EP2655811B1 - Method for regulating a brief increase in power of a steam turbine - Google Patents
Method for regulating a brief increase in power of a steam turbine Download PDFInfo
- Publication number
- EP2655811B1 EP2655811B1 EP12705819.6A EP12705819A EP2655811B1 EP 2655811 B1 EP2655811 B1 EP 2655811B1 EP 12705819 A EP12705819 A EP 12705819A EP 2655811 B1 EP2655811 B1 EP 2655811B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- power
- fossil
- steam
- steam generator
- steam turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 16
- 230000001105 regulatory effect Effects 0.000 title claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 16
- 230000009467 reduction Effects 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 238000002347 injection Methods 0.000 description 16
- 239000007924 injection Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000013461 design Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/02—Controlling, e.g. stopping or starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B35/00—Control systems for steam boilers
- F22B35/06—Control systems for steam boilers for steam boilers of forced-flow type
- F22B35/10—Control systems for steam boilers for steam boilers of forced-flow type of once-through type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22D—PREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
- F22D11/00—Feed-water supply not provided for in other main groups
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22D—PREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
- F22D11/00—Feed-water supply not provided for in other main groups
- F22D11/003—Emergency feed-water supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G5/00—Controlling superheat temperature
- F22G5/02—Applications of combustion-control devices, e.g. tangential-firing burners, tilting burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G5/00—Controlling superheat temperature
- F22G5/12—Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays
Definitions
- the invention relates to a method for controlling a short-term increase in output of a steam turbine with an upstream fossil-fueled continuous steam generator with a number of a flow path forming, flowed through by a flow medium economizer, evaporator and superheater heating, and for example from the US 6301895 B1 known.
- a fossil-fueled steam generator produces superheated steam using the heat generated by burning fossil fuels.
- Fossil fueled steam generators are mostly used in steam power plants, which are mainly used for power generation.
- the generated steam is fed to a steam turbine.
- the fossil-fueled steam generator also comprises a plurality of pressure stages with different thermal states of the respectively contained water-steam mixture.
- the flow medium In the first (high) pressure stage, the flow medium first passes through economizers on its flow path, using residual heat to preheat the flow medium, and then various stages of evaporator and superheater heating surfaces.
- the evaporator the flow medium is evaporated, then separated any residual moisture in a separator and further heated the remaining steam in the superheater. Thereafter, the superheated steam flows into the high-pressure part of the steam turbine, where it is expanded and fed to the following pressure stage of the steam generator. There it is again superheated (reheater) and fed to the next pressure part of the steam turbine.
- the heat output transferred to the superheaters can fluctuate greatly. Therefore It is often necessary to regulate the overheating temperature. Usually, this is usually achieved by an injection of feedwater before or after individual Matterhitzersammlung inhabit for cooling, ie, an overflow branches off from the main stream of the flow medium and leads to there correspondingly arranged injection coolers. In this case, the injection is usually regulated by means of valves via a characteristic value characteristic of the temperature deviations from a predetermined temperature setpoint at the outlet of the superheater.
- Modern power plants not only require high levels of efficiency but also the most flexible mode of operation possible. Apart from short start-up times and high load change speeds, this also includes the possibility of compensating for frequency disturbances in the power grid. To meet these requirements, the power plant must be able to provide more power of, for example, 5% and more in relation to full load within a few seconds.
- Such power changes of a power plant block in the second range are possible only by a coordinated interaction of steam generator and steam turbine.
- the contribution that the fossil-fueled steam generator can make is the use of its storage, d. H. of the steam but also of the fuel storage, as well as rapid changes of the control variables feedwater, injection water, fuel and air.
- This additional power can be released in a relatively short time, so that the delayed power increase can be at least partially compensated by the increase in the firing capacity.
- the entire block makes by this measure immediately a jump in performance and can also permanently maintain or exceed this level of performance by a subsequent increase in the firing capacity, provided that the system was at the time of additionally requested power reserves in the partial load range.
- This object is achieved according to the invention by increasing the flow of the flow medium through the fossil-fired steam generator for short-term increase in output of the steam turbine.
- the invention is based on the consideration that the introduced heat output into the steam generator is determined by the firing capacity and only has a comparatively slow effect in the event of a sudden change.
- An additional benefit payment in the steam turbine should therefore be made by using the heat energy stored in the heating surfaces of the steam generator.
- the withdrawal of this heat requires a lowering of the average material temperature. This should be done by increasing the flow, i. H. the amount of flow medium flowing through per unit of time can be achieved. Due to the higher flow with comparatively lower medium temperatures, the average material temperature of all heating surfaces is lowered by this measure and as a result thermal energy is released from all these heating surfaces and released in the steam turbine in the form of additional power.
- the enthalpy desired value at the outlet of an evaporator heating surface is reduced for a short-term increase in output of the steam turbine.
- the setpoint for the specific enthalpy is used in the control system of the steam generator as a control variable for determining the setpoint for the flow of the flow medium.
- This switching action has two effects: First, the basic setpoint for the evaporator flow rate calculated in the feedwater setpoint determination increases. Secondly, the enthalpy correction controller - in particular if the reduction takes place particularly quickly (abruptly) - increases its output signal by means of a now greater control deviation in order to reduce the enthalpy at the evaporator outlet as quickly as possible. As a result, the feedwater quantity at the beginning of this measure even increases disproportionately and it is a particularly rapid withdrawal of heat from the heating surfaces with the associated glossentitati in the steam turbine possible.
- the enthalpy target value is reduced to a predetermined minimum enthalpy value.
- the Swiss-Shuna is dimensioned such that in all load conditions of the fossil-fired steam generator complete evaporation of the flow medium is achieved in the evaporator heating.
- the enthalpy at the evaporator outlet is not lowered too far and consequently a seizure of residual water in a downstream separator can be safely avoided.
- a maximum increase in additional feed water and thus additional performance relief should be achieved with the safest possible driving.
- the parameters of the measures taken are matched to the required power release in the steam turbine and optimized.
- the amount and / or duration of the reduction of the enthalpy target value are determined on the basis of the required power increase.
- flow medium removed in the flow path in the region of a superheater heating surface of the steam generator is injected for short-term increase in output of the steam turbine. Namely, such injections can make a further contribution to the short-term rapid power change.
- the additional injection in the superheater namely the steam mass flow can be temporarily increased.
- the stored thermal energy is also used for a temporary increase in power of the steam turbine.
- the heat input is increased in the fossil-fired steam generator, that is, increases the firing capacity of the burner.
- a temperature reduction at the evaporator outlet can be favorably influenced or even completely avoided by the described method, since the measure acts as a Vorhaltsignal on the feed water.
- the method not only allows a short-term increase in performance, but is also used for faster adjustment of a longer-term performance increase.
- a control system for a fossil-fired steam generator with a number of flow-forming, flowed through by a flow medium economizer, evaporator and superheater heating means comprises means for carrying out the method.
- a fossil-fired steam generator for a steam power plant comprises such a control system and a steam power plant such a fossil-fired steam generator.
- the advantages achieved by the invention are, in particular, that by the short-term increase in the amount of feed water, a particularly fast power release in the steam turbine downstream steam turbine is made possible by using the heat energy stored in all heating surfaces.
- this measure can only be implemented without invasive structural measures with minimal adjustments to the feedwater control concept, so that no additional costs are incurred despite considerably increased system flexibility.
- the stored thermal energy of the economizer, the evaporator and the first superheater heating surfaces which are located on the flow medium side before the first injection, can be used as additional energy source.
- a much larger reservoir of stored thermal energy is available for the additionally requested power.
- either a greater increase in power (peak) can be generated, or an additionally released power can be maintained longer at a lower level.
- FIG. 1 shows a diagram with simulation results using the control method in a fossil-fired steam generator, ie a sudden reduction of enthalpy target value at the evaporator outlet to increase the feedwater quantity at constant held firing performance.
- Plotted is the percent additional power in terms of full load 1 versus time 2 in seconds after a sudden reduction in the setpoint of evaporator specific enthalpy by 100 kJ / kg at 95% load. This reduction provides in the control concept for an increase in the feedwater flow rate.
- Curve 4 shows the result without additional use of injections, while curves 6 and 8 represent the results for additional use of injections in the high-pressure stage or in the high-pressure and medium-pressure stage.
- curves 10, 12, 14 show the results without increasing the amount of feedwater, but by using only the injections in high-pressure stage (curve 10), medium pressure stage (curve 12) and two pressure levels (curve 14).
- the injection is achieved by reducing the setpoint for live steam temperature and, if appropriate, reheaction temperature by 20 K.
- FIG. 2 is opposite FIG. 1 only slightly modified and shows the simulated curves 4, 6, 8, 10, 12, 14 for 40% load, all other parameters coincide FIG. 1 the same applies to the curves 4, 6, 8, 10, 12, 14.
- the curves 4, 6, 10 show a substantially flatter course than in FIG. 1 that is, there is a slower increase in power at a lower level. Also, the power surplus due to the feedwater flow increase is less pronounced, albeit still significant.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Water Supply & Treatment (AREA)
- Control Of Turbines (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine mit einem vorgeschalteten fossil befeuerten Durchlaufdampferzeuger mit einer Anzahl von einen Strömungsweg bildenden, von einem Strömungsmedium durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen, sowie beispielsweise aus der
Ein fossil befeuerter Dampferzeuger erzeugt überhitzten Dampf mit Hilfe der durch Verbrennung fossiler Brennstoffe erzeugten Wärme. Fossil befeuerte Dampferzeuger kommen meist in Dampfkraftwerken zum Einsatz, die überwiegend der Stromerzeugung dienen. Der erzeugte Dampf wird dabei einer Dampfturbine zugeführt.A fossil-fueled steam generator produces superheated steam using the heat generated by burning fossil fuels. Fossil fueled steam generators are mostly used in steam power plants, which are mainly used for power generation. The generated steam is fed to a steam turbine.
Analog zu den verschiedenen Druckstufen einer Dampfturbine umfasst auch der fossil befeuerte Dampferzeuger eine Mehrzahl von Druckstufen mit unterschiedlichen thermischen Zuständen des jeweils enthaltenen Wasser-Dampf-Gemisches. In der ersten (Hoch-)Druckstufe durchläuft das Strömungsmedium auf seinem Strömungsweg zunächst Economiser, die Restwärme zur Vorwärmung des Strömungsmediums nutzen, und anschließend verschiedene Stufen von Verdampfer- und Überhitzerheizflächen. Im Verdampfer wird das Strömungsmedium verdampft, danach eventuelle Restnässe in einer Abscheideeinrichtung abgetrennt und der übrig behaltene Dampf im Überhitzer weiter erhitzt. Danach strömt der überhitzte Dampf in den Hochdruckteil der Dampfturbine, wird dort entspannt und der folgenden Druckstufe des Dampferzeugers zugeführt. Dort wird er erneut überhitzt (Zwischenüberhitzer) und dem nächsten Druckteil der Dampfturbine zugeführt.Analogous to the various pressure stages of a steam turbine, the fossil-fueled steam generator also comprises a plurality of pressure stages with different thermal states of the respectively contained water-steam mixture. In the first (high) pressure stage, the flow medium first passes through economizers on its flow path, using residual heat to preheat the flow medium, and then various stages of evaporator and superheater heating surfaces. In the evaporator, the flow medium is evaporated, then separated any residual moisture in a separator and further heated the remaining steam in the superheater. Thereafter, the superheated steam flows into the high-pressure part of the steam turbine, where it is expanded and fed to the following pressure stage of the steam generator. There it is again superheated (reheater) and fed to the next pressure part of the steam turbine.
Aufgrund unterschiedlichster äußerer Einflüsse kann die an die Überhitzer übertragene Wärmeleistung stark schwanken. Daher ist es häufig notwendig, die Überhitzungstemperatur zu regeln. Üblicherweise wird dies meistens durch eine Einspritzung von Speisewasser vor oder nach einzelnen Überhitzerheizflächen zur Kühlung erreicht, d. h., eine Überströmleitung zweigt vom Hauptstrom des Strömungsmediums ab und führt zu dort entsprechend angeordneten Einspritzkühlern. Die Einspritzung wird dabei üblicherweise über einen für die Temperaturabweichungen von einem vorgegebenen Temperatursollwert am Austritt des Überhitzers charakteristischen Kennwert mit Hilfe von Armaturen geregelt.Due to a wide variety of external influences, the heat output transferred to the superheaters can fluctuate greatly. Therefore It is often necessary to regulate the overheating temperature. Usually, this is usually achieved by an injection of feedwater before or after individual Überhitzerheizflächen for cooling, ie, an overflow branches off from the main stream of the flow medium and leads to there correspondingly arranged injection coolers. In this case, the injection is usually regulated by means of valves via a characteristic value characteristic of the temperature deviations from a predetermined temperature setpoint at the outlet of the superheater.
Von modernen Kraftwerken werden nicht nur hohe Wirkungsgrade gefordert, sondern auch eine möglichst flexible Betriebsweise. Hierzu gehört außer kurzen Anfahrzeiten und hohen Laständerungsgeschwindigkeiten auch die Möglichkeit, Frequenzstörungen im Stromverbundnetz auszugleichen. Um diese Anforderungen zu erfüllen, muss das Kraftwerk in der Lage sein, Mehrleistungen von beispielsweise 5 % und mehr bezogen auf Volllastleistung innerhalb weniger Sekunden zur Verfügung zu stellen.Modern power plants not only require high levels of efficiency but also the most flexible mode of operation possible. Apart from short start-up times and high load change speeds, this also includes the possibility of compensating for frequency disturbances in the power grid. To meet these requirements, the power plant must be able to provide more power of, for example, 5% and more in relation to full load within a few seconds.
Derartige Leistungsänderungen eines Kraftwerksblockes im Sekundenbereich sind nur durch ein abgestimmtes Zusammenwirken von Dampferzeuger und Dampfturbine möglich. Der Beitrag, den der fossil befeuerte Dampferzeuger hierfür leisten kann, ist die Nutzung seiner Speicher, d. h. des Dampf- aber auch des Brennstoffspeichers, sowie schnelle Änderungen der Stellgrößen Speisewasser, Einspritzwasser, Brennstoff und Luft.Such power changes of a power plant block in the second range are possible only by a coordinated interaction of steam generator and steam turbine. The contribution that the fossil-fueled steam generator can make is the use of its storage, d. H. of the steam but also of the fuel storage, as well as rapid changes of the control variables feedwater, injection water, fuel and air.
Dies kann beispielsweise durch das Öffnen teilweise angedrosselter Turbinenventile der Dampfturbine oder eines so genannten Stufenventils geschehen, wodurch der Dampfdruck vor der Dampfturbine abgesenkt wird. Dampf aus dem Dampfspeicher des vorgeschalteten fossil befeuerten Dampferzeugers wird dadurch ausgespeichert und der Dampfturbine zugeführt. Mit dieser Maßnahme wird innerhalb weniger Sekunden ein Leistungsanstieg erreicht.This can be done, for example, by opening partially throttled turbine valves of the steam turbine or a so-called step valve, whereby the vapor pressure is lowered in front of the steam turbine. Steam from the steam storage of the upstream fossil-fueled steam generator is thereby stored and fed to the steam turbine. With this measure, an increase in performance is achieved within a few seconds.
Diese zusätzliche Leistung kann in relativ kurzer Zeit freigesetzt werden, so dass die verzögerte Leistungserhöhung durch die Erhöhung der Feuerungsleistung zumindest teilweise kompensiert werden kann. Der gesamte Block macht durch diese Maßnahme unmittelbar einen Leistungssprung und kann durch eine nachfolgende Erhöhung der Feuerungsleistung auch dieses Leistungsniveau dauerhaft halten bzw. überschreiten, vorausgesetzt die Anlage befand sich zum Zeitpunkt der zusätzlich angeforderten Leistungsreserven im Teillastbereich.This additional power can be released in a relatively short time, so that the delayed power increase can be at least partially compensated by the increase in the firing capacity. The entire block makes by this measure immediately a jump in performance and can also permanently maintain or exceed this level of performance by a subsequent increase in the firing capacity, provided that the system was at the time of additionally requested power reserves in the partial load range.
Eine permanente Androsselung der Turbinenventile zur Vorhaltung einer Reserve führt jedoch immer zu einem Wirkungsgradverlust, so dass für eine wirtschaftliche Fahrweise der Grad der Androsselung so gering wie unbedingt notwendig gehalten werden sollte. Zudem weisen einige Bauformen von fossil befeuerten Dampferzeugern, so z. B. Zwangdurchlaufdampferzeuger unter Umständen ein erheblich kleineres Speichervolumen auf als z. B. Naturumlauf-Dampferzeuger. Der Unterschied in der Größe des Speichers hat im oben beschriebenen Verfahren Einfluss auf das Verhalten bei Leistungsänderungen des Kraftwerksblocks. Darüber hinaus darf insbesondere im oberen Lastbereich durch die Androsselung der Auslegungsdruck im gesamten Dampferzeuger nicht überschritten werden, so dass diese Maßnahme im oberen Lastbereich nur begrenzt bzw. gar nicht angewendet werden kann.However, a permanent throttling of the turbine valves to provide a reserve always leads to a loss of efficiency, so that for an economic driving the degree of throttling should be kept as low as absolutely necessary. In addition, some types of fossil-fueled steam generators, such. B. forced flow steam generator may have a significantly smaller storage volume than z. B. natural circulation steam generator. The difference in the size of the memory in the method described above has an influence on the behavior of power plant block power changes. In addition, especially in the upper load range by throttling the design pressure in the entire steam generator must not be exceeded, so that this measure in the upper load range only limited or can not be applied.
Es ist daher Aufgabe der Erfindung, ein Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine anzugeben, das in besonderem Maße geeignet ist, eine kurzfristige Leistungssteigerung einer nachgeschalteten Dampfturbine zu ermöglichen, ohne dass dabei der Wirkungsgrad des Dampfprozesses über Gebühr beeinträchtigt wird.It is therefore an object of the invention to provide a method for controlling a short-term power increase of a steam turbine, which is particularly suitable to allow a short-term increase in output of a downstream steam turbine, without affecting the efficiency of the steam process is unduly affected.
Diese Aufgabe wird erfindungsgemäß gelöst, indem zur kurzfristigen Leistungserhöhung der Dampfturbine der Fluss des Strömungsmediums durch den fossil befeuerten Dampferzeuger erhöht wird.This object is achieved according to the invention by increasing the flow of the flow medium through the fossil-fired steam generator for short-term increase in output of the steam turbine.
Die Erfindung geht von der Überlegung aus, dass die eingebrachte Wärmeleistung in den Dampferzeuger durch die Feuerungsleistung bestimmt wird und sich bei einer plötzlichen Änderung nur vergleichsweise langsam auswirkt. Eine zusätzliche Leistungsentbindung in der Dampfturbine sollte daher durch eine Nutzung der in den Heizflächen des Dampferzeugers eingespeicherten Wärmeenergie erfolgen. Die Ausspeicherung dieser Wärme erfordert ein Absenken der mittleren Materialtemperatur. Dies sollte durch eine Erhöhung der Flusses, d. h. der durchströmenden Menge an Strömungsmedium pro Zeiteinheit erreicht werden. Durch diese Maßnahme wird auf Grund der höheren Durchströmung mit vergleichsweise geringeren Mediumstemperaturen die mittlere Materialtemperatur aller Heizflächen abgesenkt und infolgedessen thermische Energie aus all diesen Heizflächen ausgespeichert und in der Dampfturbine in Form zusätzlicher Leistung entbunden.The invention is based on the consideration that the introduced heat output into the steam generator is determined by the firing capacity and only has a comparatively slow effect in the event of a sudden change. An additional benefit payment in the steam turbine should therefore be made by using the heat energy stored in the heating surfaces of the steam generator. The withdrawal of this heat requires a lowering of the average material temperature. This should be done by increasing the flow, i. H. the amount of flow medium flowing through per unit of time can be achieved. Due to the higher flow with comparatively lower medium temperatures, the average material temperature of all heating surfaces is lowered by this measure and as a result thermal energy is released from all these heating surfaces and released in the steam turbine in the form of additional power.
In vorteilhafter Ausgestaltung wird zur kurzfristigen Leistungserhöhung der Dampfturbine der Enthalpiesollwert am Austritt einer Verdampferheizfläche reduziert. Der Sollwert für die spezifische Enthalpie wird im Regelsystem des Dampferzeugers als Regelgröße für die Ermittlung des Sollwerts für den Fluss des Strömungsmediums verwendet. Diese Umschaltmaßnahme bewirkt zwei Effekte: Erstens vergrößert sich der in der Speisewassersollwertermittlung berechnete Grundsollwert für den Verdampferdurchfluss. Zweitens erhöht der Enthalpiekorrekturregler - insbesondere wenn die Reduzierung besonders schnell (schlagartig) erfolgt - durch eine nun größer anstehende Regelabweichung sein Ausgangssignal, um die Enthalpie am Verdampferaustritt möglichst zügig zu reduzieren. Dadurch steigt die Speisewassermenge zu Beginn dieser Maßnahme sogar überproportional an und es ist eine besonders schnelle Ausspeicherung von Wärme aus den Heizflächen mit der verbundenen Leistungsentbindung in der Dampfturbine möglich.In an advantageous embodiment, the enthalpy desired value at the outlet of an evaporator heating surface is reduced for a short-term increase in output of the steam turbine. The setpoint for the specific enthalpy is used in the control system of the steam generator as a control variable for determining the setpoint for the flow of the flow medium. This switching action has two effects: First, the basic setpoint for the evaporator flow rate calculated in the feedwater setpoint determination increases. Secondly, the enthalpy correction controller - in particular if the reduction takes place particularly quickly (abruptly) - increases its output signal by means of a now greater control deviation in order to reduce the enthalpy at the evaporator outlet as quickly as possible. As a result, the feedwater quantity at the beginning of this measure even increases disproportionately and it is a particularly rapid withdrawal of heat from the heating surfaces with the associated Leistungsentbindung in the steam turbine possible.
Vorteilhafterweise wird der Enthalpiesollwert auf einen vorgegebenen Mindestenthalpiewert reduziert. Dadurch ist einerseits in allen Lastzuständen eine maximale Leistungsentbindung bei gleichzeitiger Erhaltung der Betriebssicherheit gewährleistet.Advantageously, the enthalpy target value is reduced to a predetermined minimum enthalpy value. As a result, on the one hand in all load conditions, a maximum performance deduction while maintaining operational safety guaranteed.
In besonders vorteilhafter Ausgestaltung wird der Mindestenthalpiewert derart bemessen, dass in allen Lastzuständen des fossil befeuerten Dampferzeugers eine vollständige Verdampfung des Strömungsmediums in den Verdampferheizflächen erreicht wird. Insbesondere im unterkritischen Betrieb sollte nämlich gewährleistet sein, dass die Enthalpie am Verdampferaustritt nicht zu weit abgesenkt wird und infolgedessen ein Anfall von Restwasser in einer nachgeschalteten Abscheideeinrichtung sicher vermieden werden kann. Somit ist bei möglichst sicherer Fahrweise ein maximaler Anstieg an zusätzlichem Speisewasser und damit zusätzlicher Leistungsentbindung zu erzielen.In a particularly advantageous embodiment, the Mindestenthalpiewert is dimensioned such that in all load conditions of the fossil-fired steam generator complete evaporation of the flow medium is achieved in the evaporator heating. In particular, in subcritical operation, namely, should be ensured that the enthalpy at the evaporator outlet is not lowered too far and consequently a seizure of residual water in a downstream separator can be safely avoided. Thus, a maximum increase in additional feed water and thus additional performance relief should be achieved with the safest possible driving.
Dabei ist hervorzuheben, dass je höher die tatsächliche Enthalpie am Verdampferaustritt im Stationärbetrieb gewählt wird, d. h. je größer der Abstand zur fest vorgegebenen Mindestenthalpie ist, desto mehr thermische Energie kann auch ausgespeichert werden, d. h. desto mehr Dampfturbinenleistung kann kurzfristig generiert werden. Demnach ist bei einer auf diese Maßnahme zugeschnittenen Kesselauslegung ein möglichst großer Abstand zur Mindestenthalpie im Stationärbetrieb bzw. im Frequenzstützbetrieb anzustreben. Dabei ist allerdings zu berücksichtigen, dass unter den genannten Umständen nur durch ein geeignetes Kesseldesign unzulässig hohe Temperaturschieflagen am Verdampferaustritt zu vermeiden sind. Darüber hinaus sind auch die auftretenden transienten Belastungen in der Auslegung bzw. für das bestehende Dampferzeugerdesign zu berücksichtigen, die je nach Größe und Häufigkeit zu einer entsprechenden Materialermüdung führen können. Hier sei aber erwähnt, dass insbesondere im überkritischen Dampferzeugerbetrieb, bei dem die größtmögliche Reduktion der Verdampferaustrittsenthalpie realisiert werden kann, auf Grund der Wasser-Dampf-Eigenschaften des Strömungsmedium mit nur moderaten Temperaturreduzierungen am Verdampferaustritt zu rechnen ist, und sich somit die Materialbelastung des Verdampfers entsprechend in Grenzen hält.It should be emphasized that the higher the actual enthalpy at the evaporator outlet in stationary operation is selected, ie the greater the distance to the fixed minimum enthalpy, the more thermal energy can also be stored, ie the more steam turbine power can be generated in the short term. Accordingly, in the case of a boiler design tailored to this measure, the greatest possible distance from the minimum enthalpy in stationary operation or in frequency support mode should be sought. It should be noted, however, that under the circumstances mentioned inadmissible high temperature imbalances at the evaporator outlet are to be avoided only by a suitable boiler design. In addition, the occurring transient loads in the design or for the existing steam generator design are to be considered, which can lead to a corresponding material fatigue depending on the size and frequency. It should be mentioned, however, that especially in supercritical steam generator operation, in which the greatest possible reduction of the evaporator outlet enthalpy can be realized, due to the water-steam properties of the flow medium only moderate temperature reductions at the evaporator outlet are to be expected, and thus the material load of the evaporator is kept within limits.
Vorteilhafterweise werden die Parameter der getroffenen Maßnahmen auf die geforderte Leistungsentbindung in der Dampfturbine abgestimmt und optimiert. Dazu werden Höhe und/oder Dauer der Reduzierung des Enthalpiesollwerts anhand der benötigten Leistungserhöhung bestimmt.Advantageously, the parameters of the measures taken are matched to the required power release in the steam turbine and optimized. For this purpose, the amount and / or duration of the reduction of the enthalpy target value are determined on the basis of the required power increase.
In alternativer oder zusätzlicher vorteilhafter Ausgestaltung wird zur kurzfristigen Leistungserhöhung der Dampfturbine im Strömungsweg entnommenes Strömungsmedium im Bereich einer Überhitzerheizfläche des Dampferzeugers eingespritzt. Derartige Einspritzungen können nämlich einen weiteren Beitrag zur kurzfristigen schnellen Leistungsänderung leisten. Durch diese zusätzliche Einspritzung im Bereich der Überhitzer kann nämlich der Dampfmassenstrom temporär erhöht werden. Hierbei wird ebenfalls die eingespeicherte thermische Energie für eine temporäre Leistungssteigerung der Dampfturbine genutzt. Es ergibt sich so der zusätzliche Vorteil, dass über eine geeignete Koordination aller zur Verfügung stehenden Maßnahmen ein besonders hoher Leistungsüberschuss schnell und möglichst lange auf konstantem Niveau gehalten werden kann. Durch Staffelung der einzelnen Maßnahmen ist auch die Materialbelastung positiv beeinflussbar.In an alternative or additional advantageous embodiment, flow medium removed in the flow path in the region of a superheater heating surface of the steam generator is injected for short-term increase in output of the steam turbine. Namely, such injections can make a further contribution to the short-term rapid power change. By this additional injection in the superheater namely the steam mass flow can be temporarily increased. Here, the stored thermal energy is also used for a temporary increase in power of the steam turbine. This results in the additional advantage that a suitable co-ordination of all measures available a particularly high power surplus can be maintained quickly and for as long as possible at a constant level. By staggering the individual measures, the material load can also be positively influenced.
In weiterer vorteilhafter Ausgestaltung wird die Wärmezufuhr in den fossil befeuerten Dampferzeuger erhöht, d. h. die Feuerungsleistung der Brenner erhöht. Somit kann durch das beschriebene Verfahren eine Temperaturverminderung am Verdampferaustritt günstig beeinflusst oder sogar völlig vermieden werden, da die Maßnahme wie ein Vorhaltsignal auf das Speisewasser wirkt. Somit ermöglicht das Verfahren nicht nur eine kurzfristige Leistungserhöhung, sondern ist auch zur schnelleren Einstellung einer längerfristigen Leistungserhöhung einsetzbar.In a further advantageous embodiment, the heat input is increased in the fossil-fired steam generator, that is, increases the firing capacity of the burner. Thus, a temperature reduction at the evaporator outlet can be favorably influenced or even completely avoided by the described method, since the measure acts as a Vorhaltsignal on the feed water. Thus, the method not only allows a short-term increase in performance, but is also used for faster adjustment of a longer-term performance increase.
In vorteilhafter Ausgestaltung umfasst ein Regelsystem für einen fossil befeuerten Dampferzeuger mit einer Anzahl von einen Strömungsweg bildenden, von einem Strömungsmedium durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen Mittel zum Ausführen des Verfahrens. In weiterer vorteilhafter Ausgestaltung umfasst ein fossil befeuerter Dampferzeuger für ein Dampfkraftwerk ein derartiges Regelsystem sowie ein Dampfkraftwerk einen derartigen fossil befeuerten Dampferzeuger.In an advantageous embodiment, a control system for a fossil-fired steam generator with a number of flow-forming, flowed through by a flow medium economizer, evaporator and superheater heating means comprises means for carrying out the method. In a further advantageous embodiment, a fossil-fired steam generator for a steam power plant comprises such a control system and a steam power plant such a fossil-fired steam generator.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die kurzfristige Erhöhung der Speisewassermenge eine besonders schnelle Leistungsentbindung in der dem Dampferzeuger nachgeschalteten Dampfturbine durch Nutzung der in allen Heizflächen gespeicherten Wärmeenergie ermöglicht wird. Zusätzlich ist diese Maßnahme ohne invasive bauliche Maßnahmen nur mit minimalen Anpassungen des Speisewasserregelkonzepts durchführbar, so dass trotz erheblich erhöhter Anlagenflexibilität keine zusätzlichen Kosten verursacht werden.The advantages achieved by the invention are, in particular, that by the short-term increase in the amount of feed water, a particularly fast power release in the steam turbine downstream steam turbine is made possible by using the heat energy stored in all heating surfaces. In addition, this measure can only be implemented without invasive structural measures with minimal adjustments to the feedwater control concept, so that no additional costs are incurred despite considerably increased system flexibility.
Darüber hinaus kann im Vergleich zur Nutzung der Einspritzungen als leistungserhöhende Maßnahme auch auf die eingespeicherte thermische Energie des Economisers, des Verdampfers und der ersten Überhitzerheizflächen, die strömungsmediumsseitig noch vor der ersten Einspritzung lokalisiert sind, als zusätzliche Energiequelle zurückgegriffen werden. Es steht somit für die zusätzlich angeforderte Leistung ein wesentlich größeres Reservoir an gespeicherter thermischer Energie zur Verfügung. Infolgedessen kann entweder ein größerer Leistungsanstieg (Peak) generiert werden, oder aber eine zusätzlich entbundene Leistung kann auf niedrigerem Niveau länger aufrechterhalten werden.In addition, compared to the use of the injections as a power-increasing measure, the stored thermal energy of the economizer, the evaporator and the first superheater heating surfaces, which are located on the flow medium side before the first injection, can be used as additional energy source. Thus, a much larger reservoir of stored thermal energy is available for the additionally requested power. As a result, either a greater increase in power (peak) can be generated, or an additionally released power can be maintained longer at a lower level.
Insbesondere im oberen Lastbereich, bei dem beispielsweise eine Androsselung der Turbinenventile auf ein bestimmtes Maß beschränkt sein muss, um den maximalen Auslegungsdruck im Hochdruckteil nicht zu überschreiten, kann im Bedarfsfall durch das beschriebene Verfahren ein hoher Leistungsüberschuss gewährleistet werden. Und gerade im oberen Lastbereich kommen die Vorteile dieser Maßnahme zu Geltung, da sich hier die Temperaturänderungen am Verdampferaustritt auf Grund der Wasser-Dampf-Eigenschaften des Strömungsmediums in tolerablen Grenzen bewegen.In particular, in the upper load range, in which, for example, a throttling of the turbine valves must be limited to a certain extent in order not to exceed the maximum design pressure in the high pressure part, if necessary By the method described a high power surplus can be ensured. And especially in the upper load range, the advantages of this measure to advantage, since here move the temperature changes at the evaporator outlet due to the water-steam properties of the flow medium within tolerable limits.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
- FIG 1
- ein Diagramm mit Simulationsergebnissen zur Verbesserung der Sofortreserve eines fossil befeuerten Durchlaufdampferzeugers durch Erhöhung der Speisewassermenge zusammen mit Einspritzung von Hochdruck-Dampf, Zwischenüberhitzungs-Dampf und jeweils in beiden Drucksystemen in einem oberen Lastbereich, und
- FIG 2
- ein Diagramm mit Simulationsergebnissen zur Verbesserung der Sofortreserve eines fossil befeuerten Durchlaufdampferzeugers durch Erhöhung der Speisewassermenge zusammen mit Einspritzung von Hochdruck-Dampf, Zwischenüberhitzungs-Dampf und jeweils in beiden Drucksystemen in einem unteren Lastbereich.
- FIG. 1
- a graph of simulation results to improve the immediate reserve of a fossil-fired continuous steam generator by increasing the amount of feedwater together with injection of high-pressure steam, reheat steam and in each case in an upper load range in both pressure systems, and
- FIG. 2
- a graph with simulation results to improve the immediate reserve of a fossil-fired continuous steam generator by increasing the amount of feed water together with injection of high-pressure steam, reheat steam and in each case in a lower load range in both pressure systems.
Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.Identical parts are provided with the same reference numerals in all figures.
In
Lediglich die Modifikation der Zwischenüberhitzung, dargestellt in Kurvenzug 12 zeigt einen vergleichsweise hohen Leistungsanstieg ca. 60 Sekunden nach Änderung des Sollwerts, der danach rasch wieder abfällt, um in das Maximum des flachen Verlaufs überzugehen. Dieser Leistungsanstieg zeigt sich entsprechend auch bei einer Modifikation beider Druckstufen nach Kurvenzug 8 und 14. In allen Fällen zeigt sich aber, dass die Erhöhung der Leistung bei einer Erhöhung der Speisewassermenge die größte Leistungsausbeute bei höherer Dauer ermöglicht, wobei dieser Effekt insbesondere im hohen Lastbereich ausgeprägt ist.Only the modification of the reheat, shown in
Claims (6)
- Method for regulating a brief increase in power of a steam turbine that has an upstream fossil-fired once-through steam generator featuring a number of economiser, evaporator and superheater heating surfaces which form a flow path and through which a flow medium flows, wherein the flow of the flow medium through the fossil-fired once-through steam generator is increased in order to achieve the brief increase in power of the steam turbine, wherein a desired enthalpy value at the outlet of an evaporator heating surface is used as a control variable when determining the desired value for the flow of the flow medium through the fossil-fired once-through steam generator, and the desired enthalpy value is reduced in order to achieve the brief increase in power of the steam turbine.
- Method according to claim 1, wherein the desired enthalpy value is reduced to a predetermined minimum enthalpy value.
- Method according to claim 2, wherein the minimum enthalpy value is dimensioned in such a way that complete evaporation of the flow medium in the evaporator heating surfaces is achieved under all load conditions of the fossil-fired once-through steam generator.
- Method according to one of claims 1 to 3, wherein the magnitude and/or duration of the reduction in the desired enthalpy value is determined with reference to the required increase in power.
- Method according to one of the preceding claims, wherein in order to achieve the brief increase in power of the steam turbine, flow medium taken from the flow path is injected in the region of a superheater heating surface of the fossil-fired once-through steam generator.
- Method according to one of the preceding claims, wherein the heat supply to the fossil-fired once-through steam generator is increased.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL12705819T PL2655811T3 (en) | 2011-02-25 | 2012-02-10 | Method for regulating a brief increase in power of a steam turbine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011004712 | 2011-02-25 | ||
PCT/EP2012/052312 WO2012113662A2 (en) | 2011-02-25 | 2012-02-10 | Method for regulating a brief increase in power of a steam turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2655811A2 EP2655811A2 (en) | 2013-10-30 |
EP2655811B1 true EP2655811B1 (en) | 2015-10-14 |
Family
ID=45757393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12705819.6A Active EP2655811B1 (en) | 2011-02-25 | 2012-02-10 | Method for regulating a brief increase in power of a steam turbine |
Country Status (8)
Country | Link |
---|---|
US (1) | US9080467B2 (en) |
EP (1) | EP2655811B1 (en) |
JP (1) | JP5815753B2 (en) |
KR (1) | KR101818090B1 (en) |
CN (1) | CN103492678B (en) |
DK (1) | DK2655811T3 (en) |
PL (1) | PL2655811T3 (en) |
WO (1) | WO2012113662A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016218763A1 (en) | 2016-09-28 | 2018-03-29 | Siemens Aktiengesellschaft | Method for short-term power adaptation of a steam turbine of a gas and steam power plant for primary control |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4933002A (en) | 1972-08-04 | 1974-03-26 | ||
FR2401380A1 (en) * | 1977-08-23 | 1979-03-23 | Sulzer Ag | Forced circulation steam generator - has injector supplied from tapping between economiser and evaporator and temperature controlled regulator controlling flow to evaporator |
EP0308728B1 (en) | 1987-09-21 | 1991-06-05 | Siemens Aktiengesellschaft | Method of operating a once-through steam generator |
DE4117796A1 (en) * | 1991-05-30 | 1993-01-21 | Ver Energiewerke Ag | Superheated steam temp. regulation - uses post-injection enthalpy to allow controlled spraying of water into superheater even on saturation curve and in wet steam region |
JP2563099B2 (en) | 1992-05-04 | 1996-12-11 | シーメンス アクチエンゲゼルシヤフト | Forced once-through steam generator |
DE19749452C2 (en) | 1997-11-10 | 2001-03-15 | Siemens Ag | Steam power plant |
DE19750125A1 (en) | 1997-11-13 | 1999-03-11 | Siemens Ag | Method of primary regulation of steam electric power plant block |
US6230480B1 (en) * | 1998-08-31 | 2001-05-15 | Rollins, Iii William Scott | High power density combined cycle power plant |
US6766646B1 (en) | 2003-11-19 | 2004-07-27 | General Electric Company | Rapid power producing system and method for steam turbine |
US7690201B2 (en) * | 2005-11-07 | 2010-04-06 | Veritask Energy Systems, Inc. | Method of efficiency and emissions performance improvement for the simple steam cycle |
EP2194320A1 (en) * | 2008-06-12 | 2010-06-09 | Siemens Aktiengesellschaft | Method for operating a once-through steam generator and once-through steam generator |
DE102010041964A1 (en) | 2010-10-05 | 2012-04-05 | Siemens Aktiengesellschaft | Method for regulating a short-term increase in output of a steam turbine |
US9091182B2 (en) * | 2010-12-20 | 2015-07-28 | Invensys Systems, Inc. | Feedwater heater control system for improved rankine cycle power plant efficiency |
US9316122B2 (en) * | 2010-12-20 | 2016-04-19 | Invensys Systems, Inc. | Feedwater heater control system for improved Rankine cycle power plant efficiency |
-
2012
- 2012-02-10 CN CN201280019457.6A patent/CN103492678B/en active Active
- 2012-02-10 US US14/001,281 patent/US9080467B2/en active Active
- 2012-02-10 WO PCT/EP2012/052312 patent/WO2012113662A2/en active Application Filing
- 2012-02-10 PL PL12705819T patent/PL2655811T3/en unknown
- 2012-02-10 DK DK12705819.6T patent/DK2655811T3/en active
- 2012-02-10 KR KR1020137022263A patent/KR101818090B1/en active IP Right Grant
- 2012-02-10 JP JP2013554845A patent/JP5815753B2/en not_active Expired - Fee Related
- 2012-02-10 EP EP12705819.6A patent/EP2655811B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
PL2655811T3 (en) | 2016-03-31 |
AU2012219798A1 (en) | 2013-08-29 |
DK2655811T3 (en) | 2016-01-11 |
CN103492678A (en) | 2014-01-01 |
CN103492678B (en) | 2016-03-09 |
JP5815753B2 (en) | 2015-11-17 |
KR101818090B1 (en) | 2018-01-12 |
WO2012113662A3 (en) | 2013-03-21 |
EP2655811A2 (en) | 2013-10-30 |
US20130327043A1 (en) | 2013-12-12 |
JP2014508272A (en) | 2014-04-03 |
KR20140007857A (en) | 2014-01-20 |
US9080467B2 (en) | 2015-07-14 |
WO2012113662A2 (en) | 2012-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2603672B1 (en) | Waste heat steam generator | |
EP2606206B1 (en) | Method for controlling a short-term increase in power of a steam turbine | |
DE102009036064B4 (en) | in order to operate a forced-circulation steam generator operating at a steam temperature of more than 650 ° C, as well as forced circulation steam generators | |
EP2614303B1 (en) | Method for operating a combined gas and steam turbine system, gas and steam turbine system for carrying out said method, and corresponding control device | |
EP3025031B1 (en) | Method of operating a steam turbine plant | |
DE102008029941B4 (en) | Steam power plant and method for controlling the power of a steam power plant | |
DE10001995A1 (en) | Method for setting or regulating the steam temperature of the live steam and / or reheater steamer in a composite power plant and composite power plant for carrying out the method | |
EP3269948B1 (en) | Method for the adaptation of the performance of a steam turbine power plant installation and steam turbine power plant installation | |
EP2616643B1 (en) | Method for regulating a short-term power increase of a steam tubine | |
EP2712393A2 (en) | Additional controlled extraction for a preheater for improving the plant dynamics and the frequency regulation in a steam power plant | |
EP3475539A1 (en) | Method for the short-term adjustment of the output of a combined-cycle power plant steam turbine, for primary frequency control | |
EP2655811B1 (en) | Method for regulating a brief increase in power of a steam turbine | |
WO2015039831A2 (en) | Combined cycle gas turbine plant having a waste heat steam generator | |
WO2015028366A2 (en) | Operating method for an externally heated once-through steam generator | |
DE102010043683A1 (en) | Fossil fired steam generator | |
EP2676072B1 (en) | Method for operating a once-through steam generator | |
EP2625390B1 (en) | Fossil-fired steam generator | |
WO2016188671A1 (en) | Water/steam circuit of a gas and steam turbine system | |
EP2900945B1 (en) | Method for flexibly operating a nuclear power plant | |
DE102016212634A1 (en) | Method for secondary frequency control of a fossil-fired power plant | |
WO2014146846A2 (en) | Method for operating a solar thermal power plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130725 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150515 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 755260 Country of ref document: AT Kind code of ref document: T Effective date: 20151015 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012004909 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20160107 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20151014 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160214 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160114 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160115 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160215 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012004909 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
26N | No opposition filed |
Effective date: 20160715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160210 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20161028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 755260 Country of ref document: AT Kind code of ref document: T Effective date: 20170210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170210 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151014 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502012004909 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220825 AND 20220831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20230220 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240228 Year of fee payment: 13 Ref country code: GB Payment date: 20240220 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240117 Year of fee payment: 13 Ref country code: IT Payment date: 20240222 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20240229 |