EP2567151B1 - Method for operating a steam generator - Google Patents

Method for operating a steam generator Download PDF

Info

Publication number
EP2567151B1
EP2567151B1 EP11714517.7A EP11714517A EP2567151B1 EP 2567151 B1 EP2567151 B1 EP 2567151B1 EP 11714517 A EP11714517 A EP 11714517A EP 2567151 B1 EP2567151 B1 EP 2567151B1
Authority
EP
European Patent Office
Prior art keywords
flow
evaporator heating
flow medium
heating surface
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11714517.7A
Other languages
German (de)
French (fr)
Other versions
EP2567151A2 (en
Inventor
Jan BRÜCKNER
Joachim Brodesser
Martin Effert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL11714517T priority Critical patent/PL2567151T3/en
Publication of EP2567151A2 publication Critical patent/EP2567151A2/en
Application granted granted Critical
Publication of EP2567151B1 publication Critical patent/EP2567151B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • F22D5/26Automatic feed-control systems
    • F22D5/36Automatic feed-control systems for feeding a number of steam boilers designed for different ranges of temperature and pressure

Definitions

  • the invention relates to a method for operating a steam generator having a combustion chamber with a plurality of evaporator heating surfaces connected in parallel on the flow medium side. It further relates to such a steam generator.
  • a steam generator is a closed, heated vessel or piping system designed to produce high pressure, high temperature steam for heating and service purposes (eg, for operation of a steam turbine).
  • water tube boilers are used, in which the flow medium - usually water - is located in steam generator tubes.
  • the combustion chamber in which the heat is generated by combustion of the respective raw material, can be arbitrarily designed by the arrangement of pipe walls.
  • Such a steam generator in the design of a water tube boiler thus comprises a combustion chamber, the surrounding wall is at least partially formed of tube walls, ie gas-tight welded steam generator tubes.
  • these steam generator tubes form, as evaporator heating surfaces, first an evaporator, into which the unevaporated medium is introduced and evaporated.
  • the evaporator is usually arranged in the hottest region of the combustion chamber. He is downstream of the flow medium side, where appropriate, a device for separating water and steam and a superheater, in which the steam is further heated above its evaporation temperature to in a subsequent heat engine such.
  • the evaporator can be upstream of the flow medium side, a pre-heater (so-called economizer), the feed water under Exploitation of waste or residual heat preheats and so also increases the efficiency of the entire system.
  • the US 5 293 842 A describes a method for operating a steam generating plant in which steam is generated from water by indirect heat exchange with hot flue gas, wherein condensed water is first preheated and then the preheated water is evaporated under high pressure.
  • the EP 0 359 735 A1 describes a heat recovery steam generator with a feedwater tank, which performs the function of a steam drum.
  • steam generator tubes can be arranged within the combustion chamber, which are connected on the flow medium side parallel to the steam generator tubes forming the enclosure walls. These can be summarized or welded to an inner wall, for example. Depending on the desired arrangement of evaporator heating surfaces or inner walls within the combustion chamber, it may be necessary to interconnect interior walls on the flow medium side in succession and to connect their steam generator tubes via an intermediate collector.
  • the object of the invention is therefore to provide a method for operating a steam generator of the type mentioned above and a steam generator, which allow a particularly long service life and a particularly low repair susceptibility of the steam generator.
  • the invention is based on the consideration that a particularly long service life and a particularly low repair susceptibility of an evaporator in a steam generator would be achievable by avoiding overheating of the steam generator tubes by excessively high vapor contents or enthalpies.
  • these high levels of steam occur in particular by the fact that in intermediate collectors already teilverdampftes flow medium is distributed unevenly to the downstream steam generator tubes. This unequal distribution should therefore be prevented by avoiding a two-phase mixture of water and steam in the intermediate collector.
  • this solution has constructive disadvantages. Therefore, rather, the temperature of the flow medium should be reduced at the entrance to the steam generator.
  • a preheater To improve the efficiency or to optimize the Schundanssen the entrances of the perimeter walls and the inner walls of a steam generator is preceded by a preheater.
  • This uses waste heat to preheat the flow medium. Due to the lower exhaust gas temperature generated by the use of waste heat so a higher overall efficiency of the steam generator is achieved.
  • a particularly simple construction of a steam generator is therefore possible by the different temperature at the inner wall and the peripheral wall of the steam generator is achieved by structural measures on the preheater, d. H. by providing media with different degrees of preheating.
  • a first part of the flow medium is conducted past the preheater. This can be done by means of a bridging line.
  • a bypass of the preheater of the preheater is achieved in a structurally simple manner and achieved a lower heat input into the bridged part of the flow medium. This can then be supplied to the entry of the first evaporator heating surface at a lower temperature.
  • the first part of the flow medium with a second fluid flow side after the Preheater diverted part to be mixed.
  • a particularly adapted reduction of the temperature of the first evaporator heating surfaces supplied flow medium is achieved.
  • the mass flow of the second partial flow is limited upwards.
  • This limitation can take place via a manual control or control valve for setting a flow rate limitation of the second control flow.
  • a directional boundary should be provided by a check valve to prevent the main flow of the preheater exit stream, from which the second partial flow is diverted, not to cool unintentionally.
  • the mass flow rate of the first substream should advantageously be regulated on the basis of thermodynamic parameters at a measuring point downstream of the inlet of the first evaporator heating surface.
  • a control valve can be arranged in the bypass line of the preheater. If the system is operated at supercritical pressures, where at no temperature water and steam can occur simultaneously and thus no phase separation is possible, there is no danger of segregation described above and the part of the flow medium passed by the preheater can be reduced to zero. If the steam generator operated with subcritical pressures in the evaporator, such. B. partial load operation of a modern Gleit horrkessels, it must be adhered to avoid segregation of the two media a certain supercooling, which is determined by means of thermodynamic parameters at a measuring point behind the first evaporator heating.
  • the measuring point should advantageously in one of the first evaporator heating surface downstream intermediate collector can be arranged.
  • thermodynamic parameters are carried out in an advantageous embodiment such that pressure and temperature are used as thermodynamic parameters, wherein the saturated steam temperature is determined from the measured pressure and the actual value of the subcooling is determined on the basis of the measured temperature.
  • pressure and temperature are used as thermodynamic parameters, wherein the saturated steam temperature is determined from the measured pressure and the actual value of the subcooling is determined on the basis of the measured temperature.
  • a setpoint value for the subcooling is advantageously set and controlled the mass flow of the first partial flow based on the deviation of the actual and setpoint of subcooling.
  • the mass flow rate of the first partial flow is increased at a lower actual value than the nominal value of the subcooling.
  • the mass flow of the second partial flow is advantageously controlled by the mass flow of the first evaporator heating supplied flow medium.
  • Further regulation of the mass flow rate of the flow medium supplied to the first evaporator heating surface can take place taking into account a water-steam separation device arranged downstream of the evaporator heating surfaces.
  • the current of the first evaporator heating surface fed medium regulated by the exit enthalpy of the evaporator.
  • the outlet enthalpy is determined on the basis of the temperature of the flow medium at the last evaporator heating surface downstream of the first evaporator heating surface and the pressure in the water-steam separator.
  • a control of the outlet enthalpy to the mean fluid enthalpy in the separator is a control of the outlet enthalpy to the mean fluid enthalpy in the separator.
  • the set point of the evaporator outlet enthalpy should be stored dependent on the load in the main control loop. In any case, the outlet temperature of the fluid se should be limited so that the maximum permissible material temperature is not exceeded.
  • the advantages achieved by the invention are in particular that the problem of water-steam segregation in the intermediate collector is reliably avoided by the use of two media with different degrees of supercooling for feeding the various evaporator parts (enclosing walls and inner walls).
  • the evaporator does not have to be increased or only slightly enlarged in order to ensure a sufficiently high outlet enthalpy at the evaporator.
  • a design of the steam generator as a once-through boiler has several advantages: forced-circulation steam generators can be used for both subcritical and supercritical pressure without changing the process technology. Only the wall thickness of the pipes and collectors must be dimensioned according to the intended pressure. Thus, the continuous flow principle meets the globally recognizable trend towards increasing efficiencies by increasing the steam conditions.
  • the steam generator 1 in a schematic representation according to the FIG. 1 is designed as a forced flow steam generator. It comprises a plurality of tube walls formed from steam generator tubes and flowed through from bottom to top, namely an enclosing wall 2 and symmetrically arranged, inclined aligned interior walls 4, to which an additional interior wall 8 is connected downstream via an intermediate collector 6 on the flow medium side.
  • the continuous steam generator 1 is thus designed in the so-called "pant-leg" design.
  • the intermediate walls 6 upstream inner walls 4 flow medium at a lower temperature is supplied as the Um Publishedswand 2.
  • first modifications of the preheater 16 are provided, the different heat inputs in ensure the different medium flows.
  • a branch point 18 is upstream of the flow medium side. A portion of the flow medium is thus passed around the preheater 16 in a bypass line 20.
  • the preheater 16 is first followed by a further branching point 22, from which a line is led to the inlets 10 of the surrounding wall 2. A part of the preheated flow medium is thus supplied to the enclosure wall 2. Another part of the preheated flow medium is guided in a line 24, which meets in a mixing point 26 with the bypass line 20.
  • a medium of lower temperature is achieved by the mixing of the medium streams, which is then fed to the inlets 12 of the inner walls 4.
  • a check valve 30 is arranged, which is an unwanted cooling by reflux in the branching point 22 prevented. Furthermore, a manual flow control valve 32 is provided, which limits the diverted mass flow preheated medium upwards.
  • the pressure p and the temperature T in the intermediate collector 6 serve as input variables for the automatic regulation in the flow control valve 28. From the pressure determined, the saturated steam temperature is initially determined whose difference to the determined temperature T results in the actual undercooling. In order to prevent segregation of water and steam in the intermediate collector 6, a target subcooling in the intermediate collector 6 is specified. If the actual subcooling exceeds the desired subcooling, the automatic flow control valve 28 is closed further, so that the temperature at the inlets 12 increases. In the opposite case, the flow control valve 28 is opened further. If pressure and temperature are above the critical point of the flow medium, the flow control valve 28 is completely closed, since at supercritical pressures at no temperature water and steam can occur simultaneously and thus no segregation in the intermediate collector 6 can occur more.
  • FIG. 2 An alternative embodiment of the invention shows FIG. 2 ,
  • the steam generator 1 is here except for the flow control valve 32 for FIG. 1 identical.
  • the flow control valve 32 is here as the control valve 28 automated. This makes it possible to regulate the amount of the inner walls 4 supplied medium.
  • the total flow F to the inlets 12, which is determined at a measuring point 34, serves as the input variable for the control. In this case, the total flow F is guided by means of a setpoint determined by design calculations.
  • FIG. 3 A further embodiment of the invention is in FIG. 3 shown.
  • the steam generator 1 to FIG. 2 identical, it However, further components are shown, namely the outlet 36 of the inner wall 8 and the outlet 38 of the enclosure wall 2.
  • the media streams from the outlets 36, 38 are brought together and fed into a water-steam separator 40.
  • the main control loop is shown, which controls the total amount of supplied flow medium in the steam generator 1 by means of a flow control valve 42.
  • pressure p and temperature T at the outlet on the steam side of the water-steam separator 40 serve as input variables for the regulation of the total medium flow.
  • the amount of flow medium supplied to the inner walls 4 via the inlets 12 is regulated as a function of the exit enthalpy of the inner wall 8. This is determined on the basis of the temperature T at the outlet 36 of the inner wall 8 and the pressure p in the water-steam separator 40. In this case, the average fluid enthalpy in the water-steam separator 40 is provided as a setpoint for the outlet enthalpy of the inner wall 8. In addition, the outlet temperature at the outlet 40 is limited beyond the maximum permissible material temperature.
  • FIG. 4 finally shows a state diagram for water / steam, in which the states of the flow medium are located in different areas of the steam generator.
  • the diagram plots the specific enthalpy h in kJ / kg against the pressure p in bar.
  • first lines of the same temperature T ie isotherms 44 are shown, whose respective temperature values are indicated on the right-hand axis of the graph in degrees Celsius.
  • the bump-shaped structure 46 on the left graphite side provides information about the vapor content of the water / steam mixture. Outside the structure 46, the medium is single-phase, ie, there is only medium in an aggregate state.
  • the tip of the structure 46 at about 2100 kJ / kg and 221 bar here marks the critical point 48. If the pressure rises above 221 bar, water and steam do not occur at any temperature.
  • Within structure 46 is a water-steam mixture.
  • the proportion of water and steam is shown with curves 50 in 10-percent intervals, from 0% vapor content at characteristic 52% to 100% vapor content at characteristic 54.
  • the curves 50, 52, 54 converge at the critical point 48.
  • the isotherms 44 are perpendicular to the pressure axis, so are also isobars. An energy input into the medium at constant pressure thus causes no higher temperature, but rather a shift of the water-steam content to more steam out.
  • the steam process within the steam generator 1 runs on different load characteristic curves 56, 58, 60, which are not isobars, since the pressure losses of the heating surfaces are represented.
  • the load essentially determines the pressure within the overall system.
  • Load curve 56 represents the steam process at 100% load
  • load curve 58 at 70% load
  • load curve 60 at 40% load.
  • points A, B, C, D in each case represent the state of the flow medium at different points of the steam generator 1, and first without the separate regulation according to the invention of the temperature at the inlets 12 of the inner walls 4: point A the state at the entrance of the Preheater 16, point B the state at the inlet 12 of the inner walls 4, point C the state in the intermediate collector 6 and point D the state at the outlet of the evaporator.
  • the steam generator is fully operated at 100% load in the supercritical range.
  • no point A, B, C, D on the load curve 56 is a distinction of water and steam possible, so that no segregation can occur.
  • the subcritical range is already reached, but only a small part of the load characteristic 58 is within the structure 46.
  • the points A, B, C of the load characteristic 58 are still below the structure 46, here is single-phase water. Again, it can not come to segregation in the intermediate collector 6.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Dampferzeugers mit einer Brennkammer mit einer Mehrzahl von strömungsmediumsseitig parallel geschalteten Verdampferheizflächen. Sie betrifft weiter einen derartigen Dampferzeuger. Ein Dampferzeuger ist ein geschlossenes, beheiztes Gefäß oder ein Druckrohrsystem, das dem Zweck dient, Dampf von hohem Druck und hoher Temperatur für Heiz- und Betriebszwecke (z. B. zum Betrieb einer Dampfturbine) zu erzeugen. Bei besonders hohen Dampfleistungen und -drücken wie beispielsweise bei der Energieerzeugung in Kraftwerken werden dabei Wasserrohrkessel eingesetzt, bei denen sich das Strömungsmedium - üblicherweise Wasser - in Dampferzeugerrohren befindet. Auch bei der Feststoffverbrennung kommen Wasserrohrkessel zum Einsatz, da die Brennkammer, in der die Wärmeerzeugung durch Verbrennung des jeweiligen Rohstoffes erfolgt, beliebig durch die Anordnung von Rohrwänden gestaltet werden kann.The invention relates to a method for operating a steam generator having a combustion chamber with a plurality of evaporator heating surfaces connected in parallel on the flow medium side. It further relates to such a steam generator. A steam generator is a closed, heated vessel or piping system designed to produce high pressure, high temperature steam for heating and service purposes (eg, for operation of a steam turbine). At particularly high steam outputs and pressures such as in power generation in power plants water tube boilers are used, in which the flow medium - usually water - is located in steam generator tubes. Also in the solid combustion water tube boilers are used, since the combustion chamber, in which the heat is generated by combustion of the respective raw material, can be arbitrarily designed by the arrangement of pipe walls.

Ein derartiger Dampferzeuger in der Bauart eines Wasserrohrkessels umfasst somit eine Brennkammer, deren Umfassungswand zumindest teilweise aus Rohrwänden, d. h. gasdicht verschweißten Dampferzeugerrohren gebildet ist. Strömungsmediumsseitig bilden diese Dampferzeugerrohre als Verdampferheizflächen zunächst einen Verdampfer, in den unverdampftes Medium eingeleitet und verdampft wird. Der Verdampfer ist dabei üblicherweise im heißesten Bereich der Brennkammer angeordnet. Ihm ist strömungsmediumsseitig gegebenenfalls eine Einrichtung zum Abscheiden von Wasser und Dampf und ein Überhitzer nachgeschaltet, in dem der Dampf über seine Verdampfungstemperatur hinaus weiter erhitzt wird, um in einer folgenden Wärmekraftmaschine wie z. B. bei der Enspannung in einer Dampfturbine einen hohen Wirkungsgrad zu erzielen. Dem Verdampfer kann strömungsmediumsseitig ein Vorwärmer (so genannter Economiser) vorgeschaltet sein, der das Speisewasser unter Ausnutzung von Ab- oder Restwärme vorwärmt und so ebenfalls den Wirkungsgrad der Gesamtanlage erhöht.Such a steam generator in the design of a water tube boiler thus comprises a combustion chamber, the surrounding wall is at least partially formed of tube walls, ie gas-tight welded steam generator tubes. On the flow medium side, these steam generator tubes form, as evaporator heating surfaces, first an evaporator, into which the unevaporated medium is introduced and evaporated. The evaporator is usually arranged in the hottest region of the combustion chamber. He is downstream of the flow medium side, where appropriate, a device for separating water and steam and a superheater, in which the steam is further heated above its evaporation temperature to in a subsequent heat engine such. B. at the Enspannung in a steam turbine to achieve high efficiency. The evaporator can be upstream of the flow medium side, a pre-heater (so-called economizer), the feed water under Exploitation of waste or residual heat preheats and so also increases the efficiency of the entire system.

Die US 5 293 842 A beschreibt ein Verfahren zum Betreiben einer Anlage zur Dampferzeugung bei dem aus Wasser durch indirekten Wärmetausch mit heißem Rauchgas Dampf erzeugt wird, wobei kondensiertes Wasser zunächst vorgewärmt und anschließend das vorgewärmte Wasser unter hohem Druck verdampft wird. Die EP 0 359 735 A1 beschreibt einen Abhitzedampferzeuger mit einem Speisewasserbehälter, welcher die Funktion einer Dampftrommel ausübt.The US 5 293 842 A describes a method for operating a steam generating plant in which steam is generated from water by indirect heat exchange with hot flue gas, wherein condensed water is first preheated and then the preheated water is evaporated under high pressure. The EP 0 359 735 A1 describes a heat recovery steam generator with a feedwater tank, which performs the function of a steam drum.

Je nach Bauart und Geometrie des Dampferzeugers können innerhalb der Brennkammer weitere Dampferzeugerrohre angeordnet sein, die strömungsmediumsseitig parallel zu den die Umfassungswände bildenden Dampferzeugerrohren geschaltet sind. Diese können beispielsweise zu einer Innenwand zusammengefasst oder verschweißt sein. Abhängig von der gewünschten Anordnung von Verdampferheizflächen bzw. Innenwänden innerhalb der Brennkammer kann es dabei erforderlich sein, Innenwände strömungsmediumsseitig hintereinander zu verschalten und deren Dampferzeugerrohre über einen Zwischensammler zu verbinden.Depending on the design and geometry of the steam generator further steam generator tubes can be arranged within the combustion chamber, which are connected on the flow medium side parallel to the steam generator tubes forming the enclosure walls. These can be summarized or welded to an inner wall, for example. Depending on the desired arrangement of evaporator heating surfaces or inner walls within the combustion chamber, it may be necessary to interconnect interior walls on the flow medium side in succession and to connect their steam generator tubes via an intermediate collector.

Dies ist beispielsweise der Fall beim so genannten "pant-leg"-Design für Dampferzeuger mit Wirbelschichtfeuerung. Hierbei sind zwei in der Brennkammer symmetrisch angeordnete, zumindest teilweise aus weiteren Dampferzeugerrohren gebildete Innenwände einem Zwischensammler strömungsmediumsseitig vorgeschaltet. In dem Zwischensammler vereint sich der Mediumsstrom aus der vorgeschalteten Innenwand und er dient als Eintrittssammler für eine nachgeschaltete Innenwand. Beim pant-leg Design wird eine bessere Vermischung des Brennstoffgemisches und damit geringere mögliche feuerungsseitige Verteilungsprobleme erzielt.This is the case, for example, with the so-called "pant-leg" design for steam generators with fluidized bed firing. Here, two in the combustion chamber symmetrically arranged, at least partially formed from further steam generator tubes inner walls upstream of an intermediate collector flow medium side. In the intermediate collector, the medium flow from the upstream inner wall combines and it serves as an inlet collector for a downstream inner wall. In the pant-leg design, a better mixing of the fuel mixture and thus lower possible distribution problems on the firing side is achieved.

In bestimmten Betriebszuständen kann es jedoch im Zwischensammler bereits zu einem Dampfgehalt größer Null kommen. Mit einem derartigen Dampfgehalt ist eine gleichmäßige Verteilung des Mediums auf die nachgeschaltete Innenwand mit einem einfachen Sammler nicht möglich, so dass Wasser-Dampf-Entmischungen auftreten können. Einzelne Rohre der nachgeschalteten Innenwand können somit an ihrem Eintritt schon derart hohe Dampfgehalte oder Enthalpien aufweisen, dass ein Überhitzen dieser Rohre sehr wahrscheinlich wird. Eine solche Überhitzung kann bei längerem Betrieb zu Rohrschäden führen.In certain operating conditions, however, it may already come in the intermediate collector to a vapor content greater than zero. With Such a vapor content, a uniform distribution of the medium on the downstream inner wall with a simple collector is not possible, so that water-steam segregation can occur. Individual pipes of the downstream inner wall can thus already have such high vapor contents or enthalpies at their inlet that overheating of these pipes is very likely. Such overheating can lead to pipe damage during prolonged operation.

Aufgabe der Erfindung ist es daher, ein Verfahren zum Betreiben eines Dampferzeugers der oben genannten Art sowie einen Dampferzeuger anzugeben, die eine besonders hohe Lebensdauer und eine besonders geringe Reparaturanfälligkeit des Dampferzeugers ermöglichen.The object of the invention is therefore to provide a method for operating a steam generator of the type mentioned above and a steam generator, which allow a particularly long service life and a particularly low repair susceptibility of the steam generator.

Diese Aufgabe wird erfindungsgemäß mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved by a method having the features of claim 1.

Die Erfindung geht dabei von der Überlegung aus, dass eine besonders hohe Lebensdauer und eine besonders geringe Reparaturanfälligkeit eines Verdampfers in einem Dampferzeuger dadurch erreichbar wären, dass eine Überhitzung der Dampferzeugerrohre durch übermäßig hohe Dampfgehalte oder Enthalpien vermieden wird. Dabei treten diese hohen Dampfgehalte insbesondere dadurch auf, dass bei zwischengeschalteten Sammlern bereits teilverdampftes Strömungsmedium ungleichmäßig auf die nachgeschalteten Dampferzeugerrohre verteilt wird. Diese Ungleichverteilung sollte daher durch eine Vermeidung von Zweiphasengemisch aus Wasser und Dampf im Zwischensammler verhindert werden. Dies wäre erreichbar, indem die dem Zwischensammler vorgeschalteten Innenwände unberohrt bleiben, so dass das Medium unterkühlt und ohne weitere Vorwärmung in den Zwischensammler eintritt. Diese Lösung bringt jedoch konstruktive Nachteile mit sich. Daher sollte vielmehr die Temperatur des Strömungsmediums am Eintritt in den Dampferzeuger reduziert werden.The invention is based on the consideration that a particularly long service life and a particularly low repair susceptibility of an evaporator in a steam generator would be achievable by avoiding overheating of the steam generator tubes by excessively high vapor contents or enthalpies. In this case, these high levels of steam occur in particular by the fact that in intermediate collectors already teilverdampftes flow medium is distributed unevenly to the downstream steam generator tubes. This unequal distribution should therefore be prevented by avoiding a two-phase mixture of water and steam in the intermediate collector. This would be achievable by keeping the inner walls upstream of the intermediate collector untouched, so that the medium undercooled and enters the intermediate collector without further preheating. However, this solution has constructive disadvantages. Therefore, rather, the temperature of the flow medium should be reduced at the entrance to the steam generator.

Allerdings führt eine Reduktion der Eintrittstemperatur des Strömungsmediums zu einem geringeren Wirkungsgrad des Dampfprozesses. Dies ist nicht erwünscht, zudem ist eine derartige Reduktion in weniger beheizten Dampferzeugerrohren oder in Rohrwänden ohne Zwischensammler - insbesondere in den Umfassungswänden des Dampferzeugers - nicht notwendig. Daher sollte in diesen Dampferzeugerrohren zur Verbesserung des Wirkungsgrades keine Reduktion der Eintrittstemperatur erfolgen. Dies ist erreichbar, indem Verdampferheizflächen mit nachgeschaltetem Zwischensammler - z. B. den Innenwänden beim pant-leg Design - Strömungsmedium mit einer geringeren Temperatur zugeführt wird als anderen Verdampferheizflächen.However, a reduction in the inlet temperature of the flow medium leads to a lower efficiency of the steam process. This is not desirable, moreover, such reduction in less heated steam generator tubes or pipe walls without intermediate collector - especially in the Umfassungswänden the steam generator - not necessary. Therefore, in these steam generator tubes to improve the efficiency no reduction of the inlet temperature should take place. This can be achieved by evaporator heating with downstream intermediate collector -. B. the inner walls of the pant-leg design - flow medium is supplied at a lower temperature than other Verdampferheizflächen.

Zur Verbesserung des Wirkungsgrades bzw. zur Optimierung der Heizflächenanordnung ist den Eintritten der Umfassungswände und der Innenwände eines Dampferzeugers ein Vorwärmer vorgeschaltet. Dieser verwendet Abwärme zur Vorwärmung des Strömungsmediums. Durch die durch die Abwärmenutzung erzeugte niedrigere Abgastemperatur wird so ein höherer Gesamtwirkungsgrad des Dampferzeugers erzielt. Eine besonders einfache Konstruktion eines Dampferzeugers ist daher möglich, indem die unterschiedliche Temperatur an Innenwand und Umfassungswand des Dampferzeugers durch bauliche Maßnahmen an der Vorwärmeinrichtung erreicht wird, d. h. durch eine Bereitstellung von Medien mit unterschiedlichem Vorwärmgrad. Dazu wird ein erster Teil des Strömungsmediums am Vorwärmer vorbeigeleitet. Dies kann mittels einer Überbrückungsleitung geschehen. Somit wird in baulich einfacher Weise eine Umgehung des Vorwärmers der Vorwärmeinrichtung erreicht und ein geringerer Wärmeeintrag in den überbrückten Teil des Strömungsmediums erzielt. Dieser kann dann dem Eintritt der ersten Verdampferheizfläche mit einer geringeren Temperatur zugeführt werden.To improve the efficiency or to optimize the Heizflächenanordnung the entrances of the perimeter walls and the inner walls of a steam generator is preceded by a preheater. This uses waste heat to preheat the flow medium. Due to the lower exhaust gas temperature generated by the use of waste heat so a higher overall efficiency of the steam generator is achieved. A particularly simple construction of a steam generator is therefore possible by the different temperature at the inner wall and the peripheral wall of the steam generator is achieved by structural measures on the preheater, d. H. by providing media with different degrees of preheating. For this purpose, a first part of the flow medium is conducted past the preheater. This can be done by means of a bridging line. Thus, a bypass of the preheater of the preheater is achieved in a structurally simple manner and achieved a lower heat input into the bridged part of the flow medium. This can then be supplied to the entry of the first evaporator heating surface at a lower temperature.

Um dabei eine nicht übermäßig reduzierte Temperatur in den mit kühlerem Strömungsmedium beaufschlagten Verdampferheizflächen zu erzielen, sollte der erste Teil des Strömungsmediums mit einem zweiten, strömungsmediumsseitig nach dem Vorwärmer abgezweigten Teil vermischt werden. Somit wird eine besonders angepasste Reduktion der Temperatur des den ersten Verdampferheizflächen zugeführten Strömungsmediums erreicht.In order to achieve a not excessively reduced temperature in the acted upon with cooler fluid flow evaporator heating surfaces, the first part of the flow medium with a second fluid flow side after the Preheater diverted part to be mixed. Thus, a particularly adapted reduction of the temperature of the first evaporator heating surfaces supplied flow medium is achieved.

Vorteilhafterweise wird dabei der Massendurchfluß des zweiten Teilstroms nach oben begrenzt. Diese Begrenzung kann dabei über ein manuelles Regel- oder Stellventil zur Einstellung einer Mengenbegrenzung des zweiten Stellstroms erfolgen. Weiterhin sollte eine richtungsgebundene Begrenzung durch eine Rückschlagarmatur vorgesehen werden, um den Hauptstrom des Vorwärmeraustrittsstroms, von dem der zweite Teilstrom abgezweigt wird, nicht ungewollt zu kühlen.Advantageously, the mass flow of the second partial flow is limited upwards. This limitation can take place via a manual control or control valve for setting a flow rate limitation of the second control flow. Furthermore, a directional boundary should be provided by a check valve to prevent the main flow of the preheater exit stream, from which the second partial flow is diverted, not to cool unintentionally.

Um eine besonders einfache Anpassung der Temperatur des der ersten Verdampferheizfläche zugeführten Strömungsmediums zu erreichen, sollte der Massendurchfluß des ersten Teilstroms vorteilhafterweise anhand thermodynamischer Kenngrößen an einem dem Eintritt der ersten Verdampferheizfläche nachgeschalteten Messpunkt geregelt werden. Dazu kann in der Überbrückungsleitung des Vorwärmers ein Regelventil angeordnet werden. Wird die Anlage bei überkritischen Drücken betrieben, wo bei keiner Temperatur Wasser und Dampf gleichzeitig vorkommen können und damit auch keine Phasentrennung möglich ist, so besteht die Gefahr der oben beschriebenen Entmischung nicht und der am Vorwärmer vorbeigeleitete Teil des Strömungsmediums kann auf Null reduziert werden. Wird der Dampferzeuger mit unterkritischen Drücken im Verdampfer betrieben, so z. B. bei Teillastfahrweise eines modernen Gleitdruckkessels, so muss zur Vermeidung einer Entmischung der beiden Medien eine bestimmte Unterkühlung eingehalten werden, die mittels thermodynamischer Kenngrößen an einem Messpunkt hinter der ersten Verdampferheizfläche ermittelt wird.In order to achieve a particularly simple adaptation of the temperature of the flow medium supplied to the first evaporator heating surface, the mass flow rate of the first substream should advantageously be regulated on the basis of thermodynamic parameters at a measuring point downstream of the inlet of the first evaporator heating surface. For this purpose, a control valve can be arranged in the bypass line of the preheater. If the system is operated at supercritical pressures, where at no temperature water and steam can occur simultaneously and thus no phase separation is possible, there is no danger of segregation described above and the part of the flow medium passed by the preheater can be reduced to zero. If the steam generator operated with subcritical pressures in the evaporator, such. B. partial load operation of a modern Gleitdruckkessels, it must be adhered to avoid segregation of the two media a certain supercooling, which is determined by means of thermodynamic parameters at a measuring point behind the first evaporator heating.

Um dabei bei den zuvor erläuterten Dampferzeugern im pant-leg Design eine besonders gezielte Berücksichtigung der thermodynamischen Zustände im Zwischensammler der Innenwand zu erreichen, wo das Problem der Entmischung von Dampf und Wasseranteil zu ungleichmäßiger Verteilung auf die nachfolgenden Rohre führt, sollte hier der Messpunkt vorteilhafterweise in einem der ersten Verdampferheizfläche nachgeschalteten Zwischensammler angeordnet werden.In order to achieve a particularly targeted consideration of the thermodynamic states in the intermediate collector of the inner wall in the previously described steam generators in the pant-leg design, where the problem of separation of steam and water content leads to uneven distribution to the subsequent tubes, the measuring point should advantageously in one of the first evaporator heating surface downstream intermediate collector can be arranged.

Die Berücksichtigung der thermodynamischen Kenngrößen erfolgt in vorteilhafter Ausgestaltung derart, dass Druck und Temperatur als thermodynamische Kenngrößen verwendet werden, wobei aus dem gemessenen Druck die Sattdampftemperatur ermittelt wird und anhand der gemessenen Temperatur der Istwert der Unterkühlung ermittelt wird. Somit ist direkt die Unterkühlung als entscheidende Größe für die erläuterten Probleme ermittelbar.The consideration of the thermodynamic parameters is carried out in an advantageous embodiment such that pressure and temperature are used as thermodynamic parameters, wherein the saturated steam temperature is determined from the measured pressure and the actual value of the subcooling is determined on the basis of the measured temperature. Thus, directly undercooling is determined as the decisive size for the problems explained.

Zur besonders einfachen Regelung wird dabei vorteilhafterweise ein Sollwert für die Unterkühlung vorgegeben und der Massendurchfluß des ersten Teilstroms anhand der Abweichung von Ist- und Sollwert der Unterkühlung geregelt. Vorteilhafterweise wird dabei bei einem niedrigeren Ist- als Sollwert der Unterkühlung der Massendurchfluß des ersten Teilstroms erhöht. Somit wird bei zu geringer Unterkühlung das Regelventil im vor dem Vorwärmer entnommenen Teilstrom weiter geöffnet, so dass die Temperatur des den Eintritten zugeführten Strömungsmediums reduziert und damit die Unterkühlung erhöht wird. Bei zu großer Unterkühlung wird das Regelventil hingegen geschlossen.For particularly simple control while a setpoint value for the subcooling is advantageously set and controlled the mass flow of the first partial flow based on the deviation of the actual and setpoint of subcooling. Advantageously, the mass flow rate of the first partial flow is increased at a lower actual value than the nominal value of the subcooling. Thus, if the subcooling is too low, the control valve in the partial flow withdrawn upstream of the preheater is opened further, so that the temperature of the flow medium supplied to the inlets is reduced and thus the subcooling is increased. If too much hypothermia, the control valve is closed.

Mit sinkender oder ansteigender Last des Dampferzeugers wird über den Haupt-Speisewasserregelkreis dem Verdampfer mehr oder weniger Strömungsmedium zugeführt. Die Anteile des Strömungsmediums-Massenstroms, die den verschiedenen parallelen Verdampferheizflächen zugeführt werden, bleiben über die Last nahezu konstant. Somit kann über Auslegunsrechnungen ein Sollwert für den Massenstrom für die erste Verdampferheizfläche errechnet werden. Um dabei eine besonders genaue Massenstromregelung für die mit kälterem Strömungsmedium zu beaufschlagenden Verdampferheizflächen zu erreichen, wird der Massendurchfluß des zweiten Teilstroms vorteilhafterweise anhand des Massendurchflusses des der ersten Verdampferheizfläche zugeführten Strömungsmediums geregelt.With decreasing or increasing load of the steam generator is fed to the evaporator more or less flow medium through the main feedwater control loop. The proportions of the flow medium mass flow supplied to the various parallel evaporator heating surfaces remain nearly constant across the load. Thus, a nominal value for the mass flow for the first evaporator heating surface can be calculated via design calculations. In order to achieve a particularly accurate mass flow control for acting with colder flow medium Verdampferheizflächen, the mass flow of the second partial flow is advantageously controlled by the mass flow of the first evaporator heating supplied flow medium.

Eine weitere Regelung des Massendurchflusses des der ersten Verdampferheizfläche zugeführten Strömungsmediums kann unter Berücksichtigung einer den Verdampferheizflächen nachgeschalteten Wasser-Dampf-Abscheideeinrichtung erfolgen. In vorteilhafter Ausgestaltung wird dabei der Strom des der ersten Verdampferheizfläche zugeführten Mediums anhand der Austrittsenthalpie des Verdampfers geregelt.Further regulation of the mass flow rate of the flow medium supplied to the first evaporator heating surface can take place taking into account a water-steam separation device arranged downstream of the evaporator heating surfaces. In an advantageous embodiment, the current of the first evaporator heating surface fed medium regulated by the exit enthalpy of the evaporator.

Vorteilhafterweise wird dabei die Austrittsenthalpie anhand der Temperatur des Strömungsmediums an der letzten, der ersten Verdampferheizfläche strömungsmediumsseitig nachgeschalteten Verdampferheizfläche und dem Druck in der Wasser-Dampf-Abscheideeinrichtung ermittelt. Günstig ist hierbei eine Regelung der Austrittsenthalpie auf die mittlere Fluidenthalpie im Abscheider. Der Sollwert der Verdampferaustrittsenthalpie sollte dabei lastabhängig im Hauptregelkreis hinterlegt werden. In jedem Fall sollte die Austrittstemperatur des Fluids se begrenzt werden, dass die maximal zulässige Materialtemperatur nicht überschritten wird.Advantageously, the outlet enthalpy is determined on the basis of the temperature of the flow medium at the last evaporator heating surface downstream of the first evaporator heating surface and the pressure in the water-steam separator. Favorable here is a control of the outlet enthalpy to the mean fluid enthalpy in the separator. The set point of the evaporator outlet enthalpy should be stored dependent on the load in the main control loop. In any case, the outlet temperature of the fluid se should be limited so that the maximum permissible material temperature is not exceeded.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die Verwendung zweier Medien mit unterschiedlich starker Unterkühlung zur Speisung der verschiedenen Verdampferteile (Umfassungswände und Innenwände) das Problem der Wasser-Dampf-Entmischungen im Zwischensammler sicher vermieden wird. Im Gegensatz zu einer Lösung mit verminderter Eintrittsenthalpie für alle Verdampferteile muss der Verdampfer nicht oder nur geringfügig vergrößert werden, um eine ausreichend hohe Austrittsenthalpie am Verdampfer zu gewährleisten.The advantages achieved by the invention are in particular that the problem of water-steam segregation in the intermediate collector is reliably avoided by the use of two media with different degrees of supercooling for feeding the various evaporator parts (enclosing walls and inner walls). In contrast to a solution with reduced enthalpy of entry for all evaporator parts, the evaporator does not have to be increased or only slightly enlarged in order to ensure a sufficiently high outlet enthalpy at the evaporator.

Eine Ausführung des Dampferzeugers als Zwangdurchlaufkessel bringt mehrere Vorteile: Zwangdurchlaufdampferzeuger können sowohl für unterkritischen als auch für überkritischen Druck ohne Änderung der Verfahrenstechnik eingesetzt werden. Lediglich die Wanddicken der Rohre und Sammler müssen dem vorgesehenen Druck entsprechend dimensioniert werden. Damit kommt das Durchlaufprinzip dem weltweit erkennbaren Trend zur Steigerung der Wirkungsgrade durch Erhöhung der Dampfzustände entgegen.A design of the steam generator as a once-through boiler has several advantages: forced-circulation steam generators can be used for both subcritical and supercritical pressure without changing the process technology. Only the wall thickness of the pipes and collectors must be dimensioned according to the intended pressure. Thus, the continuous flow principle meets the globally recognizable trend towards increasing efficiencies by increasing the steam conditions.

Weiterhin ist ein Betrieb der Gesamtanlage im Gleitdruck möglich. Bei Gleitdruckbetrieb bleiben die Temperaturen im Hochdruckteil der Turbine im gesamten Lastbereich konstant. Wegen der großen Abmessungen im Hinblick auf Durchmesser und Wandstärken der Komponente wird die Turbine wesentlich stärker belastet als die Kesselbauteile. Dadurch ergeben sich bei Gleitdruckbetrieb Vorteile im Hinblick auf Laständerungsgeschwindigkeiten, Anzahl der Lastwechsel und der Starts.Furthermore, an operation of the entire system in sliding pressure is possible. In sliding pressure mode, the temperatures remain in the high pressure part the turbine in the entire load range constant. Due to the large dimensions in terms of diameter and wall thickness of the component, the turbine is much more heavily loaded than the boiler components. This results in Gleitdruckbetrieb advantages in terms of load change speeds, number of load changes and starts.

Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:

FIG 1
schematisch den unteren Teil der Brennkammer eines Zwangdurchlaufdampferzeugers mit Wirbelschichtfeuerung mit teilweise überbrückter Vorwärmeinrichtung,
FIG 2
den Durchlaufdampferzeuger aus FIG 1 mit Regelung des Durchflusses zu den Innenwänden,
FIG 3
den Durchlaufdampferzeuger aus FIG 1 mit Regelung der Austrittsenthalpie der Innenwände, und
FIG 4
einen Graphen, der spezifische Enthalpie und Druck des Strömungsmediums in verschiedenen Bereichen des Durchlaufdampferzeugers bei verschiedenen Lastfällen zeigt.
An embodiment of the invention will be explained in more detail with reference to a drawing. Show:
FIG. 1
schematically the lower part of the combustion chamber of a forced once-through steam generator with fluidized bed combustion with partially bridged preheating device,
FIG. 2
the continuous steam generator FIG. 1 with regulation of the flow to the inner walls,
FIG. 3
the continuous steam generator FIG. 1 with control of the exit enthalpy of the interior walls, and
FIG. 4
a graph showing specific enthalpy and pressure of the flow medium in different areas of the continuous steam generator in different load cases.

Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.Identical parts are provided with the same reference numerals in all figures.

Der Dampferzeuger 1 in schematischer Darstellung gemäß der FIG 1 ist als Zwangdurchlaufdampferzeuger ausgeführt. Er umfasst mehrere, aus Dampferzeugerrohren gebildete und von unten nach oben durchströmte Rohrwände, nämliche eine Umfassungswand 2 sowie symmetrisch angeordnete, geneigt ausgerichtete Innenwände 4, denen über einen Zwischensammler 6 strömungsmediumsseitig eine weitere Innenwand 8 nachgeschaltet ist. Der Durchlaufdampferzeuger 1 ist somit im so genannten "pant-leg"-Design ausgeführt.The steam generator 1 in a schematic representation according to the FIG. 1 is designed as a forced flow steam generator. It comprises a plurality of tube walls formed from steam generator tubes and flowed through from bottom to top, namely an enclosing wall 2 and symmetrically arranged, inclined aligned interior walls 4, to which an additional interior wall 8 is connected downstream via an intermediate collector 6 on the flow medium side. The continuous steam generator 1 is thus designed in the so-called "pant-leg" design.

Durch jeweils der Umfassungswand 2 bzw. den Innenwänden 4 zugeordnete Eintritte 10, 12 tritt Strömungsmedium in die Rohrwände ein. Im Innenraum 14 wird in der Art einer Wirbelschichtfeuerung ein fester Brennstoff verbrannt und somit ein Wärmeeintrag in die Rohrwände erreicht, der eine Erwärmung und Verdampfung des Strömungsmediums bewirkt. Tritt das Medium nunmehr in alle Rohrwände mit der gleichen Enthalpie ein, kann bereits im Zwischensammler 6 ein so hoher Dampfgehalt entstehen, dass eine ungleichmäßige Verteilung auf die Rohre der Innenwand 8 erfolgt und hier die Rohre mit hohem Dampfgehalt überhitzen.Through each of the enclosure wall 2 and the inner walls 4 associated entries 10, 12 occurs flow medium in the pipe walls. In the interior 14, a solid fuel is burned in the manner of fluidized bed combustion and thus reaches a heat input into the tube walls, which causes heating and evaporation of the flow medium. If the medium now enters all tube walls with the same enthalpy, a high vapor content can already be created in the intermediate collector 6 such that an uneven distribution takes place on the tubes of the inner wall 8 and the tubes with high steam content overheat here.

Zur Vermeidung der daraus folgenden Nachteile wie beispielsweise einer geringeren Lebensdauer oder einer höheren Reparaturanfälligkeit wird den dem Zwischensammler 6 vorgeschalteten Innenwänden 4 Strömungsmedium mit einer geringeren Temperatur zugeführt als der Umfassungswand 2. Im Dampferzeuger 1 sind dabei zunächst Modifikationen des Vorwärmers 16 vorgesehen, die unterschiedliche Wärmeeinträge in die verschiedenen Mediumsströme gewährleisten.In order to avoid the consequent disadvantages such as a lower life or a higher repair susceptibility, the intermediate walls 6 upstream inner walls 4 flow medium at a lower temperature is supplied as the Umfassungswand 2. In the steam generator 1, first modifications of the preheater 16 are provided, the different heat inputs in ensure the different medium flows.

Dem Vorwärmer 16 nach der FIG 1 ist dazu strömungsmediumsseitig eine Abzweigstelle 18 vorgeschaltet. Ein Teil des Strömungsmediums wird somit um den Vorwärmer 16 in einer Überbrückungsleitung 20 herumgeführt. In strömungsmediumsseitiger Richtung ist dem Vorwärmer 16 zunächst eine weitere Abzweigstelle 22 nachgeschaltet, von der eine Leitung zu den Eintritten 10 der Umfassungswand 2 geführt ist. Ein Teil des vorgewärmten Strömungsmediums wird somit der Umfassungswand 2 zugeführt. Ein anderer Teil des vorgewärmten Strömungsmediums ist in einer Leitung 24 geführt, die in einer Mischstelle 26 mit der Überbrückungsleitung 20 zusammentrifft. Hier wird durch die Vermischung der Mediumsströme ein Medium geringerer Temperatur erzielt, welches dann den Eintritten 12 der Innenwände 4 zugeführt wird.The preheater 16 after the FIG. 1 For this purpose, a branch point 18 is upstream of the flow medium side. A portion of the flow medium is thus passed around the preheater 16 in a bypass line 20. In the flow-medium-side direction, the preheater 16 is first followed by a further branching point 22, from which a line is led to the inlets 10 of the surrounding wall 2. A part of the preheated flow medium is thus supplied to the enclosure wall 2. Another part of the preheated flow medium is guided in a line 24, which meets in a mixing point 26 with the bypass line 20. Here, a medium of lower temperature is achieved by the mixing of the medium streams, which is then fed to the inlets 12 of the inner walls 4.

In der Leitung 24 ist eine Rückschlagarmatur 30 angeordnet, die eine ungewollte Kühlung durch Rückfluß in die Abzweigstelle 22 verhindert. Weiterhin ist ein manuelles Durchflussregelventil 32 vorgesehen, welches den abgezweigten Massenstrom vorgewärmten Mediums nach oben begrenzt. Durch ein automatisches Durchflussregelventil 28 in der Überbrückungsleitung 20 kann dann die Menge des überbrückten Strömungsmediums und damit die Temperatur des den Innenwänden 4 zugeführten Strömungsmediums leicht geregelt werden.In line 24, a check valve 30 is arranged, which is an unwanted cooling by reflux in the branching point 22 prevented. Furthermore, a manual flow control valve 32 is provided, which limits the diverted mass flow preheated medium upwards. By an automatic flow control valve 28 in the bypass line 20 then the amount of bridged flow medium and thus the temperature of the inner walls 4 supplied flow medium can be easily controlled.

Als Eingangsgrößen für die automatische Regelung im Durchflussregelventil 28 dienen dabei Druck p und Temperatur T im Zwischensammler 6. Aus dem ermittelten Druck wird zunächst die Sattdampftemperatur bestimmt, deren Differenz zur ermittelten Temperatur T die Ist-Unterkühlung ergibt. Um eine Entmischung von Wasser und Dampf im Zwischensammler 6 zu verhindern, ist eine Soll-Unterkühlung im Zwischensammler 6 vorgegeben. Überschreitet die Ist-Unterkühlung die Soll-Unterkühlung, wird das automatische Durchflussregelventil 28 weiter geschlossen, so dass sich die Temperatur an den Eintritten 12 erhöht. Im umgekehrten Fall wird das Durchflussregelventil 28 weiter geöffnet. Falls Druck und Temperatur oberhalb des kritischen Punktes des Strömungsmediums liegen, wird das Durchflussregelventil 28 vollständig geschlossen, da bei überkritischen Drücken bei keiner Temperatur Wasser und Dampf gleichzeitig vorkommen können und damit auch keine Entmischung im Zwischensammler 6 mehr auftreten kann.The pressure p and the temperature T in the intermediate collector 6 serve as input variables for the automatic regulation in the flow control valve 28. From the pressure determined, the saturated steam temperature is initially determined whose difference to the determined temperature T results in the actual undercooling. In order to prevent segregation of water and steam in the intermediate collector 6, a target subcooling in the intermediate collector 6 is specified. If the actual subcooling exceeds the desired subcooling, the automatic flow control valve 28 is closed further, so that the temperature at the inlets 12 increases. In the opposite case, the flow control valve 28 is opened further. If pressure and temperature are above the critical point of the flow medium, the flow control valve 28 is completely closed, since at supercritical pressures at no temperature water and steam can occur simultaneously and thus no segregation in the intermediate collector 6 can occur more.

Eine alternative Ausgestaltung der Erfindung zeigt FIG 2. Der Dampferzeuger 1 ist hier bis auf das Durchflussregelventil 32 zur FIG 1 identisch. Das Durchflussregelventil 32 ist hier wie das Regelventil 28 automatisiert. Dadurch ist es möglich, auch die Menge des den Innenwänden 4 zugeführten Mediums zu regeln. Als Eingangsgröße für die Regelung dient hierbei der Gesamtfluss F zu den Eintritten 12, der an einer Messstelle 34 ermittelt wird. Dabei wird der Gesamtfluss F anhand eines durch Auslegungsrechnungen ermittelten Sollwerts geführt.An alternative embodiment of the invention shows FIG. 2 , The steam generator 1 is here except for the flow control valve 32 for FIG. 1 identical. The flow control valve 32 is here as the control valve 28 automated. This makes it possible to regulate the amount of the inner walls 4 supplied medium. The total flow F to the inlets 12, which is determined at a measuring point 34, serves as the input variable for the control. In this case, the total flow F is guided by means of a setpoint determined by design calculations.

Eine weitere Ausgestaltung der Erfindung ist in FIG 3 dargestellt. Hier ist der Dampferzeuger 1 zur FIG 2 identisch, es sind jedoch weitere Bauteile dargestellt, nämlich der Austritt 36 der Innenwand 8 sowie die Austritte 38 der Umfassungswand 2. Die Mediumsströme aus den Austritten 36, 38 werden zusammengeführt und in einen Wasser-Dampf-Abscheider 40 geführt. Hier ist auch der Hauptregelkreis dargestellt, der die gesamte zugeführte Strömungsmediumsmenge in den Dampferzeuger 1 mittels eines Durchflussregelventils 42 regelt. Als Eingangsgrößen für die Regelung des Gesamtmediumsstroms dienen hierbei Druck p und Temperatur T am dampfseitigen Austritt des Wasser-Dampf-Abscheiders 40.A further embodiment of the invention is in FIG. 3 shown. Here is the steam generator 1 to FIG. 2 identical, it However, further components are shown, namely the outlet 36 of the inner wall 8 and the outlet 38 of the enclosure wall 2. The media streams from the outlets 36, 38 are brought together and fed into a water-steam separator 40. Here is also the main control loop is shown, which controls the total amount of supplied flow medium in the steam generator 1 by means of a flow control valve 42. In this case, pressure p and temperature T at the outlet on the steam side of the water-steam separator 40 serve as input variables for the regulation of the total medium flow.

In FIG 3 wird die den Innenwänden 4 über die Eintritte 12 zugeführte Strömungsmediumsmenge in Abhängigkeit von der Austrittsenthalpie der Innenwand 8 geregelt. Diese wird ermittelt anhand der Temperatur T am Austritt 36 der Innenwand 8 und dem Druck p im Wasser-Dampf-Abscheider 40. Dabei ist als Sollwert für die Austrittsenthalpie der Innenwand 8 die mittlere Fluidenthalpie im Wasser-Dampf-Abscheider 40 vorgesehen. Zusätzlich wird die Austrittstemperatur am Austritt 40 über die maximal zulässige Materialtemperatur begrenzt.In FIG. 3 the amount of flow medium supplied to the inner walls 4 via the inlets 12 is regulated as a function of the exit enthalpy of the inner wall 8. This is determined on the basis of the temperature T at the outlet 36 of the inner wall 8 and the pressure p in the water-steam separator 40. In this case, the average fluid enthalpy in the water-steam separator 40 is provided as a setpoint for the outlet enthalpy of the inner wall 8. In addition, the outlet temperature at the outlet 40 is limited beyond the maximum permissible material temperature.

FIG 4 zeigt schließlich ein Zustandsdiagramm für Wasser/ Dampf, in dem die Zustände des Strömungsmediums in verschiedenen Bereichen des Dampferzeugers eingezeichnet sind. Das Diagramm trägt die spezifische Enthalpie h in kJ/kg gegen den Druck p in bar auf. Dabei sind zunächst Linien gleicher Temperatur T, also Isothermen 44 gezeigt, deren jeweilige Temperaturwerte auf der rechten Achse des Graphen in Grad Celsius angegeben sind. Die beulenförmige Struktur 46 auf der linken Graphseite gibt Aufschluss über den Dampfgehalt des Wasser-/Dampf-Gemischs. Ausserhalb der Struktur 46 ist das Medium einphasig, d. h., es liegt nur Medium in einem Aggregatzustand vor. Die Spitze der Struktur 46 bei etwa 2100 kJ/kg und 221 bar markiert hierbei den kritischen Punkt 48. Steigt der Druck über 221 bar, so kommen bei keiner Temperaur Wasser und Dampf gleichzeitig vor. FIG. 4 finally shows a state diagram for water / steam, in which the states of the flow medium are located in different areas of the steam generator. The diagram plots the specific enthalpy h in kJ / kg against the pressure p in bar. In this case, first lines of the same temperature T, ie isotherms 44 are shown, whose respective temperature values are indicated on the right-hand axis of the graph in degrees Celsius. The bump-shaped structure 46 on the left graphite side provides information about the vapor content of the water / steam mixture. Outside the structure 46, the medium is single-phase, ie, there is only medium in an aggregate state. The tip of the structure 46 at about 2100 kJ / kg and 221 bar here marks the critical point 48. If the pressure rises above 221 bar, water and steam do not occur at any temperature.

Innerhalb der Struktur 46 liegt ein Wasser-Dampf-Gemisch vor. Der Anteil von Wasser und Dampf ist dabei mit Kennlinien 50 in 10-Prozent-Abständen gezeigt, von 0 % Dampfanteil bei Kennlinie 52 % bis 100 % Dampfanteil bei Kennlinie 54. Die Kennlinien 50, 52, 54 konvergieren dabei im kritischen Punkt 48. Innerhalb der Struktur 46 verlaufen die Isothermen 44 senkrecht zur Druckachse, sind also auch Isobaren. Ein Energieeintrag in das Medium bei konstantem Druck bewirkt also keine höhere Temperatur, sondern vielmehr eine Verschiebung des Wasser-Dampf-Anteils zu mehr Dampf hin.Within structure 46 is a water-steam mixture. The proportion of water and steam is shown with curves 50 in 10-percent intervals, from 0% vapor content at characteristic 52% to 100% vapor content at characteristic 54. The curves 50, 52, 54 converge at the critical point 48. Within the structure 46, the isotherms 44 are perpendicular to the pressure axis, so are also isobars. An energy input into the medium at constant pressure thus causes no higher temperature, but rather a shift of the water-steam content to more steam out.

Je nach Lastzustand des Dampferzeugers 1 verläuft der Dampfprozess innerhalb des Dampferzeugers 1 auf unterschiedlichen Lastkennlinien 56, 58, 60, die keine Isobaren sind, da die Druckverluste der Heizflächen dargestellt werden. Die Last bestimmt im Wesentlichen den Druck innerhalb des Gesamtsystems. Lastkennlinie 56 stellt den Dampfprozess bei 100 % Last dar, Lastkennlinie 58 den bei 70 % Last und Lastkennlinie 60 den bei 40 % Last. Die Punkte A, B, C, D stellen dabei jeweils den Zustand des Strömungsmediums an verschiedenen Punkten des Dampferzeugers 1 dar, und zwar zunächst noch ohne die erfindungsgemäße separate Regelung der Temperatur an den Eintritten 12 der Innenwände 4: Punkt A den Zustand am Eintritt des Vorwärmers 16, Punkt B den Zustand am Eintritt 12 der Innenwände 4, Punkt C den Zustand im Zwischensammler 6 und Punkt D den Zustand am Austritt des Verdampfers.Depending on the load condition of the steam generator 1, the steam process within the steam generator 1 runs on different load characteristic curves 56, 58, 60, which are not isobars, since the pressure losses of the heating surfaces are represented. The load essentially determines the pressure within the overall system. Load curve 56 represents the steam process at 100% load, load curve 58 at 70% load and load curve 60 at 40% load. The points A, B, C, D in each case represent the state of the flow medium at different points of the steam generator 1, and first without the separate regulation according to the invention of the temperature at the inlets 12 of the inner walls 4: point A the state at the entrance of the Preheater 16, point B the state at the inlet 12 of the inner walls 4, point C the state in the intermediate collector 6 and point D the state at the outlet of the evaporator.

Wie FIG 4 zeigt, wird der Dampferzeuger bei 100 % Last vollständig im überkritischen Bereich betrieben. An keinem Punkt A, B, C, D auf der Lastkennlinie 56 ist eine Unterscheidung von Wasser und Dampf möglich, so dass keine Entmischung auftreten kann. Bei 70 % Last ist bereits der unterkritische Bereich erreicht, jedoch liegt nur ein kleiner Teil der Lastkennlinie 58 innerhalb der Struktur 46. Die Punkte A, B, C der Lastkennlinie 58 liegen noch unterhalb der Struktur 46, hier liegt einphasiges Wasser vor. Auch hier kann es nicht zu Entmischungen im Zwischensammler 6 kommen.As FIG. 4 shows, the steam generator is fully operated at 100% load in the supercritical range. At no point A, B, C, D on the load curve 56 is a distinction of water and steam possible, so that no segregation can occur. At 70% load, the subcritical range is already reached, but only a small part of the load characteristic 58 is within the structure 46. The points A, B, C of the load characteristic 58 are still below the structure 46, here is single-phase water. Again, it can not come to segregation in the intermediate collector 6.

Bei 40 % Last jedoch liegt ein erheblicher Teil der Lastkennlinie 60 innerhalb der Struktur 46. Die Punkte A und B auf der Lastkennlinie 60 liegen noch unterhalb der Struktur 46, so dass hier noch einphasiges Wasser vorliegt. Der Punkt C der Lastkennlinie 60 liegt jedoch innerhalb der Struktur 46 bei einem Dampfanteil von 10 %. Hier kann es somit zu den beschriebenen Entmischungen im Zwischensammler 6 kommen. Wird jedoch ein Teil des Strömungsmediums am Vorwärmer 16 vorbeigeführt, was in Druckbereichen unterhalb der Lastkennlinie 62 durch Öffnung des Durchflussregelventils 28 erreicht wird, wird die Temperatur und damit der Energiegehalt des Strömungsmediums gezielt reduziert. Auf der Lastkennlinie 60 zeigt Punkt E in diesem Fall den Zustand des Strömungsmediums am Eintritt 12 der Innenwände 4 mit reduzierter Temperatur. Dadurch ist auch der Energiegehalt im Zwischensammler 6 reduziert, dargestellt durch Punkt F auf der Lastkennlinie 60. Dieser Punkt F liegt nun außerhalb der Struktur 46, so dass hier einphasiges Wasser vorliegt und Entmischungen sicher verhindert werden.At 40% load, however, a considerable part of the load characteristic 60 lies within the structure 46. The points A and B on the load characteristic 60 are still below the structure 46, so that one-phase water is still present here. However, the point C of the load characteristic 60 is within the structure 46 at a vapor content of 10%. Here it can thus come to the described segregation in the intermediate collector 6. However, if a portion of the flow medium past the preheater 16, which is achieved in pressure ranges below the load curve 62 by opening the flow control valve 28, the temperature and thus the energy content of the flow medium is selectively reduced. In this case, on the load characteristic 60, point E shows the state of the flow medium at the entrance 12 of the inner walls 4 at a reduced temperature. As a result, the energy content in the intermediate collector 6 is reduced, represented by point F on the load curve 60. This point F is now outside the structure 46, so that here single-phase water is present and segregations are reliably prevented.

Claims (11)

  1. Method for operating a steam generator (1) with a combustion chamber having a plurality of evaporator heating surfaces (2, 4, 8) which are connected in a parallel manner on the flow medium side, wherein flow medium is supplied to an inlet (12) of a first evaporator heating surface (4) at a lower temperature than to an inlet (10) of a second evaporator heating surface (2)
    characterised in that
    a preheater (16) is connected upstream of the inlets (10, 12) on the flow medium side and wherein a first part of the flow medium is conducted past the preheater (16) and wherein the first part of the flow medium is mixed with a second part that is branched downstream of the preheater (16) on the flow medium side.
  2. Method according to claim 1, wherein the mass throughflow of the second part-flow has an upper limit.
  3. Method according to one of claims 1 or 2, wherein the mass throughflow of the first part-flow is regulated based on thermodynamic characteristics at a measurement point downstream of the inlet (12) of the first evaporator heating surface (4).
  4. Method according to claim 3, wherein the measurement point is disposed in an intermediate collector (6) connected downstream of the first evaporator heating surface.
  5. Method according to claim 3 or 4, wherein pressure (p) and temperature (T) are used as thermodynamic characteristics, with the saturated steam temperature being determined from the measured pressure (p) and the actual subcooling value being determined based on the measured temperature (T).
  6. Method according to claim 5, wherein a setpoint value is predefined for subcooling and wherein the mass throughflow of the first part-flow is regulated based on the deviation between the actual and setpoint values for subcooling.
  7. Method according to claim 6, wherein if the actual value for subcooling is lower than the setpoint value, the mass throughflow of the first part-flow is increased.
  8. Method according to one of the preceding claims, wherein the mass throughflow of the second part-flow is regulated based on the mass throughflow of the flow medium supplied to the first evaporator heating surface (4).
  9. Method according to one of the preceding claims, wherein the flow of the medium supplied to the first evaporator heating surface (4) is regulated based on the outlet enthalpy of the last evaporator heating surface (8) connected downstream of the first evaporator heating surface (4) on the flow medium side.
  10. Method according to claim 9, wherein the outlet enthalpy of the evaporator heating surface (8) is determined based on the temperature at the outlet (36) of the flow medium at the last evaporator heating surface (8) connected downstream of the first evaporator heating surface (4) on the flow medium side and the pressure in a water/steam separator (40) connected downstream of the evaporator heating surfaces (2, 4, 8) on the flow medium side.
  11. Steam generator (1) having means for executing the method according to one of claims 1 to 10.
EP11714517.7A 2010-05-07 2011-04-07 Method for operating a steam generator Active EP2567151B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11714517T PL2567151T3 (en) 2010-05-07 2011-04-07 Method for operating a steam generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010028720A DE102010028720A1 (en) 2010-05-07 2010-05-07 Method for operating a steam generator
PCT/EP2011/055401 WO2011138116A2 (en) 2010-05-07 2011-04-07 Method for operating a steam generator

Publications (2)

Publication Number Publication Date
EP2567151A2 EP2567151A2 (en) 2013-03-13
EP2567151B1 true EP2567151B1 (en) 2016-09-28

Family

ID=44021942

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11714517.7A Active EP2567151B1 (en) 2010-05-07 2011-04-07 Method for operating a steam generator

Country Status (9)

Country Link
US (1) US9683733B2 (en)
EP (1) EP2567151B1 (en)
KR (1) KR101852642B1 (en)
CN (1) CN103026136B (en)
CA (1) CA2798366A1 (en)
DE (1) DE102010028720A1 (en)
DK (1) DK2567151T3 (en)
PL (1) PL2567151T3 (en)
WO (1) WO2011138116A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076968A1 (en) * 2011-06-06 2012-12-06 Siemens Aktiengesellschaft Method for operating a circulation heat recovery steam generator
DE102014222682A1 (en) 2014-11-06 2016-05-12 Siemens Aktiengesellschaft Control method for operating a continuous steam generator

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE550617A (en) * 1955-09-16
NL133605C (en) * 1963-03-25
EP0308728B1 (en) * 1987-09-21 1991-06-05 Siemens Aktiengesellschaft Method of operating a once-through steam generator
JPH01157551A (en) 1987-09-24 1989-06-20 Hitachi Ltd Wafer-scale integrated circuit
AT394100B (en) 1988-09-14 1992-01-27 Sgp Va Energie Umwelt HEAT STEAM GENERATOR
DE59300573D1 (en) * 1992-03-16 1995-10-19 Siemens Ag Method for operating a steam generation plant and steam generator plant.
BE1010594A3 (en) * 1996-09-02 1998-11-03 Cockerill Mech Ind Sa Process for conducting the boiler boiler and forced circulation for its implementation.
DE19651678A1 (en) * 1996-12-12 1998-06-25 Siemens Ag Steam generator
UA42888C2 (en) * 1997-06-30 2001-11-15 Сіменс Акціенгезелльшафт Waste-heat steam generator
DE19926326A1 (en) * 1999-06-09 2000-12-14 Abb Alstom Power Ch Ag Process and plant for heating a liquid medium
US6460490B1 (en) * 2001-12-20 2002-10-08 The United States Of America As Represented By The Secretary Of The Navy Flow control system for a forced recirculation boiler
JP2003214601A (en) * 2002-01-21 2003-07-30 Mitsubishi Heavy Ind Ltd Water supply equipment and method for boiler and boiler system
DE10354136B4 (en) * 2002-11-22 2014-04-03 Alstom Technology Ltd. Circulating fluidized bed reactor
US7243618B2 (en) * 2005-10-13 2007-07-17 Gurevich Arkadiy M Steam generator with hybrid circulation
CN1888531B (en) * 2006-04-25 2010-08-11 黄昕旸 Large coal powder boiler flying ash recycling method and apparatus
CN200940824Y (en) * 2006-08-18 2007-08-29 东方锅炉(集团)股份有限公司 Circulation fluidized bed boiler hearth with back-to-back water cooling wall partition
CN1948831B (en) * 2006-11-09 2010-05-12 上海锅炉厂有限公司 Arranging method of layered fluidization air distribution plate of fluidized bed boiler
EP2034137A1 (en) * 2007-01-30 2009-03-11 Siemens Aktiengesellschaft Method for operating a gas and steam turbine plant and the correspondingly designed gas and steam turbine plant
WO2007133071A2 (en) * 2007-04-18 2007-11-22 Nem B.V. Bottom-fed steam generator with separator and downcomer conduit

Also Published As

Publication number Publication date
KR20130098856A (en) 2013-09-05
CN103026136B (en) 2015-03-25
KR101852642B1 (en) 2018-04-26
DK2567151T3 (en) 2017-01-09
CA2798366A1 (en) 2011-11-10
US20130047938A1 (en) 2013-02-28
WO2011138116A2 (en) 2011-11-10
PL2567151T3 (en) 2017-06-30
US9683733B2 (en) 2017-06-20
DE102010028720A1 (en) 2011-11-10
EP2567151A2 (en) 2013-03-13
CN103026136A (en) 2013-04-03
WO2011138116A3 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
DE102009036064B4 (en) in order to operate a forced-circulation steam generator operating at a steam temperature of more than 650 ° C, as well as forced circulation steam generators
EP2359058B1 (en) Method of operating a waste heat steam generator
EP2126291B1 (en) Method for operating a gas and steam turbine plant and a gas and steam turbine plant for this purpose
EP0591163B1 (en) Combined gas and steam turbine plant
EP0617778B1 (en) Fossil-fuelled continuous steam generator
EP1512907A1 (en) Method for starting a once-through steam generator and the once-through steam generator for carrying out said method
EP1390606B2 (en) Device for cooling coolant in a gas turbine and gas and steam turbine with said device
EP2442061B1 (en) Method for cooling combustion gases in a heat exchanger of a steam generation plant
DE69733812T2 (en) BOILER
CH496220A (en) Method for preheating the combustion air of a furnace and furnace for carrying out the method
EP1794495B1 (en) Fossil-energy heated continuous steam generator
EP2321578B1 (en) Continuous steam generator
EP2567151B1 (en) Method for operating a steam generator
EP3017152B1 (en) Combined cycle gas turbine plant having a waste heat steam generator and fuel pre-heating
EP0410111A1 (en) Heat recovery boiler for a gas and steam turbine plant
EP1166015B1 (en) Fossil-fuel fired continuous-flow steam generator
WO2000060282A1 (en) Fossil-fuel fired continuous steam generator
EP2601441B1 (en) Forced-flow steam generator
EP2564117B1 (en) Steam generator
DE102010028681A1 (en) Solar thermal forced circulation steam generator with internally ribbed pipes
DE102010043683A1 (en) Fossil fired steam generator
DE19734862A1 (en) Steam pressure system
DE102010040214A1 (en) Drilling an evaporator heating surface for continuous steam generators in solar tower power plants with direct evaporation and natural circulation characteristics

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121008

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRUECKNER, JAN

Inventor name: EFFERT, MARTIN

Inventor name: BRODESSER, JOACHIM

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151217

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F22B 29/00 20060101AFI20160404BHEP

Ipc: F22D 5/36 20060101ALI20160404BHEP

Ipc: F22B 35/10 20060101ALI20160404BHEP

INTG Intention to grant announced

Effective date: 20160503

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 833101

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011010792

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20170103

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170128

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011010792

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

26N No opposition filed

Effective date: 20170629

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170407

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 833101

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011010792

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220818 AND 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230421

Year of fee payment: 13

Ref country code: DK

Payment date: 20230421

Year of fee payment: 13

Ref country code: DE

Payment date: 20220617

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230406

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230418

Year of fee payment: 13