung der Dampferzeugerrohre im oberen Bereich einer durch die Steigrohrstücke gegebenen ersten Verdampferstufe mit direkter Weiterführung und erneuter Umlenkung im unteren Bereich einer durch die Fallrohrstücke gebildeten zweiten Verdampferstufe sowie eine Umlenkung und Weiterfüh- rung der Dampferzeugerrohre im unteren Bereich der zweiten Verdampferstufe in eine durch die weiteren Steigrohrstücke gebildeten dritten Verdampferstufe gegeben.
Das oder jedes Überströmstück ist vorteilhafterweise innerhalb des Heizgaskanals verlegt. Alternativ kann das Überströmstück aber auch außerhalb des Heizgaskanals geführt sein, insbesondere wenn aus Gründen einer möglicherweise erforderlichen Entwässerung der Verdampfer-Durchlaufheizfläche ein Entwässerungssammler an das Überströmstück angeschlossen sein soll.
Die Dampferzeugerrohre können innerhalb des Heizgaskanals zu Rohrreihen zusammengefasst sein, von den jede jeweils eine Anzahl von senkrecht zur Heizgasrichtung nebeneinander angeordneten Dampferzeugerrohren umfasst. Bei einer derartigen Ausgestaltung sind die Dampferzeugerrohre vorteilhafterweise derart geführt, dass den die am stärksten beheizte Rohrreihe bildenden Steigrohrstücken, also der in Heizgasrichtung gese- hen ersten Rohrreihe, die am schwächsten beheizte oder in Heizgasrichtung gesehen letzte Rohrreihe der Fallrohrstücke zugeordnet ist. Zudem sind zweckmäßigerweise die Fallrohrund Steigrohrstücke mehrerer Dampferzeugerrohre im Heizgaskanal relativ zueinander derart positioniert, dass einem in Heizgasrichtung gesehen vergleichsweise weit hinten liegenden Fallrohrstück ein in Heizgasrichtung -gesehen vergleichsweise weit vorn liegendes weiteres Steigrohrstück zugeordnet ist. Durch eine derartige Anordnung werden die vergleichsweise stark beheizten weiteren Steigrohrstücke mit vergleichsweise schwach vorbeheiztem, aus den Fallrohrstücken abströmendem Strömungsmedium bespeist.
Um die für eine sterile Durchströmung der Rohre erwünschte NaturumlaufCharakteristik sicher zu stellen, ist das jeweilige Dampferzeugerrohr vorteilhafterweise derart ausgestaltet, dass es lediglich ein Steigrohrstück sowie ein diesem stromungsmediumsseitig nachgeschaltetes Fallrohrstück sowie ein letzterem stromungsmediumsseitig nachgeschaltetes weiteres Steigrohrstück umfasst.
Zweckmäßigerweise wird der Dampferzeuger als Abhitzedampfer- zeuger einer Gas- und Dampfturbinenanlage verwendet. Dabei ist der Dampferzeuger vorteilhafterweise heizgasseitig einer Gasturbine nachgeschaltet. Bei dieser Schaltung kann zweckmäßigerweise hinter der Gasturbine eine Zusatzfeuerung zur Erhöhung der Heizgastemperatur angeordnet sein.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die dreistufige Ausgestaltung der Dampferzeugerrohre mit einem in Aufwärtsrichtung durchströmbaren Steigrohrstück, einem in Abwärtsrichtung durchströmba- ren Fallrohrstück und einem diesem stromungsmediumsseitig nachgeschalteten, in Aufwärtsrichtung durchströmbaren weiteren Steigrohrstück die vollständige Durchführung der Verdampfung, also teilweise Vorwärmung, Verdampfung und eine teilweise Überhitzung, in lediglich einer Stufe und ohne Zwi- schenschaltung von Komponenten zum Sammeln oder Verteilen eine besonders einfachen Bauweise erreichbar ist. Dabei ist beispielsweise eine Auslegung ohne Wasserabscheider möglich, wobei beim Anfahren ein unerwünschter Wasserausstoß in den Überhitzer vermieden oder gering gehalten werden kann, indem zu Beginn des Anfahrprozesses ausschließlich das jeweilige erste Steigrohrstück mit Wasser gefüllt wird, das nach Beginn des Anfahrvorgangs beim Durchtritt durch die nachfolgenden Rohrstücke vollständig oder zu einem ausreichend hohen Teil verdampft wird.
Zwar führen abwärts durchströmte beheizte Verdampfersysteme üblicherweise zu Strömungsinstabilitäten, die gerade beim Einsatz in Zwangdurchlauf erdampfern nicht tolerabel sind. Bei einer Durchströmung mit vergleichsweise niedriger Massen- stromdichte ist durch den vergleichsweise geringen Reibungsdruckverlust aber in zuverlässiger Weise eine Naturumlaufcha- rakteristik des Dampferzeugerrohrs erzielbar, die bei einer Mehrbeheizung eines Dampferzeugerrohrs im Vergleich zu einem weiteren Dampferzeugerrohr zu einem vergleichsweise höheren Durchsatz des Strömungsmediums im mehrbeheizten Dampferzeugerrohr führt. Diese NaturumlaufCharakteristik gewährleistet auch bei Verwendung der abwärts durchströmten Segmente eine ausreichend stabile und zuverlässige Durchströmung der Dampferzeugerrohre .
Eine derartige Charakteristik ist zudem mit besonders gerin- gern baulichen und Montageaufwand erreichbar, indem das Fallrohrstück dem ihm jeweils zugeordneten Steigrohrstück beziehungsweise das weitere Steigrohrstück dem ihm jeweils zugeordneten Fallrohrstück direkt und ohne Zwischenschaltung eines aufwendigen Sammler- oder Verteilersystems nachgeschaltet ist. Der Dampferzeuger weist somit bei besonders stabilem
Strömungsverhalten eine vergleichsweise geringe Anlagenkomplexität auf. Darüber hinaus können sowohl das Steigrohrstück als auch das Fallrohrstück und das diesem nachgeschaltete weitere Steigrohrstück jedes Dampferzeugerrohrs jeweils in hängender Bauweise im Bereich der Gehäusedecke des Heizgaskanals befestigt sein, wobei jeweils eine freie Längsdehnung im unteren Bereich zugelassen ist. Derartige, durch thermische Effekte bedingte Längsdehnungen werden nunmehr durch dass das jeweilige Fallrohrstück mit dem Steigrohrstück beziehungswei- se durch dass das weitere Steigrohrstück mit dem Fallrohrstück verbindende Überströmstück kompensiert, so dass aufgrund thermischer Effekte keine Verspannungen auftreten. Ausführungsbeispiele der Erfindung werden anhand einer Zeichnung näher erläutert. Darin zeigt die Figur in vereinfachter Darstellung im Längsschnitt einen Dampferzeuger in liegender Bauweise.
Der Dampferzeuger 1 gemäß der Figur ist in der Art eines Abhitzedampferzeugers einer nicht näher dargestellten Gasturbine abgasseitig nachgeschaltet. Der Dampferzeuger 1 weist eine Umfassungswand 2 auf, die einen in einer annähernd horizonta- len, durch die Pfeile 4 angedeuteten Heizgasrichtung x durchströmbaren Heizgaskanal 6 für das Abgas aus der Gasturbine bildet. Im Heizgaskanal 6 ist jeweils eine Anzahl von nach dem Durchlaufprinzip ausgelegten Heizflächen, auch als Verdampfer-Durchlaufheizfläche 8 bezeichnet, die für die Ver- dampfung des Strömungsmediums vorgesehen sind, angeordnet. Im Ausführungsbeispiel gemäß der Figur ist lediglich eine Verdampfer-Durchlaufheizfläche 8 gezeigt, es kann aber auch eine größere Anzahl von Verdampfer-Durchlaufheizflächen vorgesehen sein.
Das aus der Verdampfer-Durchlaufheizfläche 8 gebildete Verdampfersystem ist mit Strömungsmedium W beaufschlagbar, das bei einmaligem Durchlauf durch die Verdampfer-Durchlaufheizfläche 8 verdampft und nach dem Austritt aus der Verda pfer- Durchlaufheizfläche 8 als bereits überhitzter Dampf D abgeführt und lediglich bedarfsweise zur weiteren Überhitzung Überhitzerheizflächen zugeführt wird. Das aus der Verdampfer- Durchlaufheizfläche 8 gebildete Verdampfersystem ist in den nicht näher dargestellten Wasser-Dampf-Kreislauf einer Da pf- turbine geschaltet. Zusätzlich zu dem Verdampfersystem sind in den Wasser-Dampf-Kreislauf der Dampfturbine eine Anzahl weiterer, in FIG 1 schematisch angedeuteter Heizflächen 10 geschaltet. Bei den Heizflächen 10 kann es sich beispielsweise um Überhitzer, Mitteldruckverdampfer, Niederdruckver- dampfer und/oder um Vorwärmer handeln. Die Verdampfer-Durchlaufheizfläche 8 des Dampferzeugers 1 nach der Figur umfasst in der Art eines Rohrbündels eine Mehrzahl von zur Durchströmung des Strömungsmediums W parallel geschalteten Dampferzeugerrohren 12. Dabei ist jeweils eine Mehrzahl von Dampferzeugerrohren 12 in Heizgasrichtung x gesehen nebeneinander angeordnet. Dabei ist jeweils lediglich eines der so nebeneinander angeordneten Dampferzeugerrohre 12 sichtbar. Den so nebeneinander angeordneten Dampferzeugerrohren 12 ist dabei stromungsmediumsseitig jeweils ein gemeinsa- mer Verteiler 16 vor- und ein gemeinsamer Austrittssammler 18 nachgeschaltet. Die Verteiler 16 sind dabei ihrerseits ein- gangsseitig mit einem Hauptverteiler 20 verbunden, wobei die Austrittssammler 18 ausgangsseitig an einen gemeinsamen Hauptsammler 22 angeschlossen sind.
Die Verdampfer-Durchlaufheizfläche 8 ist derart ausgelegt, dass sie für eine Bespeisung der Dampferzeugerrohre 12 mit vergleichsweise niedriger Massenstromdichte geeignet ist, wobei die Dampferzeugerrohre 12 eine Naturumlaufcharakteristik aufweisen. Bei dieser NaturumlaufCharakteristik weist ein im Vergleich zu einem weiteren Dampferzeugerrohr 12 derselben Verdampfer-Durchlaufheizfläche 8 mehrbeheiztes Dampferzeugerrohr 12 einen im Vergleich zum weiteren Dampferzeugerrohr 12 höheren Durchsatz des Strömungsmediums W auf. Um dies mit be- sonders einfachen konstruktiven Mitteln auf besonders zuverlässige Weise sicherzustellen, umfasst die Verdampfer-Durchlaufheizfläche 8 drei stromungsmediumsseitig in Reihe geschaltete Segmente. Im ersten Segment umfasst jedes Dampfer- zeugerrohr 12 der Verdampfer-Durchlaufheizfläche 8 dabei ein annähernd vertikal angeordnetes, vom Strömungsmedium W in
Aufwärtsrichtung durchströmbares Steigrohrstück 24. Im zweiten Segment umfasst jedes Dampferzeugerrohr 12 ein dem Steigrohrstück 24 stromungsmediumsseitig nachgeschaltetes, annähernd vertikal angeordnetes und vom Strömungsmedium W in Ab- wärtsrichtung durchstrombares Fallrohrstück 26. Im dritten Segment umfasst jedes Dampferzeugerrohr 12 ein dem Fallrohrstück 26 stromungsmediumsseitig nachgeschaltetes, annähernd vertikal angeordnetes und vom Strömungsmedium W in Aufwärtsrichtung durchströmbares weiteres Steigrohrstück 28.
In Heizgasrichtung x gesehen ist dabei das von den weiteren Steigrohrstücken 28 gebildete Segment zwischen dem von den ersten Steigrohrsstücken 24 gebildeten Segment und dem von den Fallrohrstücken 26 gebildeten Segment angeordnet. Dadurch ist eine im besonderem Maße an die Bedürfnisse bei der Beheizung des Strömungsmediums und an die Beheizungsverhältnisse im Heizgaskanal 6 angepasste Bauweise gewährleistet.
Das Fallrohrstück 26 ist mit dem ihm zugeordneten Steigrohrstück 24 dabei über ein Überströmstück 30 verbunden. In derselben Weise ist das weitere Steigrohrstück 28 mit dem ihm zugeordneten Fallrohrstück 26 über ein Überströmstück 30 verbunden. Im Ausführungsbeispiel sind die Überströmstücke 30 innerhalb des Heizgaskanals 6 geführt. Alternativ können die Überströmstücke 30 auch außerhalb des Heizgaskanals 6 geführt sein. Dies kann insbesondere für den Fall günstig sein, dass aus konstruktiven oder betrieblichen Gründen eine Entwässerung der Verdampfer-Durchlaufheizfläche 8 vorgesehen sein soll.
Wie in der Figur erkennbar ist weist ein Fallrohrstück 26 mit dem ihm zugeordneten weiteren Steigrohrstück 28 und dem beide verbindenden Überströmstück 30 eine nahezu u-förmige Form auf, wobei die Schenkel des U durch das Fallrohrstück 26 und das weitere Steigrohrstück 28 und der Verbindungsbogen durch das Überströmstück 30 gebildet sind. Bei einem derartig aus- gestalteten Dampferzeugerrohr 12 erzeugt der geodätische
Druckbeitrag des Strömungsmediums W im Bereich des Fallrohrstücks 26 - im Gegensatz zum Bereich des weiteren Steigrohrstücks 28 - einen strömungsfördernden und nicht einen strö- mungshemmenden Druckbeitrag. Mit anderen Worten: Die im Fall- rohrstück 26 befindliche Wassersäule an unverdampftem Strömungsmedium W * schiebt" die Durchströmung des jeweiligen Dampferzeugerrohrs 12 noch mit an, statt diese zu behindern. Dadurch weist das Dampferzeugerrohr 12 insgesamt gesehen einen vergleichsweise geringen Druckverlust auf.
Bei dieser Bauweise sind beide Steigrohrstücke 24, 28 und das Fallrohrstück 26 in der Art einer hängenden Bauweise an der Decke des Heizgaskanals 6 aufgehängt oder befestigt. Das räumlich gesehen untere Ende des jeweiligen Steigrohrstückes 24 und das untere Ende des jeweiligen Fallrohrstücks 26 und des weiteren Steigrohrstückes 28, die jeweils durch ihr Über- strömstück 30 miteinander verbunden sind, sind hingegen nicht unmittelbar räumlich im Heizgaskanal 6 fixiert. Längendehnungen dieser Segmente der Dampferzeugerrohre 12 sind somit ohne Schadensrisiko tolerierbar, wobei das jeweilige Überströmstück 30 als Dehnungsbogen wirkt. Diese Anordnung der Dampf- erzeugerrohre 12 ist somit mechanisch besonders flexibel und hinsichtlich thermischer Spannungen unempfindlich gegenüber auftretenden Differenzdehnungen.
Eine Mehrbeheizung eines Dampferzeugerrohrs 12, insbesondere in seinem Steigrohrstück 24, führt dabei dort zunächst zur
Erhöhung der Verdampfungsrate, wobei bereits aufgrund der Dimensionierung des Dampferzeugerrohrs 12 infolge dieser Mehrbeheizung eine Erhöhung der Durchströmungsrate durch das mehrbeheizte Dampferzeugerrohr 12 eintritt.
Zudem sind die Fallrohrstücke 26 und die weiteren Steigrohrstücke 28 mehrerer Dampferzeugerrohre 12 im Heizgaskanal 6 relativ zueinander derart positioniert, dass einem in Heizgasrichtung x gesehen vergleichsweise hinten liegenden Fall- rohrstück 26 jeweils in Heizgasrichtung x gesehen vergleichsweise weit vorn liegende Steigrohrstücke 24, 28 zugeordnet sind. Durch diese Anordnung kommunizieren vergleichsweise stark beheizte Steigrohrstücke 24, 28 mit einem vergleichsweise schwach beheizten Fallrohrstück 26. Durch diese rela- tive Positionierung ist bezüglich der Durchströmung auch zwischen den Rohrreihen 14 ein selbsttätig ausgleichender Effekt erreicht. Aufgrund der besonders ausgeprägten Naturumlaufcharakteristik der Dampferzeugerrohre 12 weisen diese in besonderem Maße ein selbststabilisierendes Verhalten gegenüber lokal unterschiedlicher Beheizung auf: Eine Mehrbeheizung einer Reihe von Dampferzeugerrohren 12 führt dabei lokal zur erhöhten Zufuhr von Strömungsmedium W in diese Reihe von Dampferzeugerrohr 12, so dass aufgrund der entsprechend vergrößerten Kühlwirkung selbsttätig eine Angleichung der jeweiligen Temperaturwerte einsetzt. Der in den Hauptsammler 22 einströmende Frischdampf ist somit hinsichtlich seiner Dampfparameter, unabhängig von der individuell durchlaufenen Rohrreihe 14, besonders homogen.
Ein besonderer Vorteil der Bauweise der Verdampfer-Durchlauf- heizflache 8, deren Austritt in Form der weiteren Steigrohrstücke 28 gasseitig zwischen den ersten Steigrohrstücken 24 einerseits und den Fallrohrstücken 26 andererseits und damit ein einem mittleren Gas-Temperaturbereich der Verdampfer- Durchlaufheizfläche 8 positioniert ist, besteht darin, dass durch diese Positionierung eine zu starke Überhitzung des
Strömungsmediums auch in einzelnen Dampferzeugerrohren 12 am Austritt der Verdampfer-Durchlaufheizfläche 8 auf natürliche Weise vermieden ist.

Claims

Patentansprüche
1. Dampferzeuger (1), bei dem in einem in einer annähernd horizontalen Heizgasrichtung (x) durchströmbaren Heizgaskanal (6) eine Verdampfer-Durchlaufheizfläche (8) angeordnet ist, die eine Anzahl von zur Durchströmung eines Strömungsmediums (W) parallel geschalteten Dampferzeugerrohren (12) umfasst, und die derart ausgelegt ist, dass ein im Vergleich zu einem weiteren Dampferzeugerrohr (12) derselben Verdampfer-Durch- laufheizfläche (8) mehrbeheiztes Dampferzeugerrohr (12) einen im Vergleich zum weiteren Dampferzeugerrohr (12) höheren Durchsatz des Strömungsmediums (W) aufweist, d a d u r c h g e k e n n z e i c h n e t , d a s s ein oder jedes Dampferzeugerrohr (12) jeweils ein annähernd vertikal angeordnetes, vom Strömungsmedium (W) in Aufwärtsrichtung durchströmbares Steigrohrstück (24), ein diesem stromungsmediumsseitig nachgeschaltetes, annähernd vertikal angeordnetes und vom Strömungsmedium (W) in Abwärtsrichtung durchstrombares Fallrohrstück (26) und ein letzterem strö- mungs ediumsseitig nachgeschaltetes, annähernd vertikal angeordnetes und vom Strömungsmedium (W) in Aufwärtsrichtung durchströmbares weiteres Steigrohrstück (28) umfasst.
2. Dampferzeuger (1) nach Anspruch 1, bei dem das weitere Steigrohrstück (28) des jeweiligen Dampferzeugerrohrs (12) im Heizgaskanal (6) in Heizgasrichtung (x) gesehen zwischen dem ihm zugeordneten Steigrohrstück (24) und dem ihm zugeordneten Fallrohrstück (26) angeordnet ist.
3. Dampferzeuger (1) nach Anspruch 1 oder 2, bei dem das
Steigrohrstück (24) eines oder jedes Dampferzeugerrohrs (12) mit dem ihm zugeordneten Fallrohrstück (26) und das Fallrohrstück (26) mit dem ihm zugeordneten weiteren Steigrohrstück (28) jeweils stromungsmediumsseitig über ein Überströmstück (30) verbunden ist.
4.Dampferzeuger (1) nach Anspruch 3, bei dem die jeweiligen Überströmstücke (30) innerhalb des Heizgaskanals (6) angeordnet sind.
5. Dampferzeuger (1) nach einem der Ansprüche 1 bis 4, bei dem die weiteren Steigrohrstücke (28) und die Fallrohrstücke (26) mehrerer Dampferzeugerrohre (12) im Heizgaskanal (6) relativ zueinander derart positioniert sind, dass einem in Heizgasrichtung (x) gesehen vergleichsweise weit hinten lie- genden weiteren Steigrohrstück (28) ein in Heizgasrichtung
(x) gesehen vergleichsweise weit vorn liegendes Fallrohrstück (26) zugeordnet ist.
6. Dampferzeuger (1) nach einem der Ansprüche 1 bis 5, bei dem eine Anzahl der Dampferzeugerrohre (12) jeweils eine
Mehrzahl von stromungsmediumsseitig alternierend hintereinan- dergeschalteten Steigrohr- (24), Fallrohr- (26) und weiteren Steigrohrstücken (28) umfasst.
7. Dampferzeuger (1) nach einem der Ansprüche 1 bis 6, dem heizgasseitig eine Gasturbine vorgeschaltet ist.
PCT/EP2003/013879 2003-01-31 2003-12-08 Dampferzeuger WO2004068032A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR0318082-4A BR0318082A (pt) 2003-01-31 2003-12-08 Gerador de vapor
CA2514871A CA2514871C (en) 2003-01-31 2003-12-08 Steam generator
US10/543,602 US7270086B2 (en) 2003-01-31 2003-12-08 Steam generator
DK03780136T DK1588095T3 (da) 2003-01-31 2003-12-08 Dampgenerator
DE50305717T DE50305717D1 (de) 2003-01-31 2003-12-08 Dampferzeuger
AU2003288240A AU2003288240B2 (en) 2003-01-31 2003-12-08 Steam generator
EP03780136A EP1588095B1 (de) 2003-01-31 2003-12-08 Dampferzeuger
JP2004567305A JP4549868B2 (ja) 2003-01-31 2003-12-08 廃熱ボイラ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03002243.8 2003-01-31
EP03002243A EP1443268A1 (de) 2003-01-31 2003-01-31 Dampferzeuger

Publications (1)

Publication Number Publication Date
WO2004068032A1 true WO2004068032A1 (de) 2004-08-12

Family

ID=32605295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/013879 WO2004068032A1 (de) 2003-01-31 2003-12-08 Dampferzeuger

Country Status (17)

Country Link
US (1) US7270086B2 (de)
EP (2) EP1443268A1 (de)
JP (1) JP4549868B2 (de)
KR (1) KR20050095781A (de)
CN (2) CN1745277A (de)
AT (1) ATE345471T1 (de)
AU (1) AU2003288240B2 (de)
BR (1) BR0318082A (de)
CA (1) CA2514871C (de)
DE (1) DE50305717D1 (de)
DK (1) DK1588095T3 (de)
ES (1) ES2276138T3 (de)
PL (1) PL207513B1 (de)
RU (1) RU2310121C2 (de)
TW (1) TWI245866B (de)
WO (1) WO2004068032A1 (de)
ZA (1) ZA200505452B (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1512906A1 (de) * 2003-09-03 2005-03-09 Siemens Aktiengesellschaft Durchlaufdampferzeuger in liegender Bauweise und Verfahren zum Betreiben des Durchlaufdampferzeugers
KR101268364B1 (ko) * 2008-03-27 2013-05-28 알스톰 테크놀러지 리미티드 이퀄라이징 챔버를 가진 연속 스팀 발생기
EP2194320A1 (de) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP2180250A1 (de) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Durchlaufdampferzeuger
DE102009012320A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102009012321A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102009012322B4 (de) * 2009-03-09 2017-05-18 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102009024587A1 (de) * 2009-06-10 2010-12-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102009036064B4 (de) * 2009-08-04 2012-02-23 Alstom Technology Ltd. rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
NL2003596C2 (en) * 2009-10-06 2011-04-07 Nem Bv Cascading once through evaporator.
JP5739229B2 (ja) * 2010-12-10 2015-06-24 大阪瓦斯株式会社 過熱蒸気発生器
DE102011004270A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Durchlaufdampferzeuger für die indirekte Verdampfung insbesondere in einem Solarturm-Kraftwerk
US9989320B2 (en) 2012-01-17 2018-06-05 General Electric Technology Gmbh Tube and baffle arrangement in a once-through horizontal evaporator
WO2013108216A2 (en) 2012-01-17 2013-07-25 Alstom Technology Ltd Flow control devices and methods for a once-through horizontal evaporator
DE102012218542B4 (de) * 2012-10-11 2016-07-07 Siemens Aktiengesellschaft Verfahren zum flexiblen Betrieb einer Kraftwerksanlage
US9097418B2 (en) * 2013-02-05 2015-08-04 General Electric Company System and method for heat recovery steam generators
US9739478B2 (en) 2013-02-05 2017-08-22 General Electric Company System and method for heat recovery steam generators
CN105579774B (zh) * 2013-09-26 2018-05-22 努特埃里克森公司 用于热回收蒸汽发生器的热交换系统和方法
US20160102926A1 (en) * 2014-10-09 2016-04-14 Vladimir S. Polonsky Vertical multiple passage drainable heated surfaces with headers-equalizers and forced circulation
CN110094709B (zh) * 2019-05-28 2024-04-26 上海锅炉厂有限公司 一种直流式蒸发器及其设计方法
CN112569373B (zh) * 2019-09-30 2022-10-25 湖北智权专利技术应用开发有限公司 一种红外热及蒸汽合成高温消毒厨具设备
EP3842723A1 (de) * 2019-12-23 2021-06-30 Hamilton Sundstrand Corporation Zweistufiger fraktaler wärmetauscher
EP4160091A1 (de) * 2021-09-30 2023-04-05 Siemens Energy Global GmbH & Co. KG Wärmetauscherrohrbündel und zugehöriger dampfgenerator mit wärmerückgewinnung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1176155B (de) * 1959-02-28 1964-08-20 Buckau Wolf Maschf R Steilrohrkessel mit oberem, gekuehltem Rueckwandvorsprung
JPH03221702A (ja) * 1990-01-29 1991-09-30 Toshiba Corp 複圧式排熱回収熱交換器
DE19700350A1 (de) * 1997-01-08 1998-07-16 Steinmueller Gmbh L & C Durchlaufdampferzeuger mit einem Gaszug zum Anschließen an eine Heißgas abgebende Vorrichtung
EP0944801A1 (de) * 1996-12-12 1999-09-29 Siemens Aktiengesellschaft Dampferzeuger
US6019070A (en) * 1998-12-03 2000-02-01 Duffy; Thomas E. Circuit assembly for once-through steam generators

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT392683B (de) * 1988-08-29 1991-05-27 Sgp Va Energie Umwelt Abhitze-dampferzeuger
US5311844A (en) * 1992-03-27 1994-05-17 Foster Wheeler Energy Corporation Internested superheater and reheater tube arrangement for heat recovery steam generator
BE1005793A3 (fr) * 1992-05-08 1994-02-01 Cockerill Mech Ind Sa Chaudiere de recuperation de chaleur a circulation induite.
US6092490A (en) * 1998-04-03 2000-07-25 Combustion Engineering, Inc. Heat recovery steam generator
DE10127830B4 (de) * 2001-06-08 2007-01-11 Siemens Ag Dampferzeuger
US6957630B1 (en) * 2005-03-31 2005-10-25 Alstom Technology Ltd Flexible assembly of once-through evaporation for horizontal heat recovery steam generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1176155B (de) * 1959-02-28 1964-08-20 Buckau Wolf Maschf R Steilrohrkessel mit oberem, gekuehltem Rueckwandvorsprung
JPH03221702A (ja) * 1990-01-29 1991-09-30 Toshiba Corp 複圧式排熱回収熱交換器
EP0944801A1 (de) * 1996-12-12 1999-09-29 Siemens Aktiengesellschaft Dampferzeuger
DE19700350A1 (de) * 1997-01-08 1998-07-16 Steinmueller Gmbh L & C Durchlaufdampferzeuger mit einem Gaszug zum Anschließen an eine Heißgas abgebende Vorrichtung
US6019070A (en) * 1998-12-03 2000-02-01 Duffy; Thomas E. Circuit assembly for once-through steam generators

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 505 (M - 1194) 20 December 1991 (1991-12-20) *

Also Published As

Publication number Publication date
AU2003288240A1 (en) 2004-08-23
KR20050095781A (ko) 2005-09-30
CA2514871C (en) 2012-05-01
PL207513B1 (pl) 2010-12-31
TW200416368A (en) 2004-09-01
RU2310121C2 (ru) 2007-11-10
US20060075977A1 (en) 2006-04-13
CA2514871A1 (en) 2004-08-12
BR0318082A (pt) 2005-12-20
ATE345471T1 (de) 2006-12-15
EP1443268A1 (de) 2004-08-04
RU2005127352A (ru) 2006-06-10
EP1588095B1 (de) 2006-11-15
CN101684937A (zh) 2010-03-31
AU2003288240B2 (en) 2009-04-23
CN1745277A (zh) 2006-03-08
ZA200505452B (en) 2006-02-22
JP4549868B2 (ja) 2010-09-22
JP2006514253A (ja) 2006-04-27
ES2276138T3 (es) 2007-06-16
EP1588095A1 (de) 2005-10-26
DE50305717D1 (de) 2006-12-28
US7270086B2 (en) 2007-09-18
TWI245866B (en) 2005-12-21
DK1588095T3 (da) 2007-02-26
CN101684937B (zh) 2012-03-21
PL376303A1 (en) 2005-12-27

Similar Documents

Publication Publication Date Title
EP1588095B1 (de) Dampferzeuger
DE10127830B4 (de) Dampferzeuger
EP0993581B1 (de) Abhitzedampferzeuger
EP1848925B1 (de) Dampferzeuger in liegender bauweise
WO1998026213A1 (de) Dampferzeuger
EP1512907A1 (de) Verfahren zum Anfahren eines Durchlaufdampferzeugers und Durchlaufdampferzeuger zur Durchführung des Verfahrens
EP2438351B1 (de) Durchlaufverdampfer
EP1926934A2 (de) Dampferzeuger
EP2321578B1 (de) Durchlaufdampferzeuger
EP1660812B1 (de) Durchlaufdampferzeuger sowie verfahren zum betreiben des durchlaufdampferzeugers
EP2438352B1 (de) Durchlaufverdampfer
WO2015039831A2 (de) Gas-und-dampf-kombikraftwerk mit einem abhitzedampferzeuger
EP1537358B1 (de) Dampferzeuger in liegender bauweise
EP1554522B1 (de) Verfahren zum betreiben eines dampferzeugers in liegender bauweise
EP2409078B1 (de) Verfahren zur Auslegung eines Durchlaufverdampfers
EP2601441B1 (de) Zwangdurchlaufdampferzeuger
EP1512906A1 (de) Durchlaufdampferzeuger in liegender Bauweise und Verfahren zum Betreiben des Durchlaufdampferzeugers
EP2364414B1 (de) Durchlaufdampferzeuger
EP0812407B1 (de) Verfahren und system zum anfahren eines durchlaufdampferzeugers
DE2446357A1 (de) Dampfkessel zur erzeugung von hochgespanntem ueberhitztem wasserdampf

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005/05452

Country of ref document: ZA

Ref document number: 200505452

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 376303

Country of ref document: PL

WWE Wipo information: entry into national phase

Ref document number: 01393/KOLNP/2005

Country of ref document: IN

Ref document number: 1393/KOLNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003288240

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004567305

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006075977

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2003780136

Country of ref document: EP

Ref document number: 10543602

Country of ref document: US

Ref document number: 20038A93380

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2514871

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020057014147

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2005127352

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020057014147

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003780136

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0318082

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10543602

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003780136

Country of ref document: EP