JP2004333033A - Heat medium circulating device and method for gas-gas heat exchanger - Google Patents

Heat medium circulating device and method for gas-gas heat exchanger Download PDF

Info

Publication number
JP2004333033A
JP2004333033A JP2003130487A JP2003130487A JP2004333033A JP 2004333033 A JP2004333033 A JP 2004333033A JP 2003130487 A JP2003130487 A JP 2003130487A JP 2003130487 A JP2003130487 A JP 2003130487A JP 2004333033 A JP2004333033 A JP 2004333033A
Authority
JP
Japan
Prior art keywords
heat
gas
heat medium
exhaust gas
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003130487A
Other languages
Japanese (ja)
Inventor
Takayuki Saito
隆行 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003130487A priority Critical patent/JP2004333033A/en
Publication of JP2004333033A publication Critical patent/JP2004333033A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/08Arrangements of devices for treating smoke or fumes of heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15081Reheating of flue gases

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat medium circulating device, a heat medium circulating method and an exhaust gas processing device for a gas-gas heat exchanger capable of minimizing a heat transfer area of a heat transfer tube. <P>SOLUTION: The GGH heat medium successively flows in a heat medium circulation pump 24, a heat transfer tube 21 of a GGH heat recovering unit 11, a heat medium heater 25, a switch valve 27, a bare tube 22 of a GGH reheating unit 13, a switch valve 9, a finned tube 23 of the GGH reheating unit 13, a switch valve 31 and the heat medium circulation pump 24 in the normal operation. On the other hand, in abnormality such that an exhaust gas temperature at an outlet side of an air preheating unit 3 is more than 160 °C or more, the GGH heat medium successively flows in the heat medium circulation pump 24, the heat transfer tube 21 of the GGH heat recovering unit 11, the heat medium heater 25, a switch valve 28, the finned tube 23 of the GGH reheating unit 13, a switch valve 10, a bare tube 22 of the GGH reheating unit 13, a switch valve 26 and the heat medium circulation pump 24. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は排ガス処理装置に係り、特に湿式脱硫装置出口のボイラ等の排ガスを再加熱するのに好適なガス再加熱器を有するガスガス熱交換器(以下GGHと記すことがある)熱媒体循環装置と熱媒体循環方法及び排ガス処理装置に関する。
【0002】
【従来の技術】
一般的な排ガス処理装置の系統を図3と図4に示す。図3に示す排ガス処理システムではボイラ1から排出される排ガスは脱硝装置2に導入され、排ガス中の窒素酸化物が除去された後、空気予熱器(A/H)3においてボイラ1へ供給される燃焼用空気と熱交換される。排ガスは電気集塵器(EP)4で排ガス中のばい塵の大半が除去された後、誘引ファン5により昇圧される。その後、GGH熱回収器11に導入され熱回収された後、湿式脱硫装置6に導入され、気液接触により排ガス中のSOxが除去される。湿式脱硫装置6において飽和ガス温度にまで冷却された排ガスは、脱硫ファン7により昇圧され、GGH再加熱器13により昇温されて、煙突8より排出される。
【0003】
図4に示す排ガス処理システムではボイラ1から排出される排ガスは脱硝装置2に導入され、排ガス中の窒素酸化物が除去された後、空気予熱器3においてボイラ1へ供給される燃焼用空気と熱交換される。その後、GGH熱回収器11に導入されて熱回収された後、電気集塵器4で排ガス中のばい塵の大半が除去される。排ガスは誘引ファン5により昇圧されて、湿式脱硫装置6に導入され、気液接触により排ガス中のSOxが除去される。湿式脱硫装置6において飽和ガス温度にまで冷却された排ガスは、GGH再加熱器13により昇温され、脱硫ファン7により昇圧されて、煙突8より排出される。
【0004】
図4に示す排ガス処理システムはGGH熱回収器11の後流側に電気集塵器4が置かれており、該電気集塵器4での処理ガス温度が低くなるため、ばい塵の電気抵抗が下がり、ばい塵除去効率が高く、図3に示す排ガス処理システムに比べてばい塵除去性能が高い。近年では、ばい塵排出規制がより厳しくなってきているため、石炭焚ボイラにおいては図4に示す排ガス処理システムの方が主流となりつつある。
【0005】
図4で示す従来のGGHの系統を図5に示す。このGGHの系統は、GGH熱回収器11の伝熱管(フィン付管)21とGGH再加熱器13の裸の伝熱管(裸管)22とフィン付伝熱管(フィン付管)23を連絡配管12で連絡し、熱媒体循環ポンプ24により熱媒体を循環させ、熱媒体の顕熱により空気予熱器3の出口ガスを冷却(熱回収)し、湿式脱硫装置6の出口ガスを昇温(再加熱)する熱交換器である。
【0006】
上記GGHの系統には、低負荷時等に媒体温度が低くなり過ぎないようにするため、又は起動時又は停缶(ボイラ運転停止)時の暖気目的で蒸気を加熱源とする熱媒体ヒータ25が再加熱器13の裸管22の前流側の熱媒体連絡配管12内に設置され、また該連絡配管12の内部には熱媒体として水を満水状態で充填しており、運転中は熱媒体温度の上昇により熱媒体(水)が膨張するため、それを吸収する目的の熱媒体タンク13が付属機器として設置されるのが一般的である。
【0007】
また、熱回収器11の出口排ガス温度を制御するために、該熱回収器11をバイパスして再加熱器13の熱媒体出口から入口に戻る熱媒体バイパスライン17が設けられ、電気集塵器4の出口排ガス温度を計測する温度計18の信号により、電気集塵器4の出口排ガス温度が設定範囲となるように、熱媒体バイパスライン17に設けられた流量調整弁19の開度を調整して熱媒体による熱回収器11での熱回収量を制御している。
【0008】
ここでGGH熱回収器11の伝熱管21とGGH再加熱器13のフィン付管23には通常熱交換効率を向上させるために、フィンチューブが用いられている。また、GGH再加熱器13のフィン付管23の前流側の排ガス流路には前流機器の湿式脱硫装置6からの飛散ミストを効率よく除去するため、熱回収器11及び熱媒体ヒータ25を通った高温(通常100℃以上)の熱媒体が流れる裸管22が設置されている。
【0009】
図6には上記GGH系統でのガス温度と熱媒体温度のバランスの一例を示す。図6(a)は熱回収器11でのガス温度と熱媒体温度のバランスを示している。熱回収器11ではガスの出口側(低温側)から低温媒体を入れ、ガスの入口側(高温側)に流しており、ガスと熱媒体とは向流接触となる熱交換器である。
【0010】
一方、図6(b)は再加熱器13側のガス温度と熱媒体温度の関係を示したものであり、ガスの入口側(低温側)の裸管22に高温媒体を、まず導入し、裸管22を通過した熱媒体はガス出口側(高温側)に導入され、フィン付管23内を流れ、冷却される。
【0011】
従って、GGH再加熱器13のフィン付管23は熱回収器11の場合と同様にガスと熱媒体は向流接触する熱交換器であるが、裸管22ではガスと熱媒体は並流接触する(この方式を高温裸管群付GGHと称す。)。
【0012】
GGH再加熱器13において、熱媒体がガスと接触する伝熱管を裸管22とする技術は、特開平11−230537号公報、特開2002−177732号公報、及び特開2000−161647号公報等に記載されている。
【0013】
【特許文献1】
特開平11−230537号公報
【0014】
【特許文献2】
特開2002−177732号公報
【0015】
【特許文献3】
特開2000−161647号公報
【0016】
【発明が解決しようとする課題】
近年、石炭焚き火力発電システムにおいては、図4に示す排ガス流路の電気集塵器4の前流側にGGH熱回収器11を設置する排ガス処理システムが主流となっているが、このシステムを採用する場合、熱回収器11の出口の温度が電気集塵器(EP)4の除塵性能に大きく影響するため、どのようなボイラ運転条件においても熱回収器11の出口ガス温度が一定温度以下になることが要求される場合がある。
【0017】
例えば、空気予熱器3の異常時においてガス温度が160℃程度と高くなるような場合においても熱回収器11の出口ガス温度が一定温度(例えば95℃)以下になることが要求される場合がある。これは、熱回収器11の出口ガス温度(=EP4の入口ガス温度)が高いと電気集塵器4の除塵性能が悪くなり、煙突8の入口での煤塵濃度規制値を守れなくなるためである。
【0018】
図5に示す再加熱器13の伝熱管では前述のように裸管22は並流、フィン付管23は向流の熱交換器となるため、図7の系統図及び図8のガス温度−熱媒体温度バランスを示す図に示すように、裸管22とフィン付管23の全ての伝熱管部分で熱媒体をガスGと向流方向に流す再加熱器13と同じ伝熱性能にするためには、伝熱面積を多く必要とする。ガス条件(ガス量、ガス温度)にもよるが、熱回収器11と再加熱器13の伝熱管のトータル伝熱面積ベースでは高温裸管群無し(高温熱媒体側に裸管22を配置しない場合)のGGHに比べ、約30%程度大きくなる。
【0019】
なお、図8(a)は熱回収器11でのガス温度と熱媒体温度のバランスを示している。熱回収器11ではガスの出口側(低温側)から低温媒体を入れ、ガスの入口側(高温側)に流しており、ガスと熱媒体とは向流接触となる熱交換器である。
【0020】
また、図8(b)は再加熱器13側のガス温度と熱媒体温度の関係を示したものであり、ガス出口側(高温側)のフィン付管23に高温媒体を入れ、フィン付管23を通過した熱媒体はガスの入口側(低温側)に導入され、裸管22内を流れ、冷却され、ここでもガスと熱媒体とは向流接触となる熱交換器である。
【0021】
例えば、1,000MW発電所用のボイラの排ガス処理に利用するGGHの一例を示すと、空気予熱器3の異常時(例えば空気予熱器3の出口ガス温度が160℃で熱回収器11の出口ガス温度が95℃)を考慮すると、高温裸管群付GGHの伝熱管の伝熱面積は約160,000mとなり、同様の設計条件で高温裸管群無しのGGHの伝熱管の伝熱面積は約125,000mとなる。
【0022】
本発明の課題は、伝熱管の伝熱面積を必要最小限にすることができるガスガス熱交換器の熱媒体循環装置と熱媒体循環方法及び排ガス処理装置を提供することである。
【0023】
【課題を解決するための手段】
上記本発明の課題は次の解決手段により解決される。
請求項1記載の発明は、燃焼装置から排出する排ガスにより燃焼装置の燃焼用空気を予熱する空気予熱器と、該空気予熱器出口の排ガスの熱を熱媒体に回収する伝熱管群からなる熱回収器と、該熱回収器出口の排ガス中のばい塵を回収する集塵器と、該集塵器出口の排ガス中の硫黄酸化物を除去する湿式脱硫装置と、該湿式脱硫装置出口の排ガスを前記熱回収器から供給される熱媒体で加熱する裸管部とフィン付管部とからなる伝熱管群からなる再加熱器と、を燃焼装置の排ガスダクトの上流側から下流側に順次配置し、熱回収器と再加熱器の伝熱管を熱媒体循環ラインで連絡したガスガス熱交換器の熱媒体循環装置において、熱媒体循環ラインは、熱回収器出口の高温媒体を再加熱器の裸管部又はフィン付管部のどちらか一方に先に流し、他方に後から流すことができるような流路切替え可能な配管とバルブを設置したガスガス熱交換器の熱媒体循環装置である。
【0024】
請求項2記載の発明は、請求項1記載のガスガス熱交換器の熱媒体循環装置を用いて、通常時は再加熱器の伝熱管の裸管に、まず、より高温の熱媒体をガス流れと並流方向に流し、その後フィン付管にガス流れと向流方向に流し、空気予熱器の出口側のガス温度が第1の所定温度(160℃)以上に上昇した場合には熱回収器の出口側のガス温度を第2の所定温度(95℃)以下に維持するために、再加熱器の伝熱管の裸管に、まず、より高温の熱媒体をガス流れと向流方向に流し、その後フィン付管にもガス流れと向流方向に流すガスガス熱交換器の熱媒体循環方法である。
【0025】
請求項3記載の発明は、燃焼装置から排出する排ガスにより燃焼装置の燃焼用空気を予熱する空気予熱器と、該空気予熱器出口の排ガスの熱を熱媒体に回収する伝熱管群からなる熱回収器と、該熱回収器出口の排ガス中のばい塵を回収する集塵器と、該集塵器出口の排ガス中の硫黄酸化物を除去する湿式脱硫装置と、該湿式脱硫装置出口の排ガスを前記熱回収器から供給される熱媒体で加熱する裸管部とフィン付管部とからなる伝熱管群からなる再加熱器とを燃焼装置の排ガスダクトの上流側から下流側に順次配置し、熱回収器と再加熱器にそれぞれ設けられた伝熱管を連絡し、その内部に熱媒体を循環させる熱媒体循環ラインを設けた排ガス処理装置において、熱媒体循環ラインは、熱回収器出口の高温媒体を再加熱器の裸管部又はフィン付管部のどちらか一方に先に流し、他方に後から流すことができるような流路切替え可能な配管とバルブを設置した排ガス処理装置である。
【0026】
【作用】
近年の排ガス処置システムでは、前述のように電気集塵器の除塵性能維持のために空気予熱器の出口ガス温度が異常に上昇した場合でも、GGH熱回収器出口ガス温度を一定温度(例えば95℃)以下に維持する必要がある。
【0027】
本発明によるガスガス熱交換器の熱媒体循環装置と熱媒体循環方法及び排ガス処理装置を採用した場合、通常運転時には高温裸管群を機能させた(裸管群に高温媒体を入れて、裸管部を並流熱交換器とする)GGHとし、空気予熱器の出口ガス温度が異常(例えば160℃以上)に上昇した場合は高温裸管群無し(全て向流熱交換器とする)GGHに切替えるため、熱回収器出口ガス温度も維持でき、伝熱面積を約30%小さくすることが可能となる。
【0028】
なお、このように高温裸管群無しに切替えた場合、裸管部には低温媒体が流れてミストの捕集(蒸発)機能が低下し、後流側のフィン付管群の腐食等が懸念されるが、このような運転は稀なケース(異常時)であり、年間の運転時間の中で見てもわずかであるため、(悪)影響度合いは少ないと考えられる。
【0029】
【発明の実施の形態】
本発明の実施の形態について図面と共に説明する。
本実施例のGGH系統を図1と、図2に示す。
図1と図2に示すGGHの系統は、図4に示す排ガス処理システムに適用されるガスガス熱交換器の熱媒体循環装置であり、GGH熱回収器11の伝熱管21とGGH再加熱器13の裸の伝熱管(裸管)22とフィン付伝熱管(フィン付管)23を連絡配管12で連絡し、熱媒体循環ポンプ24により熱媒体(水が通常使用される)を循環させ、熱媒体の顕熱により空気予熱器3の出口ガスGを冷却(熱回収)し、湿式脱硫装置6の出口ガスGを昇温(再加熱)する熱交換器である。
【0030】
上記GGHの系統には、図5で説明した系統と同じく、蒸気を加熱源とする熱媒体ヒータ25が再加熱器13の裸管22の前流側の連絡配管12内に設置され、また該連絡配管12の内部には熱媒体として水を満水状態で充填しており、運転中は熱媒体温度の上昇により熱媒体(水)が膨張するため、それを吸収する目的の熱媒体タンク13が設置されている。また、熱回収器11の出口排ガス温度を制御するために、熱回収器11をバイパスして再加熱器13の熱媒体出口から入口に戻る熱媒体バイパスライン17が設けられ、電気集塵器4の出口排ガス温度を計測する温度計18の信号により、電気集塵器4の出口排ガス温度が設定範囲となるように、熱媒体バイパスライン17に設けられた流量調整弁19の開度を調整して熱媒体による熱回収器11での熱回収量を制御している。
【0031】
図3に、本実施例の特徴部に係る熱回収器11と再加熱器13の熱媒体循環系統の詳細図を示す。熱回収器11と再加熱器13のそれぞれの伝熱管21と伝熱管23は、熱媒体連絡管路12により環状に連結され、その管路12の途中に設けられた循環ポンプ24(図1)により、それらの伝熱管21、23内に熱媒体が循環されるようになっている。伝熱管21、23は、熱交換の効率を向上させるために、フィンチューブ等が用いられる。熱媒体循環管路12には、管路の熱媒体の膨張を吸収するために熱媒体タンク16(図1)が設置されている。
【0032】
電気集塵器4出口の排ガス温度を制御する具体的な方法は下記のものが挙げられる。
熱回収器11の出口排ガス温度を制御するために、熱回収器11をバイパスして再加熱器13の熱媒体出口から入口に戻る熱媒体バイパスライン17が設けられ、電気集塵器4の出口排ガス温度を計測する温度計18の信号により、電気集塵器4の出口排ガス温度が設定範囲となるように、熱媒体バイパスライン17に設けられた流量調整弁19の開度を調整して熱媒体による熱回収器11での熱回収量を制御している。
【0033】
GGH熱回収器11の伝熱管21とGGH再加熱器13のフィン付伝熱管23には通常熱交換効率を向上させるためにフィンチューブが用いられ、また、GGH再加熱器13のフィン付管23の前流側の排ガス流路には前流機器の湿式脱硫装置6からの飛散ミストを効率よく除去するため熱回収器11及び熱媒体ヒータ25を通った高温(通常100℃以上)の熱媒体が流れる裸管22が設置されている。
【0034】
通常運転時のGGH熱媒体の流れを図1の太線で示すように、熱媒体循環ポンプ24→GGH熱回収器11の伝熱管21→熱媒体ヒータ25→切替バルブ27→GGH再加熱器13の裸管22→切替バルブ9→GGH再加熱器13のフィン付管23→切替バルブ31→熱媒体循環ポンプ24とし、上記切替バルブ9、27、31は全て開とし、その他の切替バルブ10、26、28は閉とする。
【0035】
一方、空気予熱器3の出口側の排ガス温度が所定温度(例えば160℃)より高くなるような異常時には、図2の太線で示すように、GGH熱媒体の流れを熱媒体循環ポンプ24→GGH熱回収器11の伝熱管21→熱媒体ヒータ25→切替バルブ28→GGH再加熱器13のフィン付管23→切替バルブ10→GGH再加熱器13の裸管22→切替バルブ26→熱媒体循環ポンプ24として、上記切替バルブ10、26、28は全て開とし、その他の切替バルブ9、切替バルブ27、切替バルブ31は閉とする。
【0036】
なお、前記切替バルブは手動、自動の限定はしない。また、運転員によるマニュアル運転又は空気予熱器(A/H)3の出口ガス温度を検出して自動的にバルブ切替する自動化運転等の運転方法についても限定はしないものとする。
【0037】
【発明の効果】
本発明によれば、空気予熱器の異常時等において、空気予熱器出口ガス温度が高い場合にのみGGHの熱交換器の熱媒体の流れ方向を全てガス流れと向流方向になるように熱交換器内の熱媒体の流れ方向を切替ることによって、伝熱面積を約30%削減することが可能となる。
【図面の簡単な説明】
【図1】本発明に一実施例のGGH系統の通常時の構成図である。
【図2】図1のGGH系統の異常時の構成図である。
【図3】一般的な排ガス処理系統の構成図である。
【図4】一般的な排ガス処理系統の構成図である。
【図5】再加熱器に高温裸管群を設けたGGH系統の構成図である。
【図6】図5の高温裸管群付GGH系統のガス温度−熱媒体温度バランスのを説明する図である。
【図7】再加熱器に高温裸管群無しのGGH系統の構成図である。
【図8】図7の高温裸管群無しGGH系統のガス温度−熱媒体温度バランスを説明する図である。
【符号の説明】
1 ボイラ 2 脱硝装置
3 空気予熱器(A/H) 4 電気集塵器(EP)
5 誘引ファン 6 湿式脱硫装置
7 脱硫ファン 8 煙突
9、10、26、27、28、31 切替バルブ
11 GGH熱回収器 12 連絡配管
13 GGH再加熱器 16 熱媒体タンク
17 熱媒体バイパスライン 18 温度計
19 流量調整弁 21 伝熱管(フィン付管)
22 伝熱管(裸管) 23 フィン付伝熱管(フィン付管)
24 熱媒体循環ポンプ 25 熱媒体ヒータ
G ガス
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas treatment apparatus, and more particularly to a gas gas heat exchanger (hereinafter sometimes referred to as GGH) heat medium circulating apparatus having a gas reheater suitable for reheating exhaust gas from a boiler or the like at the outlet of a wet desulfurization apparatus. And a heat medium circulation method and an exhaust gas treatment device.
[0002]
[Prior art]
FIGS. 3 and 4 show a system of a general exhaust gas treatment apparatus. In the exhaust gas treatment system shown in FIG. 3, the exhaust gas discharged from the boiler 1 is introduced into a denitration device 2, and after nitrogen oxides in the exhaust gas are removed, the exhaust gas is supplied to the boiler 1 in an air preheater (A / H) 3. Heat exchange with combustion air. The exhaust gas is boosted by an induction fan 5 after most of the dust in the exhaust gas is removed by an electric dust collector (EP) 4. Then, after being introduced into the GGH heat recovery unit 11 and heat recovery, it is introduced into the wet desulfurization unit 6, where SOx in the exhaust gas is removed by gas-liquid contact. The exhaust gas cooled to the saturated gas temperature in the wet desulfurization device 6 is pressurized by the desulfurization fan 7, heated by the GGH reheater 13, and discharged from the chimney 8.
[0003]
In the exhaust gas treatment system shown in FIG. 4, the exhaust gas discharged from the boiler 1 is introduced into the denitration device 2 and, after nitrogen oxides in the exhaust gas are removed, the combustion air supplied to the boiler 1 in the air preheater 3 is removed. Heat exchanged. Then, after being introduced into the GGH heat recovery unit 11 and heat recovery, most of the dust in the exhaust gas is removed by the electric precipitator 4. The exhaust gas is pressurized by the induction fan 5 and introduced into the wet desulfurization device 6, where SOx in the exhaust gas is removed by gas-liquid contact. The exhaust gas cooled to the saturated gas temperature in the wet desulfurization device 6 is heated by the GGH reheater 13, pressurized by the desulfurization fan 7, and discharged from the chimney 8.
[0004]
In the exhaust gas treatment system shown in FIG. 4, the electric precipitator 4 is placed downstream of the GGH heat recovery unit 11, and the temperature of the processing gas in the electric precipitator 4 decreases, so that the electric resistance of the dust is reduced. , The dust removal efficiency is high, and the dust removal performance is higher than the exhaust gas treatment system shown in FIG. In recent years, the exhaust gas treatment system shown in FIG. 4 is becoming the mainstream in coal-fired boilers because the regulations for dust emission are becoming stricter.
[0005]
The conventional GGH system shown in FIG. 4 is shown in FIG. This GGH system connects a heat transfer tube (finned tube) 21 of the GGH heat recovery unit 11, a bare heat transfer tube (bare tube) 22 of the GGH reheater 13, and a finned heat transfer tube (finned tube) 23. 12, the heat medium is circulated by the heat medium circulation pump 24, the outlet gas of the air preheater 3 is cooled (heat recovery) by the sensible heat of the heat medium, and the outlet gas of the wet desulfurization device 6 is heated (reheated). Heating).
[0006]
In the GGH system, a heat medium heater 25 using steam as a heat source for the purpose of preventing the medium temperature from becoming too low at a low load or the like, or for warming up at the time of starting or stopping the boiler (stopping the boiler). Is installed in the heat medium communication pipe 12 on the upstream side of the bare pipe 22 of the reheater 13, and the inside of the communication pipe 12 is filled with water as a heat medium in a full state. Since the heat medium (water) expands due to an increase in medium temperature, a heat medium tank 13 for absorbing the heat medium is generally installed as an accessory.
[0007]
Further, in order to control the exhaust gas temperature at the outlet of the heat recovery unit 11, a heat medium bypass line 17 that bypasses the heat recovery unit 11 and returns from the heat medium outlet to the inlet of the reheater 13 is provided. The opening degree of the flow control valve 19 provided in the heat medium bypass line 17 is adjusted so that the temperature of the exhaust gas of the electrostatic precipitator 4 falls within the set range by the signal of the thermometer 18 for measuring the temperature of the exhaust gas at the outlet of the electric dust collector 4. Thus, the amount of heat recovered by the heat recovery unit 11 using the heat medium is controlled.
[0008]
Here, a fin tube is usually used for the heat transfer tube 21 of the GGH heat recovery unit 11 and the finned tube 23 of the GGH reheater 13 in order to improve heat exchange efficiency. Further, in the exhaust gas flow path on the upstream side of the finned pipe 23 of the GGH reheater 13, the heat recovery unit 11 and the heat medium heater 25 are used in order to efficiently remove the mist from the wet desulfurization device 6 of the upstream device. A bare tube 22 through which a high-temperature (normally 100 ° C. or higher) heat medium passes through is provided.
[0009]
FIG. 6 shows an example of the balance between the gas temperature and the heat medium temperature in the GGH system. FIG. 6A shows the balance between the gas temperature and the heat medium temperature in the heat recovery unit 11. The heat recovery unit 11 is a heat exchanger in which a low-temperature medium is introduced from the gas outlet side (low-temperature side) and flows to the gas inlet side (high-temperature side), so that the gas and the heat medium are in countercurrent contact.
[0010]
On the other hand, FIG. 6B shows the relationship between the gas temperature on the reheater 13 side and the heat medium temperature. A high temperature medium is first introduced into the bare tube 22 on the gas inlet side (low temperature side). The heat medium that has passed through the bare pipe 22 is introduced to the gas outlet side (high temperature side), flows through the finned pipe 23, and is cooled.
[0011]
Therefore, the finned tube 23 of the GGH reheater 13 is a heat exchanger in which the gas and the heat medium are in countercurrent contact as in the case of the heat recovery unit 11, but the gas and the heat medium are in the parallel flow in the bare tube 22. (This method is called GGH with high temperature bare tube group.)
[0012]
In the GGH reheater 13, a technique in which the heat transfer tube in which the heat medium is in contact with the gas is used as the bare tube 22 is disclosed in Japanese Patent Application Laid-Open Nos. 11-230537, 2002-177732, and 2000-161647. It is described in.
[0013]
[Patent Document 1]
JP-A-11-230537
[Patent Document 2]
JP-A-2002-177732
[Patent Document 3]
Japanese Patent Application Laid-Open No. 2000-161647
[Problems to be solved by the invention]
In recent years, in a coal-fired thermal power generation system, an exhaust gas treatment system in which a GGH heat recovery unit 11 is installed on the upstream side of an electrostatic precipitator 4 in an exhaust gas channel shown in FIG. In the case of adoption, since the temperature of the outlet of the heat recovery unit 11 greatly affects the dust removal performance of the electric precipitator (EP) 4, the outlet gas temperature of the heat recovery unit 11 is equal to or lower than a certain temperature under any boiler operating conditions. May be required.
[0017]
For example, even when the gas temperature becomes as high as about 160 ° C. when the air preheater 3 is abnormal, it may be required that the outlet gas temperature of the heat recovery unit 11 be lower than a certain temperature (for example, 95 ° C.). is there. This is because if the outlet gas temperature of the heat recovery unit 11 (= the inlet gas temperature of EP4) is high, the dust removal performance of the electric precipitator 4 is deteriorated, and the dust concentration regulation value at the inlet of the chimney 8 cannot be maintained. .
[0018]
In the heat transfer tube of the reheater 13 shown in FIG. 5, as described above, since the bare tube 22 is a co-current heat exchanger and the finned tube 23 is a counter-current heat exchanger, the gas temperature in FIG. As shown in the figure showing the heat medium temperature balance, in order to obtain the same heat transfer performance as that of the reheater 13 in which the heat medium flows in the counterflow direction with the gas G in all the heat transfer tube portions of the bare tube 22 and the finned tube 23. Requires a large heat transfer area. Although it depends on gas conditions (gas amount, gas temperature), there is no high-temperature bare tube group on the basis of the total heat transfer area of the heat transfer tubes of the heat recovery unit 11 and the reheater 13 (the bare tube 22 is not arranged on the high-temperature heat medium side). Case), it is about 30% larger than GGH.
[0019]
FIG. 8A shows the balance between the gas temperature and the heat medium temperature in the heat recovery unit 11. The heat recovery unit 11 is a heat exchanger in which a low-temperature medium is introduced from the gas outlet side (low-temperature side) and flows to the gas inlet side (high-temperature side), so that the gas and the heat medium are in countercurrent contact.
[0020]
FIG. 8B shows the relationship between the gas temperature on the reheater 13 side and the heat medium temperature. A high temperature medium is put into the finned tube 23 on the gas outlet side (high temperature side), The heat medium that has passed through 23 is introduced into the inlet side (low temperature side) of the gas, flows through the bare tube 22, is cooled, and here is also a heat exchanger in which the gas and the heat medium come into countercurrent contact.
[0021]
For example, an example of a GGH used for exhaust gas treatment of a boiler for a 1,000 MW power plant is shown when an air preheater 3 is abnormal (for example, when the outlet gas temperature of the air preheater 3 is 160 ° C. and the outlet gas of the heat recovery unit 11 is Considering the temperature of 95 ° C.), the heat transfer area of the heat transfer tube of the GGH with the high temperature bare tube group is about 160,000 m 2 , and the heat transfer area of the GGH heat transfer tube without the high temperature bare tube group is the same design condition. Approximately 125,000 m 2 .
[0022]
An object of the present invention is to provide a heat medium circulating device, a heat medium circulating method, and an exhaust gas treatment device for a gas gas heat exchanger that can minimize the heat transfer area of a heat transfer tube.
[0023]
[Means for Solving the Problems]
The object of the present invention is solved by the following means.
According to the first aspect of the present invention, there is provided an air preheater for preheating combustion air of a combustion device with exhaust gas discharged from the combustion device, and a heat transfer tube group for collecting heat of the exhaust gas at the outlet of the air preheater into a heat medium. A collector, a dust collector for collecting dust in the exhaust gas at the outlet of the heat recovery unit, a wet desulfurization device for removing sulfur oxides in the exhaust gas at the outlet of the dust collector, and an exhaust gas at the outlet of the wet desulfurization device. And a reheater consisting of a heat transfer tube group consisting of a bare tube portion and a finned tube portion for heating with a heat medium supplied from the heat recovery device, and sequentially arranged from the upstream side to the downstream side of the exhaust gas duct of the combustion device. Then, in the heat medium circulation device of the gas-gas heat exchanger in which the heat transfer tubes of the heat recovery unit and the reheater are connected by a heat medium circulation line, the heat medium circulation line Pour first into either the tube or the finned tube, A heat medium circulation apparatus gas-gas heat exchanger the flow paths switchable pipe and the valve was installed such that it can flow from the later one.
[0024]
According to a second aspect of the present invention, a heat medium having a higher temperature is first supplied to a bare tube of a heat transfer tube of a reheater by using the heat medium circulating device of the gas gas heat exchanger. When the gas temperature at the outlet side of the air preheater rises above the first predetermined temperature (160 ° C.), the heat recovery unit In order to maintain the gas temperature at the outlet side of the reheater at a second predetermined temperature (95 ° C.) or lower, first, a higher-temperature heat medium is flowed in a countercurrent direction to the gas flow through the bare tube of the heat transfer tube of the reheater. This is a method of circulating a heat medium in a gas-gas heat exchanger in which a finned tube is then flowed in a countercurrent direction to the gas flow.
[0025]
According to a third aspect of the present invention, there is provided an air preheater for preheating combustion air of a combustion device by exhaust gas discharged from the combustion device, and a heat transfer tube group for recovering heat of the exhaust gas at the outlet of the air preheater to a heat medium. A collector, a dust collector for collecting dust in the exhaust gas at the outlet of the heat recovery unit, a wet desulfurization device for removing sulfur oxides in the exhaust gas at the outlet of the dust collector, and an exhaust gas at the outlet of the wet desulfurization device. A reheater consisting of a heat transfer tube group consisting of a bare tube portion and a finned tube portion for heating with a heat medium supplied from the heat recovery device is sequentially arranged from the upstream side to the downstream side of the exhaust gas duct of the combustion device. In an exhaust gas treatment apparatus in which a heat transfer pipe provided in each of a heat recovery unit and a reheater is connected and a heat medium circulation line for circulating a heat medium therein is provided, a heat medium circulation line is provided at a heat recovery unit outlet. Heat the medium to the bare tube or fin of the reheater Previously flowed into either the tubular portion, an exhaust gas treatment apparatus installed a flow channel switchable pipe and the valve that can flow after the other.
[0026]
[Action]
In the recent exhaust gas treatment system, as described above, even if the outlet gas temperature of the air preheater rises abnormally to maintain the dust removal performance of the electric precipitator, the outlet gas temperature of the GGH heat recovery unit is kept at a constant temperature (for example, 95%). ° C).
[0027]
When the heat medium circulating device, the heat medium circulating method and the exhaust gas treatment device of the gas-gas heat exchanger according to the present invention are adopted, the high-temperature bare tube group is operated during the normal operation (the high-temperature medium is put into the bare tube group, and When the outlet gas temperature of the air preheater rises abnormally (for example, 160 ° C. or more), there is no high-temperature bare tube group (all are assumed to be countercurrent heat exchangers). Because of the switching, the gas temperature at the outlet of the heat recovery unit can be maintained, and the heat transfer area can be reduced by about 30%.
[0028]
If switching is performed without using the high-temperature bare tube group, a low-temperature medium flows through the bare tube portion, and the mist collection (evaporation) function is reduced. However, such an operation is a rare case (at the time of abnormality) and is slight even in the annual operation time, so that the (bad) influence degree is considered to be small.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
The GGH system of the present embodiment is shown in FIG. 1 and FIG.
The GGH system shown in FIGS. 1 and 2 is a heat medium circulating device of a gas gas heat exchanger applied to the exhaust gas treatment system shown in FIG. 4, and includes a heat transfer tube 21 and a GGH reheater 13 of a GGH heat recovery unit 11. A heat transfer tube (bare tube) 22 and a heat transfer tube with fins (tube with fins) 23 are connected by a connection pipe 12, and a heat medium (water is usually used) is circulated by a heat medium circulation pump 24 to generate heat. This is a heat exchanger that cools (recovers heat) the outlet gas G of the air preheater 3 by sensible heat of the medium and raises (reheats) the outlet gas G of the wet desulfurization device 6.
[0030]
In the GGH system, a heating medium heater 25 using steam as a heating source is installed in the communication pipe 12 on the upstream side of the bare pipe 22 of the reheater 13 as in the system described with reference to FIG. The inside of the communication pipe 12 is filled with water as a heat medium in a full state. During operation, the heat medium (water) expands due to a rise in the temperature of the heat medium. is set up. In order to control the exhaust gas temperature at the outlet of the heat recovery unit 11, a heat medium bypass line 17 that bypasses the heat recovery unit 11 and returns from the heat medium outlet of the reheater 13 to the inlet is provided. The opening degree of the flow control valve 19 provided in the heat medium bypass line 17 is adjusted so that the temperature of the exhaust gas of the electrostatic precipitator 4 falls within the set range by the signal of the thermometer 18 which measures the temperature of the exhaust gas at the outlet. Thus, the amount of heat recovered by the heat recovery unit 11 using the heat medium is controlled.
[0031]
FIG. 3 shows a detailed diagram of a heat medium circulation system of the heat recovery unit 11 and the reheater 13 according to the characteristic part of the present embodiment. The heat transfer tube 21 and the heat transfer tube 23 of the heat recovery unit 11 and the reheater 13 are connected in a ring shape by the heat medium communication pipe 12, and a circulation pump 24 provided in the pipe 12 (FIG. 1). Thereby, the heat medium is circulated in the heat transfer tubes 21 and 23. Fin tubes and the like are used for the heat transfer tubes 21 and 23 in order to improve the efficiency of heat exchange. The heat medium circulation pipe 12 is provided with a heat medium tank 16 (FIG. 1) for absorbing the expansion of the heat medium in the pipe.
[0032]
A specific method for controlling the exhaust gas temperature at the outlet of the electrostatic precipitator 4 is as follows.
In order to control the exhaust gas temperature at the outlet of the heat recovery unit 11, a heat medium bypass line 17 is provided which bypasses the heat recovery unit 11 and returns from the heat medium outlet of the reheater 13 to the inlet. The opening degree of the flow control valve 19 provided in the heating medium bypass line 17 is adjusted by the signal of the thermometer 18 for measuring the exhaust gas temperature so that the outlet exhaust gas temperature of the electrostatic precipitator 4 falls within a set range. The amount of heat recovered by the medium in the heat recovery unit 11 is controlled.
[0033]
Fin tubes are usually used for the heat transfer tube 21 of the GGH heat recovery unit 11 and the finned heat transfer tube 23 of the GGH reheater 13 in order to improve heat exchange efficiency. A high-temperature (usually 100 ° C. or higher) heat medium that has passed through the heat recovery unit 11 and the heat medium heater 25 in order to efficiently remove scattered mist from the wet desulfurization device 6 of the upstream device in the exhaust gas channel on the upstream side of A bare tube 22 through which the air flows is provided.
[0034]
The flow of the GGH heat medium during normal operation is indicated by the bold line in FIG. 1, and the heat medium circulation pump 24 → heat transfer tube 21 of the GGH heat recovery unit 11 → heat medium heater 25 → switching valve 27 → GGH reheater 13 Bare pipe 22 → switching valve 9 → finned pipe 23 of GGH reheater 13 → switching valve 31 → heat medium circulating pump 24, all of the switching valves 9, 27, 31 are opened, and other switching valves 10, 26 , 28 are closed.
[0035]
On the other hand, when the temperature of the exhaust gas on the outlet side of the air preheater 3 becomes abnormally higher than a predetermined temperature (for example, 160 ° C.), the flow of the GGH heat medium is changed to the heat medium circulation pump 24 → GGH as shown by the thick line in FIG. Heat transfer tube 21 of heat recovery unit 11 → Heat medium heater 25 → Switching valve 28 → Finned tube 23 of GGH reheater 13 → Switching valve 10 → Bare tube 22 of GGH reheater 13 → Switching valve 26 → Heat medium circulation As the pump 24, the switching valves 10, 26, and 28 are all opened, and the other switching valves 9, 27, and 31 are closed.
[0036]
The switching valve is not limited to manual or automatic. Further, there is no limitation on an operation method such as a manual operation by an operator or an automatic operation for automatically switching valves by detecting the outlet gas temperature of the air preheater (A / H) 3.
[0037]
【The invention's effect】
According to the present invention, when the air preheater is abnormal or the like, only when the gas temperature at the outlet of the air preheater is high, heat is applied so that the flow direction of the heat medium of the heat exchanger of the GGH is all in the countercurrent direction to the gas flow. By switching the flow direction of the heat medium in the exchanger, the heat transfer area can be reduced by about 30%.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a GGH system according to an embodiment of the present invention at a normal time.
FIG. 2 is a configuration diagram when the GGH system of FIG. 1 is abnormal.
FIG. 3 is a configuration diagram of a general exhaust gas treatment system.
FIG. 4 is a configuration diagram of a general exhaust gas treatment system.
FIG. 5 is a configuration diagram of a GGH system in which a high-temperature bare tube group is provided in a reheater.
FIG. 6 is a diagram illustrating a gas temperature-heat medium temperature balance of the GGH system with a high-temperature bare tube group in FIG. 5;
FIG. 7 is a configuration diagram of a GGH system without a high-temperature bare tube group in a reheater.
8 is a diagram illustrating a gas temperature-heating medium temperature balance of the GGH system without the high-temperature bare tube group in FIG. 7;
[Explanation of symbols]
Reference Signs List 1 boiler 2 denitration device 3 air preheater (A / H) 4 electric precipitator (EP)
Reference Signs List 5 Induction fan 6 Wet desulfurization device 7 Desulfurization fan 8 Chimney 9, 10, 26, 27, 28, 31 Switching valve 11 GGH heat recovery unit 12 Communication pipe 13 GGH reheater 16 Heat medium tank 17 Heat medium bypass line 18 Thermometer 19 Flow control valve 21 Heat transfer tube (tube with fins)
22 Heat transfer tube (bare tube) 23 Heat transfer tube with fin (tube with fin)
24 Heat medium circulation pump 25 Heat medium heater G Gas

Claims (3)

燃焼装置から排出する排ガスにより燃焼装置の燃焼用空気を予熱する空気予熱器と、該空気予熱器出口の排ガスの熱を熱媒体に回収する伝熱管群からなる熱回収器と、該熱回収器出口の排ガス中のばい塵を回収する集塵器と、該集塵器出口の排ガス中の硫黄酸化物を除去する湿式脱硫装置と、該湿式脱硫装置出口の排ガスを前記熱回収器から供給される熱媒体で加熱する裸管部とフィン付管部とからなる伝熱管群からなる再加熱器と、を燃焼装置の排ガスダクトの上流側から下流側に順次配置し、熱回収器と再加熱器の伝熱管を熱媒体循環ラインで連絡したガスガス熱交換器の熱媒体循環装置において、
熱媒体循環ラインは、熱回収器出口の高温媒体を再加熱器の裸管部又はフィン付管部のどちらか一方に先に流し、他方に後から流すことができるような流路切替え可能な配管とバルブを設置したことを特徴とするガスガス熱交換器の熱媒体循環装置。
An air preheater for preheating combustion air of the combustion device with exhaust gas discharged from the combustion device, a heat recovery device including a heat transfer tube group for recovering heat of the exhaust gas at the outlet of the air preheater to a heat medium, and the heat recovery device A dust collector for collecting the dust in the exhaust gas at the outlet, a wet desulfurization device for removing sulfur oxides in the exhaust gas at the outlet of the dust collector, and an exhaust gas at the outlet of the wet desulfurization device supplied from the heat recovery device. And a reheater consisting of a heat transfer tube group consisting of a bare tube section heated by a heat medium and a finned tube section are arranged sequentially from the upstream side to the downstream side of the exhaust gas duct of the combustion device, and the heat recovery unit and the reheating unit In the heat medium circulation device of the gas-gas heat exchanger in which the heat transfer tubes of the heat exchanger are connected by the heat medium circulation line,
The heat medium circulating line is switchable so that the high-temperature medium at the outlet of the heat recovery device can flow first to either the bare tube portion or the finned tube portion of the reheater, and can flow later to the other. A heat medium circulating device for a gas-gas heat exchanger, comprising a pipe and a valve.
請求項1記載のガスガス熱交換器の熱媒体循環装置を用いて、通常時は再加熱器の伝熱管の裸管に、まず、より高温の熱媒体をガス流れと並流方向に流し、その後フィン付管にガス流れと向流方向に流し、空気予熱器の出口側のガス温度が第1の所定温度(160℃)以上に上昇した場合には熱回収器の出口側のガス温度を第2の所定温度(95℃)以下に維持するために、再加熱器の伝熱管の裸管に、まず、より高温の熱媒体をガス流れと向流方向に流し、その後フィン付管にもガス流れと向流方向に流すことを特徴とするガスガス熱交換器の熱媒体循環方法。Using the heat medium circulating device of the gas-gas heat exchanger according to claim 1, usually, first, a higher temperature heat medium is caused to flow in the bare tube of the heat transfer tube of the reheater in a co-current direction with the gas flow. When the gas temperature at the outlet side of the air preheater rises to a first predetermined temperature (160 ° C.) or more, the gas temperature at the outlet side of the heat recovery device is raised to the second temperature. 2. In order to maintain the temperature below the predetermined temperature (95 ° C.), first, a higher temperature heat medium is caused to flow in a countercurrent direction to the gas flow through the bare tube of the heat transfer tube of the reheater, and then the gas is also supplied to the finned tube. A method for circulating a heat medium in a gas-gas heat exchanger, characterized by flowing in a countercurrent direction to the flow. 燃焼装置から排出する排ガスにより燃焼装置の燃焼用空気を予熱する空気予熱器と、該空気予熱器出口の排ガスの熱を熱媒体に回収する伝熱管群からなる熱回収器と、該熱回収器出口の排ガス中のばい塵を回収する集塵器と、該集塵器出口の排ガス中の硫黄酸化物を除去する湿式脱硫装置と、該湿式脱硫装置出口の排ガスを前記熱回収器から供給される熱媒体で加熱する裸管部とフィン付管部とからなる伝熱管群からなる再加熱器と、を燃焼装置の排ガスダクトの上流側から下流側に順次配置し、熱回収器と再加熱器にそれぞれ設けられた伝熱管を連絡し、その内部に熱媒体を循環させる熱媒体循環ラインを設けた排ガス処理装置において、
熱媒体循環ラインは、熱回収器出口の高温媒体を再加熱器の裸管部又はフィン付管部のどちらか一方に先に流し、他方に後から流すことができるような流路切替え可能な配管とバルブを設置したことを特徴とする排ガス処理装置。
An air preheater for preheating combustion air of the combustion device with exhaust gas discharged from the combustion device, a heat recovery device including a heat transfer tube group for recovering heat of the exhaust gas at the outlet of the air preheater to a heat medium, and the heat recovery device A dust collector for collecting the dust in the exhaust gas at the outlet, a wet desulfurization device for removing sulfur oxides in the exhaust gas at the outlet of the dust collector, and an exhaust gas at the outlet of the wet desulfurization device supplied from the heat recovery device. And a reheater consisting of a heat transfer tube group consisting of a bare tube section heated by a heat medium and a finned tube section are arranged sequentially from the upstream side to the downstream side of the exhaust gas duct of the combustion device, and the heat recovery unit and the reheating unit In an exhaust gas treatment device provided with a heat medium circulating line for communicating heat transfer tubes provided in each vessel and circulating a heat medium therein,
The heat medium circulating line is switchable so that the high-temperature medium at the outlet of the heat recovery device can flow first to either the bare tube portion or the finned tube portion of the reheater, and can flow later to the other. An exhaust gas treatment device characterized by installation of pipes and valves.
JP2003130487A 2003-05-08 2003-05-08 Heat medium circulating device and method for gas-gas heat exchanger Pending JP2004333033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130487A JP2004333033A (en) 2003-05-08 2003-05-08 Heat medium circulating device and method for gas-gas heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130487A JP2004333033A (en) 2003-05-08 2003-05-08 Heat medium circulating device and method for gas-gas heat exchanger

Publications (1)

Publication Number Publication Date
JP2004333033A true JP2004333033A (en) 2004-11-25

Family

ID=33506003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130487A Pending JP2004333033A (en) 2003-05-08 2003-05-08 Heat medium circulating device and method for gas-gas heat exchanger

Country Status (1)

Country Link
JP (1) JP2004333033A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102913941A (en) * 2012-11-08 2013-02-06 江苏双良新能源装备有限公司 Two-stage fuel gas boiler flue gas heat energy recovery system
EP3255340A4 (en) * 2015-02-05 2018-02-21 Mitsubishi Hitachi Power Systems, Ltd. Heat exchanger and method for controlling heat exchanger
JP2022044949A (en) * 2020-09-08 2022-03-18 三菱重工パワー環境ソリューション株式会社 Heat exchanger and flue gas treatment equipment
JP2022044948A (en) * 2020-09-08 2022-03-18 三菱重工パワー環境ソリューション株式会社 Heat exchanger and flue gas treatment equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102913941A (en) * 2012-11-08 2013-02-06 江苏双良新能源装备有限公司 Two-stage fuel gas boiler flue gas heat energy recovery system
EP3255340A4 (en) * 2015-02-05 2018-02-21 Mitsubishi Hitachi Power Systems, Ltd. Heat exchanger and method for controlling heat exchanger
US10436096B2 (en) 2015-02-05 2019-10-08 Mitsubishi Hitachi Power Systems, Ltd. Heat exchanger and method for controlling heat exchanger
JP2022044949A (en) * 2020-09-08 2022-03-18 三菱重工パワー環境ソリューション株式会社 Heat exchanger and flue gas treatment equipment
JP2022044948A (en) * 2020-09-08 2022-03-18 三菱重工パワー環境ソリューション株式会社 Heat exchanger and flue gas treatment equipment
JP7203069B2 (en) 2020-09-08 2023-01-12 三菱重工パワー環境ソリューション株式会社 Heat exchangers and flue gas treatment equipment
JP7275085B2 (en) 2020-09-08 2023-05-17 三菱重工パワー環境ソリューション株式会社 Heat exchangers and flue gas treatment equipment

Similar Documents

Publication Publication Date Title
JP4725985B2 (en) Operation method of flue gas treatment equipment
JP2014009877A (en) Flue gas treatment equipment and method
JP5636955B2 (en) Heat recovery system
KR101674705B1 (en) Method for generating power from exhaust heat and system for generating power from exhaust heat
RU2688078C2 (en) Coaling welded electric installation with oxy-ignition with heat integrating
US10436096B2 (en) Heat exchanger and method for controlling heat exchanger
JP2014009624A (en) Waste heat utilization method, waste heat utilization system and treatment method of boiler exhaust gas
JP3548833B2 (en) Exhaust gas treatment system and operating method thereof
JP4761284B2 (en) Exhaust gas treatment device and its operation method
JP2004333033A (en) Heat medium circulating device and method for gas-gas heat exchanger
JPH0933004A (en) Waste heat recovery boiler
JP2007046113A (en) Facility for cleaning blast furnace gas and method for cleaning blast furnace gas
JP3776641B2 (en) Gas gas heat exchanger
JP2002372223A (en) Gas-gas heater
JP3783122B2 (en) Smoke removal equipment
JP2001074229A (en) Flue gas processor and method of operating the same
JP2009216279A (en) Gas-gas heat exchanger and its heat exchanging method
JP3544432B2 (en) Exhaust gas treatment equipment and its operation method
JPH1199317A (en) Flue gas desulfurizer and its operation
JP2002250514A (en) Exhaust gas disposer, and its operation method
CN205746785U (en) ORC economizer and system for power-plant flue gas UTILIZATION OF VESIDUAL HEAT IN
JP2001248826A (en) Equipment and method for boiler exhaust gas treatment
JP2014009878A (en) Exhaust gas purifying device and method for operating the same
JP2011094901A (en) Gas-gas heater and control method of the gas-gas heater
JP2004308949A (en) Waste heat recovery system