EP2676072B1 - Method for operating a once-through steam generator - Google Patents

Method for operating a once-through steam generator Download PDF

Info

Publication number
EP2676072B1
EP2676072B1 EP12709060.3A EP12709060A EP2676072B1 EP 2676072 B1 EP2676072 B1 EP 2676072B1 EP 12709060 A EP12709060 A EP 12709060A EP 2676072 B1 EP2676072 B1 EP 2676072B1
Authority
EP
European Patent Office
Prior art keywords
mass flow
load
evaporator
circulating
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12709060.3A
Other languages
German (de)
French (fr)
Other versions
EP2676072A1 (en
Inventor
Joachim Brodesser
Martin Effert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2676072A1 publication Critical patent/EP2676072A1/en
Application granted granted Critical
Publication of EP2676072B1 publication Critical patent/EP2676072B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/12Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating with superimposed recirculation during starting and low-load periods, e.g. composite boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • F22B35/101Control systems for steam boilers for steam boilers of forced-flow type of once-through type operating with superimposed recirculation during starting or low load periods, e.g. composite boilers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0374For regulating boiler feed water level

Definitions

  • the invention relates to a method for operating a continuous steam generator with an evaporator, in which a Lucasmassenstrom a flow medium with the aid of a feed pump to the evaporator and there is at least partially evaporated, wherein not evaporated flow medium deposited in a separator downstream of the evaporator and Umisselzmassenstrom the deposited flow medium is guided back into the evaporator with the aid of a circulation pump, so that the mass flow of the flow medium flowing through the evaporator, called the evaporator mass flow, is composed of the feed mass flow and the circulation mass flow.
  • a method is for example in document DE 32 43 578 A1 oven beard.
  • a forced flow steam generator In a forced flow steam generator, the passage of the usually supplied in the form of feed water flow medium is enforced by the usually provided preheater, the evaporator and the superheater by a correspondingly powerful feed water pump, short feed pump. Thus, the heating of the flow medium to the saturated steam temperature, the evaporation and subsequent overheating takes place continuously in one pass, so that no drum is needed.
  • a forced once-through steam generator can also be operated in the supercritical range at pressures of 230 bar and more. With forced circulation boilers very large steam outputs can be generated in a relatively small space. Since the amount of flow medium in the system is relatively low, the system has a low inertia and thus allows a fast response to load changes.
  • Fired forced flow evaporators with spiral around a combustion chamber wound evaporator tubes are usually designed for a mass flow density of the guided through the evaporator tubes flow medium of about 2000 kg / (sm 2 ) at 100% load (full load).
  • the mass flow density in a vaporizer with smooth tubes at partial load should not fall below a value of about 800 kg / (sm 2 ) in order to avoid cooling problems on the tube walls by stratification of the flow.
  • this value corresponds to a load value of 40% of the full load. This is then also the load case for which the evaporator minimum mass flow is defined. In start-up and low-load operation, it is ensured by the feedwater control that the evaporator minimum mass flow is always supplied to the evaporator.
  • Non-evaporated water which is obtained especially in start-up and low-load operation, is usually separated from the vapor in a downstream of the evaporator water separator (short: separator) and to a water collection vessel (the so-called collection bottle or short bottle), while the steam usually a superheater is supplied.
  • a circulating pump is used to recirculate the separated water and before the so-called economizer called feedwater in the feedwater mass flow (short: Lucasmassenstrom) integrate, so ultimately return it to the evaporator inlet.
  • the evaporator mass flow is composed of the feed mass flow and the circulating mass flow, also referred to as recirculation mass flow.
  • the invention is therefore based on the object of specifying a method for operating a continuous steam generator of the type mentioned above, which avoids the disadvantages mentioned, is thus designed with low purchase and operating costs for effective and safe part-load operation with sufficient cooling of the evaporator tubes. Furthermore, a continuous steam generator particularly suitable for carrying out the method should be specified.
  • control characteristic also applies analogously to the case of sinking load. This means, for example, that in the low load interval the feed mass flow is reduced with decreasing load, etc.
  • the invention is based on the consideration that, although it would be possible in principle to dispense with the Rezirkulationsnikklauf with the circulation pump, thus easily divert the water deposited in the separator when starting and in low load operation and discard (so-called drain operation).
  • this would be disadvantageous from a thermodynamic and economic point of view and, moreover, would undesirably increase the thermal load on the superheater heating surfaces downstream of the evaporator because of the lower fluid temperatures at the inlet of the economiser and evaporator and the resulting lower production of cooling steam acting on the heating surfaces Start-up operation.
  • the present invention is detached from the design guidelines for the recirculation mass flow, which have hitherto been valid and considered to be operationally reliable. It has been surprisingly found that the design mass flow for the circulation pump can be significantly reduced, at least in a low load interval compared to the previous level of knowledge, without having to accept any disadvantages.
  • the evaporator minimum mass flow which in this case is effected almost exclusively by the circulating-mass flow, can be halved in comparison to the previously established value.
  • the assurance of sufficient cooling of the evaporator tubes under these conditions - even if they are designed as smooth tubes - could be proven by appropriate thermo-hydraulic calculations and simulations.
  • the previously customary values for the evaporator minimum mass flow are then predetermined again and achieved by appropriate control of the feed mass flow and the circulation mass flow.
  • the transition between the two control scenarios is preferably continuous, in particular linear.
  • the feed mass flow is increased linearly with increasing load in the low load interval.
  • the circulation mass flow rate is kept constant, this means that the total evaporator mass flow - as already mentioned, the sum of the feed mass flow and the circulation mass flow - increases linearly with the load.
  • the feed mass flow is increased linearly with increasing load even in the middle load interval, while the Umisselzmassenstrom is preferably reduced linearly with increasing load.
  • the Umisselzmassenstrom is thereby reduced to the same extent as the feed mass flow is increased. This means that the sum of the two mass flows, namely the evaporator mass flow, remains constant in the middle load interval.
  • the low load interval begins at zero load and preferably ends at about 20% of the designed full load.
  • the low load interval is expediently followed immediately by the middle load interval, which preferably ends at approximately 40% of the design full load.
  • the circulation mass flow in the low load interval is set to approximately 20% of the full load value of the evaporator mass flow.
  • a value of Ummélzmassenstrom Why of about 400 kg / (sm 2 ) is particularly advantageous, corresponding to an evaporator mass flow density at full load of about 2000 kg / (sm 2 ).
  • the circulation mass flow and the feed mass flow are adjusted in the middle load interval such that the evaporator mass flow always reaches at least 40% of the full load value in this interval.
  • the evaporator mass flow in this load interval by opposite change is kept constant by supply current and circulating current (see above).
  • a continuous steam generator with an evaporator is necessary, upstream of a feed pump and downstream of a separator for non-evaporated flow medium, the separator being connected to the water-side steam generator inlet via a return line into which a circulation pump is connected. and wherein an electronic control unit for the feed pump and the circulation pump is provided, which performs the method steps of the method described above.
  • the return line expediently opens downstream of the feed pump and upstream of the feedwater preheater in the feed line.
  • the separator is thus (indirectly) connected to the evaporator inlet via the feedwater preheater.
  • control or regulation unit for the purpose mentioned advantageously a corresponding control or regulation program is implemented in terms of hardware and / or software.
  • the control or regulation unit acts on the feed pump and the circulation pump and controls their delivery rate, ie the respective flow rate of the flow medium (feed water and separated water from the evaporator), by means of suitable manipulators, in accordance with prior operator input (for example startup, shutdown, partial load operation, etc.).
  • suitable manipulators for example startup, shutdown, partial load operation, etc.
  • the control or regulation unit is expediently supplied with the actual value of relevant operating variables, so that a corresponding readjustment can take place in the event of a deviation from the desired setpoint.
  • the continuous steam generator is preferably fired directly by a number of burners.
  • He preferably has one Combustion chamber or a throttle cable
  • the surrounding wall is formed of a plurality of gas-tight welded together evaporator tubes, wherein at least a portion of the enclosure wall forms the actual evaporator (next to possibly other areas that form the feedwater or the superheater).
  • the throttle cable is preferably designed as a vertical gas train and has at least in the evaporator section a spiral tube, that is spirally or helically within the enclosure wall about the longitudinal axis of the gas draft convoluted evaporator tubes on.
  • the evaporator tubes are preferably smooth tubes; but there are also conceivable provided with a êtberippung pipes.
  • the minimum mass flow density at the highest load in recirculation mode can be reduced from the typical smooth tube value of 800 kg / (sm 2 ) to about 500 kg / (sm 2 ). Therefore, an evaporator with internally finned tubes can be run in continuous operation at loads above 25% of full load when the full load mass flow density of the evaporator is 2000 kg / (sm 2 ). Even with the use of innenberippten pipes in a spiral evaporator, the circulation pump according to the invention can be dimensioned particularly compact. In a spiral evaporator with internally tipped tubes, the transition from recirculation to continuous operation is about 25% load rather than 40% load.
  • the previous and following descriptions, which are numerically designed for a smooth-tube evaporator can be transferred to an evaporator with internally-tipped tubes, taking into account this constraint.
  • the advantages achieved by the invention are, in particular, that an operation of a forced once-through steam generator with return of the deposited on or after the evaporator liquid flow medium (water) in the feedwater is made possible by the deliberate departure from previously relevant design principles (so-called Forced-circulation mixing system), in which despite a comparatively low selected Umicalzmassenstrom in the vicinity of the zero-load range, a high operational safety and sufficient pipe cooling is guaranteed.
  • the circulation pump can be dimensioned particularly compact in this case and be correspondingly inexpensive to purchase.
  • the in FIG. 1 illustrated flow steam generator 2 comprises an evaporator 4 for the evaporation of a flow medium M, which is preceded by a feedwater heater 6 also referred to as economizer flow side.
  • the evaporator 4 comprises a plurality of fluidly connected in parallel, gas-tight welded together and designed as smooth tubes steam generator tubes which form a region of a peripheral wall of a combustion chamber in the manner of a spiral tube, which is heated via a number of burners (not shown in detail here).
  • the evaporator 4 is followed by a superheater 8 with a number of Matterhitzersammlung inhabit flow medium side.
  • the vapor D leaving the evaporator 4 via the evaporator outlet 16 is finally superheated in the superheater 8 and then supplied to its intended use, for example in a steam turbine.
  • the flow medium M is not completely evaporated in the evaporator 4, but it remains at the evaporator outlet 16, a proportion of non-evaporated, liquid flow medium M, namely water W.
  • This water content is in a flow medium side between the evaporator 4 and the superheater 8 connected separator 18 from the vapor portion, which is forwarded to the superheater 8, separated and separated.
  • the separated water W is collected in a collecting vessel 20 connected to the separator 18, and from there, depending on the operating state, is guided to varying degrees via a return line 22 to the inlet of the feedwater pre-heater 6.
  • a circulation pump 24 is connected in the return line 22, and the return line 22 is connected to the feed line 10 downstream of the feed pump 12 and upstream of the feedwater pre-heater 6. Excess water W is discharged from the collecting vessel 20 via a discharge line 26.
  • the mass flow of the evaporator 4 flowing through the flow medium M namely the evaporator mass flow VM, is thus additively from the mass flow of supplied feedwater S, namely the feed mass flow SM, and the mass flow of previously separated water W, namely recirculated by means of the circulation pump 24 the Ummélzmassenstrom UM, together.
  • mass flow colloquially also the term flow is used.
  • a on the feed pump 12 and the circulation pump 24 and optionally not shown here adjusting or control valves in the line system of the flow medium M acting electronic control or regulating unit 28 is used for operating state-dependent control or regulation of these mass flows, especially during start-up or low load operation.
  • a number of sensors connected to the control or regulation unit 28 are furthermore provided (not shown here).
  • FIG. 2 shows the course of relevant characteristics according to a conventional control scheme.
  • Plotted as a function of the load L here are Umisselzmassenstrom UM, the feed mass flow SM and the evaporator mass flow VM.
  • the load values on the abscissa are each expressed as a percentage value of the maximum load, and similarly, the flow rate and mass flow values are indicated on the ordinate as the percentage values of the designed maximum evaporator mass flow VM at full load.
  • the Umisselzmassenstrom UM increases steadily and in particular linearly to the value 0% (corresponding to 40% load) with increasing load from the output value of 40% (corresponding to 0% load), while the value of the feed mass flow SM in the corresponding load interval linearly from 0 % rises to 40%.
  • the circulation mass flow UM remains at the value 0%, while the feed mass flow SM and thus the evaporator mass flow VM increase 100% up to the full load value (not shown in the diagram).
  • the circulation pump 24 must therefore be designed for a comparatively high mass flow value of 40% of the evaporator mass flow VM at full load.
  • FIG. 3 a shows FIG. 3 a with respect to the requirements of the circulation pump 24 improved control scheme in a too FIG. 2 analogue diagrammatic representation.
  • control variant Similar to the through FIG. 2 is represented control variant the feed mass flow SM increased in the load interval between 0% and 40% load linearly from the value 0% to the value 40%.
  • the Umisselzmassenstrom UM is now in a first load interval between 0% and 20% load, here referred to as low load interval I, on a opposite FIG. 2 reduced value of 20% kept constant. Only in the subsequent middle load interval II between 20% load and 40% load is the circulation mass flow reduced linearly to the value 0%.
  • the evaporator flow in the low load interval I increases from the value of 20% linearly to the value of 40% and is maintained at 40% in the middle load interval II.
  • the evaporator mass flow VM increases as in the previously discussed case of the feed mass flow SM and thus the evaporator mass flow VM to full load value 100%.

Description

Verfahren zum Betreiben eines Durchlaufdampferzeugers. Die Erfindung betrifft ein Verfahren zum Betreiben eines Durchlaufdampferzeugers mit einem Verdampfer, bei dem ein Speisemassenstrom eines Strömungsmediums mit Hilfe einer Speisepumpe dem Verdampfer zugeführt und dort zumindest teilweise verdampft wird, wobei nicht verdampftes Strömungsmedium in einem dem Verdampfer nachgeschalteten Abscheider abgeschieden und ein Umwälzmassenstrom des abgeschiedenen Strömungsmediums mit Hilfe einer Umwälzpumpe in den Verdampfer zurück geführt wird, so dass sich der als Verdampfermassenstrom bezeichnete Massenstrom des den Verdampfer durchströmenden Strömungsmediums additiv aus dem Speisemassenstrom und dem Umwälzmassenstrom zusammensetzt. Ein solches Verfahren ist zum Beispiel in Dokument DE 32 43 578 A1 ofenbart. Bei einem Zwangdurchlaufdampferzeuger wird der Durchlauf des üblicherweise in Form von Speisewasser zugespeisten Strömungsmediums durch den in der Regel vorgesehenen Vorwärmer, den Verdampfer und den Überhitzer durch eine entsprechend leistungsstarke Speisewasserpumpe, kurz Speisepumpe erzwungen. Somit erfolgt die Erwärmung des Strömungsmediums bis zur Sattdampftemperatur, die Verdampfung und anschließende Überhitzung kontinuierlich in einem Durchlauf, so dass keine Trommel benötigt wird. Im Gegensatz zu einem Dampferzeuger, der für einen Naturumlaufbetrieb ausgelegt ist, kann ein Zwangdurchlaufdampferzeuger auch im überkritischen Bereich bei Drücken von 230 bar und mehr betrieben werden. Mit Zwangdurchlaufkesseln können sehr große Dampfleistungen auf relativ kleinem Raum erzeugt werden. Da die Menge an Strömungsmedium im System relativ gering ist, hat das System eine geringe Trägheit und erlaubt so eine schnelle Reaktion auf Laständerungen.Method for operating a continuous steam generator. The invention relates to a method for operating a continuous steam generator with an evaporator, in which a Speisemassenstrom a flow medium with the aid of a feed pump to the evaporator and there is at least partially evaporated, wherein not evaporated flow medium deposited in a separator downstream of the evaporator and Umwälzmassenstrom the deposited flow medium is guided back into the evaporator with the aid of a circulation pump, so that the mass flow of the flow medium flowing through the evaporator, called the evaporator mass flow, is composed of the feed mass flow and the circulation mass flow. Such a method is for example in document DE 32 43 578 A1 oven beard. In a forced flow steam generator, the passage of the usually supplied in the form of feed water flow medium is enforced by the usually provided preheater, the evaporator and the superheater by a correspondingly powerful feed water pump, short feed pump. Thus, the heating of the flow medium to the saturated steam temperature, the evaporation and subsequent overheating takes place continuously in one pass, so that no drum is needed. In contrast to a steam generator, which is designed for a natural circulation operation, a forced once-through steam generator can also be operated in the supercritical range at pressures of 230 bar and more. With forced circulation boilers very large steam outputs can be generated in a relatively small space. Since the amount of flow medium in the system is relatively low, the system has a low inertia and thus allows a fast response to load changes.

Befeuerte Zwangdurchlaufverdampfer mit spiralförmig um eine Brennkammer gewundenen Verdampferrohren (so genannte Spiralberohrung) werden gewöhnlich für eine Massenstromdichte des durch die Verdampferrohre geführten Strömungsmediums von ca. 2000 kg/(sm2) bei 100 % Last (Volllast) ausgelegt. Entsprechend den bislang üblichen Auslegungsrichtlinien soll die Massenstromdichte in einem Verdampfer mit Glattrohren bei Teillast einen Wert von etwa 800 kg/(sm2) nicht unterschreiten, um Kühlungsprobleme an den Rohrwänden durch eine Schichtung der Strömung zu vermeiden. Dieser Wert entspricht bei der oben genannten Volllastmassenstromdichte von 2000 kg/(sm2) einem Lastwert von 40 % der Volllast. Dies ist dann auch der Lastfall, für den der Verdampfermindestmassenstrom definiert wird. Im Anfahr- und Schwachlastbetrieb wird durch die Speisewasserregelung sichergestellt, dass dem Verdampfer immer dieser Verdampfermindestmassenstrom zugeführt wird.Fired forced flow evaporators with spiral around a combustion chamber wound evaporator tubes (so-called spiral tube) are usually designed for a mass flow density of the guided through the evaporator tubes flow medium of about 2000 kg / (sm 2 ) at 100% load (full load). According to the previously customary design guidelines, the mass flow density in a vaporizer with smooth tubes at partial load should not fall below a value of about 800 kg / (sm 2 ) in order to avoid cooling problems on the tube walls by stratification of the flow. At the aforementioned full load mass flow density of 2000 kg / (sm 2 ), this value corresponds to a load value of 40% of the full load. This is then also the load case for which the evaporator minimum mass flow is defined. In start-up and low-load operation, it is ensured by the feedwater control that the evaporator minimum mass flow is always supplied to the evaporator.

Nicht verdampftes Wasser, welches gerade im Anfahr- und Schwachlastbetrieb anfällt, wird üblicherweise in einem dem Verdampfer nachgeschalteten Wasserabscheider (kurz: Abscheider) vom Dampf getrennt und zu einem Wassersammelgefäß (der so genannten Sammelflasche oder kurz Flasche) geführt, während der Dampf in der Regel einem Überhitzer zugeführt wird. Vielfach wird eine Umwälzpumpe verwendet, um das abgeschiedene Wasser zu rezirkulieren und vor dem auch als Economiser bezeichneten Speisewasservorwärmer in den Speisewassermassenstrom (kurz: Speisemassenstrom) einzubinden, es also letztlich wieder zum Verdampfereinlass zurückzuführen. Der Verdampfermassenstrom setzt sich in diesem Fall additiv aus dem Speisemassenstrom und dem auch als Rezirkulationsmassenstrom bezeichneten Umwälzmassenstrom zusammen.Non-evaporated water, which is obtained especially in start-up and low-load operation, is usually separated from the vapor in a downstream of the evaporator water separator (short: separator) and to a water collection vessel (the so-called collection bottle or short bottle), while the steam usually a superheater is supplied. In many cases, a circulating pump is used to recirculate the separated water and before the so-called economizer called feedwater in the feedwater mass flow (short: Speisemassenstrom) integrate, so ultimately return it to the evaporator inlet. In this case, the evaporator mass flow is composed of the feed mass flow and the circulating mass flow, also referred to as recirculation mass flow.

Bei einer bislang üblichen Betriebsweise wird beim Anfahren der Speisemassenstrom stetig erhöht, während der Umwälzmassenstrom in gleichem Maße herunter geregelt wird. Folglich muss in dem oben genannten Beispiel die Umwälzpumpe für eine vergleichsweise hohe Umwälzmassenstromdichte von ca.In a hitherto usual mode of operation, the feed mass flow is steadily increased during startup, while the circulation mass flow is regulated down to the same extent. Consequently, in the above example, the circulation pump for a comparatively high circulation mass flow density of approx.

800 kg/(ms2) entsprechend 40 % des Volllastwertes der Verdampfermassenstromdichte ausgelegt sein, denn im Nulllastbetrieb oder knapp oberhalb davon wird beinahe der gesamte Verdampfermassenstrom durch den Umwälzmassenstrom gebildet. Dieser vergleichsweise hohe Auslegungsmassenstrom der Umwälzpumpe führt dazu, dass die Umwälzpumpe vergleichsweise leistungsstark und groß dimensioniert sein muss und dementsprechend mit hohen Anschaffungskosten verbunden ist.800 kg / (ms 2 ) to be designed according to 40% of the full load value of the evaporator mass density, because in zero load operation or just above it almost the entire evaporator mass flow is formed by the Umwälzmassenstrom. This comparatively high design mass flow of the circulation pump causes the circulating pump must be comparatively powerful and large and is therefore associated with high acquisition costs.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Betreiben eines Durchlaufdampferzeugers der oben genannten Art anzugeben, das die genannten Nachteile vermeidet, mithin bei gering gehaltenen Anschaffungs- und Betriebskosten für einen effektiven und sicheren Teillastbetrieb mit ausreichender Kühlung der Verdampferrohre ausgelegt ist. Des Weiteren soll ein zur Durchführung des Verfahrens besonders geeigneter Durchlaufdampferzeuger angegeben werden.The invention is therefore based on the object of specifying a method for operating a continuous steam generator of the type mentioned above, which avoids the disadvantages mentioned, is thus designed with low purchase and operating costs for effective and safe part-load operation with sufficient cooling of the evaporator tubes. Furthermore, a continuous steam generator particularly suitable for carrying out the method should be specified.

In Bezug auf das Verfahren wird die genannte Aufgabe erfindungsgemäß durch die technischen Merkmale des unabhängigen Anspruchs 1 gelöst. Der Betrieb im Hochlastintervall wird als Durchlaufbetrieb bezeichnet, weil im Abscheider kein Wasser mehr anfällt.With regard to the method, the stated object is achieved according to the invention by the technical features of independent claim 1. The operation in the high load interval is referred to as continuous operation, because in the separator no more water.

Die Bezugnahme auf den Fall steigender Last erfolgt hier lediglich zum Zweck einer eindeutigen Definition; die Regelungscharakteristik gilt analog auch für den Fall sinkender Last. Dies bedeutet beispielsweise, dass im Niedriglastintervall der Speisemassenstrom mit sinkender Last verringert wird etc.The reference to the case of increasing load takes place here only for the purpose of a clear definition; the control characteristic also applies analogously to the case of sinking load. This means, for example, that in the low load interval the feed mass flow is reduced with decreasing load, etc.

Die Erfindung geht von der Überlegung aus, dass es zwar prinzipiell möglich wäre, auf den Rezirkulationskreisklauf mit der Umwälzpumpe zu verzichten, mithin das im Abscheider abgeschiedene Wasser beim Anfahren und im Schwachlastbetrieb einfach abzuleiten und zu verwerfen (sogenannter Ablaufbetrieb). Dies wäre jedoch unter thermodynamischen und wirtschaftlichen Gesichtspunkten nachteilig und würde darüber hinaus - wegen der geringeren Fluidtemperaturen am Eintritt von Economiser und Verdampfer und der somit geringeren Produktion von kühlend auf die Heizflächen wirkendem Dampf - zu einer unerwünschten Erhöhung der thermischen Belastung der dem Verdampfer nachgeschalteten Überhitzerheizflächen beim Anfahrbetrieb führen.The invention is based on the consideration that, although it would be possible in principle to dispense with the Rezirkulationskreisklauf with the circulation pump, thus easily divert the water deposited in the separator when starting and in low load operation and discard (so-called drain operation). However, this would be disadvantageous from a thermodynamic and economic point of view and, moreover, would undesirably increase the thermal load on the superheater heating surfaces downstream of the evaporator because of the lower fluid temperatures at the inlet of the economiser and evaporator and the resulting lower production of cooling steam acting on the heating surfaces Start-up operation.

Die vorliegende Erfindung löst sich von den bislang gültigen und als betriebsbewährt angesehenen Auslegungsrichtlinien für den Umwälzmassenstrom. Es wurde nämlich überraschenderweise gefunden, dass der Auslegungsmassenstrom für die Umwälzpumpe zumindest in einem Niedriglastintervall gegenüber dem bisherigen Kenntnisstand deutlich verringert werden kann, ohne irgendwelche Nachteile hinnehmen zu müssen. Insbesondere kann in der Nähe des Nulllastzustandes der - in diesem Fall fast ausschließlich durch den Umwälzmassenstrom bewerkstelligte - Verdampfermindestmassenstrom gegenüber dem bislang festgesetzten Wert halbiert werden. Dabei konnte die Sicherstellung einer ausreichenden Kühlung der Verdampferrohre unter diesen Bedingungen - auch dann, wenn sie als Glattrohre ausgeführt sind - durch entsprechende thermohydraulische Berechnungen und Simulationen nachgewiesen werden. Zu höheren Lastbereichen hin werden dann wieder die bislang gebräuchlichen Werte für den Verdampfermindestmassenstrom vorgegeben und durch entsprechende Regelung des Speisemassenstroms und des Umwälzmassenstroms erreicht. Der Übergang zwischen den beiden Regelszenarien erfolgt vorzugsweise stetig, insbesondere linear.The present invention is detached from the design guidelines for the recirculation mass flow, which have hitherto been valid and considered to be operationally reliable. It has been surprisingly found that the design mass flow for the circulation pump can be significantly reduced, at least in a low load interval compared to the previous level of knowledge, without having to accept any disadvantages. In particular, in the vicinity of the zero-load state, the evaporator minimum mass flow, which in this case is effected almost exclusively by the circulating-mass flow, can be halved in comparison to the previously established value. The assurance of sufficient cooling of the evaporator tubes under these conditions - even if they are designed as smooth tubes - could be proven by appropriate thermo-hydraulic calculations and simulations. For higher load ranges, the previously customary values for the evaporator minimum mass flow are then predetermined again and achieved by appropriate control of the feed mass flow and the circulation mass flow. The transition between the two control scenarios is preferably continuous, in particular linear.

Vorteilhafterweise wird im Niedriglastintervall der Speisemassenstrom linear mit steigender Last erhöht. Bei konstant gehaltenem Umwälzmassenstrom bedeutet dies, dass der gesamte Verdampfermassenstrom - wie bereits erwähnt die Summe aus Speisemassenstrom und Umwälzmassenstrom - linear mit der Last ansteigt.Advantageously, the feed mass flow is increased linearly with increasing load in the low load interval. When the circulation mass flow rate is kept constant, this means that the total evaporator mass flow - as already mentioned, the sum of the feed mass flow and the circulation mass flow - increases linearly with the load.

Vorzugsweise wird auch im Mittellastintervall der Speisemassenstrom linear mit steigender Last erhöht, während der Umwälzmassenstrom bevorzugt linear mit steigender Last verringert wird. In besonders bevorzugter Ausgestaltung wird dabei der Umwälzmassenstrom im gleichen Maße verringert, wie der Speisemassenstrom erhöht wird. Dies bedeutet, dass die Summe aus beiden Massenströmen, nämlich der Verdampfermassenstrom, im Mittellastintervall konstant bleibt.Preferably, the feed mass flow is increased linearly with increasing load even in the middle load interval, while the Umwälzmassenstrom is preferably reduced linearly with increasing load. In a particularly preferred embodiment of the Umwälzmassenstrom is thereby reduced to the same extent as the feed mass flow is increased. This means that the sum of the two mass flows, namely the evaporator mass flow, remains constant in the middle load interval.

Zweckmäßigerweise beginnt das Niedriglastintervall bei Nulllast und endet bevorzugt bei ungefähr 20 % der auslegungsgemäß vorgesehenen Volllast. An das Niedriglastintervall schließt sich zweckmäßigerweise unmittelbar das Mittellastintervall an, welches bevorzugt bei ungefähr 40 % der auslegungsgemäß vorgesehenen Volllast endet.Conveniently, the low load interval begins at zero load and preferably ends at about 20% of the designed full load. The low load interval is expediently followed immediately by the middle load interval, which preferably ends at approximately 40% of the design full load.

In besonders bevorzugter Auslegung wird der Umwälzmassenstrom im Niedriglastintervall auf ungefähr 20 % des Volllastwertes des Verdampfermassenstroms eingestellt. Dabei ist im Niedriglastintervall ein Wert der Umwälzmassenstromdichte von ungefähr 400 kg/(sm2) besonders vorteilhaft, entsprechend einer Verdampfermassenstromdichte bei Volllast von etwa 2000 kg/(sm2).In a particularly preferred embodiment, the circulation mass flow in the low load interval is set to approximately 20% of the full load value of the evaporator mass flow. In this case, in the low load interval, a value of Umwälzmassenstromdichte of about 400 kg / (sm 2 ) is particularly advantageous, corresponding to an evaporator mass flow density at full load of about 2000 kg / (sm 2 ).

In weiterer vorteilhafter Ausgestaltung werden der Umwälzmassenstrom und der Speisemassenstrom im Mittellastintervall derart eingestellt, dass der Verdampfermassenstrom in diesem Intervall stets mindestens 40 % des Volllastwertes erreicht. Besonders bevorzugt ist dabei der Fall, dass der Verdampfermassenstrom in diesem Lastintervall durch gegenläufige Veränderung von Speisestrom und Umwälzstrom konstant gehalten wird (siehe oben). Für die Durchführung des erfindungsgemässen Verfahrens ist ein Durchlaufdampferzeuger mit einem Verdampfer notwendig, dem strömungsmediumseitg eine Speisepumpe vorgeschaltet und ein Abscheider für nicht verdampftes Strömungsmedium nachgeschaltet ist, wobei der Abscheider über eine Rückführungsleitung, in die eine Umwälzpumpe geschaltet ist, mit dem wasserseitigen Dampferzeugereinlass verbunden ist, und wobei eine elektronische Steuerungs- oder Regelungseinheit für die Speisepumpe und die Umwälzpumpe vorgesehen ist, die die Verfahrensschritte des oben beschriebenen Verfahrens ausführt.In a further advantageous embodiment, the circulation mass flow and the feed mass flow are adjusted in the middle load interval such that the evaporator mass flow always reaches at least 40% of the full load value in this interval. Particularly preferred is the case that the evaporator mass flow in this load interval by opposite change is kept constant by supply current and circulating current (see above). For carrying out the process according to the invention, a continuous steam generator with an evaporator is necessary, upstream of a feed pump and downstream of a separator for non-evaporated flow medium, the separator being connected to the water-side steam generator inlet via a return line into which a circulation pump is connected. and wherein an electronic control unit for the feed pump and the circulation pump is provided, which performs the method steps of the method described above.

Wie eingangs bereits angedeutet, mündet die Rückführungsleitung zweckmäßigerweise stromabwärts der Speisepumpe und stromaufwärts des Speisewasservorwärmers in die Speiseleitung. Der Abscheider ist also (mittelbar) über den Speisewasservorwärmer mit dem Verdampfereinlass verbunden.As already indicated, the return line expediently opens downstream of the feed pump and upstream of the feedwater preheater in the feed line. The separator is thus (indirectly) connected to the evaporator inlet via the feedwater preheater.

In der Steuerungs- oder Regelungseinheit ist zu dem genannten Zweck vorteilhafterweise ein entsprechendes Steuerungs- oder Regelungsprogramm hardwaremäßig und/oder softwaremäßig implementiert. Über geeignete Stellwertgeber wirkt die Steuerungs- oder Regelungseinheit gemäß vorheriger Bedieneingabe (etwa: Anfahren, Herunterfahren, Teillastbetrieb etc.) auf die Speisepumpe und die Umwälzpumpe ein und steuert deren Förderleistung, sprich den jeweiligen Durchsatz von Strömungsmedium (Speisewasser und abgeschiedenes Wasser aus dem Verdampfer). Über geeignete Messwertgeber oder Sensoren wird der Steuerungs- oder Regelungseinheit zweckmäßigerweise der Istwert relevanter Betriebsgrößen zugeführt, so dass bei Abweichung vom gewünschten Sollwert eine entsprechende Nachregelung erfolgen kann.In the control or regulation unit for the purpose mentioned advantageously a corresponding control or regulation program is implemented in terms of hardware and / or software. The control or regulation unit acts on the feed pump and the circulation pump and controls their delivery rate, ie the respective flow rate of the flow medium (feed water and separated water from the evaporator), by means of suitable manipulators, in accordance with prior operator input (for example startup, shutdown, partial load operation, etc.). , By means of suitable measuring sensors or sensors, the control or regulation unit is expediently supplied with the actual value of relevant operating variables, so that a corresponding readjustment can take place in the event of a deviation from the desired setpoint.

Der Durchlaufdampferzeuger wird vorzugsweise direkt durch eine Anzahl von Brennern befeuert. Er weist vorzugsweise eine Brennkammer bzw. einen Gaszug auf, dessen Umfassungswand aus einer Vielzahl von gasdicht miteinander verschweißten Verdampferrohren gebildet ist, wobei zumindest ein Teilbereich der Umfassungswand den eigentlichen Verdampfer bildet (neben gegebenenfalls weiteren Bereichen, die den Speisewasservorwärmer oder den Überhitzer bilden). Der Gaszug ist bevorzugt als Vertikalgaszug ausgestaltet und weist zumindest in der Verdampfersektion eine Spiralberohrung, das heißt sich spiral- oder helixartig innerhalb der Umfassungswand um die Längsachse des Gaszugs windende Verdampferrohre, auf. Bei den Verdampferrohren handelt es sich bevorzugt um Glattrohre; es sind aber auch mit einer Innenberippung versehene Rohre denkbar.The continuous steam generator is preferably fired directly by a number of burners. He preferably has one Combustion chamber or a throttle cable, the surrounding wall is formed of a plurality of gas-tight welded together evaporator tubes, wherein at least a portion of the enclosure wall forms the actual evaporator (next to possibly other areas that form the feedwater or the superheater). The throttle cable is preferably designed as a vertical gas train and has at least in the evaporator section a spiral tube, that is spirally or helically within the enclosure wall about the longitudinal axis of the gas draft convoluted evaporator tubes on. The evaporator tubes are preferably smooth tubes; but there are also conceivable provided with a Innenberippung pipes.

Bei Verwendung von innenberippten Rohren in Spiralverdampfern kann die Mindestmassenstromdichte bei der höchsten Last im Umwälzbetrieb von dem typischen Wert für Glattrohre von 800 kg/(sm2) auf etwa 500 kg/(sm2) reduziert werden. Daher kann ein Verdampfer mit innenberippten Rohren bei Lasten oberhalb von 25 % der Volllast im Durchlaufbetrieb gefahren werden, wenn die Volllastmassenstromdichte des Verdampfers bei 2000 kg/(sm2) liegt. Auch bei der Verwendung von innenberippten Rohren in einem Spiralverdampfer kann die Umwälzpumpe erfindungsgemäß besonders kompakt dimensioniert werden. Bei einem Spiralverdampfer mit innenberippten Rohren liegt der Übergang vom Umwälz- in den Durchlaufbetrieb bei etwa 25 % Last anstatt bei 40 % Last. Die vorherigen und folgenden Beschreibungen, die zahlenmäßig für einen Verdampfer mit Glattrohren ausgelegt sind, lassen sich unter Berücksichtigung dieser Randbedingung auf einen Verdampfer mit innenberippten Rohren übertragen.When using internally ribbed tubes in volute evaporators, the minimum mass flow density at the highest load in recirculation mode can be reduced from the typical smooth tube value of 800 kg / (sm 2 ) to about 500 kg / (sm 2 ). Therefore, an evaporator with internally finned tubes can be run in continuous operation at loads above 25% of full load when the full load mass flow density of the evaporator is 2000 kg / (sm 2 ). Even with the use of innenberippten pipes in a spiral evaporator, the circulation pump according to the invention can be dimensioned particularly compact. In a spiral evaporator with internally tipped tubes, the transition from recirculation to continuous operation is about 25% load rather than 40% load. The previous and following descriptions, which are numerically designed for a smooth-tube evaporator, can be transferred to an evaporator with internally-tipped tubes, taking into account this constraint.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die bewusste Abkehr von bislang einschlägigen Auslegungsprinzipien ein Betrieb eines Zwangdurchlaufdampferzeugers mit Rückförderung des am oder nach dem Verdampfer abgeschiedenen flüssigen Strömungsmediums (Wasser) in den Speisewasservorwärmer ermöglicht wird (so genanntes Zwanglauf-Mischsystem), bei dem trotz vergleichsweise niedrig gewähltem Umwälzmassenstrom in der Nähe des Nulllastbereiches eine hohe betriebliche Sicherheit und ausreichende Rohrkühlung gewährleistet ist. Die Umwälzpumpe kann in diesem Fall besonders kompakt dimensioniert und entsprechend kostengünstig in der Anschaffung sein.The advantages achieved by the invention are, in particular, that an operation of a forced once-through steam generator with return of the deposited on or after the evaporator liquid flow medium (water) in the feedwater is made possible by the deliberate departure from previously relevant design principles (so-called Forced-circulation mixing system), in which despite a comparatively low selected Umwälzmassenstrom in the vicinity of the zero-load range, a high operational safety and sufficient pipe cooling is guaranteed. The circulation pump can be dimensioned particularly compact in this case and be correspondingly inexpensive to purchase.

Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand von Zeichnungen näher erläutert. Darin zeigen in jeweils stark vereinfachter und schematisierter Darstellung:

FIG 1
ein Blockschaltbild eines Durchlaufdampferzeugers,
FIG 2
ein Diagramm, in dem verschiedene für den Durchfluss von Strömungsmedium durch entsprechende Komponenten des Durchlaufdampferzeugers charakteristische und für seine bisherige Betriebssteuerung maßgebliche Kennlinien als Funktion der Last aufgetragen sind, und
FIG 3
ein weiteres derartiges Diagramm, wobei der Kennlinienverlauf einer neuartigen, erfindungsgemäß verbesserten Betriebssteuerung entspricht.
An embodiment of the invention will be explained in more detail with reference to drawings. In each case show in a highly simplified and schematic representation:
FIG. 1
a block diagram of a continuous steam generator,
FIG. 2
a diagram in which various characteristic for the flow of fluid through corresponding components of the continuous steam generator and relevant for its previous operation control characteristics are plotted as a function of the load, and
FIG. 3
another such diagram, wherein the characteristic curve of a novel, inventively improved operation control corresponds.

Der in FIG 1 dargestellte Durchlaufdampferzeuger 2 umfasst einen Verdampfer 4 zur Verdampfung eines Strömungsmediums M, dem ein auch als Economiser bezeichneter Speisewasservorwärmer 6 strömungsmediumseitig vorgeschaltet ist. Der Verdampfer 4 umfasst eine Mehrzahl von strömungsmäßig parallel geschalteten, gasdicht miteinander verschweißten und als Glattrohren ausgeführten Dampferzeugerrohren, die nach Art einer Spiralberohrung einen Bereich einer Umfassungswand einer Brennkammer bilden, welche über eine Anzahl von Brennern beheizt wird (hier nicht im Detail dargestellt). Dem Verdampfer 4 ist ein Überhitzer 8 mit einer Anzahl von Überhitzerheizflächen strömungsmediumseitig nachgeschaltet. Beim Betrieb des Durchlaufdampferzeugers 2 wird dem Speisewasservorwärmer 6 über die Speiseleitung 10 mit Hilfe einer Speisepumpe 12 das Strömungsmedium M in Form von Speisewasser S zugeführt, im Speisewasservorwärmer 6 vorgewärmt, anschließend über den Verdampfereintritt 14 in den Verdampfer 4 geleitet und dort verdampft. Der den Verdampfer 4 über den Verdampferaustritt 16 verlassende Dampf D wird schließlich im Überhitzer 8 überhitzt und danach seiner vorgesehenen Verwendung, beispielsweise in einer Dampfturbine, zugeführt.The in FIG. 1 illustrated flow steam generator 2 comprises an evaporator 4 for the evaporation of a flow medium M, which is preceded by a feedwater heater 6 also referred to as economizer flow side. The evaporator 4 comprises a plurality of fluidly connected in parallel, gas-tight welded together and designed as smooth tubes steam generator tubes which form a region of a peripheral wall of a combustion chamber in the manner of a spiral tube, which is heated via a number of burners (not shown in detail here). The evaporator 4 is followed by a superheater 8 with a number of Überhitzerheizflächen flow medium side. During operation of the continuous steam generator 2, the feedwater preheater 6 via the feed line 10 by means of a feed pump 12, the flow medium M supplied in the form of feed water S, preheated in the feedwater pre-heater 6, then passed through the evaporator inlet 14 into the evaporator 4 and evaporated there. The vapor D leaving the evaporator 4 via the evaporator outlet 16 is finally superheated in the superheater 8 and then supplied to its intended use, for example in a steam turbine.

Beim Teillastbetrieb, insbesondere beim Anfahren oder beim Herunterfahren des Durchlaufdampferzeugers 2, wird das Strömungsmedium M im Verdampfer 4 nicht vollständig verdampft, sondern es verbleibt am Verdampferaustritt 16 ein Anteil an unverdampftem, flüssigem Strömungsmedium M, nämlich Wasser W. Dieser Wasseranteil wird in einem strömungsmediumseitig zwischen den Verdampfer 4 und den Überhitzer 8 geschalteten Abscheider 18 vom Dampfanteil, der zum Überhitzer 8 weitergeleitet wird, getrennt und abgeschieden. Das abgeschiedene Wasser W wird in einem mit dem Abscheider 18 verbundenen Sammelgefäß 20 gesammelt und von dort je nach Betriebszustand in unterschiedlichem Maße über eine Rückführungsleitung 22 zum Eintritt des Speisewasservorwärmers 6 zurück geführt. Zu diesem Zweck ist in die Rückführungsleitung 22 eine Umwälzpumpe 24 geschaltet, und die Rückführungsleitung 22 ist stromabwärts der Speisepumpe 12 und stromaufwärts des Speisewasservorwärmers 6 an die Speiseleitung 10 angeschlossen. Überschüssiges Wasser W wird aus dem Sammelgefäß 20 über eine Ableitung 26 abgeleitet.During partial load operation, in particular during startup or shutdown of the continuous steam generator 2, the flow medium M is not completely evaporated in the evaporator 4, but it remains at the evaporator outlet 16, a proportion of non-evaporated, liquid flow medium M, namely water W. This water content is in a flow medium side between the evaporator 4 and the superheater 8 connected separator 18 from the vapor portion, which is forwarded to the superheater 8, separated and separated. The separated water W is collected in a collecting vessel 20 connected to the separator 18, and from there, depending on the operating state, is guided to varying degrees via a return line 22 to the inlet of the feedwater pre-heater 6. For this purpose, a circulation pump 24 is connected in the return line 22, and the return line 22 is connected to the feed line 10 downstream of the feed pump 12 and upstream of the feedwater pre-heater 6. Excess water W is discharged from the collecting vessel 20 via a discharge line 26.

Der den Verdampfer 4 durchströmende Massenstrom an Strömungsmedium M, nämlich der Verdampfermassenstrom VM, setzt sich damit additiv aus dem Massenstrom an zugeführtem Speisewasser S, nämlich dem Speisemassenstrom SM, und dem Massenstrom an mit Hilfe der Umwälzpumpe 24 zurück zirkuliertem, zuvor abgeschiedenem Wasser W, nämlich dem Umwälzmassenstrom UM, zusammen. Anstelle der Bezeichnung Massenstrom wird umgangssprachlich auch die Bezeichnung Durchfluss verwendet.The mass flow of the evaporator 4 flowing through the flow medium M, namely the evaporator mass flow VM, is thus additively from the mass flow of supplied feedwater S, namely the feed mass flow SM, and the mass flow of previously separated water W, namely recirculated by means of the circulation pump 24 the Umwälzmassenstrom UM, together. Instead of the term mass flow colloquially also the term flow is used.

Eine auf die Speisepumpe 12 und die Umwälzpumpe 24 sowie gegebenenfalls auf hier nicht dargestellte Stell- oder Regelventile im Leitungssystem des Strömungsmediums M einwirkende elektronische Steuerungs- oder Regelungseinheit 28 dient zur betriebszustandsabhängigen Steuerung bzw. Regelung dieser Massenströme, speziell beim Anfahr- oder Schwachlastbetrieb. Zur Erfassung des betrieblichen Ist-Zustandes sind ferner eine Anzahl von mit der Steuerungs- oder Regelungseinheit 28 verbundenen Sensoren vorgesehen (hier nicht dargestellt).A on the feed pump 12 and the circulation pump 24 and optionally not shown here adjusting or control valves in the line system of the flow medium M acting electronic control or regulating unit 28 is used for operating state-dependent control or regulation of these mass flows, especially during start-up or low load operation. For detecting the operational actual state, a number of sensors connected to the control or regulation unit 28 are furthermore provided (not shown here).

FIG 2 zeigt hierzu den Verlauf relevanter Kennlinien gemäß einem herkömmlichen Regelungsschema. Aufgetragen als Funktion der Last L sind hier der Umwälzmassenstrom UM, der Speisemassenstrom SM und der Verdampfermassenstrom VM. Die Lastwerte auf der Abszisse sind jeweils als prozentualer Wert der Maximallast (Volllast) angegeben, und in ähnlicher Weise sind die Durchfluss- bzw. Massenstromwerte auf der Ordinate als prozentuale Werte des auslegungsgemäß vorgesehenen maximalen Verdampfermassenstroms VM bei Volllast angegeben. Wie man sieht, nimmt der Umwälzmassenstrom UM mit steigender Last vom Ausgangwert 40 % (entsprechend 0 % Last) stetig und insbesondere linear auf den Wert 0 % (entsprechend 40 % Last) ab, während der Wert des Speisemassenstroms SM im entsprechenden Lastintervall linear von 0 % auf 40 % steigt. Die Summe aus dem Speisemassenstrom SM und dem Umwälzmassenstrom UM, die den Verdampfermassenstrom VM repräsentiert, besitzt daher in diesem Lastintervall den konstanten Wert 40 %. Bei noch grö-ßeren Lasten verbleibt der Umwälzmassenstrom UM auf dem Wert 0 %, während der Speisemassenstrom SM und damit der Verdampfermassenstrom VM bis zum Volllastwert 100 % ansteigen (im Diagramm nicht mehr dargestellt). Die Umwälzpumpe 24 muss daher für einen vergleichsweise hohen Massenstromwert von 40 % des Verdampfermassenstroms VM bei Volllast ausgelegt sein. FIG. 2 shows the course of relevant characteristics according to a conventional control scheme. Plotted as a function of the load L here are Umwälzmassenstrom UM, the feed mass flow SM and the evaporator mass flow VM. The load values on the abscissa are each expressed as a percentage value of the maximum load, and similarly, the flow rate and mass flow values are indicated on the ordinate as the percentage values of the designed maximum evaporator mass flow VM at full load. As can be seen, the Umwälzmassenstrom UM increases steadily and in particular linearly to the value 0% (corresponding to 40% load) with increasing load from the output value of 40% (corresponding to 0% load), while the value of the feed mass flow SM in the corresponding load interval linearly from 0 % rises to 40%. The sum of the feed mass flow SM and the circulation mass flow UM, which represents the evaporator mass flow VM, therefore has the constant value 40% in this load interval. For even larger loads, the circulation mass flow UM remains at the value 0%, while the feed mass flow SM and thus the evaporator mass flow VM increase 100% up to the full load value (not shown in the diagram). The circulation pump 24 must therefore be designed for a comparatively high mass flow value of 40% of the evaporator mass flow VM at full load.

Demgegenüber zeigt FIG 3 ein hinsichtlich der Anforderungen an die Umwälzpumpe 24 verbessertes Regelungsschema in einer zu FIG 2 analogen diagrammatischen Darstellung. Ähnlich wie bei der durch FIG 2 repräsentierten Regelungsvariante wird der Speisemassenstrom SM im Lastintervall zwischen 0 % und 40 % Last linear vom Wert 0 % auf den Wert 40 % gesteigert. Abweichend von der vorherigen Variante wird nunmehr der Umwälzmassenstrom UM in einem ersten Lastintervall zwischen 0 % und 20 % Last, hier als Niedriglastintervall I bezeichnet, auf einem gegenüber FIG 2 reduzierten Wert von 20 % konstant gehalten. Erst im anschließenden Mittellastintervall II zwischen 20 % Last und 40 % Last wird der Umwälzmassenstrom linear auf den Wert 0 % reduziert. Demnach steigt der Verdampferdurchfluss im Niedriglastintervall I vom Wert 20 % linear auf den Wert 40 % an und wird im Mittellastintervall II auf dem Wert 40 % gehalten. Im sich rechts anschließenden Hochlastintervall jenseits 40 % Last (nicht mehr dargestellt) steigt dann wie im zuvor diskutierten Fall der Speisemassenstrom SM und damit der Verdampfermassenstrom VM bis zum Volllastwert 100 % an.In contrast, shows FIG. 3 a with respect to the requirements of the circulation pump 24 improved control scheme in a too FIG. 2 analogue diagrammatic representation. Similar to the through FIG. 2 is represented control variant the feed mass flow SM increased in the load interval between 0% and 40% load linearly from the value 0% to the value 40%. Notwithstanding the previous variant, the Umwälzmassenstrom UM is now in a first load interval between 0% and 20% load, here referred to as low load interval I, on a opposite FIG. 2 reduced value of 20% kept constant. Only in the subsequent middle load interval II between 20% load and 40% load is the circulation mass flow reduced linearly to the value 0%. Accordingly, the evaporator flow in the low load interval I increases from the value of 20% linearly to the value of 40% and is maintained at 40% in the middle load interval II. In the right next high load interval beyond 40% load (not shown) then increases as in the previously discussed case of the feed mass flow SM and thus the evaporator mass flow VM to full load value 100%.

Durch die Reduzierung des Auslegungsmassenstroms für die Umwälzpumpe 24 auf einen gegenüber FIG 2 halbierten Wert von 20 % des maximalen Verdampfermassenstroms VM sind die Anforderungen an die Umwälzpumpe 24 deutlich reduziert, ohne die ausreichende Kühlung der Verdampferrohre des Verdampfers 4 im Schwachlastbereich zu gefährden.By reducing the design mass flow for the recirculation pump 24 to one opposite FIG. 2 halved value of 20% of the maximum evaporator mass flow VM, the requirements for the circulation pump 24 are significantly reduced, without jeopardizing the sufficient cooling of the evaporator tubes of the evaporator 4 in the low load range.

Claims (12)

  1. Method for operating a once-through steam generator (2) with an evaporator (4), in which a feeding mass flow (SM) of a flow medium (M) is fed with the aid of a feed pump (12) to the evaporator (4) and at least partly evaporated there, wherein non-evaporated flow medium (W) is separated in a separator (18) connected downstream from the evaporator (4) and is fed back to a circulating mass flow (UM) of the separated flow medium (W) with the aid of a circulating pump (24) into the evaporator (4), so that the mass flow referred to as the evaporator mass flow (VM) of the flow medium (M) flowing through the evaporator (4) is composed additively of the feeding mass flow (SM) and the circulating mass flow (UM), characterised in that
    - in a low-load interval (I) the feeding mass flow (SM) is increased as the load (L) rises, while the circulating mass flow (UM) is kept substantially constant,
    - in a moderate-load interval (II) the feeding mass flow is increased further with increasing load (L) and the circulating mass flow (UM) is reduced to zero, and
    - if necessary in a high load interval the feeding mass flow (SM) is increased further with increasing load (L) and the circulating mass flow (UM) is kept at zero.
    and wherein, for the moderate-load interval (II) a minimum value is defined for the evaporator mass flow (VM) and, for the low-load interval (I), the circulating mass flow (UM) is substantially kept constant at the halved minimum value.
  2. Method according to claim 1, in which in the low-load interval (I) the feeding mass flow (SM) is increased linearly with increasing load (L).
  3. Method according to claim 1 or 2, in which in the moderate-load interval (II) the feeding mass flow (SM) is increased linearly with increasing load (L).
  4. Method according to one of claims 1 to 3, in which in the moderate-load interval (II) the circulating mass flow (UM) is reduced linearly with increasing load (L).
  5. Method according to claim 1 or 2, in which in the moderate-load interval (II) the feeding mass flow (SM) is increased linearly with increasing load (L) and the circulating mass flow (UM) is reduced linearly to the same extent with increasing load (L).
  6. Method according to one of claims 1 to 5, in which the low-load interval (I) begins at no load.
  7. Method according to claim 6, in which the low-load interval (I), when smooth tubes are used, ends at approximately 20%, when inner-ribbed tubes are used, ends at approximately 12.5% of the full load provided for by the design.
  8. Method according to one of claims 1 to 7, in which the moderate-load interval (II) follows directly on from the low-load interval (I).
  9. Method according to claim 8, in which the moderate-load interval (II), when smooth tubes are used, ends at approximately 40%, when inner-ribbed tubes are used, ends at approximately 25% of the full load provided for by the design.
  10. Method according to one of claims 1 to 9, in which the circulating mass flow (UM) in the low-load interval (I), when smooth tubes are used, is set at approximately 20%, when inner-ribbed tubes are used is set at approximately 12.5% of the full load value of the evaporator mass flow (VM).
  11. Method according to one of claims 1 to 10, in which in the low-load interval (I), when smooth tubes are used, a circulating mass flow density of approximately 400 kg/(sm2), when inner-ribbed tubes are used a circulating mass flow density of approximately 250 kg/(sm2) is set.
  12. Method for operating a once-through steam generator (2) with an evaporator (4), in which a feeding mass flow (SM) of a flow medium (M) is fed with the aid of a feed pump (12) to the evaporator (4) and at least partly evaporated there, wherein non-evaporated flow medium (W) is separated in a separator (18) connected downstream from the evaporator (4) and is fed back to a circulating mass flow (UM) of the separated flow medium (W) with the aid of a circulating pump (24) into the evaporator (4), so that the mass flow referred to as the evaporator mass flow (VM) of the flow medium (M) flowing through the evaporator (4) is composed additively of the feeding mass flow (SM) and the circulating mass flow (UM), characterised in that
    - in a moderate-load interval (II) the feeding mass flow (SM) is decreased with decreasing load (L) and the circulating mass flow (UM) is increased, starting from zero, and
    - in a low-load interval (I) the feeding mass flow (SM is decreased further with decreasing load (L), while the circulating mass flow (UM) is kept substantially constant.
    and wherein, for the moderate-load interval (II) a minimum value is defined for the evaporator mass flow (VM) and, for the low-load interval (I), the circulating mass flow (UM) is substantially kept constant at the halved minimum value.
EP12709060.3A 2011-03-30 2012-03-09 Method for operating a once-through steam generator Active EP2676072B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110006390 DE102011006390A1 (en) 2011-03-30 2011-03-30 Method for operating a continuous steam generator and for carrying out the method designed steam generator
PCT/EP2012/054105 WO2012130588A1 (en) 2011-03-30 2012-03-09 Method for operating a once-through steam generator and steam generator designed for carrying out the method

Publications (2)

Publication Number Publication Date
EP2676072A1 EP2676072A1 (en) 2013-12-25
EP2676072B1 true EP2676072B1 (en) 2017-10-18

Family

ID=45841471

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12709060.3A Active EP2676072B1 (en) 2011-03-30 2012-03-09 Method for operating a once-through steam generator

Country Status (9)

Country Link
US (1) US9194577B2 (en)
EP (1) EP2676072B1 (en)
JP (1) JP5818963B2 (en)
KR (1) KR101960554B1 (en)
CN (1) CN103459926B (en)
AU (1) AU2012237306B2 (en)
DE (1) DE102011006390A1 (en)
WO (1) WO2012130588A1 (en)
ZA (1) ZA201306812B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140123914A1 (en) * 2012-11-08 2014-05-08 Vogt Power International Inc. Once-through steam generator
PT3086032T (en) * 2015-04-21 2021-01-29 General Electric Technology Gmbh Molten salt once-through steam generator
DE102017205382A1 (en) * 2017-03-30 2018-10-04 Siemens Aktiengesellschaft Water return in vertical forced-circulation steam generators

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1401348A1 (en) 1962-08-09 1969-10-02 Continental Elektro Ind Ag Fuel or feed water volume control device on once-through boilers
FR1349790A (en) 1963-03-07 1964-01-17 Babcock & Wilcox France Method for operating a forced circulation steam generator with an auxiliary circulation pump
AT258316B (en) * 1964-02-28 1967-11-27 Siemens Ag Forced flow boiler
JPS4124881Y1 (en) 1964-04-27 1966-12-20
NL6910208A (en) 1969-07-03 1971-01-05
DE2735463C2 (en) * 1977-08-05 1982-03-04 Kraftwerk Union AG, 4330 Mülheim Continuous steam generator
JPS5565803A (en) 1978-11-14 1980-05-17 Mitsubishi Heavy Ind Ltd Boiler device
US4367628A (en) * 1981-02-27 1983-01-11 The United States Of America As Represented By The United States Department Of Energy Low chemical concentrating steam generating cycle
DE3243578C3 (en) 1982-11-25 1998-10-22 Babcock Energie Umwelt Method for operating a once-through steam generator
JPS62106804A (en) 1985-11-05 1987-05-18 Kurita Water Ind Ltd Extraction device
JPS62237204A (en) 1986-04-07 1987-10-17 三菱重工業株式会社 Minimum feedwater flow controller for once-through boiler
TW212826B (en) * 1991-11-28 1993-09-11 Sulzer Ag
BE1005793A3 (en) * 1992-05-08 1994-02-01 Cockerill Mech Ind Sa INDUCED CIRCULATION HEAT RECOVERY BOILER.
DE4236835A1 (en) 1992-11-02 1994-05-05 Siemens Ag Steam generator
DE19602680C2 (en) 1996-01-25 1998-04-02 Siemens Ag Continuous steam generator
CA2294710C (en) * 1997-06-30 2007-05-22 Siemens Aktiengesellschaft Waste heat steam generator
DE19745272C2 (en) * 1997-10-15 1999-08-12 Siemens Ag Gas and steam turbine plant and method for operating such a plant
JP2002106804A (en) 2000-09-29 2002-04-10 Ishikawajima Harima Heavy Ind Co Ltd Feedwater flow-rate controller of variable once- through boiler
EP1710498A1 (en) * 2005-04-05 2006-10-11 Siemens Aktiengesellschaft Steam generator
JP4507098B2 (en) 2005-05-20 2010-07-21 東京電力株式会社 Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler
US7587996B2 (en) * 2006-06-07 2009-09-15 Babcock & Wilcox Power Generation Group, Inc. Circulation system for sliding pressure steam generator
EP2255076B1 (en) * 2008-02-26 2015-10-07 Alstom Technology Ltd Method for regulating a boiler and control circuit for a boiler
EP2194320A1 (en) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Method for operating a once-through steam generator and once-through steam generator
EP2224164A1 (en) * 2008-11-13 2010-09-01 Siemens Aktiengesellschaft Method of operating a waste heat steam generator
DE102009012322B4 (en) * 2009-03-09 2017-05-18 Siemens Aktiengesellschaft Flow evaporator
US20140123914A1 (en) * 2012-11-08 2014-05-08 Vogt Power International Inc. Once-through steam generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AU2012237306A1 (en) 2013-11-07
JP5818963B2 (en) 2015-11-18
CN103459926A (en) 2013-12-18
EP2676072A1 (en) 2013-12-25
US20140014189A1 (en) 2014-01-16
KR101960554B1 (en) 2019-03-20
JP2014512501A (en) 2014-05-22
US9194577B2 (en) 2015-11-24
DE102011006390A1 (en) 2012-10-04
AU2012237306B2 (en) 2016-09-08
KR20140024343A (en) 2014-02-28
WO2012130588A1 (en) 2012-10-04
ZA201306812B (en) 2016-01-27
CN103459926B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
EP0436536B1 (en) Process and plant for generating steam using waste heat
EP2212618B1 (en) Method for operating a continuous flow steam generator and once-through steam generator
EP1848925B1 (en) Horizontally positioned steam generator
EP2194320A1 (en) Method for operating a once-through steam generator and once-through steam generator
DE1170423B (en) Method and arrangement for regulating the steam temperatures in a once-through steam generator with two intermediate superheaters arranged in the flue gas duct
DE3216298A1 (en) METHOD AND DEVICE FOR CONTROLLING THE TEMPERATURE OF OVERHEATED STEAM
EP2438351B1 (en) Continuous evaporator
EP2321578B1 (en) Continuous steam generator
EP2676072B1 (en) Method for operating a once-through steam generator
EP3017152B1 (en) Combined cycle gas turbine plant having a waste heat steam generator and fuel pre-heating
EP0808440B1 (en) Method and device for starting a once-through steam generator
EP2616643A2 (en) Method for regulating a short-term power increase of a steam tubine
DE2544799A1 (en) GAS HEATED STEAM GENERATOR
DE69819566T2 (en) Evaporator device for a heavy oil emulsion
WO2000060283A1 (en) Fossil-fuel fired continuous-flow steam generator
DE2006409C3 (en) Forced steam generator operated in the sliding pressure process
EP2567151B1 (en) Method for operating a steam generator
DE2621340A1 (en) HEAT STEAM GENERATOR
EP2564117B1 (en) Steam generator
DE1965078B2 (en) PROCEDURE FOR SLIDING PRESSURE OPERATION OF A FORCED STEAM GENERATOR
EP2655811B1 (en) Method for regulating a brief increase in power of a steam turbine
EP1533565A1 (en) Once-through steam generator
DE1965078C (en) Method for sliding pressure operation of a forced-flow generator
DE19702133A1 (en) Flow-type steam generator e.g for Benson-boiler
EP2900945B1 (en) Method for flexibly operating a nuclear power plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170519

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 938288

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012011472

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171018

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180218

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012011472

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

26N No opposition filed

Effective date: 20180719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 938288

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012011472

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220825 AND 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230321

Year of fee payment: 12

Ref country code: GB

Payment date: 20230321

Year of fee payment: 12

Ref country code: DE

Payment date: 20220617

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20231228

Year of fee payment: 13