EP2442061B1 - Method for cooling combustion gases in a heat exchanger of a steam generation plant - Google Patents
Method for cooling combustion gases in a heat exchanger of a steam generation plant Download PDFInfo
- Publication number
- EP2442061B1 EP2442061B1 EP11006156.1A EP11006156A EP2442061B1 EP 2442061 B1 EP2442061 B1 EP 2442061B1 EP 11006156 A EP11006156 A EP 11006156A EP 2442061 B1 EP2442061 B1 EP 2442061B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- medium
- bypass
- steam generation
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 21
- 238000001816 cooling Methods 0.000 title claims description 7
- 239000000567 combustion gas Substances 0.000 title claims 8
- 238000002485 combustion reaction Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 2
- 239000003546 flue gas Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 14
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000002826 coolant Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
- F28F27/02—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/18—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B15/00—Water-tube boilers of horizontal type, i.e. the water-tube sets being arranged horizontally
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B31/00—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B31/00—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
- F22B31/08—Installation of heat-exchange apparatus or of means in boilers for heating air supplied for combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22D—PREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
- F22D1/00—Feed-water heaters, i.e. economisers or like preheaters
- F22D1/02—Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G1/00—Steam superheating characterised by heating method
- F22G1/02—Steam superheating characterised by heating method with heat supply by hot flue gases from the furnace of the steam boiler
Definitions
- the invention relates to a method for cooling the flue gas of a furnace in a heat exchanger of a steam generating plant.
- Heat exchangers are needed in many applications.
- the transmitted energy is determined by the different temperatures of the guided in the heat exchanger media.
- different control mechanisms are known to vary the flow rate of these media. Since the heat exchanger surface can not be changed as a rule, but often certain media temperatures should be achieved at the heat exchanger outlet, the flow rate in the heat exchanger is varied.
- An alternative is to operate the heat exchanger in cocurrent or countercurrent. While in DC operation at the heat exchanger output, the media temperatures can be closely approximated, the countercurrent operation usually provides a higher heat exchange at the same heat exchanger surface.
- the switchover from DC to countercurrent excretes as a control mechanism, since already during installation of the heat exchanger, the piping is set and this can not be changed during operation.
- the WO 2010/034292 proposes a shell-and-tube heat exchanger in which the medium flows of process plants to be cooled flow through straight heating surface tubes and thereby release the existing heat of the hot medium flow via the tube wall to the cooling medium surrounding the tubes.
- Such heat exchangers are not suitable for cooling the flue gas of combustion plants.
- a special field of application of particularly large heat exchangers lies in the cooling of the gases of combustion plants, which are operated as a steam generating plant.
- the air supplied to the grate or the combustion area air is preheated and the exhaust gases are cooled.
- Heat exchangers are used as evaporators and superheaters to supply a turbine with steam.
- the feedwater of the steam generator is often preheated in an Ecomizer for further cooling of the flue gases.
- the exhaust gas temperature varies depending on the combustion process.
- deposits are formed in the evaporator and in the superheaters, which affect the effectiveness of the heat exchanger.
- the Ecomizer will eventually be exposed to different exhaust gas temperatures.
- the efficiency of the Ecomizers varies according to the deposits caused by the flue gases on the heat exchanger tubes.
- a denitrification system for the flue gases is provided, the catalytic effects of which run optimally only at certain temperatures. These are, for example, in an SCR plant between 250 ° C and 270 ° C.
- the heat exchangers still have a high efficiency, which decreases during the service life, however, as a result of deposits.
- the running time of the plant is determined in particular by the fact that the flue gas temperature at the denitrification plant must remain within a certain temperature window.
- the invention is therefore based on the object of developing a generic-Bes method in such a way that the desired temperature window can be maintained longer.
- the Ecomizer can initially be operated in DC, for example.
- DC direct current to countercurrent
- the flue gas temperature rises.
- the flue gas temperature is then lowered.
- the heat exchanger can continue to operate as the flue gas temperature remains within the specified temperature window.
- the flue gas temperature can thus be reduced from 265 degrees Celsius to 255 degrees Celsius by switching from direct current to countercurrent. This can significantly extend the runtime of the system.
- valves in the supply line, the discharge line and the bypasses can be meaningfully controlled so that no lines with superheated media can be closed on both sides. This is particularly necessary in Darnpfer Wegungsanlagen necessary to avoid excessive pressures in the lines.
- a three-way valve be arranged between the medium inlet, the first bypass and the feed line.
- a three-way valve ensures that the medium is distributed from the medium inlet to the bypass and supply line.
- the three-way valve can be set so that it always passes through the entire inflow at the medium inlet, without that at this point the line system is reduced in cross section or even closed.
- An advantageous use of the device is in the treatment of liquid media. This mainly affects media that are over 130 ° C hot.
- One embodiment variant provides that the gas flows in the direction from the heat exchanger inlet to the heat exchanger outlet. Depending on the circuit of the system, however, the gas can also flow from the heat exchanger outlet to the heat exchanger inlet.
- the gas has a temperature above 100 ° C.
- the device described can be used in a steam generating plant at various locations.
- the heat exchanger may be a superheater, an ecomizer or a combustion air preheater.
- heat exchangers of a steam generating plant can be operated so that the required gases are kept in special temperature windows and it can be switched during operation between DC and countercurrent mode.
- This method can be implemented in a particularly simple manner if the changeover takes place via two three-way valves. This simplifies valve control and, regardless of control by valve design, ensures that the steam generating system does not contain overheated media in lines that can be completely closed at the line inlet and outlet.
- the device 1 shown essentially consists of a heat exchanger 2, which is supplied via a feed line 3 with a medium 16.
- This feed line 3 leads from a medium inlet 4 to the heat exchanger inlet 5.
- a discharge line 6 from the heat exchanger outlet 7 is provided at the side facing away from the medium exchanger inlet side.
- a first bypass 8 leads from the medium inlet 4 to the outlet 6 and a second bypass 9 leads from the supply line 3 to the medium outlet 10.
- a first bypass valve 11 is provided between the medium inlet and the first bypass 8, and a second bypass valve 12 is provided between the second bypass 9 and the medium outlet 10.
- a supply valve 13 is arranged and in the discharge line 6, a discharge valve 14 is provided.
- the second medium in the present case is a gas whose flow is indicated by the arrows 15.
- the heat exchanger 2 is thus in the in FIG. 1 shown example operated in DC.
- the supply line valve 13 and the discharge valve 14 are opened, so that the medium 16 flows through the heat exchanger 2 in direct current to the gas 15.
- the first bypass 8 allows via the first bypass valve 11, an adjustment of the heat exchanger performance and the temperature of the medium at the medium outlet 10.
- the second bypass valve 12 is closed, so that no medium flows through the second bypass 9.
- the medium 16 flows through the first bypass valve 11 and the first bypass 8 through the heat exchanger 2 to the second bypass valve 12 and from there to the medium outlet 10. Since the gas continues to flow in the direction of the arrows 15, the heat exchanger 2 in this valve setting in Countercurrent operated. An adjustment of the medium temperature at the medium outlet 10 is possible via the position of the supply valve 13, via which a bypass flow from the medium inlet 4 directly to the medium outlet 10 is achieved. The path from the medium inlet via the outlet 6 to the medium outlet 10 is closed by the discharge valve 14.
- FIGS. 3 and 4 are the ones in the Figures 1 and 2 shown circuits in a corresponding manner, however, each described with 2 two-way valves.
- the bypass valve 11 and the supply valve 13 have been combined to form a first three-way valve 17, while the bypass valve 12 and the discharge valve 14 are combined to form a second three-way valve 18.
- the first bypass valve 17 thus distributes the medium 16 coming from the medium inlet 4 to the supply line 3 and the first bypass 8.
- the second three-way valve 18 carries the medium guided in the discharge 6 with the medium coming from the second bypass 9 to the medium outlet 10.
- the heat exchanger 2 can thus from the in FIG. 3 shown DC operation in the in FIG. 4 shown countercurrent operation can be switched. While in DC operation the second bypass 9 is closed via the setting on the second three-way valve 18, the outlet 6 is closed in countercurrent operation via the second three-way valve 18, while the second bypass 9 is opened.
- steam generating plant 20 is the furnace in which burned with preheated combustion air fuels such as waste in particular, not shown.
- the exhaust gases produced during combustion are indicated by the arrows 21, 22 and 23.
- the medium thus flows from the medium inlet 37 via the first three-way valve 34 and the supply line 38 to the Ecomizer 28 and the Ecomizer 28 via the discharge line 39 and the second two-way valve 35 on to the boiler drum 40.
- a control of the medium temperature via the first bypass 41 between the first bypass valve 34 and the drain 39 is possible.
- FIG. 6 shows that by a simple switch on the second bypass valve 35 of the Ecomizer 28 of the in FIG. 5 shown DC operation in a in FIG. 6 shown countercurrent operation can be switched.
- the water 29 flows in this circuit from the medium inlet 37 via the first two-way valve 34 and the first bypass 41 to the Ecomizer 28. From there, the water passes through the second bypass 36 to the second three-way valve 35 and back to the boiler drum 40th
- the supply line 38 assumes in this circuit the function of a possible bypass to controlled by the first three-way valve 34 water on Ecomizer 28 over to lead directly to the first three-way valve 35 and from there to the boiler drum 40.
- Serving as the cooling medium water 29 is vaporized in the evaporator 24 and steam initially supplied via the first superheater 25, then via the second superheater 26 and finally via the third superheater 27 of the turbine 30, which drives the generator 31.
- This makes it possible to provide a control of the medium temperatures on the gas and water side in this circuit without additional pipe or valve effort in a simple manner.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
- Chimneys And Flues (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Kühlen des Rauchgases einer Feuerungsanlage in einem Wärmetauscher einer Dampferzeugungsanlage.The invention relates to a method for cooling the flue gas of a furnace in a heat exchanger of a steam generating plant.
Wärmetauscher werden in vielen Anwendungen benötigt. Die übertragene Energie wird dabei von den unterschiedlichen Temperaturen der im Wärmetaucher geführten Medien bestimmt. Hierzu sind unterschiedliche Regelungsmechanismen bekannt, um den Volumenstrom dieser Medien zu variieren. Da die Wärmetauscherfläche in der Regel nicht verändert werden kann, häufig jedoch bestimmte Medientemperaturen am Wärmetauscherausgang erreicht werden sollten, wird die Strömungsgeschwindigkeit im Wärmetauscher variiert.Heat exchangers are needed in many applications. The transmitted energy is determined by the different temperatures of the guided in the heat exchanger media. For this purpose, different control mechanisms are known to vary the flow rate of these media. Since the heat exchanger surface can not be changed as a rule, but often certain media temperatures should be achieved at the heat exchanger outlet, the flow rate in the heat exchanger is varied.
Eine Alternative hierzu liegt darin, den Wärmetauscher im Gleichstrom oder im Gegenstrom zu betreiben. Während im Gleichstrombetrieb am Wärmetauscherausgang die Medientemperaturen stark angenähert werden können, bietet der Gegenstrombetrieb in der Regel einen höheren Wärmeaustausch bei gleicher Wärmetauscherfläche. Die Umschaltung von Gleichstrom auf Gegenstrom scheidet als Regelungsmechanismus aus, da bereits beim Einbau des Wärmetauschers die Verrohrung festgelegt wird und diese während des Betriebs nicht mehr verändert werden kann.An alternative is to operate the heat exchanger in cocurrent or countercurrent. While in DC operation at the heat exchanger output, the media temperatures can be closely approximated, the countercurrent operation usually provides a higher heat exchange at the same heat exchanger surface. The switchover from DC to countercurrent excretes as a control mechanism, since already during installation of the heat exchanger, the piping is set and this can not be changed during operation.
Um die Temperatur des Kühlwassers eines Wärmetauschers zur Vermeidung von Korrosion auf ein Temperaturniveau oberhalb des Schwefelsäuretaupunktes von etwa 120 °C zu heben, schlägt die
Die
Ein spezielles Anwendungsgebiet besonders großer Wärmetauscher liegt in der Kühlung der Gase von Feuerungsanlagen, die als Dampferzeugungsanlage betrieben werden. Bei derartigen Anlagen ist die dem Feuerrost beziehungsweise dem Verbrennungsbereich zugeführte Luft vorzuwärmen und die Abgase werden gekühlt. Dabei werden Wärmetauscher als Verdampfer und Überhitzer eingesetzt, um eine Turbine mit Dampf zu versorgen. Das Speisewasser des Dampferzeugers wird häufig in einem Ecomizer zur weiteren Abkühlung der Rauchgase vorgewärmt.A special field of application of particularly large heat exchangers lies in the cooling of the gases of combustion plants, which are operated as a steam generating plant. In such systems, the air supplied to the grate or the combustion area air is preheated and the exhaust gases are cooled. Heat exchangers are used as evaporators and superheaters to supply a turbine with steam. The feedwater of the steam generator is often preheated in an Ecomizer for further cooling of the flue gases.
Während der Laufzeit der Dampferzeugungsanlage variiert vom Verbrennungsprozess vorgegeben die Abgastemperatur. Außerdem entstehen Ablagerungen im Verdampfer und in den Überhitzern, die die Effektivität der Wärmetauscher beeinträchtigen. Dadurch wird schließlich der Ecomizer mit unterschiedlichen Abgastemperaturen beaufschlagt. Außerdem variiert auch der Wirkungsgrad des Ecomizers entsprechend den durch die Rauchgase hervorgerufenen Ablagerungen an den Wärmetauscherrohren.During the running time of the steam generating plant, the exhaust gas temperature varies depending on the combustion process. In addition, deposits are formed in the evaporator and in the superheaters, which affect the effectiveness of the heat exchanger. As a result, the Ecomizer will eventually be exposed to different exhaust gas temperatures. In addition, the efficiency of the Ecomizers varies according to the deposits caused by the flue gases on the heat exchanger tubes.
Meist ist hinter dem Ecomizer eine Entstickungsanlage für die Rauchgase vorgesehen, deren katalytische Effekte nur bei bestimmten Temperaturen optimal ablaufen. Diese liegen beispielsweise bei einer SCR-Anlage zwischen 250 °C und 270 °C.Usually behind the Ecomizer a denitrification system for the flue gases is provided, the catalytic effects of which run optimally only at certain temperatures. These are, for example, in an SCR plant between 250 ° C and 270 ° C.
Während den ersten Betriebsstunden einer derartigen Anlage haben die Wärmetauscher noch einen hohen Wirkungsgrad, der während der Betriebsdauer jedoch in Folge von Ablagerungen sinkt. Die Laufdauer der Anlage wird insbesondere auch davon bestimmt, dass die Rauchgastemperatur an der Entstickungsanlage in einem bestimmten Temperaturfenster bleiben muss.During the first hours of operation of such a system, the heat exchangers still have a high efficiency, which decreases during the service life, however, as a result of deposits. The running time of the plant is determined in particular by the fact that the flue gas temperature at the denitrification plant must remain within a certain temperature window.
Der Erfindung liegt daher die Aufgabe zugrunde, ein gattungsgemä-Bes Verfahren derart weiterzuentwickeln, dass länger die angestrebten Temperaturfenster eingehalten werden können.The invention is therefore based on the object of developing a generic-Bes method in such a way that the desired temperature window can be maintained longer.
Diese Aufgabe wird bei einem gattungsgemäßen Verfahrendadurch gelöst, dass der Wärmetauscher über Ventile einstellbar anfangs im Gleichstrom und, wenn die Effektivität des Wärmetauschers durch Ablagerungen sinkt, die Rauchgastemperatur durch Umschaltung des Wärmetauschers von Gleichstrombetrieb auf Gegenstrombetrieb gesenkt wird.This object is achieved in a generic method by the fact that the heat exchanger via valves adjustable initially in DC and, if the effectiveness of the heat exchanger drops by deposits, the flue gas temperature is lowered by switching the heat exchanger from DC operation to countercurrent operation.
Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.Advantageous embodiments are the subject of the dependent claims.
Das Vorsehen von festen Bypässen an den angegebenen Stellen führt dazu, dass durch die einfache Nachrüstung von zwei Leitungen und entsprechenden Ventilen der Wärmetauscher im Gleichstrom und im Gegenstrom betrieben werden kann.The provision of fixed bypasses at the specified points means that the heat exchanger can be operated in cocurrent and countercurrent by simply retrofitting two lines and corresponding valves.
Am Beispiel eines Ecomizers einer Dampferzeugungsanlage führt dies dazu, dass der Ecomizer beispielsweise anfangs im Gleichstrom betrieben werden kann. Wenn die Effektivität des Wärmetauschers durch Ablagerungen sinkt, steigt die Rauchgastemperatur. Durch Umschaltung des Wärmetauschers von Gleichstrombetrieb auf Gegenstrombetrieb wird dann die Rauchgastemperatur gesenkt. Der Wärmetauscher kann dadurch weiter betrieben werden, da die Rauchgastemperatur weiter im vorgegebenen Temperaturfenster bleibt. Am Beispiel des Ecomizers, der vor eine SCR-Anlage geschaltet ist, kann die Rauchgastemperatur somit durch reines Umschalten von Gleichstrom auf Gegenstrom von 265 Grad Celsius auf 255 Grad Celsius gesenkt werden. Dadurch kann die Laufzeit der Anlage deutlich verlängert werden.Using the example of an ecometer of a steam generating plant, this means that the Ecomizer can initially be operated in DC, for example. When the efficiency of the heat exchanger decreases due to deposits, the flue gas temperature rises. By switching the heat exchanger from DC operation to countercurrent operation, the flue gas temperature is then lowered. The heat exchanger can continue to operate as the flue gas temperature remains within the specified temperature window. Using the example of the Ecomizer, which is connected upstream of an SCR system, the flue gas temperature can thus be reduced from 265 degrees Celsius to 255 degrees Celsius by switching from direct current to countercurrent. This can significantly extend the runtime of the system.
Es ist möglich, in der Zuleitung, der Ableitung und den Bypässen Ventile vorzusehen. Diese Ventile können sinnvoll so gesteuert werden, dass keine Leitungen mit überhitzten Medien beidseitig verschlossen werden können. Dies ist insbesondere bei Darnpferzeugungsanlagen notwendig, um zu hohe Drücke in den Leitungen zu vermeiden.It is possible to provide valves in the supply line, the discharge line and the bypasses. These valves can be meaningfully controlled so that no lines with superheated media can be closed on both sides. This is particularly necessary in Darnpferzeugungsanlagen necessary to avoid excessive pressures in the lines.
Um eine derartige Regelung zu vereinfachen wird vorgeschlagen, dass zwischen Mediumeinlass, erstem Bypass und Zuleitung ein Dreiwegeventil angeordnet ist. Ein Dreiwegeventil sorgt dafür, dass das Medium vom Mediumeinlass auf Bypass und Zuleitung verteilt wird. Dabei kann das Dreiwegeventil so eingestellt werden, dass es immer den gesamten Zustrom am Mediumeinlass durchleitet, ohne dass an dieser Stelle das Leitungssystem im Querschnitt reduziert wird oder sogar geschlossen wird.In order to simplify such a regulation, it is proposed that a three-way valve be arranged between the medium inlet, the first bypass and the feed line. A three-way valve ensures that the medium is distributed from the medium inlet to the bypass and supply line. In this case, the three-way valve can be set so that it always passes through the entire inflow at the medium inlet, without that at this point the line system is reduced in cross section or even closed.
Vorteilhaft ist es, in entsprechender Weise auch zwischen Mediumauslass, zweitem Bypass und Ableitung ein Dreiwegeventil anzuordnen. Auch hier sollte ein Schließen der Rohrleitungen vermieden werden und vorzugsweise sogar während der Schaltung des Ventils der Gesamtvolumenstrom nahezu konstant bleiben.It is advantageous to arrange a three-way valve in a corresponding manner also between medium outlet, second bypass and discharge. Again, a closing of the pipes should be avoided and preferably remain even during the circuit of the valve, the total volume flow almost constant.
Ein vorteilhafter Einsatzbereich der Vorrichtung liegt bei der Behandlung von flüssigen Medien. Dies betrifft vor allem Medien, die über 130 °C heiß sind.An advantageous use of the device is in the treatment of liquid media. This mainly affects media that are over 130 ° C hot.
Dabei können dem Medium gegenüber im Wärmetauscher unterschiedliche Medien geführt werden. Ein breiter Anwendungsbereich erschließt sich bei Wärmetauschern, die auch von einem Gas durchflossen sind.In this case, different media can be passed to the medium in the heat exchanger. A wide range of applications opens up in heat exchangers, which are also traversed by a gas.
Eine Ausführungsvariante sieht hierbei vor, dass das Gas in Richtung vom Wärmetauschereingang zum Wärmetauscherausgang fließt. Je nach Schaltung der Anlage kann das Gas jedoch auch vom Wärmetauscherausgang zum Wärmetauschereingang fließen.One embodiment variant provides that the gas flows in the direction from the heat exchanger inlet to the heat exchanger outlet. Depending on the circuit of the system, however, the gas can also flow from the heat exchanger outlet to the heat exchanger inlet.
Da ein breites Anwendungsgebiet der Vorrichtung im Bereich der Dampferzeuger liegt, wird vorgeschlagen, dass das Gas eine Temperatur oberhalb von 100 °C aufweist.Since a broad field of application of the device is in the field of steam generators, it is proposed that the gas has a temperature above 100 ° C.
Die beschriebene Vorrichtung ist bei einer Dampferzeugungsanlage an verschiedenen Stellen einsetzbar. Der Wärmetauscher kann hierbei ein Überhitzer, ein Ecomizer oder ein Verbrennungsluftvorwärmer sein.The device described can be used in a steam generating plant at various locations. The heat exchanger may be a superheater, an ecomizer or a combustion air preheater.
Besonders vorteilhaft ist der Einsatz bei einer Vorrichtung mit einer Entstickungseinrichtung, da dadurch auf einfache Art und Weise die Rauchgastemperatur an der Entstickungseinrichtung über eine lange Betriebsdauer der Anlage in einem vorgegebenen Temperaturfenster gehalten werden kann.Particularly advantageous is the use in a device with a denitrification, as this can be kept in a simple manner, the flue gas temperature at the denitrification over a long period of operation of the system in a predetermined temperature window.
Da der Wärmetauscher über Ventile einstellbar im Gleichstrom und im Gegenstrom betrieben wird, können Wärmetauscher einer Dampferzeugungsanlage so betrieben werden, dass die benötigten Gase in speziellen Temperaturfenstern gehalten werden und es kann während des Betriebes zwischen Gleich- und Gegenstromfahrweise umgeschaltet werden.Since the heat exchanger is operated via valves adjustable in cocurrent and countercurrent, heat exchangers of a steam generating plant can be operated so that the required gases are kept in special temperature windows and it can be switched during operation between DC and countercurrent mode.
Dieses Verfahren ist auf besonders einfache Art und Weise umsetzbar, wenn die Umstellung über zwei Dreiwegeventile erfolgt. Das vereinfacht die Ventilsteuerung und ermöglicht es, unabhängig von der Steuerung durch den Aufbau der Ventile sicherzustellen, dass in der Dampferzeugungsanlage keine überhitzten Medien in Leitungen geführt werden, die am Leitungseingang und am Leitungsausgang vollständig verschlossen werden können.This method can be implemented in a particularly simple manner if the changeover takes place via two three-way valves. This simplifies valve control and, regardless of control by valve design, ensures that the steam generating system does not contain overheated media in lines that can be completely closed at the line inlet and outlet.
Ausführungsbeispiele zur Vorrichtung und zum Verfahren sind in der Zeichnung dargestellt und werden im Folgenden näher erläutert. Es zeigt:
Figur 1- eine Wärmetauscherschaltung mit vier Ventilen im Gleichstrombetrieb,
Figur 2- eine Wärmetauscherschaltung mit vier Ventilen im Gegenstrombetrieb,
Figur 3- eine Wärmetauscherschaltung mit zwei Ventilen im Gleichstrombetrieb,
Figur 4- eine Wärmetauscherschaltung mit zwei Ventilen im Gegenstrombetrieb,
- Figur 5
- eine Dampferzeugungsanlage mit einem Ecomizer im Gleichstrombetrieb und
Figur 6- eine Dampferzeugungsanlage mit einem Ecomizer im Gegenstrombetrieb.
- FIG. 1
- a heat exchanger circuit with four valves in DC operation,
- FIG. 2
- a heat exchanger circuit with four valves in countercurrent operation,
- FIG. 3
- a heat exchanger circuit with two valves in DC operation,
- FIG. 4
- a heat exchanger circuit with two valves in countercurrent operation,
- FIG. 5
- a steam generating plant with an Ecomizer in DC operation and
- FIG. 6
- a steam generating plant with an Ecomizer in countercurrent operation.
Die in
Ein erstes Bypassventil 11 ist zwischen dem Mediumeinlass und dem ersten Bypass 8 vorgesehen und ein zweites Bypassventil 12 ist zwischen dem zweiten Bypass 9 und dem Mediumauslass 10 vorgesehen. In der Zuleitung 3 ist ein Zuleitungsventil 13 angeordnet und in der Ableitung 6 ist ein Ableitungsventil 14 vorgesehen.A
Das zweite Medium ist im vorliegenden Fall ein Gas, dessen Strömung mit den Pfeilen 15 angedeutet ist. Der Wärmetauscher 2 ist somit in dem in
Hierzu sind das Zuleitungsventil 13 und das Ableitungsventil 14 geöffnet, so dass das Medium 16 im Gleichstrom zum Gas 15 den Wärmetauscher 2 durchfließt. Der erste Bypass 8 ermöglicht dabei über das erste Bypassventil 11 eine Einstellung der Wärmetauscherleistung und der Temperatur des Mediums am Mediumauslass 10. In dieser Schaltung ist das zweite Bypassventil 12 geschlossen, so dass kein Medium durch den zweiten Bypass 9 fließt.For this purpose, the
Bei der in
In den
Über das zweite Dreiwegeventil 18 kann der Wärmetauscher 2 somit vom in
Bei der in
Diese Rauchgase durchströmen zunächst einen Verdampfer 24 und danach drei Überhitzer 25, 26, 27. Schließlich durchströmen die Rauchgase einen Ecomizer 28, um anschließend einer katalytischen Entstickungsanlage (SCR), die in der Darstellung nicht gezeigt ist, zugeführt zu werden.These flue gases first flow through an evaporator 24 and then three
Das als Kühlmedium dienende Wasser 29 wird im Verdampfer 24 verdampft und dampfförmig zunächst über den ersten Überhitzer 25, dann über den dritten Überhitzer 27 und schließlich über den zweiten Überhitzer 26 einer Turbine 30 zugeführt, die einen Generator 31 antreibt. Danach durchfließt es einen Kondensator 32 und wird über eine Pumpe 33 zum Ecomizer 28 gefördert. Dabei ist das erste Dreiwegeventil 34 entsprechend der in
Das Medium strömt somit vom Mediumeinlass 37 über das erste Dreiwegeventil 34 und die Zuleitung 38 zum Ecomizer 28 und vom Ecomizer 28 über die Ableitung 39 und das zweite Zweiwegeventil 35 weiter zur Kesseltrommel 40. Dabei ist eine Steuerung der Mediumtemperatur über den ersten Bypass 41 zwischen dem ersten Bypassventil 34 und der Ableitung 39 möglich.The medium thus flows from the
Die
Die Zuleitung 38 übernimmt bei dieser Schaltung die Funktion eines möglichen Bypasses, um durch das erste Dreiwegeventil 34 gesteuert Wasser am Ecomizer 28 vorbei direkt zum ersten Dreiwegeventil 35 und von dort zur Kesseltrommel 40 zu führen. Das als Kühlmedium dienende Wasser 29 wird im Verdampfer 24 verdampft und dampfförmig zunächst über den ersten Überhitzer 25, dann über den zweiten Überhitzer 26 und schließlich über den dritten Überhitzer 27 der Turbine 30 zugeführt, die den Generator 31 antreibt. Dies ermöglicht es auch bei dieser Schaltung ohne zusätzlichen Rohr- oder Ventilaufwand auf einfache Art und Weise eine Regelung der Mediumtemperaturen auf der Gas- und der Wasserseite vorzusehen. Außerdem kann während des Betriebes von Gleichstrom- auf Gegenstromfahrweise und zurück umgeschaltet werden.The
Claims (14)
- A method of cooling the combustion gas in a heat exchanger (2) of a steam generation plant (20), characterized in that the heat exchanger is adjustable via valves (34, 35) initially in the direct current and, if the effectiveness of the heat exchanger drops due to deposits, the combustion gas temperature is lowered by switching the heat exchanger from direct-current operation to counter-current operation.
- The method according to claim 1, characterized in that the switch takes place via two three-way valves (34, 35).
- The method according to one of the preceding claims, characterized in that the combustion gas is fed following cooling to a denitrification plant and the temperature of the combustion gas is kept within a defined temperature window for the running duration of the combustion plant.
- The method according to one of the preceding claims, characterized in that the medium (16) is liquid.
- The method according to one of the preceding claims, characterized in that the medium (16) is over 130 °C hot.
- The method according to one of the preceding claims, characterized in that the combustion gas exhibits a temperature of over 100 °C.
- The method according to one of the preceding claims, characterized in that a denitrification plant for the combustion gases is provided as an SCR plant behind an ecomizer and the combustion gas is cooled to a temperature of between 250 and 270 °C.
- The method according to one of the preceding claims, characterized in that the heat exchanger exhibits a supply line (3) for a medium (16) from a medium inlet (4) to a heat exchanger inlet (5) and a discharge (6) from the heat exchanger outlet (7), wherein the heat exchanger has a first bypass (8) from the medium inlet (4) to the discharge (6) and a second bypass (9) from the supply line (3) to the medium outlet (10) and valves (11 - 14), so that the medium (16) can also flow from the heat exchanger outlet (7) to the heat exchanger inlet (5).
- The method according to claim 8, characterized in that a three-way valve (17) is arranged between the medium inlet (4), first bypass (8) and supply line (3).
- The method according to claim 8 or 9, characterized in that a three-way valve (18) is arranged between the medium outlet (10), second bypass (9) and discharge (6).
- The method according to one of the preceding claims, characterized in that the heat exchanger (2) is a vaporiser (24) of a steam generation plant (20).
- The method according to one of claims 1 to 10, characterized in that the heat exchanger (2) is a superheater (25, 26, 27) of a steam generation plant (20).
- The method according to one of claims 1 to 10, characterized in that the heat exchanger (2) is an ecomiser (28) of a steam generation plant (20).
- The method according to one of claims 1 to 10, characterized in that the heat exchanger (2) is a combustion air preheater of a steam generation plant (20).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL11006156T PL2442061T3 (en) | 2010-10-12 | 2011-07-27 | Method for cooling combustion gases in a heat exchanger of a steam generation plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010048065A DE102010048065A1 (en) | 2010-10-12 | 2010-10-12 | Device with a heat exchanger and method for operating a heat exchanger of a steam generating plant |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2442061A2 EP2442061A2 (en) | 2012-04-18 |
EP2442061A3 EP2442061A3 (en) | 2015-03-04 |
EP2442061B1 true EP2442061B1 (en) | 2017-09-27 |
Family
ID=44658530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11006156.1A Active EP2442061B1 (en) | 2010-10-12 | 2011-07-27 | Method for cooling combustion gases in a heat exchanger of a steam generation plant |
Country Status (11)
Country | Link |
---|---|
US (1) | US9677831B2 (en) |
EP (1) | EP2442061B1 (en) |
JP (1) | JP5971508B2 (en) |
BR (1) | BRPI1106277B1 (en) |
CA (1) | CA2754465C (en) |
DE (1) | DE102010048065A1 (en) |
DK (1) | DK2442061T3 (en) |
ES (1) | ES2653670T3 (en) |
NO (1) | NO2442061T3 (en) |
PL (1) | PL2442061T3 (en) |
PT (1) | PT2442061T (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011015717B4 (en) | 2011-03-31 | 2022-09-08 | Thyssenkrupp Industrial Solutions Ag | heat recovery device |
CN102937295B (en) * | 2012-11-20 | 2015-02-18 | 上海锅炉厂有限公司 | Boiler economizer arrangement form suitable for denitration device negative whole process load operation |
WO2014118047A1 (en) * | 2013-02-01 | 2014-08-07 | Tetra Laval Holdings & Finance S.A. | A valve arrangement for a heat treatment apparatus |
FR3013823B1 (en) * | 2013-11-28 | 2018-09-21 | F2A - Fabrication Aeraulique Et Acoustique | DOUBLE FLOW AIR / AIR EXCHANGER, AIR TREATMENT PLANT AND METHOD FOR CLEANING SUCH EXCHANGER |
CN108488777A (en) * | 2018-03-08 | 2018-09-04 | 苏州天沃环境能源工程有限公司 | The heat energy recovery equipment of coal-fired molten salt furnace high-temp waste gas |
JP7392687B2 (en) * | 2021-06-10 | 2023-12-06 | Jfeスチール株式会社 | Boiler fuel preheating device and preheating method |
EP4328520A1 (en) * | 2022-08-25 | 2024-02-28 | ERK Eckrohrkessel GmbH | Method and device for using geothermal heat |
EP4328519A1 (en) * | 2022-08-25 | 2024-02-28 | ERK Eckrohrkessel GmbH | Method and device for producing geothermal heat and method for producing electrical energy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4102393A (en) * | 1975-09-23 | 1978-07-25 | Uop Inc. | Heat exchange apparatus |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE219629C (en) | ||||
DE445460C (en) * | 1925-07-12 | 1927-06-11 | Otto Happel | Device to prevent water excretion from the cooling air of electrical power generators when they are cooled back by cooling water |
AT219629B (en) * | 1959-12-31 | 1962-02-12 | Licencia Talalmanyokat | Control procedure for changing the heat output of heat exchangers |
US3942482A (en) * | 1974-10-09 | 1976-03-09 | Foster Wheeler Energy Corporation | Bayonet tube steam generator |
JPS5272949A (en) * | 1975-12-12 | 1977-06-18 | Toray Ind Inc | Temperature control system for boiler exhausting gas |
GB2018967B (en) | 1978-03-28 | 1982-08-18 | Osaka Gas Co Ltd | Apparatus and process for vaporizing liquefied natural gas |
CH640041A5 (en) * | 1979-08-22 | 1983-12-15 | Sulzer Ag | Conditioning circuit. |
US4353207A (en) * | 1980-08-20 | 1982-10-12 | Westinghouse Electric Corp. | Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants |
DE3805791A1 (en) * | 1988-02-24 | 1989-08-31 | Kraftanlagen Ag | METHOD AND PLANT FOR NICKELING THE EXHAUST GAS FROM COMBUSTION PLANTS |
US5159975A (en) * | 1992-02-07 | 1992-11-03 | Murphy Guy R | Unit to enhance heat transfer through heat exchanger tube |
DE4303613C2 (en) * | 1993-02-09 | 1998-12-17 | Steinmueller Gmbh L & C | Process for generating steam in a once-through steam generator |
JP2000304231A (en) * | 1999-04-19 | 2000-11-02 | Ebara Corp | Heat recovery apparatus from exhaust gas and method of heat recovery |
DE19926326A1 (en) * | 1999-06-09 | 2000-12-14 | Abb Alstom Power Ch Ag | Process and plant for heating a liquid medium |
US6936112B2 (en) * | 2002-11-26 | 2005-08-30 | Refined Technologies, Inc. | Heat exchanger cleaning process |
DE102005017974A1 (en) * | 2005-04-19 | 2006-11-02 | Audi Ag | Switching radiator for air conditioning system of motor vehicle, has two cooling channels that are provided with two outlet controllers, where flow of coolant is switchable between U-flow and I-flow under utilization of backflow connection |
JP4718333B2 (en) * | 2006-01-10 | 2011-07-06 | バブコック日立株式会社 | Once-through exhaust heat recovery boiler |
JP4733612B2 (en) * | 2006-10-19 | 2011-07-27 | 新日鉄エンジニアリング株式会社 | Boiler superheater for waste treatment equipment |
JP2010002079A (en) * | 2008-06-18 | 2010-01-07 | Mitsubishi Heavy Ind Ltd | Boiler and control method of boiler |
DE102008048405B3 (en) * | 2008-09-23 | 2010-04-22 | Alstom Technology Ltd. | Tube bundle heat exchanger for the regulation of a wide power range |
EP2253807A1 (en) * | 2008-10-29 | 2010-11-24 | Vítkovice Power Engineering a.s. | Gas turbine cycle or combined steam-gas cycle for production of power from solid fuels and waste heat |
-
2010
- 2010-10-12 DE DE102010048065A patent/DE102010048065A1/en not_active Ceased
-
2011
- 2011-07-27 DK DK11006156.1T patent/DK2442061T3/en active
- 2011-07-27 ES ES11006156.1T patent/ES2653670T3/en active Active
- 2011-07-27 PL PL11006156T patent/PL2442061T3/en unknown
- 2011-07-27 EP EP11006156.1A patent/EP2442061B1/en active Active
- 2011-07-27 PT PT110061561T patent/PT2442061T/en unknown
- 2011-07-27 NO NO11006156A patent/NO2442061T3/no unknown
- 2011-08-15 US US13/136,942 patent/US9677831B2/en active Active
- 2011-08-24 JP JP2011182965A patent/JP5971508B2/en active Active
- 2011-10-11 BR BRPI1106277A patent/BRPI1106277B1/en active IP Right Grant
- 2011-10-11 CA CA2754465A patent/CA2754465C/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4102393A (en) * | 1975-09-23 | 1978-07-25 | Uop Inc. | Heat exchange apparatus |
Also Published As
Publication number | Publication date |
---|---|
CA2754465C (en) | 2018-07-24 |
EP2442061A2 (en) | 2012-04-18 |
PT2442061T (en) | 2017-11-27 |
US20120085517A1 (en) | 2012-04-12 |
JP2012083095A (en) | 2012-04-26 |
BRPI1106277B1 (en) | 2020-04-22 |
DK2442061T3 (en) | 2017-12-04 |
JP5971508B2 (en) | 2016-08-17 |
US9677831B2 (en) | 2017-06-13 |
ES2653670T3 (en) | 2018-02-08 |
CA2754465A1 (en) | 2012-04-12 |
NO2442061T3 (en) | 2018-02-24 |
DE102010048065A1 (en) | 2012-04-12 |
PL2442061T3 (en) | 2018-03-30 |
EP2442061A3 (en) | 2015-03-04 |
BRPI1106277A2 (en) | 2016-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2442061B1 (en) | Method for cooling combustion gases in a heat exchanger of a steam generation plant | |
EP2462378B1 (en) | Method for operating a forced-flow steam generator operating at a steam temperature above 650°c and forced-flow steam generator | |
EP2359058B1 (en) | Method of operating a waste heat steam generator | |
EP2034137A1 (en) | Method for operating a gas and steam turbine plant and the correspondingly designed gas and steam turbine plant | |
DE2555897A1 (en) | METHOD OF EXPLOITING THE EXCESS HEAT OF AN ELECTRICITY PLANT | |
EP0918151B1 (en) | Device and method to preheat fuel for a combustor | |
CH496220A (en) | Method for preheating the combustion air of a furnace and furnace for carrying out the method | |
EP0523466B1 (en) | Method for operating a gas and steam turbine plant and plant for carrying out the method | |
EP1303684B1 (en) | Method for operating a gas and steam turbine installation and corresponding installation | |
EP3516179A1 (en) | Method and arrangement for heat energy recovery in systems comprising at least one reformer | |
DE102005054155A1 (en) | Device for transferring a working medium from a liquid to a vapor state | |
DE102009013570A1 (en) | Power plant comprises a steam generator, a steam turbine, a steam pipe that connects a steam outlet of the steam generator with an inlet of the steam turbine, a recirculation line, and heat exchangers | |
DE102007054467A1 (en) | Method for preheating fuel in gas and steam power plant, involves guiding steam or condenser water of condenser as heat transfer medium by heat exchanger | |
WO2015039831A2 (en) | Combined cycle gas turbine plant having a waste heat steam generator | |
DE4300192C2 (en) | Method for operating at least two interlinked waste heat processes and steam generation system for carrying out the method | |
EP2556218A1 (en) | Method for quickly connecting a steam generator | |
EP2601441B1 (en) | Forced-flow steam generator | |
DE4025527C1 (en) | Steam boiler with economiser - incorporates combustion chamber with recirculation circuit | |
EP2959120B1 (en) | Condensate preheater for a waste-heat steam generator | |
EP0643816B1 (en) | Process and device for regulating the flue gas temperature at the outlet of a steam generator | |
EP2567151B1 (en) | Method for operating a steam generator | |
DE2029830A1 (en) | Warm-up circuit for steam turbine plant | |
DE2523873A1 (en) | STEAM GENERATORS, IN PARTICULAR FOR SHIP TURBINES | |
WO1993004318A1 (en) | Gas-heated waste-heat steam genertor | |
EP3224541B1 (en) | Waste heat steam generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F22B 31/08 20060101ALI20150129BHEP Ipc: F22B 31/00 20060101ALI20150129BHEP Ipc: F28F 27/02 20060101AFI20150129BHEP Ipc: F22G 1/02 20060101ALI20150129BHEP Ipc: F22B 35/00 20060101ALI20150129BHEP Ipc: F22B 1/18 20060101ALI20150129BHEP Ipc: F22D 1/02 20060101ALI20150129BHEP Ipc: F22B 15/00 20060101ALI20150129BHEP |
|
17P | Request for examination filed |
Effective date: 20150603 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20170519 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 932351 Country of ref document: AT Kind code of ref document: T Effective date: 20171015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011013040 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 2442061 Country of ref document: PT Date of ref document: 20171127 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20171120 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MICHELI AND CIE SA, CH |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20171127 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502011013040 Country of ref document: DE Representative=s name: PATENTANWALTSKANZLEI LIERMANN-CASTELL, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170927 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170927 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2653670 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180208 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20170927 Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171227 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171228 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170927 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170927 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170927 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180127 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170927 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011013040 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180727 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170927 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170927 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170927 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20210622 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20210715 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20220721 Year of fee payment: 12 Ref country code: ES Payment date: 20220921 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230127 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230724 Year of fee payment: 13 Ref country code: NO Payment date: 20230721 Year of fee payment: 13 Ref country code: IT Payment date: 20230724 Year of fee payment: 13 Ref country code: CZ Payment date: 20230717 Year of fee payment: 13 Ref country code: CH Payment date: 20230801 Year of fee payment: 13 Ref country code: AT Payment date: 20230720 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220727 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20230719 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230727 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240902 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240719 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240726 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240723 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240719 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240730 Year of fee payment: 14 |