JP2000304231A - Heat recovery apparatus from exhaust gas and method of heat recovery - Google Patents

Heat recovery apparatus from exhaust gas and method of heat recovery

Info

Publication number
JP2000304231A
JP2000304231A JP11110902A JP11090299A JP2000304231A JP 2000304231 A JP2000304231 A JP 2000304231A JP 11110902 A JP11110902 A JP 11110902A JP 11090299 A JP11090299 A JP 11090299A JP 2000304231 A JP2000304231 A JP 2000304231A
Authority
JP
Japan
Prior art keywords
cooling water
exhaust gas
pipe
heat recovery
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11110902A
Other languages
Japanese (ja)
Inventor
Masahiro Izutsu
政弘 井筒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP11110902A priority Critical patent/JP2000304231A/en
Publication of JP2000304231A publication Critical patent/JP2000304231A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

PROBLEM TO BE SOLVED: To provide the apparatus and the method of recovering heat from exhaust gas, which can heat cooling water to the temperature higher than the moisture saturation temperature of the exhaust gas without the adhesion of the mist of sulfuric acid and/or soot and dust. SOLUTION: The apparatus of recovering heat from the exhaust gas comprises a casing 1 including an intake 3 introducing exhaust gas 8 and an outlet 4 discharging the cooled exhaust gas, and a cooling water pipe 2 recovering heat from the exhaust gas to the cooling water through a heat exchanging surface arranged inside the casing 1, wherein the cooling water pipe 2 is arranged from the intake side 3 of the outlet side 4 and then back to the intake side 3 of the casing, the mechanism of reversing the direction of the flow of cooling water flowing in the piping is provided, the casing 1 is provided with supply and drain water headers 5 and 6 for connecting to the cooling water piping, the external pipes 12 and 12' are connected to the headers, the pipes are provided with bypass pipes 19 and 20, these pipes are provided with valves 15 to 18 and the direction of the water flowing inside the pipes is reversed by the switching of the valves.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガスからの熱回
収に係り、特に、水分と硫黄酸化物及び/又は煤塵を含
む排ガスから冷却水を用いて熱回収する熱回収装置と熱
回収方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to heat recovery from exhaust gas, and more particularly to a heat recovery apparatus and method for recovering heat from exhaust gas containing water, sulfur oxides and / or dust using cooling water. .

【0002】[0002]

【従来の技術】従来、ボイラ燃焼排ガス等の高温ガスを
熱交換面を介して冷却水と間接的に熱交換させ、排ガス
から熱を回収することは行われているが、ボイラ燃焼等
の高温排ガスは、通常、水分とともに硫黄酸化物及び/
又は煤塵を含み、それに伴って種々の問題を生じる。ま
ず、排ガスが硫黄酸化物を含む場合、特に、硫黄酸化物
中の三酸化硫黄が排ガス中の水分を吸収して硫酸ミスト
を形成し、それらが接ガス側の熱交換面(以下、接ガス
面)に付着することによって該熱交換面を腐食させる。
一方、排ガスが煤塵を含む場合、該煤塵が接ガス面に付
着することによって、熱通過率を低下させ、結果として
熱交換量が低減する。このような問題を解決するため、
発明者らは、先に、まず、冷却水の温度、冷却水の流
量、又は熱交換面積のうちの少なくとも一つを調整する
ことによって、接ガス面の表面温度を排ガスの水分飽和
温度以下にする熱回収方法を提案した。この方法によれ
ば、ボイラ燃焼排ガス等の高温排ガスが含む水分が接ガ
ス面上で凝縮することによって発生した凝縮水が、接ガ
ス面に付着した硫酸ミスト及び/又は煤塵を洗い流すた
め、上記の問題を解決することができる。
2. Description of the Related Art Conventionally, high-temperature gas such as boiler combustion exhaust gas is indirectly exchanged with cooling water through a heat exchange surface to recover heat from the exhaust gas. Exhaust gas is usually combined with water with sulfur oxides and / or
Or dust, which causes various problems. First, when the exhaust gas contains sulfur oxides, particularly, sulfur trioxide in the sulfur oxides absorbs moisture in the exhaust gas to form a sulfuric acid mist, and these are formed on the heat exchange surface on the gas contact side (hereinafter referred to as gas contact gas). The heat exchange surface is corroded by adhering to the surface.
On the other hand, when the exhaust gas contains dust, the dust adheres to the gas contact surface, thereby lowering the heat transfer rate and consequently reducing the amount of heat exchange. To solve these problems,
First, the inventors first adjust the temperature of the cooling water, the flow rate of the cooling water, or at least one of the heat exchange area, so that the surface temperature of the gas contact surface is equal to or lower than the moisture saturation temperature of the exhaust gas. Heat recovery method was proposed. According to this method, the condensed water generated by the condensation of the moisture contained in the high-temperature exhaust gas such as the boiler combustion exhaust gas on the gas contact surface is used to wash out the sulfuric acid mist and / or dust adhering to the gas contact surface. Can solve the problem.

【0003】しかしながら、接ガス面の表面温度はその
部分に接している冷却水の温度より高いため、接ガス面
のすべての部分の表面温度を水分飽和温度以下にするた
めには、排ガスと熱交換した後の冷却水の温度は排ガス
の水分飽和温度以下である必要がある。したがって、接
ガス面に付着した硫酸ミスト及び/又は煤塵を十分に洗
い流そうとすると、冷却水の温度は水分飽和温度以上す
ることはできない。下表1に、排ガス中の水分濃度ごと
の水分飽和温度を示すが、通常の、ボイラ燃焼排ガスの
水分濃度は5〜15%程度であるため、従来の方法で、
接ガス面に硫酸ミスト及び/又は煤塵が付着することに
伴う問題を回避しようとすると、熱回収後の冷却水の温
度は35〜55℃程度が上限となる。
[0003] However, since the surface temperature of the gas contact surface is higher than the temperature of the cooling water in contact with the portion, the exhaust gas and the heat must be reduced to keep the surface temperature of all portions of the gas contact surface below the moisture saturation temperature. The temperature of the cooling water after the replacement needs to be lower than the water saturation temperature of the exhaust gas. Therefore, in order to sufficiently wash out the sulfuric acid mist and / or dust adhering to the gas contact surface, the temperature of the cooling water cannot be higher than the water saturation temperature. Table 1 below shows the water saturation temperature for each water concentration in the exhaust gas. Since the water concentration of the normal boiler combustion exhaust gas is about 5 to 15%,
In order to avoid the problem of sulfuric acid mist and / or dust attached to the gas contact surface, the upper limit of the temperature of the cooling water after heat recovery is about 35 to 55 ° C.

【0004】[0004]

【表1】 一般に、回収した熱を有効に利用するためには、熱回収
媒体の温度ができる限り高いことが望まれるが、このよ
うに、熱回収後の冷却水の温度が33〜55℃程度以下
であれば、回収した熱の利用が非常に困難となる。
[Table 1] Generally, in order to effectively use the recovered heat, it is desired that the temperature of the heat recovery medium be as high as possible. In this manner, if the temperature of the cooling water after the heat recovery is about 33 to 55 ° C. or less. If so, it would be very difficult to use the recovered heat.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明は、水
分と、硫黄酸化物及び/又は煤塵を含むガスから、該硫
黄酸化物によって生成する硫酸ミスト及び/又は煤塵が
付着することに伴う問題を回避し、しかも冷却水を排ガ
スの水分飽和温度以上に加熱できるような、排ガスから
の熱回収装置及び熱回収方法を提供することを課題とす
る。
SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a problem associated with the attachment of sulfuric acid mist and / or dust generated by sulfur oxide from a gas containing moisture and sulfur oxide and / or dust. It is an object of the present invention to provide an apparatus and a method for recovering heat from exhaust gas, which can avoid cooling and can heat the cooling water to a temperature equal to or higher than the water saturation temperature of the exhaust gas.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、排ガスを導入する吸気口と冷却後の排
ガスを排出する排気口を有するケーシングと、該ケーシ
ング内部に配備された熱交換面を介して排ガスから冷却
水に熱を回収する冷却水配管とから構成される排ガスか
らの熱回収装置であって、前記冷却水配管がケーシング
の吸気口側から排気口側に至った後吸気口側に戻るよう
に配備され、かつ該配管内を流れる冷却水の向きが逆転
できるような機構を有する熱回収装置としたものであ
る。前記熱回収装置において、ケーシングには、冷却水
の供給と冷却水の回収を交互に行うための冷却水配管に
接続する給排水ヘッダを設けることができ、また前記冷
却水配管は、ケーシングの吸気口側を基点とするU型配
管又はU型配管を接続した配管とすることができ、該冷
却水配管は、ケーシングの外部でU型配管により接続さ
れていてもよく、前記ケーシングは、側面に冷却水配管
が接続される中継ヘッダを配備することができ、さら
に、前記冷却水配管は、接ガス側にフィンのついたフィ
ンチューブとすることができる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a casing having an intake port for introducing exhaust gas and an exhaust port for discharging exhaust gas after cooling, and a heat pump disposed inside the casing. A heat recovery apparatus for exhaust gas, comprising: a cooling water pipe for recovering heat from the exhaust gas to the cooling water through an exchange surface, wherein the cooling water pipe extends from the intake port side to the exhaust port side of the casing. The heat recovery device is provided so as to return to the intake port side and has a mechanism capable of reversing the direction of cooling water flowing in the pipe. In the heat recovery device, the casing may be provided with a water supply / drain header connected to a cooling water pipe for alternately supplying cooling water and collecting the cooling water, and the cooling water pipe may have an inlet port of the casing. The cooling water pipe may be connected by a U-shaped pipe outside the casing, and the casing may be cooled by the side. A relay header to which a water pipe is connected can be provided, and the cooling water pipe can be a fin tube having a fin on a gas contact side.

【0007】本発明において、冷却水配管を流れる冷却
水の向きを逆転できる機構としては、該冷却水配管に接
続する冷却水を供給回収する配管と、両者を接続するバ
イパス管とからなり、それぞれの配管に切替弁を配した
ものとすることができ、該切替弁の操作により冷却水配
管内を流れる水の向きを逆転できる。また、本発明で
は、水分と、硫黄酸化物及び/又は煤塵を含む排ガスが
通る排ガス通路に配管を配備して、該配管内に冷却水を
通して該排ガスから熱を回収する排ガスからの熱回収方
法において、前記冷却水が通る配管を、排ガスの吸気口
側から排気口側に至った後吸気口側に戻るように配備す
ると共に、該配管内冷却水を交互に逆向きに通し、該冷
却水が吸気口側から排気口側に至る部分の接ガス側熱交
換面の温度を該排ガスの水分飽和温度以下になるように
調整する熱回収方法としたものである。
In the present invention, the mechanism capable of reversing the direction of the cooling water flowing through the cooling water pipe includes a pipe for supplying and recovering the cooling water connected to the cooling water pipe, and a bypass pipe connecting the two. A switching valve can be arranged in the pipe of the above, and the direction of the water flowing in the cooling water pipe can be reversed by operating the switching valve. Further, in the present invention, a method of recovering heat from exhaust gas, wherein a pipe is provided in an exhaust gas passage through which exhaust gas containing moisture, sulfur oxides and / or dust is passed, and heat is recovered from the exhaust gas through cooling water in the pipe. In the above, the pipe through which the cooling water passes is disposed so as to return from the intake port side of the exhaust gas to the exhaust port side and then return to the intake port side, and the cooling water in the pipe is alternately passed in the reverse direction, Is a heat recovery method in which the temperature of the heat exchange surface on the gas contact side in the portion from the intake port side to the exhaust port side is adjusted to be equal to or lower than the water saturation temperature of the exhaust gas.

【0008】前記熱回収方法において、接ガス側交換面
の温度調節は、前記冷却水配管に供給する冷却水の温
度、冷却水の流量、又は熱交換面積のうちの少なくとも
一つで行うことができる。さらに、本発明では、ボイ
ラ、復水器、ボイラ給水ポンプ及びボイラ燃焼排ガスダ
クトを有するボイラ設備において、該ボイラ燃焼排ガス
ダクトに前記した熱回収装置を設置し、該熱交換器の冷
却水として前記復水器で凝縮した復水の全部又は一部を
供給し、熱回収後の冷却水をボイラに供給するボイラ設
備としたものである。
In the heat recovery method, the temperature of the gas-exchange side exchange surface is adjusted by at least one of a temperature of a cooling water supplied to the cooling water pipe, a flow rate of the cooling water, and a heat exchange area. it can. Further, in the present invention, in a boiler facility having a boiler, a condenser, a boiler feedwater pump, and a boiler combustion exhaust gas duct, the heat recovery device described above is installed in the boiler combustion exhaust gas duct, and the cooling water of the heat exchanger is used as the cooling water. The boiler equipment supplies all or a part of the condensed water condensed by the condenser and supplies the cooling water after heat recovery to the boiler.

【0009】[0009]

【発明の実施の形態】本発明の熱回収方法によれば、前
記冷却水配管の吸気口側から排気口側に至る部分(以
下、並流部分)の接ガス面の温度が、排ガスの水分飽和
温度以下に冷却されているため、排ガスが含む水分が凝
縮することによって発生した凝縮水が、該並流部分の接
ガス面に付着した硫酸ミスト及び/又は煤塵を洗い流す
ため、並流部分についてはミスト及び煤塵が付着すると
いう問題を解決することができる。一方、前記並流部分
で高温排ガスの水分飽和温度以下の範囲で加熱された冷
却水は、冷却水配管の排気口側から吸気口側に至る部分
(以下、向流部分)でさらに加熱されるため、冷却水は
最終的には排ガスの水分飽和温度以上に加熱することが
できる。
According to the heat recovery method of the present invention, the temperature of the gas contact surface of the portion of the cooling water pipe from the intake port side to the exhaust port side (hereinafter referred to as a co-current portion) is determined by the water content of the exhaust gas. Since the water is cooled below the saturation temperature, the condensed water generated by the condensation of the water contained in the exhaust gas flushes out the sulfuric acid mist and / or dust adhering to the gas contact surface of the co-current portion. Can solve the problem that mist and dust adhere. On the other hand, the cooling water that has been heated in the co-current portion at a temperature equal to or lower than the moisture saturation temperature of the high-temperature exhaust gas is further heated in a portion of the cooling water pipe from the exhaust port side to the intake port side (hereinafter, a counter-current portion). Therefore, the cooling water can be finally heated to a temperature equal to or higher than the water saturation temperature of the exhaust gas.

【0010】ところで、冷却水配管の向流部分におい
て、排ガスの水分飽和温度付近又は排ガスの水分飽和温
度を超える温度の冷却水が流れる部分の接ガス面の温度
は、排ガスの水分飽和温度以下とはならないため、排ガ
スが含む水分の凝縮は生じず、したがって、接ガス面に
付着した硫酸ミスト及び/又は煤塵である付着物を洗い
流すことはできない。一般に、向流部分を流れる冷却水
の温度は、冷却水が給気側に近づくにつれて高くなるた
め、凝縮水が発生しないため付着物が洗い流されないと
いう問題も、向流部分の給気側で著しくなる。しかしな
がら、本発明の熱回収方法においては、本発明の熱回収
装置が有する冷却水の流れる向きが逆転できるような機
構によって、周期的に冷却水が流れる向きが逆転するた
め、ある周期では向流部分であった冷却水配管は、次の
周期では並流部分となり、特に、上記のように付着物の
問題が著しい向流部分の給気側であった箇所は、次の周
期では冷却水の温度が最も低くて凝縮水が多量に発生す
る並流部分の給気側となる。
[0010] By the way, the temperature of the gas contact surface of the part where the cooling water flows near the water saturation temperature of the exhaust gas or exceeds the water saturation temperature of the exhaust gas in the counter-current part of the cooling water pipe is lower than the water saturation temperature of the exhaust gas. Therefore, the moisture contained in the exhaust gas does not condense, and therefore, it is not possible to wash away the sulfuric acid mist and / or dust, which are attached to the gas contact surface. In general, the temperature of the cooling water flowing in the countercurrent portion increases as the cooling water approaches the air supply side, and condensed water is not generated. It becomes remarkable. However, in the heat recovery method of the present invention, the direction in which the cooling water flows periodically reverses due to the mechanism of the heat recovery device of the present invention that can reverse the flowing direction of the cooling water. In the next cycle, the cooling water pipe will become a co-current part in the next cycle, and in particular, the part on the air supply side of the It is on the air supply side of the co-current portion where the temperature is the lowest and a large amount of condensed water is generated.

【0011】したがって、ある周期で冷却水配管の接ガ
ス面の温度が、排ガスの水分飽和温度以上であるため、
硫酸ミスト及び/又は煤塵である付着物が洗い流されな
い箇所があったとしても、次の周期では水分飽和温度以
下となることによって、該付着物は発生した凝縮水によ
って洗い流される。冷却水の流れを逆転することによっ
て、並流部分を向流部分に、向流部分を並流部分に周期
的に切り替えることだけであれば、冷却水配管が排気口
側から給気口側に至った後、吸気口側に戻るように配備
することによっても可能であり、該冷却水配管の上流部
分(この場合は向流部分)の接ガス側熱交換面(以下、
接ガス面)の温度が、該排ガスの水分飽和温度以下にな
るように調整すれば、周期的に発生する凝縮水によっ
て、硫酸ミスト及び/又は煤塵である付着物を洗い流す
代替方式も可能である。
Therefore, since the temperature of the gas contact surface of the cooling water pipe is equal to or higher than the water saturation temperature of the exhaust gas in a certain cycle,
Even if there is a place where the deposits of sulfuric acid mist and / or dust are not washed away, the deposits are washed away by the condensed water generated when the temperature falls below the water saturation temperature in the next cycle. Reversing the flow of cooling water, if it is only necessary to periodically switch the cocurrent portion to the countercurrent portion and the countercurrent portion to the cocurrent portion, if the cooling water pipe is moved from the exhaust port side to the air supply port side After reaching, it is also possible to arrange so as to return to the intake port side, and the gas contact side heat exchange surface (hereinafter, referred to as the counterflow portion in this case) of the cooling water pipe
If the temperature of the gas contact surface is adjusted so as to be equal to or lower than the water saturation temperature of the exhaust gas, an alternative method is also possible in which the condensed water that is periodically generated is used to wash off the deposits that are sulfuric acid mist and / or dust. .

【0012】しかしながら、一般に、並流より向流の方
が熱交換効率が優れているため、熱交換面積が同じ熱回
収装置を、冷却配管の上流部分(本発明では並流部分、
代替方式では向流部分)の接ガス面の温度を、排ガスの
水分飽和温度以下にするという条件で運転した場合に、
最終的に得られる冷却水の温度は、本発明の場合の方が
高い。したがって、熱回収媒体である冷却水に回収され
た熱の有効利用の観点からすれば、本発明の熱回収装置
及び方法の方がより好ましい。以下、本発明を図面を用
いて詳細に説明する。本発明の熱回収装置は、冷却水配
管の敷設方式によって各種可能であるが、以下に、その
いくつかの例を示す。
However, in general, since the heat exchange efficiency is higher in the countercurrent flow than in the parallel flow, the heat recovery device having the same heat exchange area is installed in the upstream part of the cooling pipe (in the present invention, the cocurrent part,
If the operation is performed under the condition that the temperature of the gas contact surface of the countercurrent part in the alternative method) is lower than the moisture saturation temperature of the exhaust gas,
The temperature of the finally obtained cooling water is higher in the case of the present invention. Therefore, from the viewpoint of effective use of the heat recovered in the cooling water as the heat recovery medium, the heat recovery apparatus and method of the present invention are more preferable. Hereinafter, the present invention will be described in detail with reference to the drawings. The heat recovery apparatus of the present invention can be variously changed depending on a method of laying a cooling water pipe, and some examples thereof will be described below.

【0013】図1は、本発明を具現化する熱回収装置の
一例を示し、図1(a)は本発明の全体構成図であり、
(b)は(a)のA−A断面図である。図1において、
1はケーシング、2は冷却水配管(U型配管)、3は吸
気口、4は排気口、5は給排水ヘッダ(吸気口側)、6
は給排水ヘッダ(排気口側)、7は凝縮水排水口、8は
排ガス、9は排ガスダクト、12、12’は冷却水供給
回収配管、13は供給冷却水、14は回収冷却水、15
〜18は切替弁、19、20はバイパス管を示す。図1
においては、U型配管からなる冷却水配管2は、ケーシ
ング1側面に設けられた給排水ヘッダ5、6に接続さ
れ、冷却水はケーシング1の吸気口3側から排気口4側
に至った後吸気口3側に戻る。給排水ヘッダ5、6は仕
切板にて給気口側5と排気口側6に区切られている。
FIG. 1 shows an example of a heat recovery apparatus embodying the present invention, and FIG. 1 (a) is an overall configuration diagram of the present invention.
(B) is AA sectional drawing of (a). In FIG.
1 is a casing, 2 is a cooling water pipe (U-shaped pipe), 3 is an intake port, 4 is an exhaust port, 5 is a plumbing header (intake port side), 6
Is a supply / drain header (exhaust port side), 7 is a condensed water drain port, 8 is an exhaust gas, 9 is an exhaust gas duct, 12 and 12 'are cooling water supply / recovery pipes, 13 is supply cooling water, 14 is recovered cooling water, 15
Numeral 18 denotes a switching valve, and numerals 19 and 20 denote bypass pipes. FIG.
, A cooling water pipe 2 composed of a U-shaped pipe is connected to water supply / drain headers 5 and 6 provided on the side surface of the casing 1, and the cooling water flows from the intake port 3 side of the casing 1 to the exhaust port 4 side, and Return to mouth 3. The supply / drain headers 5 and 6 are separated by a partition plate into an air supply port side 5 and an exhaust port side 6.

【0014】そして、冷却水配管2は、ケーシング外
で、供給、回収配管12、12’に接続され、それぞれ
供給冷却水13、回収冷却水14に切替弁15、18を
介して接続され、また、配管12、12’間は、切替弁
16、17を有するバイパス管19、20で接続されて
いる。冷却水は、切替弁15〜18の開閉によって、表
2のように供給・回収される。
The cooling water pipe 2 is connected to supply and recovery pipes 12 and 12 ′ outside the casing, and connected to supply cooling water 13 and recovery cooling water 14 via switching valves 15 and 18, respectively. , Pipes 12 and 12 ′ are connected by bypass pipes 19 and 20 having switching valves 16 and 17. The cooling water is supplied and recovered as shown in Table 2 by opening and closing the switching valves 15 to 18.

【表2】 [Table 2]

【0015】この弁操作により、冷却水配管2における
冷却水の流れを周期的に逆転することができる。また、
冷却水配管2の表面で生成した凝縮水は、凝縮水排出口
7から排出される。図2は、本発明を具現化する熱回収
装置のもう一つの例を示す構成図であり、(a)は排ガ
スの流れ方向に沿った断面図、(b)は(a)のA−A
矢視図、(c)は(a)のB−B矢視図、(d)は
(a)のC−C矢視図である。図2で、図1との相違点
は、冷却水配管のU字管2がケーシング内を横断して設
けられており、排気口側で中断ヘッダ10で接続され、
また、U字管2がケーシングの中間部でケーシング外1
1で接続する構成となっている点にある。
By this valve operation, the flow of the cooling water in the cooling water pipe 2 can be periodically reversed. Also,
The condensed water generated on the surface of the cooling water pipe 2 is discharged from the condensed water discharge port 7. FIGS. 2A and 2B are configuration diagrams showing another example of a heat recovery device embodying the present invention, wherein FIG. 2A is a cross-sectional view along the flow direction of exhaust gas, and FIG.
FIG. 5C is a view taken in the direction of arrows B-B in FIG. 5A, and FIG. 5D is a view taken in the direction of arrows CC in FIG. In FIG. 2, the difference from FIG. 1 is that a U-shaped pipe 2 of a cooling water pipe is provided across the inside of the casing, and is connected by an interruption header 10 on the exhaust port side,
Also, the U-shaped tube 2 is located outside the casing 1
1 in that the connection is made.

【0016】このように、図2においては、U型配管を
接合した冷却水配管2を熱回収装置の外部でU型配管1
1で接続し、さらに、もう一方の端部を吸気口3付近に
設けられた給排水ヘッダ5、6又は排気口4付近に設け
られた中継ヘッダ10に接続される。給排水ヘッダは仕
切板にて給気口側5と排気口側6に区切られており、図
2中の矢印は、吸気口側5に冷却前の冷却水が供給さ
れ、排気口側6で冷却後の冷却水が回収される場合の冷
却水の流れを示す。中継ヘッダ10は、2連の冷却水配
管ごとに区切られており、そのうちの1連の冷却水配管
から流入した冷却水はもう一連の冷却水配管に流出す
る。この排ガスの流れは、図1(a)及び表2に示した
のと同様の切替弁の操作によって周期的に逆転される。
また、冷却水配管の表面で生成した凝縮水は、凝縮水排
出口7から排出される。
As described above, in FIG. 2, the cooling water pipe 2 joined with the U-shaped pipe is connected to the U-shaped pipe 1 outside the heat recovery apparatus.
1 and the other end is connected to the water supply / drainage headers 5 and 6 provided near the intake port 3 or the relay header 10 provided near the exhaust port 4. The supply / drain header is divided by a partition plate into an air supply port side 5 and an exhaust port side 6, and the arrow in FIG. 2 indicates that the cooling water before cooling is supplied to the intake port side 5 and cooled at the exhaust port side 6. The flow of the cooling water in the case where the latter cooling water is collected is shown. The relay header 10 is divided for every two cooling water pipes, and the cooling water flowing from one of the cooling water pipes flows out to a series of cooling water pipes. The flow of the exhaust gas is periodically reversed by the operation of the switching valve similar to that shown in FIG.
The condensed water generated on the surface of the cooling water pipe is discharged from the condensed water discharge port 7.

【0017】次に、本発明の熱回収装置を用いたボイラ
設備を具現化する工程図の一つの例を、図3示す。ボイ
ラ31を出た燃焼排ガスは、流量が100,000Nm
3/hで水分を15%(乾ベース)を含み、エコノマイ
ザ33、エアヒータ34でボイラ給水及び燃焼用空気3
9でそれぞれ熱交換して150℃まで冷却された後、本
発明の熱回収装置35に導入される。ボイラ31で発生
しした蒸気は、タービン32を出た後、復水器36で凝
縮せしめられて30℃まで冷却される。該復水100t
on/nが前記熱交換器35の冷却水として供給され、
排ガスからの熱回収によって75℃まで加温される。排
ガスは該熱交換器によって50℃まで冷却され、凝縮水
が2.5ton発生する。該熱交換器35を出たあとの
冷却水は、ボイラ給水ポンプ37で昇圧の後、タービン
32からの抽気及びエコノマイザ33での排ガスとの熱
交換によって昇温の後、ボイラ31に供給される。前記
熱回収装置35においては、ボイラに供給されるボイラ
給水の温度を、熱回収装置の接ガス面に硫酸ミスト及び
/又は煤塵である付着物が成長することなく、排ガスの
水飽和温度より高い75℃まで上げることができるた
め、ボイラ効率を大きく向上させることができる。
Next, FIG. 3 shows an example of a process diagram for implementing a boiler facility using the heat recovery apparatus of the present invention. The flue gas discharged from the boiler 31 has a flow rate of 100,000 Nm.
3 / h containing 15% moisture (dry basis), boiler feed water and combustion air 3 with economizer 33 and air heater 34
After being heat-exchanged in step 9 and cooled to 150 ° C., it is introduced into the heat recovery unit 35 of the present invention. After leaving the turbine 32, the steam generated in the boiler 31 is condensed in a condenser 36 and cooled to 30 ° C. 100 tons of condensate
on / n is supplied as cooling water for the heat exchanger 35,
Heated to 75 ° C. by heat recovery from exhaust gas. The exhaust gas is cooled to 50 ° C. by the heat exchanger, and condensed water is generated at 2.5 tons. The cooling water after leaving the heat exchanger 35 is supplied to the boiler 31 after the pressure is increased by the boiler feed pump 37, the temperature is increased by the extraction of heat from the turbine 32 and the heat exchange with the exhaust gas in the economizer 33, and then the boiler 31 is supplied to the boiler 31. . In the heat recovery device 35, the temperature of the boiler feedwater supplied to the boiler is higher than the water saturation temperature of the exhaust gas without the sulfuric acid mist and / or soot and dust attached to the gas contact surface of the heat recovery device growing. Since the temperature can be increased to 75 ° C., the boiler efficiency can be greatly improved.

【0018】[0018]

【発明の効果】本発明によれば、水分と、硫黄酸化物及
び/又は煤塵を含むガスから、該硫黄酸化物によって生
成する硫酸ミスト及び/又は煤塵が熱交換面上に付着堆
積することなく、しかも、冷却水を排ガスの水分飽和温
度以上に加熱することができる排ガスからの熱回収装置
を提供することができた。
According to the present invention, a sulfuric acid mist and / or dust generated by a sulfur oxide and / or dust from a gas containing moisture and sulfur oxide and / or dust does not adhere to and accumulate on a heat exchange surface. In addition, a heat recovery device from exhaust gas capable of heating the cooling water to a temperature equal to or higher than the water saturation temperature of the exhaust gas can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱回収装置の一例を示す構成図であ
り、(a)は全体図であり、(b)は(a)のA−A断
面図。
FIG. 1 is a configuration diagram showing an example of a heat recovery apparatus of the present invention, where (a) is an overall view and (b) is a cross-sectional view taken along line AA of (a).

【図2】本発明の熱回収装置の他の例を示す構成図であ
り、(a)は排ガスの流れ方向の断面図、(b)は
(a)のA−A矢視図、(c)は(a)のB−B矢視
図、(d)は(a)のC−C矢視図。
2A and 2B are configuration diagrams showing another example of the heat recovery device of the present invention, in which FIG. 2A is a cross-sectional view in the flow direction of exhaust gas, FIG. () Is a view on arrow BB in (a), and (d) is a view on arrow CC in (a).

【図3】本発明の熱回収装置を用いたボイラ設備の一例
を示す工程図。
FIG. 3 is a process diagram showing an example of a boiler facility using the heat recovery device of the present invention.

【符号の説明】[Explanation of symbols]

1:ケーシング、2:冷却水配管(U型配管)、3:吸
気口、4:排気口、5:吸気口側給排水ヘッダ、6:排
気口側給排水ヘッダ、7:凝縮水排水口、8:排ガス、
9:排ガスダクト、10:中継ヘッダ、11:ケーシン
グ外U字管、12、12’:冷却水供給回収配管、1
3:供給冷却水、14:回収冷却水、15〜18:切替
弁、19、20:バイパス配管、31:ボイラ、32:
タービン、33:エコノマイザ、34:エアヒータ、3
5:熱回収装置、36:復水器、37:ボイラ給水ポン
プ、38:ドレインポンプ
1: casing, 2: cooling water piping (U-shaped piping), 3: intake port, 4: exhaust port, 5: intake port side supply / drain header, 6: exhaust port side supply / drain header, 7: condensed water drain port, 8: Exhaust gas,
9: exhaust gas duct, 10: relay header, 11: U-shaped pipe outside the casing, 12, 12 ': cooling water supply / recovery pipe, 1
3: supply cooling water, 14: recovered cooling water, 15 to 18: switching valve, 19, 20: bypass piping, 31: boiler, 32:
Turbine, 33: Economizer, 34: Air heater, 3
5: Heat recovery device, 36: Condenser, 37: Boiler feed pump, 38: Drain pump

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 排ガスを導入する吸気口と冷却後の排ガ
スを排出する排気口を有するケーシングと、該ケーシン
グ内部に配備された熱交換面を介して排ガスから冷却水
に熱を回収する冷却水配管とから構成される排ガスから
の熱回収装置であって、前記冷却水配管が、ケーシング
の吸気口側から排気口側に至った後吸気口側に戻るよう
に配備され、かつ該配管内を流れる冷却水の向きが逆転
できる機構を有することを特徴とする熱回収装置。
1. A casing having an intake port for introducing exhaust gas and an exhaust port for discharging exhaust gas after cooling, and cooling water for recovering heat from the exhaust gas to cooling water via a heat exchange surface provided inside the casing. A heat recovery device from exhaust gas comprising a pipe, wherein the cooling water pipe is disposed so as to return from the intake port side of the casing to the exhaust port side and then return to the intake port side, and A heat recovery device having a mechanism capable of reversing the direction of flowing cooling water.
【請求項2】 前記ケーシングには、冷却水の供給と冷
却水の回収を交互に行うための冷却水配管に接続する給
排水ヘッダを設けることを特徴とする請求項1に記載の
熱回収装置。
2. The heat recovery device according to claim 1, wherein the casing is provided with a water supply / drain header connected to a cooling water pipe for alternately supplying cooling water and recovering the cooling water.
【請求項3】 前記冷却水配管は、ケーシングの吸気口
側を基点とするU型配管又はU型配管を接続した配管で
あることを特徴とする請求項1又は2に記載の熱回収装
置。
3. The heat recovery apparatus according to claim 1, wherein the cooling water pipe is a U-shaped pipe starting from an intake port side of a casing or a pipe connecting the U-shaped pipe.
【請求項4】 前記冷却水配管は、ケーシングの外部で
U型配管により接続されていることを特徴とする請求項
1、2又は3に記載の熱回収装置。
4. The heat recovery apparatus according to claim 1, wherein the cooling water pipe is connected by a U-shaped pipe outside the casing.
【請求項5】 前記ケーシングは、側面に冷却水配管が
接続される中継ヘッダを配備することを特徴とする請求
項1〜4のいずれか1項に記載の熱回収装置。
5. The heat recovery device according to claim 1, wherein the casing is provided with a relay header to which a cooling water pipe is connected on a side surface.
【請求項6】 前記冷却水配管は、接ガス側にフィンの
ついたフィンチューブであることを特徴とする請求項1
〜5のいずれか1項に記載の熱回収装置。
6. The cooling water pipe is a fin tube having a fin on a gas contact side.
The heat recovery apparatus according to any one of claims 1 to 5.
【請求項7】 前記冷却水配管内を流れる冷却水の向き
を逆転できる機構は、該冷却水配管に接続する冷却水を
供給・回収する配管と、両者を接続するバイパス管とか
らなり、それぞれの配管に切替弁を配したものであるこ
とを特徴とする請求項1〜6のいずれか1項に記載の熱
回収装置。
7. A mechanism capable of reversing the direction of the cooling water flowing in the cooling water pipe comprises a pipe for supplying and recovering cooling water connected to the cooling water pipe, and a bypass pipe connecting the two. The heat recovery device according to any one of claims 1 to 6, wherein a switching valve is disposed in the pipe.
【請求項8】 水分と、硫黄酸化物及び/又は煤塵を含
む排ガスが通る排ガス通路に配管を配備して、該配管内
に冷却水を通して該排ガスからの熱を回収する排ガスか
らの熱回収方法において、前記冷却水が通る配管を排ガ
スの吸気口側から排気口側に至った後吸気口側に戻るよ
うに配備すると共に、該配管内冷却水を交互に逆向きに
通し、吸気口側から排気口側に至る部分の接ガス側熱交
換面の温度を排ガスの水分飽和温度以下になるように調
整することを特徴とする熱回収方法。
8. A method for recovering heat from exhaust gas, wherein a pipe is provided in an exhaust gas passage through which exhaust gas containing water, sulfur oxides and / or dust is passed, and heat from the exhaust gas is recovered through cooling water in the pipe. In the above, the pipe through which the cooling water passes is arranged so as to return from the intake port side of the exhaust gas to the exhaust port side and then return to the intake port side, and the cooling water in the pipe is alternately passed in the opposite direction, and from the intake port side. A heat recovery method comprising adjusting a temperature of a heat exchange surface on a gas contact side in a part reaching an exhaust port side to be equal to or lower than a moisture saturation temperature of exhaust gas.
【請求項9】 前記接ガス側熱交換面の温度の調整は、
前記冷却水配管に供給する冷却水の温度、冷却水の流
量、又は熱交換面積のうちの少なくとも一つで行うこと
を特徴とする請求項8に記載の熱回収方法。
9. The method of adjusting the temperature of the gas contact side heat exchange surface,
The heat recovery method according to claim 8, wherein the heat recovery is performed at least at one of a temperature of a cooling water supplied to the cooling water pipe, a flow rate of the cooling water, and a heat exchange area.
【請求項10】 ボイラ、復水器、ボイラ給水ポンプ及
びボイラ燃焼排ガスダクトを有するボイラ設備におい
て、該ボイラ燃焼排ガスダクトに請求項1〜7のいずれ
か1項に記載の熱回収装置を設置し、該熱交換器の冷却
水として前記復水器で凝縮した復水の全部又は一部を供
給し、熱回収後の冷却水をボイラに供給することを特徴
とするボイラ設備。
10. A boiler facility having a boiler, a condenser, a boiler feedwater pump, and a boiler combustion exhaust gas duct, wherein the heat recovery device according to any one of claims 1 to 7 is installed in the boiler combustion exhaust gas duct. Boiler equipment, wherein all or part of the condensate condensed in the condenser is supplied as cooling water for the heat exchanger, and the cooling water after heat recovery is supplied to the boiler.
JP11110902A 1999-04-19 1999-04-19 Heat recovery apparatus from exhaust gas and method of heat recovery Pending JP2000304231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11110902A JP2000304231A (en) 1999-04-19 1999-04-19 Heat recovery apparatus from exhaust gas and method of heat recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11110902A JP2000304231A (en) 1999-04-19 1999-04-19 Heat recovery apparatus from exhaust gas and method of heat recovery

Publications (1)

Publication Number Publication Date
JP2000304231A true JP2000304231A (en) 2000-11-02

Family

ID=14547576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11110902A Pending JP2000304231A (en) 1999-04-19 1999-04-19 Heat recovery apparatus from exhaust gas and method of heat recovery

Country Status (1)

Country Link
JP (1) JP2000304231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083095A (en) * 2010-10-12 2012-04-26 Martin Gmbh Fuer Umwelt- & Energietechnik Device including heat exchanger, and method of operating heat exchanger of steam generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083095A (en) * 2010-10-12 2012-04-26 Martin Gmbh Fuer Umwelt- & Energietechnik Device including heat exchanger, and method of operating heat exchanger of steam generator
EP2442061A3 (en) * 2010-10-12 2015-03-04 MARTIN GmbH für Umwelt- und Energietechnik Device with a heat exchanger and method for operating a heat exchanger of a steam generation assembly
US9677831B2 (en) 2010-10-12 2017-06-13 Martin GmbH fuer Umwelt—und Energietechnik Device with a heat exchanger and method for operating a heat exchanger of a steam generating plant

Similar Documents

Publication Publication Date Title
EP0915288B1 (en) Exhaust heat recovery boiler
CN102183007A (en) Waste heat recovering system of boiler
JP2006308269A (en) Heat recovery equipment
CN109059028A (en) A kind of desulfurization fume disappears white system
US4339249A (en) Heat exchanger for recovery of heat energy from dust-containing waste gases
CN202012904U (en) Boiler waste heat recovery system
JP7218267B2 (en) Drain recovery device
JP2012088045A (en) Heat recovery equipment
JP2000304231A (en) Heat recovery apparatus from exhaust gas and method of heat recovery
JPS58123022A (en) Waste gas heat recovery system for pulp mill wastewater-burning boiler
JP2004154683A (en) Exhaust gas treatment equipment and its operation method
WO2004102085A1 (en) Absorption chiller
JP3045289B2 (en) Exhaust gas waste heat recovery heat exchanger
JP7275085B2 (en) Heat exchangers and flue gas treatment equipment
US6626237B2 (en) Heat recovery apparatus and method of minimizing fouling in a heat recovery apparatus
KR100862982B1 (en) Waste heat recovery system
CN210688281U (en) Flue gas treatment system
JP4570187B2 (en) Exhaust gas heat exchanger
JP4364414B2 (en) Heat exchanger
JP2004333033A (en) Heat medium circulating device and method for gas-gas heat exchanger
JP4218157B2 (en) Soot blowing method for heat exchanger for exhaust gas
CN111306566A (en) Separation type air preheating system and method for preventing ABS (anti-lock brake System) of air preheater from being blocked
CN218544400U (en) Drying machine condensed water heat recovery system
JPH06300215A (en) Steam plant
CN213777685U (en) Heat exchange replacement protection system