JP2014009877A - Flue gas treatment equipment and method - Google Patents

Flue gas treatment equipment and method Download PDF

Info

Publication number
JP2014009877A
JP2014009877A JP2012146373A JP2012146373A JP2014009877A JP 2014009877 A JP2014009877 A JP 2014009877A JP 2012146373 A JP2012146373 A JP 2012146373A JP 2012146373 A JP2012146373 A JP 2012146373A JP 2014009877 A JP2014009877 A JP 2014009877A
Authority
JP
Japan
Prior art keywords
heat medium
exhaust gas
temperature
power generation
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012146373A
Other languages
Japanese (ja)
Inventor
Koji Muramoto
考司 村本
Atsushi Katagawa
篤 片川
Hiroshi Ishizaka
浩 石坂
Takayuki Saito
隆行 斎藤
Hiroyuki Nosaka
浩之 野坂
Takanori Nakamoto
隆則 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2012146373A priority Critical patent/JP2014009877A/en
Publication of JP2014009877A publication Critical patent/JP2014009877A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Treating Waste Gases (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Chimneys And Flues (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide flue gas desulfurization equipment and method for contriving effective utilization of waste heat of exhaust gas in a cleaning system for cleaning combustion exhaust gas to be exhausted from a boiler of a thermal power plant, etc., and effectively utilizing the exhaust gas.SOLUTION: In flue gas treatment equipment, a flow passage of exhaust gas from a boiler 1 is sequentially provided with: denitration equipment 2; an air preheater 3; a gas cooler 4; a dust collector 5; and desulfurizing equipment 7, the gas cooler 4 is provided with a heat medium circulation line 29 with a heat medium flow rate control valve 19, a heat medium bypass line 30 for circulating a heat medium between the gas cooler 4 and a binary power generating facility 17 which utilizes heat of the exhaust gas collected by the line 29, by bypassing the binary power generating facility 17, a control valve 19, and the cooler 4 is connected to the heat medium circulation line 29, and a supply amount of the heat medium in the heat medium circulation line 29 to be supplied to the cooler 4 and a supply amount of a heat medium in the bypass line 30 are controlled according to exhaust gas temperature at an outlet of the cooler 4 so that the exhaust gas temperature at the outlet of the cooler 4 becomes a predetermined value.

Description

本発明は、火力発電所や工場等に設置されるボイラ等の燃焼設備から排出される排ガスを浄化するための排煙処置装置と方法に関し、ボイラ等の燃焼設備からの廃熱を有効利用するバイナリー発電設備を有し、廃熱利用による発電を行いつつ、安定した運用が可能な排煙処理装置と方法に関するものである。   The present invention relates to a flue gas treatment apparatus and method for purifying exhaust gas discharged from combustion equipment such as a boiler installed in a thermal power plant or factory, and effectively uses waste heat from the combustion equipment such as a boiler. The present invention relates to a smoke treatment apparatus and method that have a binary power generation facility and can perform stable operation while generating power using waste heat.

ボイラ等から排出される排ガスの廃熱回収手段として、ボイラからの排ガス系統にガス冷却器を設け、かつ、バイナリー発電設備を有する系統を図5に示す。なお、各図において同一機器には同一番号を付すこととする。   As a waste heat recovery means for exhaust gas discharged from a boiler or the like, FIG. 5 shows a system in which a gas cooler is provided in an exhaust gas system from a boiler and has a binary power generation facility. In each figure, the same number is assigned to the same device.

図5において、火力発電所や工場等に設置されるボイラ1等から排出される排ガスは、脱硝装置2とボイラ空気予熱器3を経て集塵装置5に流入する。集塵装置5に流入した排ガス中からダストを除去した後、排ガスは排ガスファン6により昇圧され、吸収塔7に導入される。その後、排ガスは廃熱回収用熱交換器8を通り、最終的に煙突9より大気中に排出される。なお、廃熱回収用熱交換器8はバイナリー発電用タービン11と配管12により閉ループを構成するように接続している。   In FIG. 5, exhaust gas discharged from a boiler 1 or the like installed in a thermal power plant or factory flows into a dust collector 5 through a denitration device 2 and a boiler air preheater 3. After removing dust from the exhaust gas flowing into the dust collector 5, the exhaust gas is pressurized by the exhaust gas fan 6 and introduced into the absorption tower 7. Thereafter, the exhaust gas passes through the waste heat recovery heat exchanger 8 and is finally discharged from the chimney 9 into the atmosphere. The waste heat recovery heat exchanger 8 is connected by a binary power generation turbine 11 and a pipe 12 so as to form a closed loop.

ここで、ボイラ1等から排出した排ガス中に含まれる煤塵は、集塵装置5において除去された後、吸収塔7に流入する。吸収塔7では、吸収液が吸収塔内を循環しており、排ガスとの気液接触により排ガス中の硫黄酸化物や塩化水素、フッ化水素等の酸性ガスが除去される。ここで、吸収塔7内では排ガスは吸収液との気液接触により飽和ガス温度まで低下しており、吸収塔7から排出した排ガスは、一般には50℃程度の温度を有する。   Here, the dust contained in the exhaust gas discharged from the boiler 1 or the like is removed by the dust collector 5 and then flows into the absorption tower 7. In the absorption tower 7, the absorption liquid circulates in the absorption tower, and acidic gases such as sulfur oxides, hydrogen chloride, and hydrogen fluoride in the exhaust gas are removed by gas-liquid contact with the exhaust gas. Here, in the absorption tower 7, the exhaust gas is lowered to the saturated gas temperature by gas-liquid contact with the absorption liquid, and the exhaust gas discharged from the absorption tower 7 generally has a temperature of about 50 ° C.

廃熱回収用熱交換器8には、例えば、間接式熱交換器が用いられ、廃熱回収用熱交換器8内を流れる熱交換媒体を吸収塔7の出口排ガスと間接接触させることにより蒸発させる。ここで蒸発した熱交換媒体は、バイナリー発電設備循環ライン12を経由して、例えばベイパー加熱器26において発電ボイラで得られる蒸気ライン13の抽気を用いてさらに昇温されて過熱蒸気となり、この過熱蒸気はバイナリー発電用タービン11に供給して発電機27で利用される。なお、バイナリー発電用タービン11を通過した熱交換媒体はコンデンサ14に送られ、該コンデンサ14において海水等の冷却水を水ライン15等により冷却、凝縮され、バイナリー発電設備循環配管12を経由してバイナリー発電熱媒循環ポンプ16により昇圧された後、再び廃熱回収用熱交換器8に流入する。   For example, an indirect heat exchanger is used as the heat exchanger 8 for waste heat recovery, and the heat exchange medium flowing in the heat exchanger 8 for waste heat recovery is evaporated by bringing it into indirect contact with the exhaust gas from the outlet of the absorption tower 7. Let The heat exchange medium evaporated here is further heated to superheated steam through the binary power generation facility circulation line 12, for example, using the extraction of the steam line 13 obtained by the power generation boiler in the vapor heater 26, and becomes superheated steam. The steam is supplied to the binary power generation turbine 11 and used by the generator 27. The heat exchange medium that has passed through the binary power generation turbine 11 is sent to the condenser 14, where cooling water such as seawater is cooled and condensed by the water line 15 or the like, and is passed through the binary power generation equipment circulation pipe 12. After being boosted by the binary power generation heat medium circulation pump 16, it again flows into the waste heat recovery heat exchanger 8.

図6には、他の従来技術のボイラ1等からの排ガス処理システムの構成を示す。
図6において、ボイラ1等から排出した排ガスは、脱硝装置2に導入されて排ガス中の窒素酸化物が除去された後、ボイラ空気予熱器3においてボイラ1へ送られる燃焼用空気と熱交換される。次に、排ガスはガス冷却器4に導入されて冷却された後、電気集塵装置5に導入され、排ガス中の煤塵の大半が除去される。その後、排ガスは排ガスファン6により昇圧されて吸収塔7に導入され、気液接触により排ガス中の硫黄酸化物や塩化水素、フッ化水素等の酸性ガスが除去される。吸収塔7において飽和ガス温度まで冷却された排ガスは、その後、ガス冷却器4において回収した廃熱を用いてガス再加熱器10により昇温され、煙突9より大気中に排出される。
FIG. 6 shows the configuration of an exhaust gas treatment system from another prior art boiler 1 or the like.
In FIG. 6, the exhaust gas discharged from the boiler 1 or the like is introduced into the denitration device 2, and after nitrogen oxides in the exhaust gas are removed, the boiler air preheater 3 exchanges heat with the combustion air sent to the boiler 1. The Next, after exhaust gas is introduced into the gas cooler 4 and cooled, it is introduced into the electrostatic precipitator 5 to remove most of the dust in the exhaust gas. Thereafter, the exhaust gas is pressurized by the exhaust gas fan 6 and introduced into the absorption tower 7, and acid gases such as sulfur oxide, hydrogen chloride, and hydrogen fluoride in the exhaust gas are removed by gas-liquid contact. The exhaust gas cooled to the saturated gas temperature in the absorption tower 7 is then heated by the gas reheater 10 using the waste heat recovered in the gas cooler 4 and discharged from the chimney 9 into the atmosphere.

なお、ガス冷却器4とガス再加熱器10は配管により閉ループで接続されており、内部を媒体として温水が循環している。ガス冷却器4により昇温された媒体は、ガス再加熱器10に流入し、吸収塔7出口の低温ガスとの熱交換により温度が低下し、再度、ガス冷却器4に流入する。   The gas cooler 4 and the gas reheater 10 are connected in a closed loop by piping, and hot water circulates using the inside as a medium. The medium heated by the gas cooler 4 flows into the gas reheater 10, the temperature is lowered by heat exchange with the low temperature gas at the outlet of the absorption tower 7, and flows into the gas cooler 4 again.

上述の通り、ボイラ1等から排出される排ガスの廃熱を回収する手段として、例えば、図5に示す吸収塔7の出口排ガス煙道に廃熱回収用熱交換器8を設置し、かつ、ここで回収した熱をバイナリー発電設備17の熱源とするシステム自体は公知であり、例えば特開平6−26310号公報等で提案されている。   As described above, as a means for recovering the waste heat of the exhaust gas discharged from the boiler 1 or the like, for example, the waste heat recovery heat exchanger 8 is installed in the outlet exhaust gas flue of the absorption tower 7 shown in FIG. A system itself that uses the recovered heat as a heat source of the binary power generation facility 17 is known, and has been proposed in, for example, Japanese Patent Laid-Open No. Hei 6-26310.

また、図6に示すガス冷却器4により回収した熱を、吸収塔7出口に設置されたガス再加熱器10により排ガスの再加熱に再利用する技術は公知であり、既に実用化されている。   Further, a technique for reusing heat recovered by the gas cooler 4 shown in FIG. 6 for reheating exhaust gas by the gas reheater 10 installed at the outlet of the absorption tower 7 is known and has already been put into practical use. .

また、過熱蒸気の潜熱で間接加熱される低品位炭乾燥装置から発生する蒸気で間接加熱される熱媒を発電システムから排出する排ガスの予熱に用いて、予熱された熱媒をバイナリーサイクルの発電に有効利用し、発電効率を従来以上に向上させる技術が特開2011−214559号公報に記載されている。   In addition, the preheated heat medium is used for pre-heating the exhaust gas discharged from the power generation system using the heat medium indirectly heated by the steam generated from the low-grade coal dryer that is indirectly heated by the latent heat of the superheated steam. Japanese Patent Application Laid-Open No. 2011-214559 discloses a technique for effectively using the power generation and improving the power generation efficiency more than ever.

さらに特開平5−18212号公報には、熱水ポンプから送り出される熱水を熱水系統を通って複数の予熱器の一次側に流し、複数の予熱器の二次側に流れる媒体を熱水で間接加熱して媒体タービンで利用し、その後、前記予熱器の二次側に流れる媒体を冷却水が流れる凝縮器で凝縮して媒体ポンプへ循環させる構成が開示されており、媒体タービンの入口に設けられた温度検出器の検出値が規定値になるように、前記予熱器の一次側を流れる熱源を調節弁により流量が調節されることが記載されている。   Further, in Japanese Patent Laid-Open No. 5-18212, hot water fed from a hot water pump is passed through a hot water system to the primary side of a plurality of preheaters, and a medium flowing to the secondary side of the plurality of preheaters is used as hot water. In which the medium flowing to the secondary side of the preheater is condensed by the condenser through which the cooling water flows and circulated to the medium pump. It is described that the flow rate of the heat source that flows on the primary side of the preheater is adjusted by a control valve so that the detection value of the temperature detector provided in is a specified value.

特開平6−26310号公報JP-A-6-26310 特開2011−214559号公報JP2011-214559A 特開平5−18212号公報JP-A-5-18212

上記図5に示す従来技術においては、廃熱回収用熱交換器8の入口排気ガスは、比較的低温であるため、熱交換媒体のさらなる昇温のために、発電ボイラからの抽気13を用いる必要があり、プラント効率が悪くなる等の問題があった。また、ボイラ1などから排出される排煙処理装置自体の性能向上につながるまでに至っていない。   In the prior art shown in FIG. 5 above, the exhaust gas at the inlet of the heat exchanger 8 for waste heat recovery is relatively low temperature, so the bleed air 13 from the power generation boiler is used to further raise the temperature of the heat exchange medium. There was a problem that the plant efficiency deteriorated. Moreover, it has not led to the performance improvement of the flue gas processing apparatus itself discharged | emitted from the boiler 1 grade | etc.,.

また、図6に示すガス冷却器4にて回収した熱を吸収塔7の出口に設置したガス再熱器10で排ガスの再加熱に利用する技術は既に実用化されているが、吸収塔7の出口ガスは腐食性ガスであり、ガス再加熱器10に使用する材料は、耐腐食性を考慮した高価な材質の選定が必要となり、設備コストが増加する等の問題がある。   Moreover, although the technique which utilizes the heat | fever collect | recovered with the gas cooler 4 shown in FIG. 6 for the reheating of waste gas with the gas reheater 10 installed in the exit of the absorption tower 7 is already put into practical use, the absorption tower 7 The outlet gas is a corrosive gas, and the material used for the gas reheater 10 needs to select an expensive material in consideration of the corrosion resistance, resulting in an increase in equipment cost.

さらに、上記特許文献2には低品位炭の乾燥システムで発生する蒸気により予熱された熱媒をバイナリーサイクルの発電に有効利用し、発電効率を従来以上に向上させる技術が開示されているが、この技術は排煙浄化処理システムに用いられるものではない。また上記技術文献3には熱媒タービンに供給される熱媒の温度に応じて熱媒の予熱器への流量を調節することが開示されているが、この技術も排煙浄化処理システムに用いられるものではない。   Furthermore, the above-mentioned Patent Document 2 discloses a technique for effectively using a heat medium preheated by steam generated in a low-grade coal drying system for power generation in a binary cycle, and improving power generation efficiency more than before. This technology is not used in a flue gas purification treatment system. Further, in the above technical document 3, it is disclosed that the flow rate of the heating medium to the preheater is adjusted according to the temperature of the heating medium supplied to the heating medium turbine. This technique is also used in the exhaust gas purification processing system. It is not something that can be done.

本発明の課題は、火力発電所のボイラ等から排出される燃焼排ガスを浄化する浄化システムにおける排出ガスの廃熱の有効利用を図り、かつ前記排ガスを効果的に利用する排煙処理装置と方法を提供することである。   An object of the present invention is to effectively use waste heat of exhaust gas in a purification system for purifying combustion exhaust gas discharged from a boiler or the like of a thermal power plant and to effectively use the exhaust gas. Is to provide.

本発明の上記課題は次の解決手段で解決される。
請求項1記載の発明は、燃焼装置(1)から排出される排ガスを流す排ガス流路の上流側から下流側に向けて脱硝装置(2)、燃焼装置用空気予熱器(3)、ガス冷却器(4)、集塵装置(5)及び脱硫装置(7)を順次設けた排煙処理装置において、
前記ガス冷却器(4)には前記燃焼装置(1)から排出される排ガスの熱を回収する熱媒循環ライン(29)を配置し、該熱媒循環ライン(29)で回収した前記排ガスの熱を利用するバイナリー発電設備(17)を熱媒循環ライン(29)に接続し、前記熱媒循環ライン(29)のバイナリー発電設備(17)の入口部と出口部に熱媒温度を測定する温度測定手段(24a,24b)をそれぞれ設け、前記ガス冷却器(4)の出口の排ガス流路にはガス冷却器(4)出口の排ガス温度を測定する温度測定手段(21)を設け、前記熱媒循環ライン(29)のガス冷却器(4)入口部には熱媒流量制御弁(19)を設け、また該熱媒流量制御弁(19)とガス冷却器(4)を迂回して熱媒をバイナリー発電設備(17)との間で循環させるガス冷却器熱媒バイパスライン(30)を熱媒循環ライン(29)に接続したことを特徴とする排煙処理装置である。
The above-mentioned problem of the present invention is solved by the following means.
The invention described in claim 1 includes a denitration device (2), a combustion device air preheater (3), gas cooling from the upstream side to the downstream side of the exhaust gas flow channel for flowing exhaust gas discharged from the combustion device (1). In a flue gas treatment device provided with a vessel (4), a dust collector (5) and a desulfurization device (7) in sequence,
The gas cooler (4) is provided with a heat medium circulation line (29) for recovering the heat of the exhaust gas discharged from the combustion device (1), and the exhaust gas recovered by the heat medium circulation line (29) is disposed. The binary power generation facility (17) using heat is connected to the heat medium circulation line (29), and the heat medium temperature is measured at the inlet and outlet of the binary power generation facility (17) of the heat medium circulation line (29). Temperature measuring means (24a, 24b) is provided, and a temperature measuring means (21) for measuring the exhaust gas temperature at the outlet of the gas cooler (4) is provided in the exhaust gas passage at the outlet of the gas cooler (4), A heat medium flow control valve (19) is provided at the inlet of the gas cooler (4) of the heat medium circulation line (29), and bypasses the heat medium flow control valve (19) and the gas cooler (4). A heat medium that circulates between the binary power generation equipment (17) Condenser heat medium bypass line (30) is a flue gas treatment apparatus, characterized in that connected to the heat medium circulation line (29).

請求項2記載の発明は、ガス冷却器熱媒バイパスライン(30)とガス冷却器(4)を迂回してバイナリー発電設備(17)に熱媒を循環するバイナリー発電設備熱媒循環ライン(23)を熱媒循環ライン(29)に接続し、該バイナリー発電設備熱媒循環ライン(23)と接続される熱媒循環ライン(29)の接続箇所よりバイナリー発電設備入口側の熱媒循環ライン(29)に熱媒流量制御弁(22)を設けたことを特徴とする請求項1記載の排煙処理装置である。   The invention according to claim 2 is a binary power generation equipment heat medium circulation line (23) that circulates the heat medium to the binary power generation equipment (17) bypassing the gas cooler heat medium bypass line (30) and the gas cooler (4). ) Is connected to the heat medium circulation line (29), and from the connection point of the heat medium circulation line (29) connected to the binary power generation facility heat medium circulation line (23), the heat medium circulation line ( 29. The flue gas treatment apparatus according to claim 1, wherein a heat medium flow control valve (22) is provided in 29).

請求項3記載の発明は、熱媒循環ライン(29)に冷却水供給ライン(15)と蒸気供給ライン(13)を有する熱媒温度調整用の熱交換器(25)を配置したことを特徴とする請求項2記載の排煙処理装置である。   Invention of Claim 3 has arrange | positioned the heat exchanger (25) for heat-medium temperature adjustment which has a cooling water supply line (15) and a steam supply line (13) in the heat-medium circulation line (29). The smoke processing apparatus according to claim 2.

請求項4記載の発明は、請求項1記載の排煙処理装置におけるガス冷却器(4)出口の排ガス温度が所定値になるように、ガス冷却器(4)出口の排ガス温度に応じて、ガス冷却器(4)へ供給する熱媒循環ライン(29)内の熱媒の供給量とガス冷却器熱媒バイパスライン(30)内の熱媒の供給量を制御することを特徴とした排煙処理方法である。   According to the invention of claim 4, according to the exhaust gas temperature at the outlet of the gas cooler (4), the exhaust gas temperature at the outlet of the gas cooler (4) in the exhaust gas treatment device according to claim 1 becomes a predetermined value. Drainage characterized by controlling the supply amount of the heat medium in the heat medium circulation line (29) supplied to the gas cooler (4) and the supply amount of the heat medium in the gas cooler heat medium bypass line (30). Smoke treatment method.

請求項5記載の発明は、請求項2記載の排煙処理装置におけるガス冷却器(4)出口の排ガス温度及び/又はバイナリー発電設備(17)の入口部又は出口部の熱媒温度が所定値になるように、ガス冷却器(4)出口の排ガス温度及び/又はバイナリー発電設備(17)の入口部又は出口部の熱媒温度に応じて、ガス冷却器(4)へ供給する熱媒循環ライン(29)内の熱媒の供給量及び/又はバイナリー発電設備(17)へ供給するバイナリー発電設備熱媒循環ライン(23)内の熱媒量を制御することを特徴とした排煙処理方法である。   According to a fifth aspect of the present invention, the exhaust gas temperature at the outlet of the gas cooler (4) and / or the heat medium temperature at the inlet or outlet of the binary power generation facility (17) in the flue gas treatment apparatus according to the second aspect is a predetermined value. The heat medium circulation to be supplied to the gas cooler (4) according to the exhaust gas temperature at the outlet of the gas cooler (4) and / or the heat medium temperature at the inlet or outlet of the binary power generation facility (17) A flue gas treatment method characterized by controlling the supply amount of the heat medium in the line (29) and / or the heat medium amount in the heat medium circulation line (23) of the binary power generation facility supplied to the binary power generation facility (17). It is.

請求項6記載の発明は、請求項3記載の排煙処理装置におけるガス冷却器(4)出口の排ガス温度及び/又はバイナリー発電設備(17)の入口部又は出口部の熱媒温度が所定値になるように、ガス冷却器(4)出口の排ガス温度及び/又はバイナリー発電設備(17)の入口部又は出口部の熱媒温度に応じて、ガス冷却器(4)へ供給する熱媒循環ライン(29)内の熱媒の供給量及び/又はバイナリー発電設備(17)への熱媒の供給量を制御するか、又は熱媒温度調整用の熱交換器(25)へ供給する水量又は蒸気量を調整することを特徴とした排煙処理方法である。   In the invention described in claim 6, the exhaust gas temperature at the outlet of the gas cooler (4) and / or the temperature of the heat medium at the inlet or outlet of the binary power generation facility (17) in the flue gas treatment apparatus according to claim 3 is a predetermined value. The heat medium circulation to be supplied to the gas cooler (4) according to the exhaust gas temperature at the outlet of the gas cooler (4) and / or the heat medium temperature at the inlet or outlet of the binary power generation facility (17) The amount of water supplied to the heat exchanger (25) for controlling the heat medium supply amount in the line (29) and / or the heat medium supply amount to the binary power generation facility (17) or the heat medium temperature adjustment or It is a flue gas treatment method characterized by adjusting the amount of steam.

(作用)
一般に、電気集塵装置における集塵性能は、ダスト粒径、ダスト組成、ダストの電気抵抗値、電気集塵装置での荷電量等の複数の因子により決定されるが、ダスト粒径、ダスト組成は、使用する石炭等の燃料固有の特性に依存する。一方、ダストの電気抵抗値は、運転温度等によっても異なり、電気集塵装置の一般的な運転温度域においては、電気抵抗値の低下により電気集塵装置の集塵性能は向上する。
(Function)
In general, the dust collection performance of an electrostatic precipitator is determined by a number of factors such as dust particle size, dust composition, dust electrical resistance, and the amount of charge in the electrostatic precipitator. Depends on the specific characteristics of the fuel such as coal used. On the other hand, the electrical resistance value of the dust varies depending on the operating temperature and the like, and in the general operating temperature range of the electrostatic precipitator, the dust collection performance of the electrostatic precipitator is improved by the decrease of the electrical resistance value.

図3に、電気集塵装置におけるガス温度と排ガス中に含まれる煤塵の電気抵抗値の相関関係の一例(石炭種により数値は異なる)を示すが、石炭焚きボイラにおける電気集塵装置の一般的な運転温度域においては、ガス温度の低下により、煤塵の電気抵抗値が低下し、これにより電気集塵装置における集塵性能はガス温度が高い場合に比較して向上する。   FIG. 3 shows an example of the correlation between the gas temperature in the electrostatic precipitator and the electrical resistance value of the soot contained in the exhaust gas (the numerical value varies depending on the coal type). In such an operating temperature range, the electric resistance value of the dust decreases due to the decrease in the gas temperature, and thereby the dust collection performance in the electric dust collector is improved as compared with the case where the gas temperature is high.

但し、電気集塵装置入口のガス温度が低下すると、電気集塵装置内部へのダストの固着、詰まり及び回収した灰の搬送が困難になるといった問題があり、一般に、電気集塵装置入口のガス温度は80℃〜85℃以上で運用を行う必要がある。   However, if the gas temperature at the inlet of the electrostatic precipitator decreases, there is a problem that the dust inside the electrostatic precipitator becomes stuck, clogged, and it becomes difficult to transport the collected ash. It is necessary to operate at a temperature of 80 ° C to 85 ° C or higher.

図4には、バイナリー発電設備において外部熱源となる熱媒温度と発電量の相関関係の一例(石炭種により数値は異なる)を示す。バイナリー発電設備に供給される外部熱源温度が高い程、発電量も大きくなり、より効果的な廃熱利用が可能となる。   FIG. 4 shows an example of the correlation between the heat medium temperature, which is an external heat source in the binary power generation facility, and the power generation amount (the numerical value varies depending on the coal type). The higher the temperature of the external heat source supplied to the binary power generation facility, the larger the amount of power generation and the more efficient use of waste heat.

なお、バイナリー発電設備内を循環する熱交換媒体の特性にもよるが、外部熱源である熱媒は、例えば80℃〜120℃の温度で供給することが望ましく、熱媒温度が80℃程度以下となると、バイナリー発電設備内を循環する熱交換媒体の蒸発効率が悪く、設備の運用を停止する必要がある。逆に、外部熱媒温度が120℃程度以上となると、バイナリー発電設備内を循環する熱交換媒体が分解する等の問題が生じ、バイナリー発電設備の運用を停止する必要がある。   Although depending on the characteristics of the heat exchange medium circulating in the binary power generation facility, it is desirable to supply the heat medium as the external heat source at a temperature of, for example, 80 ° C. to 120 ° C., and the heat medium temperature is about 80 ° C. or less. Then, the evaporation efficiency of the heat exchange medium circulating in the binary power generation facility is poor, and it is necessary to stop the operation of the facility. On the other hand, when the external heat medium temperature is about 120 ° C. or higher, problems such as decomposition of the heat exchange medium circulating in the binary power generation facility occur, and it is necessary to stop the operation of the binary power generation facility.

ボイラ等から排出される排ガスの廃熱回収を行う手段として、ガス冷却器を電気集塵装置上流側(前側)に設置し、かつ、バイナリー発電設備とを循環する熱媒循環ラインを設けたシステム構成において、本発明で採用するガス冷却器出口ガス温度(電気集塵装置入口ガス温度)と熱媒循環系内の熱媒温度に応じてガス冷却器及びバイナリー発電設備へ供給する熱媒量を制御可能な構成とすることにより、排煙処理装置自体の性能向上と廃熱有効利用による高性能で省エネ型のシステムの安定した運用が可能となる。   As a means to recover waste heat of exhaust gas discharged from boilers, etc., a system with a gas cooler installed upstream (front side) of the electrostatic precipitator and a heat medium circulation line that circulates through the binary power generation facility In the configuration, the amount of heat medium to be supplied to the gas cooler and the binary power generation facility according to the gas cooler outlet gas temperature (electric dust collector inlet gas temperature) employed in the present invention and the heat medium temperature in the heat medium circulation system By adopting a controllable configuration, it is possible to stably operate a high-performance and energy-saving system by improving the performance of the smoke treatment apparatus itself and effectively using waste heat.

請求項1,4記載の発明によれば、排煙処理装置におけるガス冷却器4出口の排ガス温度が所定値になるように、ガス冷却器4出口の排ガス温度に応じて、ガス冷却器4へ供給する熱媒循環ライン29内の熱媒の供給量とガス冷却器熱媒バイパスライン30内の熱媒の供給量を制御することができるため、ボイラ1などの燃焼装置から排出される排ガスの環境規制、環境装置性能を十分満足しつつ、かつ、廃熱の有効利用による発電も行うことができるので、高排煙処理性能と省エネ型システムの安定した運用が可能となる。   According to the first and fourth aspects of the invention, the gas cooler 4 is sent to the gas cooler 4 in accordance with the exhaust gas temperature at the outlet of the gas cooler 4 so that the exhaust gas temperature at the outlet of the gas cooler 4 in the smoke treatment apparatus becomes a predetermined value. Since the supply amount of the heat medium in the heat medium circulation line 29 to be supplied and the supply amount of the heat medium in the gas cooler heat medium bypass line 30 can be controlled, the exhaust gas discharged from the combustion apparatus such as the boiler 1 can be controlled. Power generation by effective use of waste heat can be performed while sufficiently satisfying environmental regulations and environmental equipment performance, and high smoke treatment performance and stable operation of an energy-saving system are possible.

請求項2,5記載の発明によれば、ガス冷却器4出口の排ガス温度及び/又はバイナリー発電設備17の入口部又は出口部の熱媒温度が所定値になるように、ガス冷却器4出口の排ガス温度及び/又はバイナリー発電設備17の入口部又は出口部の熱媒温度に応じて、ガス冷却器4へ供給する熱媒循環ライン29内の熱媒の供給量及び/又はバイナリー発電設備17へ供給するバイナリー発電設備熱媒循環ライン23内の熱媒量を制御することができるので、前記請求項1,4記載の発明の効果に加えてより精度よく高排煙処理性能と省エネ型システムの安定した運用が可能となる。   According to the second and fifth aspects of the present invention, the outlet of the gas cooler 4 is adjusted so that the exhaust gas temperature at the outlet of the gas cooler 4 and / or the heat medium temperature at the inlet or outlet of the binary power generation facility 17 becomes a predetermined value. The heat medium supply amount and / or the binary power generation equipment 17 in the heat medium circulation line 29 supplied to the gas cooler 4 in accordance with the exhaust gas temperature and / or the heat medium temperature at the inlet or outlet of the binary power generation equipment 17. Since the amount of heat medium in the binary power generation facility heat medium circulation line 23 supplied to the power source can be controlled, in addition to the effects of the first and fourth aspects of the invention, more accurate high smoke treatment performance and energy-saving system Stable operation is possible.

より、具体的にはボイラ1等の燃焼装置の起動時における熱媒循環ライン29内の熱媒温度が十分高くない場合、又はバイナリー発電設備17が不具合の場合には、熱媒流量制御弁22を閉じて熱媒をバイナリー発電設備17内に熱媒を流さないようにし、さらにバイナリー発電設備17出口の熱媒温度が低すぎる時には、熱媒流量制御弁22の開度調整によりバイナリー発電設備17への熱媒の流入量を調整することができる。   More specifically, when the temperature of the heat medium in the heat medium circulation line 29 is not sufficiently high at the time of starting the combustion apparatus such as the boiler 1, or when the binary power generation equipment 17 is defective, the heat medium flow control valve 22 is used. Is closed to prevent the heat medium from flowing into the binary power generation facility 17, and when the temperature of the heat medium at the outlet of the binary power generation facility 17 is too low, the binary power generation facility 17 is adjusted by adjusting the opening of the heat medium flow control valve 22. It is possible to adjust the amount of heat medium flowing into the.

請求項3,6記載の発明によれば、ガス冷却器4出口の排ガス温度及び/又はバイナリー発電設備17の入口部又は出口部の熱媒温度が所定値になるように、ガス冷却器4出口の排ガス温度及び/又はバイナリー発電設備17の入口部又は出口部の熱媒温度に応じて、ガス冷却器4へ供給する熱媒循環ライン29内の熱媒の供給量及び/又はバイナリー発電設備17への熱媒の供給量を制御するか、又は熱媒温度調整用の熱交換器25へ供給する水量又は蒸気量を調整するので、請求項2,5記載の発明の効果に加えてより精度よく高排煙処理性能と省エネ型システムの安定した運用が可能となる。   According to the third and sixth aspects of the present invention, the gas cooler 4 outlet is set so that the exhaust gas temperature at the outlet of the gas cooler 4 and / or the heat medium temperature at the inlet or outlet of the binary power generation equipment 17 becomes a predetermined value. The heat medium supply amount and / or the binary power generation equipment 17 in the heat medium circulation line 29 supplied to the gas cooler 4 in accordance with the exhaust gas temperature and / or the heat medium temperature at the inlet or outlet of the binary power generation equipment 17. The amount of water or steam supplied to the heat exchanger 25 for adjusting the temperature of the heating medium is adjusted or the amount of water or steam supplied to the heat exchanger 25 for adjusting the temperature of the heating medium is adjusted. Well, high smoke removal performance and stable operation of energy saving system are possible.

本発明の一実施例になるガス冷却器とバイナリー発電設備を循環する熱媒循環ラインを設けた排煙処理装置を示す構成図である。It is a lineblock diagram showing the flue gas processing device which provided the heat carrier circulation line which circulates the gas cooler and binary power generation equipment which become one example of the present invention. 本発明の一実施例になるガス冷却器とバイナリー発電設備を循環する熱媒循環ラインを設けた排煙処理装置を示す構成図である。It is a lineblock diagram showing the flue gas processing device which provided the heat carrier circulation line which circulates the gas cooler and binary power generation equipment which become one example of the present invention. 本発明の一実施例になる電気集塵装置におけるガス温度と排ガス中煤塵の電気抵抗値の相関の一例を示す図である。It is a figure which shows an example of the correlation of the gas temperature in the electric dust collector which becomes one Example of this invention, and the electrical resistance value of the dust in exhaust gas. 本発明の一実施例になるバイナリー発電設備において外部熱源となる熱媒温度と発電量の相関の一例を示す図である。It is a figure which shows an example of the correlation of the heat-medium temperature used as an external heat source, and power generation amount in the binary power generation equipment which becomes one Example of this invention. 従来技術における、ボイラ等から排出される排ガスの廃熱回収を行う手段としてボイラからの排ガス系統に廃熱回収用熱交換器とバイナリー発電設備を設けた構成図である。It is the block diagram which provided the waste heat recovery heat exchanger and the binary power generation equipment in the exhaust gas system from a boiler as a means to perform the waste heat recovery of the exhaust gas discharged | emitted from a boiler etc. in a prior art. 従来技術における、ボイラ等から排出される排ガスの廃熱回収を行う手段としてボイラからの排ガス系統にガス冷却器を設け、かつ、回収した熱を吸収塔出口のガスの再加熱に使用する一例を示す図である。An example of providing a gas cooler in an exhaust gas system from a boiler as a means for performing waste heat recovery of exhaust gas discharged from a boiler or the like in the prior art, and using the recovered heat for reheating the gas at the absorption tower outlet FIG.

本発明の実施例を図面と共に説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1はボイラ等の燃焼装置から排出される排ガスの廃熱回収を行う手段としてボイラ1からの排ガス流路にガス冷却器4を設け、かつバイナリー発電設備17を有し、該ガス冷却器4とバイナリー発電設備17を循環する熱媒循環ライン29を設けたシステム構成において、ガス冷却器4の出口ガス温度と熱媒循環ライン29内の熱媒温度に応じて循環する熱媒量の制御が可能である設備構成及びその流量制御(運用)に関する実施例を示すものである。   FIG. 1 shows a gas cooler 4 provided in an exhaust gas flow path from the boiler 1 as means for recovering waste heat of exhaust gas discharged from a combustion apparatus such as a boiler, and has a binary power generation facility 17. In the system configuration provided with the heat medium circulation line 29 that circulates through the binary power generation equipment 17, the amount of the heat medium that is circulated according to the outlet gas temperature of the gas cooler 4 and the heat medium temperature in the heat medium circulation line 29 can be controlled. The example regarding the possible equipment configuration and its flow control (operation) is shown.

火力発電所や工場等に設置されるボイラ1から排出される排ガスは、脱硝装置2、ボイラ空気予熱器3を経てガス冷却器4に導入される。ガス冷却器4においてガス温度が低下した排ガスは電気集塵装置5に導入され、排ガス中のダストが除去される。その後、排ガスは排ガスファン6により昇圧され、吸収塔7を経て最終的に煙突9より排出される。   Exhaust gas discharged from a boiler 1 installed in a thermal power plant or factory is introduced into a gas cooler 4 through a denitration device 2 and a boiler air preheater 3. The exhaust gas whose gas temperature has decreased in the gas cooler 4 is introduced into the electrostatic precipitator 5, and the dust in the exhaust gas is removed. Thereafter, the exhaust gas is pressurized by the exhaust gas fan 6 and finally discharged from the chimney 9 through the absorption tower 7.

また、ガス冷却器4とバイナリー発電設備17は、熱媒が循環する熱媒循環ライン29により閉ループを形成して接続されており、熱媒循環ライン29にはガス冷却器熱媒循環ポンプ18を設けている。また、熱媒循環ライン29の前記ガス冷却器4の入口側に熱媒流量制御弁19を設け、さらに熱媒循環ライン29には熱媒流量制御弁19とガス冷却器4を迂回するガス冷却器熱媒バイパスライン30を設け、該ガス冷却器熱媒バイパスライン熱媒流量制御弁20を配置している。   Further, the gas cooler 4 and the binary power generation equipment 17 are connected in a closed loop by a heat medium circulation line 29 through which the heat medium circulates, and a gas cooler heat medium circulation pump 18 is connected to the heat medium circulation line 29. Provided. Further, a heat medium flow control valve 19 is provided on the inlet side of the gas cooler 4 of the heat medium circulation line 29, and gas cooling that bypasses the heat medium flow control valve 19 and the gas cooler 4 is further provided in the heat medium circulation line 29. An apparatus heat medium bypass line 30 is provided, and the gas cooler heat medium bypass line heat medium flow control valve 20 is disposed.

前記熱媒流量制御弁19とガス冷却器熱媒バイパスライン熱媒流量制御弁20により、熱媒循環ライン29からガス冷却器4への熱媒供給量を制御できる系統構成としている。また、バイナリー発電設備17の入口側と出口側の熱媒循環ライン29には熱媒循環温度計24a,24bをそれぞれ設ける。   The heat medium flow rate control valve 19 and the gas cooler heat medium bypass line heat medium flow rate control valve 20 are used to control the heat medium supply amount from the heat medium circulation line 29 to the gas cooler 4. Heat medium circulation thermometers 24a and 24b are provided in the heat medium circulation lines 29 on the inlet side and the outlet side of the binary power generation facility 17, respectively.

図5に示す従来技術においては、廃熱回収用熱交換器8の入口排ガス温度は比較的低温であるため、熱交換媒体の更なる昇温のために発電ボイラ1からの抽気13を用いる必要があり、プラント効率が悪くなる等の問題があった。また、ボイラ1等から排出される排煙処理装置自体の性能向上につながるまでには至っていない。   In the prior art shown in FIG. 5, since the exhaust gas temperature at the inlet of the waste heat recovery heat exchanger 8 is relatively low, it is necessary to use the bleed air 13 from the power generation boiler 1 to further increase the temperature of the heat exchange medium. There was a problem that the plant efficiency deteriorated. Moreover, it has not led to the performance improvement of the flue gas processing apparatus itself discharged | emitted from the boiler 1 grade | etc.,.

火力発電所や工場等に設置されるボイラ1等から排出される排ガス温度は、使用する燃料によっても異なるが、石炭焚きボイラの場合には電気集塵装置5の入口において、通常は120℃〜160℃と比較的高温である。電気集塵装置5での集塵性能は、図3に運転温度と煤塵の電気抵抗値の相関を示す通り、ガス温度が低くなることにより、煤塵の電気抵抗値が低減し、電機集塵装置5での集塵性能は向上する。   The exhaust gas temperature discharged from the boiler 1 or the like installed in a thermal power plant or factory differs depending on the fuel used, but in the case of a coal-fired boiler, normally at the inlet of the electrostatic precipitator 5 is 120 ° C to It is a relatively high temperature of 160 ° C. As shown in FIG. 3, the dust collection performance of the electric dust collector 5 shows a correlation between the operating temperature and the electric resistance value of the dust, and the electric resistance value of the dust is reduced by lowering the gas temperature. The dust collection performance at 5 is improved.

また、図1に例示されるバイナリー発電設備17においては、バイナリー発電設備17内を循環する熱交換媒体の特性にもよるが、外部熱源である熱媒は、例えば80℃〜120℃の温度で供給することが望ましく、電気集塵装置5の入口にガス冷却器4を設置し、ここで回収した熱をバイナリー発電設備17の熱源として利用することは効果的である。   Further, in the binary power generation facility 17 illustrated in FIG. 1, although depending on the characteristics of the heat exchange medium circulating in the binary power generation facility 17, the heat medium that is an external heat source is, for example, at a temperature of 80 ° C. to 120 ° C. It is desirable to supply, and it is effective to install the gas cooler 4 at the inlet of the electrostatic precipitator 5 and use the heat recovered here as a heat source of the binary power generation equipment 17.

図1において、火力発電所や工場等に設置されるボイラ1等から排出される排ガスは脱硝装置2とボイラ空気予熱器3を経てガス冷却器4に導入される。該ガス冷却器4は、例えば多管式の熱交換器で構成されており、管外面を排ガスが、管内面を熱媒(内部熱媒)が流れる構造としており、ボイラ1等からの排ガスは管内面を流れる熱媒との熱交換によりガス温度が低下し、電気集塵装置5に導入され、排ガス中のダストが除去される。   In FIG. 1, exhaust gas discharged from a boiler 1 or the like installed in a thermal power plant or factory is introduced into a gas cooler 4 through a denitration device 2 and a boiler air preheater 3. The gas cooler 4 is composed of, for example, a multi-tube heat exchanger, and has a structure in which exhaust gas flows on the outer surface of the tube and a heat medium (internal heat medium) flows on the inner surface of the tube. The gas temperature is lowered by heat exchange with the heat medium flowing on the inner surface of the tube, and is introduced into the electrostatic precipitator 5 to remove dust in the exhaust gas.

ガス冷却器4とバイナリー発電設備17は熱媒循環ライン29によって接続されており、熱媒循環ライン29にはガス冷却器熱媒循環ポンプ18を設け、閉ループで熱媒を循環させることで工業用水等の熱媒の連続的な使用は不要であり、かつ、熱媒として工業用水を使用することで、ガス冷却器4の熱交換器及び熱媒循環ライン29は安価な炭素鋼材料を使うことができる。   The gas cooler 4 and the binary power generation equipment 17 are connected by a heat medium circulation line 29. The heat medium circulation line 29 is provided with a gas cooler heat medium circulation pump 18, and industrial water is circulated by circulating the heat medium in a closed loop. It is not necessary to continuously use a heat medium such as industrial water, and industrial water is used as the heat medium, so that the heat exchanger and the heat medium circulation line 29 of the gas cooler 4 should use inexpensive carbon steel materials. Can do.

ガス冷却器4においてボイラ1等の排ガスの廃熱を回収するが、電気集塵装置5の入口ガス温度が一定値以下に低下した場合には、電気集塵装置5内へのダストの固着及び電気集塵装置5で捕集されたダストの搬送が困難になる等の問題が挙げられる。   In the gas cooler 4, the waste heat of the exhaust gas from the boiler 1 or the like is recovered. However, when the inlet gas temperature of the electrostatic precipitator 5 decreases to a certain value or less, the dust is fixed in the electrostatic precipitator 5 and There are problems such as difficulty in transporting the dust collected by the electric dust collector 5.

ボイラ1等の発電設備の運用状態によっては、ボイラ1等から排出される排ガス量、排ガス温度は変動するため、ガス冷却器4への熱媒量を制御しない場合、ガス冷却器4の出口の排ガス温度は排ガス量に応じて成り行きの温度となる。ガス冷却器4へ供給する熱媒循環量を制御することによって、ガス冷却器4の出口の排ガス温度(温度計21で計測)を所定値に保つことができ、排煙処理装置の安定運用が可能となる。すなわち、ガス冷却器4の出口の排ガス温度が所定値以下になると、電気集塵装置5内での灰の固着、灰の湿潤化による灰の搬送(払い出し)ができなくなり、排煙処理装置の運転が困難になるので、このようなことのないように、ガス冷却器4の出口の排ガス温度を所定値に保つことが必要となる。   The amount of exhaust gas discharged from the boiler 1 or the like and the temperature of the exhaust gas fluctuate depending on the operation state of the power generation equipment such as the boiler 1. Therefore, when the amount of the heat medium to the gas cooler 4 is not controlled, the outlet of the gas cooler 4 The exhaust gas temperature becomes a desired temperature according to the amount of exhaust gas. By controlling the amount of circulation of the heat medium supplied to the gas cooler 4, the exhaust gas temperature (measured by the thermometer 21) at the outlet of the gas cooler 4 can be maintained at a predetermined value, and the stable operation of the flue gas treatment apparatus can be achieved. It becomes possible. That is, when the exhaust gas temperature at the outlet of the gas cooler 4 becomes a predetermined value or less, the ash cannot be fixed or the ash is transported (dispensed) by the ash wetting in the electrostatic precipitator 5, and Since the operation becomes difficult, it is necessary to keep the exhaust gas temperature at the outlet of the gas cooler 4 at a predetermined value so that this is not the case.

また、これらの設備に加えて熱媒循環ライン29に設けたガス冷却器熱媒循環ポンプ18を流量可変式とすることや、該ポンプ18を複数台設置し、熱媒循環ライン29の系内全体を流れる熱媒量をガス冷却器4の出口ガス温度に応じて制御する運用も有効な手段となる。   Further, in addition to these facilities, the gas cooler heat medium circulation pump 18 provided in the heat medium circulation line 29 can be variable in flow rate, or a plurality of pumps 18 can be installed to The operation of controlling the amount of the heat medium flowing through the whole according to the outlet gas temperature of the gas cooler 4 is also an effective means.

ガス冷却器4でボイラ1等の廃熱との間接接触により昇温された熱媒は、バイナリー発電設備17へ供給され、バイナリー発電設備17の熱源として利用され、その後、温度が低下した熱媒は、ガス冷却器熱媒循環ポンプ18によって、ガス冷却器4へ供給される。   The heat medium heated by the gas cooler 4 by indirect contact with the waste heat of the boiler 1 or the like is supplied to the binary power generation facility 17 and used as a heat source for the binary power generation facility 17, and then the heat medium whose temperature has decreased. Is supplied to the gas cooler 4 by the gas cooler heat medium circulation pump 18.

図2に本発明のその他の実施例を示す。図2に示す設備、部材で図1に示す設備、部材と同一機能を有するものは同一番号を付して、その説明を省略する。
ボイラ1等のプラント発電設備の運用状態によっては、ボイラ1等から排出される排ガス量、排ガス温度は変動するため、ガス冷却器4でボイラ1等の廃熱との間接接触により昇温された熱媒温度も、ボイラ1等のプラント発電設備の運用状態によっても異なっている。
FIG. 2 shows another embodiment of the present invention. The equipment and members shown in FIG. 2 that have the same functions as the equipment and members shown in FIG.
The amount of exhaust gas discharged from the boiler 1 or the like and the temperature of the exhaust gas fluctuate depending on the operation state of the plant power generation equipment such as the boiler 1, so the temperature was raised by indirect contact with the waste heat of the boiler 1 or the like by the gas cooler 4. The heat medium temperature also varies depending on the operating state of the plant power generation equipment such as the boiler 1.

上述した通り、バイナリー発電設備17内を循環する熱交換媒体の特性にもよるが、外部熱源である熱媒温度としては、例えば80℃〜120℃の温度で供給することが望ましく、熱媒温度が80℃程度以下となると、バイナリー発電設備17内を循環する熱交換媒体の蒸発性能が悪く、設備の運用を停止する必要がある。逆に、外部熱媒温度が120℃程度以上になると、熱交換媒体が分解する等の問題が生じ、設備の運用を停止する必要がある。   As described above, although depending on the characteristics of the heat exchange medium circulating in the binary power generation facility 17, the heat medium temperature as an external heat source is desirably supplied at a temperature of, for example, 80 ° C. to 120 ° C. When the temperature is about 80 ° C. or lower, the evaporation performance of the heat exchange medium circulating in the binary power generation facility 17 is poor, and it is necessary to stop the operation of the facility. On the other hand, when the external heat medium temperature is about 120 ° C. or higher, problems such as decomposition of the heat exchange medium occur, and it is necessary to stop the operation of the facility.

図2においては、ガス冷却器4とバイナリー発電設備17とを循環する熱媒循環ライン29を設けたシステム構成において、バイナリー発電設備17の入口側の熱媒循環ライン29とバイナリー発電設備17の出口側の熱媒循環ライン29の間に、ガス冷却器4を迂回するバイナリー発電設備熱媒バイパスライン23を設ける。なお、バイナリー発電設備熱媒バイパスライン23は、ガス冷却器熱媒バイパスライン30と並列位置に配置されるが、ガス冷却器熱媒バイパスライン30よりバイナリー発電設備17により近い位置でバイナリー発電設備17の入口側と出口側の各熱媒循環ライン29とそれぞれ接続している。   In FIG. 2, in a system configuration provided with a heat medium circulation line 29 that circulates between the gas cooler 4 and the binary power generation facility 17, the heat medium circulation line 29 on the inlet side of the binary power generation facility 17 and the outlet of the binary power generation facility 17. Between the heat medium circulation line 29 on the side, a binary power generation facility heat medium bypass line 23 that bypasses the gas cooler 4 is provided. The binary power generation facility heat medium bypass line 23 is arranged in parallel with the gas cooler heat medium bypass line 30, but the binary power generation facility 17 is closer to the binary power generation facility 17 than the gas cooler heat medium bypass line 30. Are connected to the respective heat medium circulation lines 29 on the inlet side and the outlet side.

また、バイナリー発電設備熱媒循環ライン23と熱媒循環ライン29の接続箇所よりバイナリー発電設備17入口に近い側の熱媒循環ライン29に熱媒流量制御弁22を設け、さらにバイナリー発電設備熱媒バイパスライン23には熱媒流量制御弁32を設けてバイナリー発電設備17への熱媒供給量を制御できる系統構成としている。   Further, a heat medium flow control valve 22 is provided in the heat medium circulation line 29 closer to the binary power generation facility 17 inlet than the connection point between the binary power generation facility heat medium circulation line 23 and the heat medium circulation line 29, and further the binary power generation facility heat medium. A heat medium flow rate control valve 32 is provided in the bypass line 23 so that the heat medium supply amount to the binary power generation facility 17 can be controlled.

前記熱媒流量制御弁22とバイナリー発電設備熱媒バイパスライン23を設けることにより次のような機能が達成される。すなわち
(1)ボイラ起動時には、ボイラ1の出口排ガス温度が低く、ボイラ廃熱の回収ができないので、ガス冷却器4内の熱媒温度が低く、バイナリー発電設備17に熱媒を供給する意味が無く、このような場合には熱媒流量制御弁22を閉じてバイナリー発電設備熱媒バイパスライン23を利用してバイナリー発電設備17を迂回させて熱媒を循環させる。
By providing the heat medium flow control valve 22 and the binary power generation facility heat medium bypass line 23, the following functions are achieved. Ie
(1) When the boiler is started up, the exhaust gas temperature at the outlet of the boiler 1 is low and the boiler waste heat cannot be recovered. Therefore, the temperature of the heat medium in the gas cooler 4 is low, and there is no point in supplying the binary power generation equipment 17 with a heat medium. In such a case, the heat medium flow control valve 22 is closed and the binary power generation facility 17 is bypassed using the binary power generation facility heat medium bypass line 23 to circulate the heat medium.

(2)バイナリー発電設備17で不具合が発生した場合にも熱媒流量制御弁22を閉じて、排煙処理装置の運転を継続することができる。
(3)バイナリー発電設備17出口の熱媒温度(熱媒温度計24bにより計測)の温度が低くなりすぎた場合には、バイナリー発電設備17への熱媒量(バイパス量)を熱媒流量制御弁22の開閉制御により、容易に調整することができる。
(2) Even when a failure occurs in the binary power generation facility 17, the heat medium flow control valve 22 can be closed to continue the operation of the smoke treatment apparatus.
(3) When the temperature of the heat medium temperature at the outlet of the binary power generation facility 17 (measured by the heat medium thermometer 24b) becomes too low, the amount of heat medium (bypass amount) to the binary power generation facility 17 is controlled by the heat medium flow rate. It can be easily adjusted by opening / closing control of the valve 22.

また、熱媒循環ライン29には熱媒温度制御用熱交換器25を設けており、該熱媒温度制御用熱交換器25には熱媒温度昇温用として蒸気ライン13と熱媒温度冷却用として水ライン15が接続している。   The heat medium circulation line 29 is provided with a heat exchanger 25 for controlling the temperature of the heat medium. The heat exchanger 25 for controlling the temperature of the heat medium is cooled with the steam line 13 and the heat medium for cooling the temperature of the heat medium. A water line 15 is connected for use.

なお、熱媒温度制御用熱交換器25に接続する水ライン15に代えて、バイナリー発電設備17の入口側の熱媒循環ライン29に直接水を供給するライン(図示せず)を接続し、バイナリー発電設備17の出口側の熱媒循環ライン29から水を排出するライン(図示せず)を接続してもよい。   In place of the water line 15 connected to the heat exchanger 25 for controlling the heat medium temperature, a line (not shown) for supplying water directly to the heat medium circulation line 29 on the inlet side of the binary power generation facility 17 is connected. A line (not shown) for discharging water from the heat medium circulation line 29 on the outlet side of the binary power generation facility 17 may be connected.

ここで、バイナリー発電設備17の入口熱媒温度が、例えば80℃程度以下となった場合には、熱媒温度制御用熱交換器25に蒸気ライン13から蒸気を供給し、バイナリー発電設備17の運用に適した温度まで熱媒を昇温させることで運用が可能となる。なお、外部からの蒸気供給が困難な場合あるいは蒸気供給量を低減させる目的として、バイナリー発電設備17への熱媒供給を止めることも一つの手段であるが、こうした場合には、ガス冷却器4で昇温した熱媒温度を低下させる手段がなくなり、ガス冷却器4でのガス温度の低下が不可能となり、電気集塵装置5の入口ガス温度が増加する。上述した通り、電気集塵装置5の集塵性能はガス温度に依存するため、要求の除塵性能が満足できなくなるといった問題が挙げられる。   Here, when the inlet heat medium temperature of the binary power generation equipment 17 becomes about 80 ° C. or less, for example, steam is supplied to the heat medium temperature control heat exchanger 25 from the steam line 13, and the binary power generation equipment 17 Operation is possible by raising the temperature of the heat medium to a temperature suitable for operation. In addition, in the case where it is difficult to supply steam from the outside or to reduce the steam supply amount, stopping the supply of the heat medium to the binary power generation equipment 17 is one means. In such a case, the gas cooler 4 Thus, there is no means for lowering the temperature of the heating medium heated in step 1, the gas temperature in the gas cooler 4 cannot be lowered, and the inlet gas temperature of the electrostatic precipitator 5 is increased. As described above, since the dust collection performance of the electric dust collector 5 depends on the gas temperature, there is a problem that the required dust removal performance cannot be satisfied.

図2に示す設備構成では、熱媒循環ライン29には熱媒温度制御用熱交換器25を設けており、該熱媒温度制御用熱交換器25に水ライン15から水を供給することで、ガス冷却器4へ供給する熱媒温度を所定値以下に低減することが可能となり、バイナリー発電設備17の運転有無に関わらず、ボイラ1等から排出される排ガスの環境規制値を満足した、安定した運用が可能となる。   In the equipment configuration shown in FIG. 2, the heat medium circulation line 29 is provided with a heat exchanger temperature control heat exchanger 25, and water is supplied from the water line 15 to the heat medium temperature control heat exchanger 25. The heat medium temperature supplied to the gas cooler 4 can be reduced to a predetermined value or less, and the environmental regulation value of the exhaust gas discharged from the boiler 1 or the like is satisfied regardless of whether or not the binary power generation facility 17 is operated. Stable operation is possible.

1 ボイラ 2 脱硝装置
3 ボイラ空気予熱器 4 ガス冷却器
5 電気集塵装置 6 排ガスファン
7 吸収塔 8 廃熱回収用熱交換器
9 煙突 10 ガス再加熱器
11 バイナリー発電用タービン 12 配管
13 蒸気ライン 14 コンデンサ
15 水ライン
16 バイナリー発電熱媒循環ポンプ
17 バイナリー発電設備 18 熱媒循環ポンプ
19,22 熱媒循環ライン熱媒流量制御弁
20 ガス冷却器熱媒バイパスライン熱媒流量制御弁
21 排ガス温度計
23 バイナリー発電設備熱媒バイパスライン
24a,24b 熱媒循環温度計 25 熱媒温度制御用熱交換器
26 ベイパー加熱器 27 発電機
29 熱媒循環ライン 30 ガス冷却器熱媒バイパスライン
32 バイナリー発電設備熱媒バイパスライン熱媒流量制御弁
DESCRIPTION OF SYMBOLS 1 Boiler 2 Denitration apparatus 3 Boiler air preheater 4 Gas cooler 5 Electric dust collector 6 Exhaust gas fan 7 Absorption tower 8 Waste heat recovery heat exchanger 9 Chimney 10 Gas reheater 11 Binary power generation turbine 12 Piping 13 Steam line 14 condenser 15 water line 16 binary power generation heat medium circulation pump 17 binary power generation equipment 18 heat medium circulation pump 19, 22 heat medium circulation line heat medium flow control valve 20 gas cooler heat medium bypass line heat medium flow control valve 21 exhaust gas thermometer 23 Binary power generation facility heat medium bypass lines 24a, 24b Heat medium circulation thermometer 25 Heat exchanger for heat medium temperature control 26 Vapor heater 27 Generator 29 Heat medium circulation line 30 Gas cooler heat medium bypass line 32 Binary power generation facility heat Medium bypass line Heat medium flow control valve

Claims (6)

燃焼装置から排出される排ガスを流す排ガス流路の上流側から下流側に向けて脱硝装置、燃焼装置用空気予熱器、ガス冷却器、集塵装置及び脱硫装置を順次設けた排煙処理装置において、
前記ガス冷却器には前記燃焼装置から排出される排ガスの熱を回収する熱媒循環ラインを配置し、該熱媒循環ラインで回収した前記排ガスの熱を利用するバイナリー発電設備を熱媒循環ラインに接続し、
前記熱媒循環ラインのバイナリー発電設備の入口部と出口部に熱媒温度を測定する温度測定手段をそれぞれ設け、
前記ガス冷却器の出口の排ガス流路にはガス冷却器出口の排ガス温度を測定する温度測定手段を設け、
前記熱媒循環ラインのガス冷却器入口部には熱媒流量制御弁を設け、また該熱媒流量制御弁とガス冷却器を迂回して熱媒をバイナリー発電設備との間で循環させるガス冷却器熱媒バイパスラインを熱媒循環ラインに接続したことを特徴とする排煙処理装置。
In a flue gas treatment apparatus in which a denitration apparatus, an air preheater for a combustion apparatus, a gas cooler, a dust collecting apparatus, and a desulfurization apparatus are sequentially provided from the upstream side to the downstream side of an exhaust gas flow channel for flowing exhaust gas discharged from the combustion apparatus. ,
The gas cooler is provided with a heat medium circulation line that recovers the heat of the exhaust gas discharged from the combustion device, and a binary power generation facility that uses the heat of the exhaust gas recovered by the heat medium circulation line serves as a heat medium circulation line. Connected to
Provided with temperature measuring means for measuring the temperature of the heating medium at the inlet and outlet of the binary power generation facility of the heating medium circulation line,
The exhaust gas passage at the outlet of the gas cooler is provided with a temperature measuring means for measuring the exhaust gas temperature at the outlet of the gas cooler,
A gas cooling system in which a heat medium flow control valve is provided at the gas cooler inlet of the heat medium circulation line, and the heat medium is circulated between the binary power generation equipment by bypassing the heat medium flow control valve and the gas cooler. A flue gas treatment apparatus, wherein the heat exchanger bypass line is connected to the heat medium circulation line.
ガス冷却器熱媒バイパスラインとガス冷却器を迂回してバイナリー発電設備に熱媒を循環するバイナリー発電設備熱媒循環ラインを熱媒循環ラインに接続し、該バイナリー発電設備熱媒循環ラインと接続される熱媒循環ラインの接続箇所よりバイナリー発電設備入口側の熱媒循環ラインに熱媒流量制御弁を設けたことを特徴とする請求項1記載の排煙処理装置。   Connect the heat generating medium circulation line to the binary power generation facility, bypassing the gas cooler heat medium bypass line and the gas cooler, and connect to the binary power generation facility heat medium circulation line. The flue gas treatment apparatus according to claim 1, wherein a heat medium flow control valve is provided in the heat medium circulation line on the binary power generation facility inlet side from a connection point of the heat medium circulation line to be operated. 熱媒循環ラインに冷却水供給ラインと蒸気供給ラインを有する熱媒温度調整用の熱交換器を配置したことを特徴とする請求項2記載の排煙処理装置。   The exhaust gas processing apparatus according to claim 2, wherein a heat exchanger for adjusting the temperature of the heat medium having a cooling water supply line and a steam supply line is arranged in the heat medium circulation line. 請求項1記載の排煙処理装置におけるガス冷却器出口の排ガス温度が所定値になるように、ガス冷却器出口の排ガス温度に応じて、ガス冷却器へ供給する熱媒循環ライン内の熱媒の供給量とガス冷却器熱媒バイパスライン内の熱媒の供給量を制御することを特徴とした排煙処理方法。   The heat medium in the heat medium circulation line supplied to the gas cooler according to the exhaust gas temperature at the gas cooler outlet so that the exhaust gas temperature at the gas cooler outlet in the smoke treatment apparatus according to claim 1 becomes a predetermined value. The flue gas treatment method is characterized by controlling the supply amount of the heat medium and the supply amount of the heat medium in the gas cooler heat medium bypass line. 請求項2記載の排煙処理装置におけるガス冷却器出口の排ガス温度及び/又はバイナリー発電設備の入口部又は出口部の熱媒温度が所定値になるように、ガス冷却器出口の排ガス温度及び/又はバイナリー発電設備の入口部又は出口部の熱媒温度に応じて、ガス冷却器へ供給する熱媒循環ライン内の熱媒の供給量及び/又はバイナリー発電設備へ供給するバイナリー発電設備熱媒循環ライン内の熱媒量を制御することを特徴とした排煙処理方法。   The exhaust gas temperature at the gas cooler outlet and / or the exhaust gas temperature at the gas cooler outlet and / or the heat medium temperature at the inlet or outlet of the binary power generation facility in the exhaust gas treatment apparatus according to claim 2. Alternatively, depending on the temperature of the heat medium at the inlet or outlet of the binary power generation facility, the supply amount of the heat medium in the heat medium circulation line supplied to the gas cooler and / or the binary power generation facility heat medium circulation supplied to the binary power generation facility A flue gas treatment method characterized by controlling the amount of heat medium in the line. 請求項3記載の排煙処理装置におけるガス冷却器出口の排ガス温度及び/又はバイナリー発電設備の入口部又は出口部の熱媒温度が所定値になるように、ガス冷却器出口の排ガス温度及び/又はバイナリー発電設備の入口部又は出口部の熱媒温度に応じて、ガス冷却器へ供給する熱媒循環ライン内の熱媒の供給量及び/又はバイナリー発電設備への熱媒の供給量を制御するか、又は熱媒温度調整用の熱交換器へ供給する水量又は蒸気量を調整することを特徴とした排煙処理方法。   The exhaust gas temperature at the outlet of the gas cooler and / or the exhaust gas temperature at the outlet of the gas cooler and / or the heat medium temperature at the inlet or outlet of the binary power generation facility in the exhaust gas treatment apparatus according to claim 3 Alternatively, the supply amount of the heat medium in the heat medium circulation line supplied to the gas cooler and / or the supply amount of the heat medium to the binary power generation facility is controlled according to the heat medium temperature at the inlet or outlet of the binary power generation facility. Or adjusting the amount of water or steam supplied to the heat exchanger for adjusting the temperature of the heat medium.
JP2012146373A 2012-06-29 2012-06-29 Flue gas treatment equipment and method Pending JP2014009877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012146373A JP2014009877A (en) 2012-06-29 2012-06-29 Flue gas treatment equipment and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012146373A JP2014009877A (en) 2012-06-29 2012-06-29 Flue gas treatment equipment and method

Publications (1)

Publication Number Publication Date
JP2014009877A true JP2014009877A (en) 2014-01-20

Family

ID=50106738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012146373A Pending JP2014009877A (en) 2012-06-29 2012-06-29 Flue gas treatment equipment and method

Country Status (1)

Country Link
JP (1) JP2014009877A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2993398A1 (en) * 2014-09-04 2016-03-09 Mitsubishi Hitachi Power Systems, Ltd. Flue-gas treatment apparatus and operating method therefor
CN106765245A (en) * 2016-12-30 2017-05-31 国网浙江省电力公司电力科学研究院 A kind of smoke waste heat utilization system
WO2017110848A1 (en) * 2015-12-24 2017-06-29 三菱重工環境・化学エンジニアリング株式会社 Waste heat power generation system
JP2017138026A (en) * 2016-02-02 2017-08-10 株式会社クボタ Melting system and control method of melting system
CN109578967A (en) * 2019-01-24 2019-04-05 浙江杭振锅炉有限公司 A kind of combustion gas condensing steam boiler
KR20190107773A (en) * 2018-03-12 2019-09-23 한국에너지기술연구원 Flue gas treatment system capable of manipulating the inlet temperature of the absorption reactor
KR102077738B1 (en) * 2018-11-05 2020-02-17 주식회사 지스코 Power generation system
EP3516307A4 (en) * 2016-09-26 2020-11-04 Clean Bio Heat Sverige AB Flue gas treatment system and method
CN115121101A (en) * 2022-04-25 2022-09-30 江苏国信靖江发电有限公司 Method for adjusting temperature of smoke inlet end of SCR (selective catalytic reduction) system in thermal power generating unit
CN115167321A (en) * 2022-08-09 2022-10-11 绿能碳投(北京)科技有限公司 Power plant electrostatic dust collection optimization control method and system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2993398A1 (en) * 2014-09-04 2016-03-09 Mitsubishi Hitachi Power Systems, Ltd. Flue-gas treatment apparatus and operating method therefor
WO2017110848A1 (en) * 2015-12-24 2017-06-29 三菱重工環境・化学エンジニアリング株式会社 Waste heat power generation system
JP2017116173A (en) * 2015-12-24 2017-06-29 三菱重工環境・化学エンジニアリング株式会社 Waste heat power generation system
KR101861511B1 (en) 2015-12-24 2018-05-28 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Cogeneration system
JP2017138026A (en) * 2016-02-02 2017-08-10 株式会社クボタ Melting system and control method of melting system
EP3516307A4 (en) * 2016-09-26 2020-11-04 Clean Bio Heat Sverige AB Flue gas treatment system and method
CN106765245A (en) * 2016-12-30 2017-05-31 国网浙江省电力公司电力科学研究院 A kind of smoke waste heat utilization system
KR102037083B1 (en) * 2018-03-12 2019-10-29 한국에너지기술연구원 Flue gas treatment system capable of manipulating the inlet temperature of the absorption reactor
KR20190107773A (en) * 2018-03-12 2019-09-23 한국에너지기술연구원 Flue gas treatment system capable of manipulating the inlet temperature of the absorption reactor
KR102077738B1 (en) * 2018-11-05 2020-02-17 주식회사 지스코 Power generation system
CN109578967A (en) * 2019-01-24 2019-04-05 浙江杭振锅炉有限公司 A kind of combustion gas condensing steam boiler
CN109578967B (en) * 2019-01-24 2024-01-16 浙江杭振锅炉有限公司 Gas condensing steam boiler
CN115121101A (en) * 2022-04-25 2022-09-30 江苏国信靖江发电有限公司 Method for adjusting temperature of smoke inlet end of SCR (selective catalytic reduction) system in thermal power generating unit
CN115121101B (en) * 2022-04-25 2023-10-10 江苏国信靖江发电有限公司 Method for adjusting temperature of smoke inlet end of SCR (selective catalytic reduction) system in thermal power unit
CN115167321A (en) * 2022-08-09 2022-10-11 绿能碳投(北京)科技有限公司 Power plant electrostatic dust collection optimization control method and system
CN115167321B (en) * 2022-08-09 2023-11-21 绿能碳投(北京)科技有限公司 Power plant electrostatic dust removal optimization control method and system

Similar Documents

Publication Publication Date Title
JP2014009877A (en) Flue gas treatment equipment and method
JP5260585B2 (en) Coal-fired power plant and method for operating coal-fired power plant
JP4959156B2 (en) Heat recovery equipment
JP6009009B2 (en) Heat recovery power generation facility from combustion exhaust gas
KR101674705B1 (en) Method for generating power from exhaust heat and system for generating power from exhaust heat
RU2688078C2 (en) Coaling welded electric installation with oxy-ignition with heat integrating
JP5500642B2 (en) Low-temperature heat recovery system from exhaust gas after waste gas treatment facility of waste incineration facility
CN102734787B (en) Concurrent recycling system for boiler smoke afterheat
CN105937773A (en) Power station boiler condensing flue gas dehumidification and purification energy-saving system
JP5769066B2 (en) Heat recovery system from incinerator exhaust gas
CN103574630B (en) Improve the method for temperature of smoke discharged by chimney of thermal power and flue gas heating system and fired power generating unit
JP5636955B2 (en) Heat recovery system
JP2011058486A (en) Heat recovery device of power plant using heat pump
JP6334270B2 (en) Control method for organic waste combustion plant.
JP2014009624A (en) Waste heat utilization method, waste heat utilization system and treatment method of boiler exhaust gas
JP2019094792A (en) Heat recovery power generation facility from flue gas and control method for the same
CN102966941A (en) Waste heat recovery system with combined phase change heat exchanger and low pressure economizer
JP2012088045A (en) Heat recovery equipment
CN210568552U (en) Boiler energy-saving and flue gas whitening system
CN104848236A (en) Boiler smoke waste heat recovery device
CN210688281U (en) Flue gas treatment system
JP2019100612A (en) Heat exchanger for boiler exhaust gas
JP6766772B2 (en) Power generation system using waste heat in sewage sludge incineration equipment and operation method of power generation system
JP2014009878A (en) Exhaust gas purifying device and method for operating the same
JP2014009835A (en) Exhaust gas treatment apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141219