JP6009009B2 - Heat recovery power generation facility from combustion exhaust gas - Google Patents

Heat recovery power generation facility from combustion exhaust gas Download PDF

Info

Publication number
JP6009009B2
JP6009009B2 JP2015026767A JP2015026767A JP6009009B2 JP 6009009 B2 JP6009009 B2 JP 6009009B2 JP 2015026767 A JP2015026767 A JP 2015026767A JP 2015026767 A JP2015026767 A JP 2015026767A JP 6009009 B2 JP6009009 B2 JP 6009009B2
Authority
JP
Japan
Prior art keywords
exhaust gas
power generation
pressure
decompression
combustion exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015026767A
Other languages
Japanese (ja)
Other versions
JP2016148317A (en
Inventor
大祐 鮎川
大祐 鮎川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56691057&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6009009(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2015026767A priority Critical patent/JP6009009B2/en
Publication of JP2016148317A publication Critical patent/JP2016148317A/en
Application granted granted Critical
Publication of JP6009009B2 publication Critical patent/JP6009009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Control Of Turbines (AREA)

Description

本発明は、下水汚泥や都市ごみ等の廃棄物を燃焼し、発生した燃焼排ガスから熱回収して発電する燃焼排ガスからの熱回収発電設備に係り、特に、下水汚泥等のように水分の多い廃棄物を燃焼処理する燃焼設備や小型の燃焼設備に設置され、燃焼設備の焼却炉から排出されて煙道を流れている燃焼排ガスから減圧ボイラを用いて熱回収し、その熱をバイナリー発電装置で使用して発電するようにした燃焼排ガスからの熱回収発電設備に関するものである。   The present invention relates to a heat recovery power generation facility from combustion exhaust gas that burns waste such as sewage sludge and municipal waste and generates heat by generating heat from the generated combustion exhaust gas, and in particular, has a high water content such as sewage sludge. Installed in a combustion facility that burns waste or a small combustion facility, recovers heat from the combustion exhaust gas discharged from the incinerator of the combustion facility and flowing through the flue using a decompression boiler, and the heat is a binary power generator The present invention relates to a heat recovery power generation facility from combustion exhaust gas that is used for power generation.

一般に、下水汚泥や都市ごみ等の廃棄物を燃焼処理する燃焼設備においては、焼却炉で廃棄物を燃焼し、発生した燃焼排ガスからボイラで熱回収し、ボイラから発生する蒸気を用いて発電機で発電するようにしている。この燃焼設備においては、燃焼排ガスが硫黄酸化物(SOx)を含んでいるため、SOの結露(SOの濃度にもよるが、露点は130℃程度)による硫酸腐食対策が必要である。 Generally, in a combustion facility that burns and treats waste such as sewage sludge and municipal waste, the waste is burned in an incinerator, heat is recovered from the generated flue gas in a boiler, and a generator is generated using steam generated from the boiler. To generate electricity. In this combustion equipment, since the combustion exhaust gas contains sulfur oxides (SOx), (depending on the concentration of SO 3, the dew point is about 130 ° C.) condensation of SO 3 is required sulfate corrosion protection due.

図4は燃焼排ガスから熱回収して発電する燃焼設備の一例を示し、この焼却設備は、焼却炉41から排出された燃焼排ガスを空気予熱器42、ボイラ43、バグフィルター44、洗煙装置45に順次通し、排ガス処理した燃焼排ガスを誘引通風機46を介して煙突47から大気中へ放出すると共に、ボイラ43で発生した蒸気により蒸気タービン48を回して発電機49で発電するようにしたものである。   FIG. 4 shows an example of a combustion facility that recovers heat from combustion exhaust gas and generates electric power. This incineration facility uses the combustion exhaust gas discharged from the incinerator 41 as an air preheater 42, a boiler 43, a bag filter 44, and a smoke washing device 45. The combustion exhaust gas treated by exhaust gas is discharged to the atmosphere from the chimney 47 through the induction fan 46 and the steam turbine 48 is rotated by the steam generated in the boiler 43 so that the generator 49 generates power. It is.

しかし、図4に示す焼却設備は、燃焼排ガスが持つエネルギー量が少ないため、市販の蒸気タービン46が規格以下となることが殆どである。また、ボイラ43は、大気圧以上で水が蒸発するため、ボイラ43及び蒸気タービン48を設置するには、設置者にボイラ・タービン主任技術者が必要となり、運転者に資格が必要になる。更に、設備も発電量からすると、大掛かりな設備となる。しかも、小規模の燃焼設備には、ボイラ42及び蒸気タービン48等を設置できない。   However, since the incineration equipment shown in FIG. 4 has a small amount of energy in the combustion exhaust gas, the commercially available steam turbine 46 is almost below the standard. Moreover, since water evaporates at atmospheric pressure or higher in the boiler 43, the installation of the boiler 43 and the steam turbine 48 requires a boiler / turbine chief engineer for the installer, and the driver needs to be qualified. Furthermore, the facilities are large-scale facilities based on the amount of power generated. Moreover, the boiler 42 and the steam turbine 48 cannot be installed in a small-scale combustion facility.

また、図5に示す焼却設備は、図4の蒸気タービン48及び発電機49に替えてバイナリー発電装置50(蒸発部50a、タービン50b、発電機50c、凝縮部50d、冷媒循環ポンプ50e等から成る発電装置)を設置し、ボイラ42で発生した蒸気をバイナリー発電装置50の蒸発部50aに供給し、蒸気の熱を蒸発部50aの熱源として利用するようにしたものである。   The incineration facility shown in FIG. 5 includes a binary power generation device 50 (evaporation unit 50a, turbine 50b, generator 50c, condensing unit 50d, refrigerant circulation pump 50e, etc.) instead of the steam turbine 48 and the generator 49 of FIG. A power generation device) is installed, steam generated in the boiler 42 is supplied to the evaporation unit 50a of the binary power generation device 50, and the heat of the steam is used as a heat source of the evaporation unit 50a.

しかし、図5に示す焼却設備も、図4の焼却設備と同様に、ボイラ43及びタービン50bを設置するには、設置者にボイラ・タービン主任技術者が必要になり、運転者に資格が必要になると共に、設備も発電量からすると、大掛かりな設備となる。   However, the incinerator shown in FIG. 5 also requires a boiler / turbine chief engineer to install the boiler 43 and the turbine 50b as in the incinerator shown in FIG. At the same time, the facilities are large-scale facilities based on the amount of power generated.

更に、図6に示す燃焼設備は、バイナリー発電装置50の蒸発部50aを燃焼排ガスが流れる煙道内に直接設置し、燃焼排ガスから直接熱回収して発電するようにしたものである。   Further, the combustion facility shown in FIG. 6 is configured such that the evaporation unit 50a of the binary power generation apparatus 50 is directly installed in a flue through which combustion exhaust gas flows, and heat is directly recovered from the combustion exhaust gas to generate electric power.

しかし、図6に示す焼却設備は、バイナリー発電装置50に用いる冷媒には、低沸点(100℃以下)の冷媒が使用されているため、煙道内に設置した蒸発部50aのパイプ上で燃焼排ガス中のSOが結露し、蒸発部50aが低温腐食を引き起こして長期の運転が不可能になる。 However, the incineration facility shown in FIG. 6 uses a low boiling point (100 ° C. or lower) refrigerant as the refrigerant used for the binary power generation apparatus 50, so that the combustion exhaust gas on the pipe of the evaporation section 50a installed in the flue SO 3 in the inside condenses, and the evaporating part 50a causes low temperature corrosion, making long-term operation impossible.

更に、図7に示す焼却設備は、熱媒油O(沸点が約300℃)を循環用ポンプ53により循環させる循環路51の一部を煙道内に直接挿入し、燃焼排ガスと循環している熱媒油Oとで熱交換させて熱回収し、回収した熱を熱交換器52を介してバイナリー発電装置50の蒸発部50aで利用するようにしたものである。   Further, in the incineration facility shown in FIG. 7, a part of the circulation path 51 through which the heat transfer oil O (boiling point is about 300 ° C.) is circulated by the circulation pump 53 is directly inserted into the flue and circulated with the combustion exhaust gas. Heat is recovered by heat exchange with the heat transfer oil O, and the recovered heat is used in the evaporation unit 50a of the binary power generation device 50 via the heat exchanger 52.

しかし、図7に示す焼却設備は、熱媒油Oが液体状で熱交換するため、顕熱での熱回収となる。そのため、熱交換器52の入口、出口の温度差が大きく取れなくて熱媒油Oの循環流量が大きくなる。その結果、熱媒油Oの熱交換器52が大きくなってコストが嵩み、また、熱媒油Oの循環用ポンプ53の消費電力も大きくなる。   However, the incineration facility shown in FIG. 7 performs heat recovery with sensible heat because the heat transfer oil O is in a liquid state and exchanges heat. Therefore, the temperature difference between the inlet and outlet of the heat exchanger 52 cannot be made large, and the circulation flow rate of the heat transfer oil O becomes large. As a result, the heat exchanger 52 for the heat medium oil O becomes large and costs increase, and the power consumption of the circulation pump 53 for the heat medium oil O also increases.

更に、図8に示す焼却設備は、図7の熱媒油Oに替えて空気Aを循環用ファン54により循環させる循環路55の一部を煙道内に直接挿入し、燃焼排ガスと循環している空気Aとで熱交換させて熱回収し、回収した熱を熱交換器52を介してバイナリー発電装置50の蒸発部50aで利用するようにしたものである。   Further, the incineration facility shown in FIG. 8 inserts a part of the circulation path 55 for circulating the air A by the circulation fan 54 in place of the heat transfer oil O in FIG. Heat is recovered by air exchange with the air A, and the recovered heat is used in the evaporation unit 50a of the binary power generation device 50 via the heat exchanger 52.

しかし、図8に示す焼却設備は、循環用の空気Aによる熱回収が気体同士の熱交換であるため、伝熱特性が悪く、大きな熱交換器52となってコストが嵩むと共に、空気Aの循環用ファン54の動力が大きくなる。   However, in the incineration facility shown in FIG. 8, the heat recovery by the circulation air A is heat exchange between gases, so the heat transfer characteristics are bad, the cost becomes a large heat exchanger 52, and the cost increases. The power of the circulation fan 54 is increased.

更に、図示していないが、特許文献1には、焼却炉から排出された燃焼排ガスを空気予熱器、白煙防止空気予熱器、集塵装置、排煙洗浄塔の順に通して排ガス処理し、排煙洗浄塔から排出される洗煙排水を白煙防止空気予熱器で燃焼排ガスから熱回収した白煙防止空気の保有熱により昇温させてから排熱発電システム(バイナリー発電装置)に供給して排熱発電を行うようにした技術が記載されている。   Furthermore, although not shown, in Patent Document 1, the exhaust gas discharged from the incinerator is exhausted through an air preheater, a white smoke prevention air preheater, a dust collector, and a flue gas cleaning tower in this order. The smoke drainage discharged from the flue gas cleaning tower is heated by the retained heat of the white smoke prevention air recovered from the combustion exhaust gas with the white smoke prevention air preheater and then supplied to the exhaust heat power generation system (binary power generation system) The technology to perform exhaust heat power generation is described.

しかし、特許文献1に記載された技術は、白煙防止空気が排熱発電システムの熱交換器を通過するため、白煙防止用ファンの消費動力が増加し、また、排煙洗浄塔から排出される洗煙排水を排熱発電システムの蒸発部を通過させているため、排水ポンプの消費動力も増加し、コストアップにつながる。   However, in the technology described in Patent Document 1, since the white smoke prevention air passes through the heat exchanger of the exhaust heat power generation system, the power consumption of the white smoke prevention fan increases and the exhaust gas is discharged from the exhaust gas cleaning tower. Since the smoke-washed wastewater is passed through the evaporation section of the exhaust heat power generation system, the power consumption of the drainage pump is increased, leading to an increase in cost.

特許第5271100号公報Japanese Patent No. 5271100

本発明は、このような問題点に鑑みて為されたものであり、その目的は、ボイラ・タービン主任技術者等の資格が不要になると共に、腐食性の燃焼排ガスから熱回収しても腐食せず、動力の削減を図れて発電した電力を有効に使用できるようにした燃焼排ガスからの熱回収発電設備を提供することにある。   The present invention has been made in view of such problems, and its purpose is to eliminate the need for qualifications such as a boiler / turbine chief engineer and to corrode even if heat is recovered from corrosive combustion exhaust gas. Therefore, an object of the present invention is to provide a heat recovery power generation facility from combustion exhaust gas that can effectively use power generated by reducing power.

上記目的を達成するために、本発明の第1の発明は、焼却炉からの燃焼排ガスを白煙防止空気予熱器、集塵装置、洗煙装置の順次に通すようにした焼却設備に設置され、煙道内を流れる燃焼排ガスから熱回収して発電するようにした燃焼排ガスからの熱回収発電設備であって、燃焼排ガスを流す煙道に設置され、燃焼排ガスを通して燃焼排ガスから熱回収すると共に、熱媒水を加熱して蒸気を発生させる内部圧が大気圧以下に保持された減圧ボイラと、低沸点の液状の冷媒を加熱、蒸発させてその蒸気でタービンを回して発電するバイナリー発電装置とを備えており、前記減圧ボイラの熱媒水を、大気圧以下で沸点が燃焼排ガス中に含まれているSO ガスの露点以上となる水溶液とし、また、前記バイナリー発電装置の蒸発部を減圧ボイラの減圧蒸気室に設置し、減圧蒸気室内の蒸気でバイナリー発電装置の蒸発部内の冷媒を気化させるようにしたことに特徴がある。 In order to achieve the above object, the first invention of the present invention is installed in an incineration facility in which combustion exhaust gas from an incinerator is sequentially passed through a white smoke prevention air preheater, a dust collector, and a smoke cleaner. , A heat recovery power generation facility from combustion exhaust gas that recovers heat from the combustion exhaust gas flowing in the flue, and is installed in the flue through which the combustion exhaust gas flows, and heat recovery from the combustion exhaust gas through the combustion exhaust gas, A decompression boiler in which the internal pressure for heating the heat transfer water to generate steam is kept below atmospheric pressure, a binary power generator for generating power by heating and evaporating a low-boiling liquid refrigerant and turning the turbine with the steam The heating medium water of the decompression boiler is an aqueous solution that has an atmospheric pressure or lower and a boiling point that is equal to or higher than the dew point of SO 3 gas contained in the combustion exhaust gas, and the evaporation section of the binary power generator is decompressed. boiler This is characterized in that the refrigerant in the evaporation section of the binary power generation apparatus is vaporized by the steam in the decompression steam chamber.

本発明の第2の発明は、前記第1の発明において、減圧ボイラの熱媒水の温度又は減圧蒸気室の圧力をそれぞれ検出する温度検出器又は圧力検出器を設け、温度検出器又は圧力検出器からの検出信号に基づいて減圧ボイラの熱媒水の温度又は減圧蒸気室の圧力が所定の温度又は圧力に保たれるようにバイナリー発電装置の制御盤により低沸点の冷媒を循環させる冷媒循環ポンプを制御して発電量を制御するようにしたことに特徴がある。 According to a second invention of the present invention, in the first invention, a temperature detector or a pressure detector for detecting the temperature of the heat transfer water of the decompression boiler or the pressure of the decompression steam chamber, respectively, is provided. Refrigerant circulation in which low boiling point refrigerant is circulated by the control panel of the binary power generator so that the temperature of the heat transfer water of the decompression boiler or the pressure of the decompression steam chamber is maintained at a predetermined temperature or pressure based on the detection signal from the generator It is characterized in that the power generation amount is controlled by controlling the pump .

本発明の第3の発明は、前記第1の発明において、減圧ボイラの入口側の煙道に水を噴霧する水噴霧手段を設けると共に、減圧ボイラの熱媒水の温度又は減圧蒸気室の圧力をそれぞれ検出する温度検出器又は圧力検出器を設け、温度検出器又は圧力検出器からの検出信号に基づいて減圧ボイラの熱媒水の温度又は減圧蒸気室の圧力が所定の温度又は圧力に保たれるように制御器により水噴霧手段を制御して減圧ボイラの入口側の燃焼排ガスの温度を一定にするようにしたことに特徴がある。 According to a third aspect of the present invention, in the first aspect, the water spraying means for spraying water on the flue on the inlet side of the decompression boiler is provided, and the temperature of the heat transfer water of the decompression boiler or the pressure of the decompression steam chamber A temperature detector or a pressure detector is provided for detecting the temperature of the vacuum boiler, and the temperature of the heat transfer water of the decompression boiler or the pressure of the decompression steam chamber is maintained at a predetermined temperature or pressure based on a detection signal from the temperature detector or the pressure detector. It is characterized in that the temperature of the combustion exhaust gas on the inlet side of the decompression boiler is made constant by controlling the water spray means by the controller .

本発明の第4の発明は、前記第1の発明において、煙道に減圧ボイラを迂回するバイパスダクトを接続すると共に、当該バイパスダクトにバイパスダンパーを設け、減圧ボイラの熱媒水の温度又は減圧蒸気室の圧力が所定の温度又は圧力に保たれるようにバイパスダンパーを開閉制御して燃焼排ガスの一部又は全てをバイパスダクト側へバイパスするようにしたことに特徴がある。 According to a fourth aspect of the present invention, in the first aspect, a bypass duct that bypasses the decompression boiler is connected to the flue, and a bypass damper is provided in the bypass duct so that the temperature of the heat transfer water of the decompression boiler or the decompression is reduced. The feature is that the bypass damper is controlled to be opened and closed so that the pressure in the steam chamber is maintained at a predetermined temperature or pressure so that a part or all of the combustion exhaust gas is bypassed to the bypass duct side .

本発明の第5の発明は、前記第1の発明、第2の発明、第3の発明又は第4の発明において、減圧ボイラの熱媒水中に過熱管を配設すると共に、当該過熱管とバイナリー発電装置の蒸発部とを接続し、蒸発部で加熱された冷媒を過熱管に導き、ここで減圧ボイラの熱媒水により更に過熱するようにしたことに特徴がある。 According to a fifth aspect of the present invention, in the first aspect, the second aspect, the third aspect, or the fourth aspect , the superheater pipe is disposed in the heat transfer medium water of the decompression boiler, It is characterized in that it is connected to the evaporation section of the binary power generator, and the refrigerant heated in the evaporation section is guided to the superheater tube, where it is further heated by the heat transfer water of the decompression boiler .

本発明の燃焼排ガスからの熱回収発電設備は、内部圧が大気圧以下に保持されて内部の熱媒水が大気圧以下で蒸発する減圧ボイラにより熱回収するようにしているため、ボイラ・タービン主任技術者等の資格が不要になる。   In the heat recovery power generation facility from the combustion exhaust gas of the present invention, the internal pressure is maintained at atmospheric pressure or lower, and the internal heat transfer water is recovered by a reduced pressure boiler that evaporates at atmospheric pressure or lower. Qualifications such as chief engineer become unnecessary.

本発明の燃焼排ガスからの熱回収発電設備は、減圧ボイラの沸点がSOガスの露点以上となる熱媒水を用いて燃焼排ガスから熱回収しているため、減圧ボイラの熱吸収部での硫酸腐食を防止することができる。また、バイナリー発電装置の蒸発部を減圧ボイラの減圧蒸気室に設置し、バイナリー発電装置の冷媒が減圧ボイラ内の蒸気から受熱するため、蒸発部の腐食を防止することができる。 The heat recovery power generation facility from the combustion exhaust gas of the present invention recovers heat from the combustion exhaust gas using heat transfer water whose boiling point of the decompression boiler is equal to or higher than the dew point of SO 3 gas. Sulfuric acid corrosion can be prevented. Moreover, since the evaporation part of the binary power generation apparatus is installed in the reduced pressure steam chamber of the decompression boiler and the refrigerant of the binary power generation apparatus receives heat from the steam in the decompression boiler, corrosion of the evaporation part can be prevented.

本発明の燃焼排ガスからの熱回収発電設備は、バイナリー発電装置の蒸発部を減圧ボイラの減圧蒸気室に設置してバイナリー発電装置の冷媒を加熱するようにしているため、図7及び図8の燃焼設備に示すように、バイナリー発電装置の冷媒を加熱するのに熱媒油の循環用ポンプや空気の循環用ファンを必要としない。その結果、本発明の燃焼排ガスからの熱回収発電設備は、循環用ポンプや循環用ファンを必要とせず、これらを動かすための動力が不要となり、バイナリー発電装置で発電した電力を有効に使用できる。   In the heat recovery power generation facility from the combustion exhaust gas of the present invention, the evaporation section of the binary power generation apparatus is installed in the reduced pressure steam chamber of the reduced pressure boiler to heat the refrigerant of the binary power generation apparatus. As shown in the combustion facility, no heat medium oil circulation pump or air circulation fan is required to heat the refrigerant of the binary power generator. As a result, the heat recovery power generation facility from the combustion exhaust gas according to the present invention does not require a circulation pump or a circulation fan, and no power is required to move these, and the power generated by the binary power generation apparatus can be used effectively. .

本発明の燃焼排ガスからの熱回収発電設備は、白煙防止用空気をバイナリー発電装置を経由せずに煙突へ導くことができるため、特許文献1に記載された従来の焼却設備に比較して白煙防止用ファンの動力を低減することができる。   Since the heat recovery power generation facility from the combustion exhaust gas of the present invention can guide the white smoke prevention air to the chimney without going through the binary power generation device, compared with the conventional incineration facility described in Patent Document 1 The power of the white smoke prevention fan can be reduced.

本発明の燃焼排ガスからの熱回収発電設備は、洗煙装置からの排水をバイナリー発電装置を経由せずに排水することができるため、特許文献1に記載された従来の焼却設備に比較して洗煙排水ポンプの動力を低減することができる。   Since the heat recovery power generation facility from the combustion exhaust gas of the present invention can drain the waste water from the smoke washing device without going through the binary power generation device, compared with the conventional incineration facility described in Patent Document 1. The power of the smoke washing drain pump can be reduced.

本発明の燃焼排ガスからの熱回収発電設備は、減圧ボイラの熱媒水中に過熱管を配設すると共に、当該過熱管とバイナリー発電装置の蒸発部とを接続し、蒸発部で加熱された冷媒を過熱管に導き、ここで減圧ボイラの熱媒水により更に過熱するようにしているため、冷媒の気体温度を上げることができ、バイナリー発電装置による発電量が上げることができる。   The heat recovery power generation facility from the combustion exhaust gas of the present invention has a superheater pipe disposed in the heat transfer medium water of the decompression boiler, and connects the superheater pipe to the evaporation part of the binary power generator, and is a refrigerant heated by the evaporation part Is heated to the superheat pipe and further heated by the heat transfer water of the decompression boiler. Therefore, the gas temperature of the refrigerant can be increased, and the amount of power generated by the binary power generator can be increased.

本発明の一実施形態に係る燃焼排ガスからの熱回収発電設備を設置した燃焼設備の概略系統図である。It is a schematic system diagram of the combustion equipment which installed the heat recovery power generation equipment from the combustion exhaust gas concerning one embodiment of the present invention. 図1に示す熱回収発電設備の拡大概略系統図である。FIG. 2 is an enlarged schematic system diagram of the heat recovery power generation facility shown in FIG. 1. 本発明の他の実施形態に係る燃焼排ガスからの熱回収発電設備の拡大概略系統図である。It is an expansion schematic system diagram of the heat recovery power generation equipment from the combustion exhaust gas according to another embodiment of the present invention. 従来の熱回収発電設備を設置した燃焼設備のブロック図である。It is a block diagram of the combustion equipment which installed the conventional heat recovery power generation equipment. 同じく従来の熱回収発電設備を設置した燃焼設備のブロック図である。It is the block diagram of the combustion equipment which similarly installed the conventional heat recovery power generation equipment. 同じく従来の熱回収発電設備を設置した燃焼設備のブロック図である。It is the block diagram of the combustion equipment which similarly installed the conventional heat recovery power generation equipment. 同じく従来の熱回収発電設備を設置した燃焼設備のブロック図である。It is the block diagram of the combustion equipment which similarly installed the conventional heat recovery power generation equipment. 同じく従来の熱回収発電設備を設置した燃焼設備のブロック図である。It is the block diagram of the combustion equipment which similarly installed the conventional heat recovery power generation equipment.

以下、本発明の一実施形態を図面に基づいて詳細に説明する。
図1は本発明の一実施形態に係る燃焼排ガスGからの熱回収発電設備を設置した燃焼設備を示し、当該燃焼設備は、焼却炉1からの燃焼排ガスGを燃焼用空気予熱器2、白煙防止空気予熱器3、減圧ボイラ4、集塵装置5、洗煙装置6の順に通し、煙道7内を流れる燃焼排ガスGから減圧ボイラ4により熱回収すると共に、回収した熱をバイナリー発電装置8に供給して発電に利用し、減圧ボイラ4を経た燃焼排ガスGを集塵装置5及び洗煙装置6により排ガス処理した後、誘引通風機9を介して煙突10から大気中へ放出するようにしたものである。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a combustion facility in which a heat recovery power generation facility from combustion exhaust gas G according to an embodiment of the present invention is installed. The combustion facility converts combustion exhaust gas G from an incinerator 1 into a combustion air preheater 2, white The smoke-preventing air preheater 3, the decompression boiler 4, the dust collector 5, and the smoke washing device 6 are passed through in this order, and heat is recovered from the combustion exhaust gas G flowing through the flue 7 by the decompression boiler 4 and the recovered heat is a binary power generator. 8 is used for power generation, and after the exhaust gas G that has passed through the decompression boiler 4 is treated with the dust collector 5 and the smoke washing device 6, it is discharged from the chimney 10 into the atmosphere via the induction fan 9. It is a thing.

前記焼却炉1は、下水汚泥や都市ごみ等の廃棄物を焼却処理するものであり、この焼却炉1には、ストーカ11上で廃棄物を乾燥、燃焼、後燃焼させる従来公知のストーカ式の焼却炉1が使用されている。   The incinerator 1 incinerates wastes such as sewage sludge and municipal waste. The incinerator 1 is of a conventionally known stoker type in which waste is dried, burned and post-burned on a stoker 11. An incinerator 1 is used.

尚、上記の実施形態においては、焼却炉1にストーカ式の焼却炉1を使用したが、他の実施形態においては、焼却炉1に流動床式の焼却炉1を使用するようにしても良い。   In the above embodiment, the stoker type incinerator 1 is used as the incinerator 1. However, in other embodiments, the fluidized bed type incinerator 1 may be used as the incinerator 1. .

前記燃焼用空気予熱器2は、焼却炉1の下流側の煙道7に設置されており、燃焼用空気ファン12から供給された燃焼用空気を燃焼排ガスGにより予熱し、予熱した燃焼用空気を燃焼用空気供給ダクト13により焼却炉1のストーカ11下へ供給するようになっている。   The combustion air preheater 2 is installed in the flue 7 on the downstream side of the incinerator 1, and the combustion air supplied from the combustion air fan 12 is preheated by the combustion exhaust gas G and preheated combustion air. Is supplied below the stoker 11 of the incinerator 1 by the combustion air supply duct 13.

前記白煙防止空気予熱器3は、燃焼用空気予熱器2の下流側の煙道7に設置されており、白煙防止ファン14から供給された白煙防止用空気を燃焼排ガスGにより加熱し、加熱した白煙防止用空気を白煙防止用空気供給ダクト15により誘引通風機9の下流側の煙道7に流すようになっている。   The white smoke prevention air preheater 3 is installed in the flue 7 on the downstream side of the combustion air preheater 2, and the white smoke prevention air supplied from the white smoke prevention fan 14 is heated by the combustion exhaust gas G. The heated white smoke prevention air is caused to flow through the flue 7 on the downstream side of the induction fan 9 by the white smoke prevention air supply duct 15.

前記集塵装置5は、燃焼用空気予熱器2、白煙防止空気予熱器3及び減圧ボイラ4を経て熱回収された燃焼排ガスG中の煤塵を除去するものであり、この集塵装置5には、従来公知のバグフィルターが使用されている。   The dust collector 5 removes soot and dust in the combustion exhaust gas G recovered through the combustion air preheater 2, the white smoke prevention air preheater 3, and the decompression boiler 4. A conventionally known bug filter is used.

尚、上記の実施形態においては、集塵装置5にバグフィルターを使用したが、他の実施形態においては、電気集塵機やセラミック集塵機等を使用するようにしても良い。   In the above embodiment, a bag filter is used for the dust collecting device 5, but in other embodiments, an electric dust collector, a ceramic dust collector, or the like may be used.

前記洗煙装置6は、装置内部に導入された燃焼排ガスGをノズル16から散水される水と接触させることにより燃焼排ガスG中の酸性ガスを除去するものであり、洗煙水を循環させる洗煙水循環ポンプ17と、汚れた洗煙水を排出する洗煙水排出ポンプ18と、新しい洗煙水を供給する洗煙水供給ポンプ19とを備えている。   The smoke cleaning device 6 removes acidic gas in the combustion exhaust gas G by bringing the combustion exhaust gas G introduced into the device into contact with water sprayed from the nozzle 16, and circulates the smoke cleaning water. A smoke water circulation pump 17, a smoke wash water discharge pump 18 that discharges dirty smoke wash water, and a smoke wash water supply pump 19 that supplies new smoke wash water are provided.

そして、本発明に係る燃焼排ガスGからの熱回収発電設備は、図2に示す如く、燃焼排ガスGを流す煙道7(白煙防止空気予熱器3とバグフィルター5との間の煙道7)に設置され、燃焼排ガスGを通して燃焼排ガスGから熱回収すると共に、熱媒水Hを加熱して蒸気を発生させる内部圧が大気圧以下に保持された減圧ボイラ4と、低沸点の液状の冷媒Rを加熱、蒸発させてその蒸気でタービン29を回して発電するバイナリー発電装置8と、減圧ボイラ4の入口側の煙道7に水を噴霧する水噴霧手段20と、減圧ボイラ4の上流側の煙道7及び下流側の煙道7に接続されて燃焼排ガスGの一部又は全てを減圧ボイラ4を迂回するように流すバイパスダクト21等を備えており、前記バイナリー発電装置8の蒸発部28を減圧ボイラ4の減圧蒸気室24に設置し、減圧蒸気室24内の蒸気でバイナリー発電装置8の蒸発部28内の冷媒Rを気化させるようにしたものである。   Then, the heat recovery power generation facility from the combustion exhaust gas G according to the present invention has a flue 7 for flowing the combustion exhaust gas G (the flue 7 between the white smoke prevention air preheater 3 and the bag filter 5) as shown in FIG. ), The heat recovery from the combustion exhaust gas G through the combustion exhaust gas G, and the decompression boiler 4 in which the internal pressure for heating the heat transfer water H to generate steam is maintained below atmospheric pressure, A binary power generation device 8 that heats and evaporates the refrigerant R and rotates the turbine 29 with the steam to generate electricity, water spraying means 20 that sprays water on the flue 7 on the inlet side of the decompression boiler 4, and upstream of the decompression boiler 4 And a bypass duct 21 connected to the flue 7 on the side and the flue 7 on the downstream side to flow part or all of the combustion exhaust gas G so as to bypass the decompression boiler 4, and the like. Decompressing the pressure reduction boiler 4 in the part 28 Placed in air chamber 24, in which so as to vaporize the refrigerant R in the evaporator section 28 of the binary power generation device 8 in vapor in the vacuum vapor chamber 24.

即ち、前記減圧ボイラ4は、図2に示す如く、煙道7に接続され、内部圧が大気圧以下に保持されて熱媒水Hを貯留した缶体22と、缶体22の熱媒水Hを貯留した部分に貫通状に架設され、煙道7内の燃焼排ガスGが通過する複数の煙管23と、缶体22内の上部側空間に形成された減圧蒸気室24と、熱媒水Hの温度を検出する温度検出器25と、減圧蒸気室24の圧力を検出する圧力検出器26と、減圧蒸気室24の内部圧力が大気圧よりも高くなったときに減圧蒸気室24を大気に開放する安全装置27(例えば、安全弁)等を備えており、缶体22内の熱媒水Hを複数の煙管23内を通過する燃焼排ガスGとの間接熱交換により加熱して蒸発させ、発生した水蒸気を減圧蒸気室24に設置したバイナリー発電装置8の蒸発部28に接触させて凝縮液化させると共に、蒸発部28内を流れる冷媒Rを気化させるようにしている。   That is, as shown in FIG. 2, the decompression boiler 4 is connected to the flue 7 and has a can body 22 in which the internal pressure is maintained at an atmospheric pressure or less and the heat medium water H is stored, and the heat medium water of the can body 22. A plurality of smoke pipes 23 pierced in a portion storing H, through which the combustion exhaust gas G in the flue 7 passes, a decompression steam chamber 24 formed in the upper space in the can body 22, and heat transfer water A temperature detector 25 for detecting the temperature of H, a pressure detector 26 for detecting the pressure of the decompression steam chamber 24, and the decompression steam chamber 24 when the internal pressure of the decompression steam chamber 24 becomes higher than the atmospheric pressure. Provided with a safety device 27 (for example, a safety valve) that is open to the heat medium water H in the can 22 is heated and evaporated by indirect heat exchange with the combustion exhaust gas G passing through the plurality of smoke pipes 23, The generated water vapor enters the evaporation section 28 of the binary power generator 8 installed in the decompression steam chamber 24. With condensing by touch liquefied, so that vaporize refrigerant R flowing in evaporator section 28.

尚、缶体22は、上部缶体22aと下部缶体22bとを連結管22cを介して連通状に接続した構造であり、下部缶体22b内に熱媒水Hが貯留されていると共に、下部缶体22bに煙管23が架設され、また、上部缶体22a内の空間と下部缶体22b内の上部空間と連絡管22cの空間とが減圧蒸気室24となっている。   In addition, the can body 22 has a structure in which the upper can body 22a and the lower can body 22b are connected to each other through the connecting pipe 22c, and the heat transfer water H is stored in the lower can body 22b. A smoke pipe 23 is installed in the lower can body 22b, and a space in the upper can body 22a, an upper space in the lower can body 22b, and a space in the connecting pipe 22c form a decompression steam chamber 24.

また、熱媒水Hには、大気圧以下で100℃以上の沸点を持つ水溶液が使用されている。この水溶液の沸点は、燃焼排ガスG中に含まれているSOが通過する煙管23内部で結露しない温度としている。この実施形態においては、SOの露点が130℃程度であるので、水溶液の沸点を130℃とし、55Wt%の臭化リチウム水溶液を熱媒水Hとして使用している。 As the heat transfer water H, an aqueous solution having a boiling point of 100 ° C. or higher at atmospheric pressure or lower is used. The boiling point of this aqueous solution is set to a temperature at which no condensation occurs inside the smoke pipe 23 through which SO 3 contained in the combustion exhaust gas G passes. In this embodiment, since the dew point of SO 3 is about 130 ° C., the boiling point of the aqueous solution is 130 ° C., and a 55 Wt% lithium bromide aqueous solution is used as the heat transfer water H.

前記バイナリー発電装置8は、図2に示す如く、蒸発部28、タービン29、発電機30、凝縮部31、冷媒循環ポンプ32、冷媒循環用配管33及び制御盤34等を備えており、前記蒸発部28、タービン29、凝縮部31及び冷媒循環ポンプ32を冷媒循環用配管33により閉ループ状に接続し、閉ループ内で低沸点の冷媒R(例えば、ペンタンやアンモニア等)を蒸発部28、タービン29、凝縮部31、冷媒循環ポンプ32の順に循環させて蒸発部28に戻すようにしている。   As shown in FIG. 2, the binary power generation apparatus 8 includes an evaporator 28, a turbine 29, a generator 30, a condenser 31, a refrigerant circulation pump 32, a refrigerant circulation pipe 33, a control panel 34, and the like. Unit 28, turbine 29, condensing unit 31, and refrigerant circulation pump 32 are connected in a closed loop by refrigerant circulation pipe 33, and low-boiling point refrigerant R (for example, pentane or ammonia) is evaporated in the closed loop. The condenser 31 and the refrigerant circulation pump 32 are circulated in this order and returned to the evaporator 28.

このバイナリー発電装置8は、その蒸発部28が減圧ボイラ4の減圧蒸気室24に設置されており、減圧蒸気室24内の蒸気により蒸発部28内の低沸点の液状の冷媒Rを蒸発させ、その蒸気でタービン29を回して発電機30で発電するようになっている。タービン29を回した蒸気は、凝縮部31で冷却されて液状の冷媒Rとなって蒸発部28に戻る。蒸発部28に戻った液状の冷媒Rは、ここで減圧蒸気室24内の蒸気により再び加熱されて蒸発し、タービン29に供給されてタービン29を回す。   The binary power generation apparatus 8 has an evaporation section 28 installed in a decompression steam chamber 24 of the decompression boiler 4, and evaporates the low-boiling liquid refrigerant R in the evaporation section 28 by the steam in the decompression steam chamber 24, The steam is rotated by the turbine 29 to generate power with the generator 30. The steam that has rotated the turbine 29 is cooled by the condensing unit 31 to become a liquid refrigerant R and returns to the evaporation unit 28. The liquid refrigerant R that has returned to the evaporation section 28 is heated again by the vapor in the reduced-pressure steam chamber 24 to evaporate, and is supplied to the turbine 29 to rotate the turbine 29.

このように、前記バイナリー発電装置8では、タービン29を回す役目を果たす冷媒Rが蒸気と液化を繰り返しながら閉ループ内を循環するようになっている。尚、減圧ボイラ4の減圧蒸気室24に設置される蒸発部28は、折り曲げ形成した蒸発管28aを減圧蒸気室24に配設することにより構成されている。   As described above, in the binary power generation apparatus 8, the refrigerant R, which plays the role of turning the turbine 29, circulates in the closed loop while repeating vaporization and liquefaction. The evaporation unit 28 installed in the reduced-pressure steam chamber 24 of the reduced-pressure boiler 4 is configured by disposing the bent evaporation tube 28 a in the reduced-pressure steam chamber 24.

また、前記バイナリー発電装置8は、減圧ボイラ4に設けた温度検出器25又は圧力検出器26により減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室24の圧力をそれぞれ検出し、これらの検出信号に基づいて減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室24の圧力が所定の温度又は圧力に保たれるように制御盤34により低沸点の冷媒Rを循環させる冷媒循環ポンプ32を制御し、発電量を制御するように構成されている。   Further, the binary power generation device 8 detects the temperature of the heat transfer water H of the decompression boiler 4 or the pressure of the decompression steam chamber 24 by the temperature detector 25 or the pressure detector 26 provided in the decompression boiler 4, and detects these. A refrigerant circulation pump 32 that circulates a low-boiling-point refrigerant R by a control panel 34 so that the temperature of the heat transfer water H of the decompression boiler 4 or the pressure of the decompression steam chamber 24 is maintained at a predetermined temperature or pressure based on the signal. It is configured to control and control the power generation amount.

前記水噴霧手段20は、バイナリー発電装置8の定格運転時において減圧ボイラ4の熱媒水Hの温度や減圧蒸気室24の圧力が上昇する場合に使用するものであり、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室24の圧力が所定の温度又は圧力に保たれるようにするものである。   The water spray means 20 is used when the temperature of the heat transfer water H of the decompression boiler 4 or the pressure of the decompression steam chamber 24 increases during rated operation of the binary power generator 8. The temperature of the water H or the pressure in the vacuum steam chamber 24 is maintained at a predetermined temperature or pressure.

即ち、水噴霧手段20は、減圧ボイラ4の上流側の煙道7に接続された水供給管35と、水供給管35に介設した水噴霧弁36と、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室24の圧力をそれぞれ検出する温度検出器25′又は圧力検出器26′からの検出信号に基づいて水噴霧弁36を制御する制御器37とを備えており、温度検出器25′又は圧力検出器26′からの検出信号に基づいて制御器37により水噴霧弁36を開閉制御して煙道7内の水噴霧量を制御し、減圧ボイラ4の入口温度を一定にするようにしている。これにより、減圧ボイラ4の温度又は圧力が所定の温度又は圧力に保たれる。   That is, the water spray means 20 includes a water supply pipe 35 connected to the flue 7 on the upstream side of the decompression boiler 4, a water spray valve 36 interposed in the water supply pipe 35, and the heat transfer water H of the decompression boiler 4. And a controller 37 for controlling the water spray valve 36 based on a detection signal from the temperature detector 25 'or the pressure detector 26' for detecting the temperature of the water or the pressure of the decompression steam chamber 24, respectively. On the basis of the detection signal from 25 'or the pressure detector 26', the controller 37 controls the opening and closing of the water spray valve 36 to control the amount of water spray in the flue 7 and to keep the inlet temperature of the decompression boiler 4 constant. I am doing so. Thereby, the temperature or pressure of the decompression boiler 4 is maintained at a predetermined temperature or pressure.

前記バイパスダクト21は、バイナリー発電装置8の定格運転時において減圧ボイラ4の熱媒水Hの温度や減圧蒸気室24の圧力が上昇する場合に使用するものであり、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室24の圧力が所定の温度又は圧力に保たれるようにするものである。   The bypass duct 21 is used when the temperature of the heat transfer water H of the decompression boiler 4 or the pressure of the decompression steam chamber 24 increases during the rated operation of the binary power generator 8. The temperature of H or the pressure in the vacuum steam chamber 24 is maintained at a predetermined temperature or pressure.

即ち、バイパスダクト21は、減圧ボイラ4の上流側の煙道7及び下流側の煙道7に接続されて燃焼排ガスGの一部又は全てを減圧ボイラ4を迂回するように流すものであり、バイパスダクト21に設けたバイパスダンパー38を開閉制御し、燃焼排ガスGの一部又は全てをバイパスダクト21側へバイパスすることにより減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室24の圧力を所定の温度又は圧力に保つようにしたものである。尚、燃焼排ガスGを全量バイパスダクト21側へ流す場合には、減圧ボイラ4の出口側の煙道7に設けたダンパー39を閉鎖する。   That is, the bypass duct 21 is connected to the upstream-side flue 7 and the downstream-side flue 7 of the decompression boiler 4 and allows part or all of the combustion exhaust gas G to flow around the decompression boiler 4. The bypass damper 38 provided in the bypass duct 21 is controlled to open and close, and a part or all of the combustion exhaust gas G is bypassed to the bypass duct 21 side, whereby the temperature of the heat transfer water H of the decompression boiler 4 or the pressure of the decompression steam chamber 24 is adjusted. The temperature is maintained at a predetermined temperature or pressure. In addition, when flowing the exhaust gas G to the bypass duct 21 side, the damper 39 provided in the flue 7 on the outlet side of the decompression boiler 4 is closed.

次に、上述した熱回収発電設備を設置した燃焼設備を用いて下水汚泥を燃焼処理する場合について説明する。   Next, a case where sewage sludge is burned using a combustion facility provided with the above-described heat recovery power generation facility will be described.

焼却炉1内に供給された下水汚泥は、ストーカ11上で乾燥、燃焼、後燃焼されて炉外へ排出される。尚、下水汚泥の含水率は、70%とした。   The sewage sludge supplied into the incinerator 1 is dried, burned and post-burned on the stoker 11 and discharged outside the furnace. The water content of the sewage sludge was 70%.

燃焼により発生した燃焼排ガスGは、焼却炉1から排出されて燃焼用空気予熱器2及び白煙防止空気予熱器3で熱回収されてその温度が約650℃になる。燃焼用空気予熱器2により予熱された燃焼用空気は、燃焼用空気供給ダクト13によりストーカ11下へ供給されて燃焼に使用され、白煙防止空気予熱器3により予熱された白煙防止用空気は、白煙防止用空気供給ダクト15により誘引通風機9の下流側の煙道7に供給される。   The combustion exhaust gas G generated by the combustion is discharged from the incinerator 1 and is recovered by the combustion air preheater 2 and the white smoke prevention air preheater 3 to a temperature of about 650 ° C. The combustion air preheated by the combustion air preheater 2 is supplied to the bottom of the stoker 11 by the combustion air supply duct 13 and used for combustion, and the white smoke prevention air preheated by the white smoke prevention air preheater 3 is used. Is supplied to the flue 7 on the downstream side of the induction fan 9 by the white smoke prevention air supply duct 15.

白煙防止空気予熱器3を通過した燃焼排ガスGは、煙道7を通って減圧ボイラ4に流入し、煙管23内を通過する間に熱吸収されて約180℃で集塵装置5に送られ、ここで燃焼排ガスG中に含まれる煤塵が除去される。   The combustion exhaust gas G that has passed through the white smoke prevention air preheater 3 flows into the decompression boiler 4 through the flue 7, is absorbed by heat while passing through the smoke pipe 23, and is sent to the dust collector 5 at about 180 ° C. Here, the dust contained in the combustion exhaust gas G is removed.

煤塵が除去された燃焼排ガスGは、煙道7を通って洗煙装置6に送られ、ここで水噴霧により燃焼排ガスG中に含まれる酸性ガスが除去された後、誘引通風機9を経て白煙防止用空気と混合されて煙突10から大気中へ放出される。   The combustion exhaust gas G from which soot and dust are removed is sent to the smoke washing device 6 through the flue 7, where the acidic gas contained in the combustion exhaust gas G is removed by water spraying, and then passed through the induction ventilator 9. It is mixed with white smoke prevention air and discharged from the chimney 10 into the atmosphere.

そして、熱回収発電設備の減圧ボイラ4においては、缶体22内が大気圧以下に保たれており、熱媒水Hが満たされている。この熱媒水Hは、大気圧以下で100℃以上の沸点を持っており、燃焼排ガスG中に含まれているSOが通過する減圧ボイラ4の煙管23内部で結露しない温度としている。この実施形態においては、SOの露点が130℃であるので、熱媒水Hの沸点を130℃としている。そのため、減圧ボイラ4の煙管23の表面温度は、約140℃となり、腐食が防止される。 In the decompression boiler 4 of the heat recovery power generation facility, the inside of the can 22 is kept at atmospheric pressure or less, and the heat transfer water H is filled. This heat transfer water H has a boiling point of 100 ° C. or more at atmospheric pressure or less, and is set to a temperature at which no condensation occurs in the smoke pipe 23 of the decompression boiler 4 through which SO 3 contained in the combustion exhaust gas G passes. In this embodiment, since the dew point of SO 3 is 130 ° C., the boiling point of the heat transfer water H is 130 ° C. Therefore, the surface temperature of the smoke pipe 23 of the decompression boiler 4 is about 140 ° C., and corrosion is prevented.

減圧ボイラ4の煙管23を介して燃焼排ガスGから受熱した熱媒水Hは、沸騰して90℃の蒸気を発生する。この発生した蒸気は、減圧ボイラ4の減圧蒸気室24に設置したバイナリー発電装置8の蒸発部28の蒸発管28aに接触して凝縮し、蒸発管28a内を流れる冷媒Rに熱を与える。尚、蒸発部28での熱交換により凝縮したドレン水は、下部缶体22aに貯留されている熱媒水H側へ流下する。   The heat transfer water H received from the combustion exhaust gas G through the smoke pipe 23 of the decompression boiler 4 boils and generates 90 ° C. steam. The generated steam comes into contact with the evaporation pipe 28a of the evaporation section 28 of the binary power generator 8 installed in the reduced pressure steam chamber 24 of the reduced pressure boiler 4 and condenses, and gives heat to the refrigerant R flowing in the evaporation pipe 28a. In addition, the drain water condensed by the heat exchange in the evaporation part 28 flows down to the heat transfer water H side stored in the lower can body 22a.

蒸発部28の蒸発管28a内を流れる冷媒Rは、受熱することにより液体から気体へと気化し、約85℃の蒸気となってタービン29へ送られ、ここでタービン29の羽根を回転させて発電機30で発電させる。   The refrigerant R flowing in the evaporation pipe 28a of the evaporation section 28 is vaporized from a liquid to a gas by receiving heat, and is sent to the turbine 29 as steam of about 85 ° C., where the blades of the turbine 29 are rotated. Power is generated by the generator 30.

タービン29から排出された蒸気は、凝縮部31で冷却水により冷却されて液状の冷媒Rとなり、冷媒循環ポンプ32により蒸発部28へ戻される。
以下、上述したサイクルを繰り返す。
The steam discharged from the turbine 29 is cooled by the cooling water in the condensing unit 31 to become a liquid refrigerant R, and is returned to the evaporation unit 28 by the refrigerant circulation pump 32.
Thereafter, the above-described cycle is repeated.

次に、熱回収発電設備の減圧ボイラ4の制御について説明する。   Next, control of the decompression boiler 4 of the heat recovery power generation facility will be described.

下水汚泥の燃焼量や発熱量が低下したときには、減圧ボイラ4の入口温度と燃焼排ガスGの流量が低下するので、減圧ボイラ4の吸収熱量も低下する。そのため、減圧ボイラ4の減圧蒸気室24の内部圧力が低下すると共に、これに伴って熱媒水Hの飽和温度も低下する。その結果、減圧ボイラ4の煙管23内部の温度が低下してSOの露点以下になり、煙管23が腐食することがある。 When the combustion amount and heat generation amount of the sewage sludge are reduced, the inlet temperature of the decompression boiler 4 and the flow rate of the combustion exhaust gas G are reduced, so that the amount of heat absorbed by the decompression boiler 4 is also reduced. Therefore, the internal pressure of the decompression steam chamber 24 of the decompression boiler 4 is lowered, and the saturation temperature of the heat transfer water H is also lowered accordingly. As a result, the temperature inside the smoke tube 23 of the decompression boiler 4 is lowered to be below the dew point of SO 3 and the smoke tube 23 may be corroded.

そこで、煙管23の腐食を防止するため、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室24の圧力を温度検出器25又は圧力検出器26によりそれぞれ検出し、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室24の圧力が設定値以下になると、温度検出器25又は圧力検出器26からの検出信号がバイナリー発電装置8の制御盤34に送られて発電量を下げる。発電量を下げるには、制御盤34により冷媒循環ポンプ32の回転数を下げて冷媒Rの循環量を落とす。冷媒Rの循環量が下がると、蒸発部28での吸収熱量が低下しても、タービン29の入口冷媒条件は保たれる。   Therefore, in order to prevent corrosion of the smoke tube 23, the temperature of the heat transfer water H of the decompression boiler 4 or the pressure of the decompression steam chamber 24 is detected by the temperature detector 25 or the pressure detector 26, respectively, and the heat transfer water of the decompression boiler 4 is detected. When the temperature of H or the pressure of the decompression steam chamber 24 becomes equal to or lower than the set value, the detection signal from the temperature detector 25 or the pressure detector 26 is sent to the control panel 34 of the binary power generator 8 to reduce the amount of power generation. In order to reduce the power generation amount, the control panel 34 lowers the rotational speed of the refrigerant circulation pump 32 to reduce the circulation amount of the refrigerant R. When the circulation amount of the refrigerant R decreases, the inlet refrigerant condition of the turbine 29 is maintained even if the amount of heat absorbed by the evaporator 28 decreases.

反対に、下水汚泥の燃焼量や発熱量が上昇したときには、減圧ボイラ4の入口温度と燃焼排ガスGの流量が上昇するので、減圧ボイラ4の吸収熱量も上昇する。そのため、減圧ボイラ4の減圧蒸気室24の内部圧力が上昇する。   On the contrary, when the combustion amount and the heat generation amount of the sewage sludge rise, the inlet temperature of the decompression boiler 4 and the flow rate of the combustion exhaust gas G rise, so the amount of heat absorbed by the decompression boiler 4 also rises. Therefore, the internal pressure of the decompression steam chamber 24 of the decompression boiler 4 increases.

減圧ボイラ4の内部圧力が上昇して設定圧力以上になると、安全装置27が開く方向に作動して大気圧と減圧ボイラ4の内部圧力が同じになる。   When the internal pressure of the decompression boiler 4 rises and becomes equal to or higher than the set pressure, the safety device 27 operates in the opening direction, and the atmospheric pressure and the internal pressure of the decompression boiler 4 become the same.

しかし、この場合、減圧ボイラ4の再起動時に減圧ボイラ4の内部を大気圧以下にするために真空ポンプ(図示省略)が必要になる。   However, in this case, when the decompression boiler 4 is restarted, a vacuum pump (not shown) is required to bring the inside of the decompression boiler 4 to atmospheric pressure or less.

そこで、このような作業や手間を省略して費用と時間がかかるのを避けるため、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室24の圧力を温度検出器25又は圧力検出器26によりそれぞれ検出し、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室24の圧力が設定値以上になると、温度検出器25又は圧力検出器26からの検出信号がバイナリー発電装置8の制御盤34に送られて発電量を上げる。発電量を上げるには、制御盤34により冷媒循環ポンプ32の回転数を上げて冷媒Rの循環量を増やす。冷媒Rの循環量が増えると、蒸発部28での吸収熱量が上っても、タービン29の入口冷媒条件は保たれる。   Therefore, in order to avoid cost and time by omitting such work and labor, the temperature detector 25 or the pressure detector 26 is used to control the temperature of the heat transfer water H of the decompression boiler 4 or the pressure of the decompression steam chamber 24. When the temperature is detected and the temperature of the heat transfer water H of the decompression boiler 4 or the pressure of the decompression steam chamber 24 exceeds a set value, a detection signal from the temperature detector 25 or the pressure detector 26 is sent to the control panel 34 of the binary power generator 8. To increase power generation. In order to increase the power generation amount, the control panel 34 increases the rotation speed of the refrigerant circulation pump 32 to increase the circulation amount of the refrigerant R. When the circulation amount of the refrigerant R increases, the inlet refrigerant condition of the turbine 29 is maintained even if the amount of heat absorbed by the evaporator 28 increases.

そして、バイナリー発電装置8の定格運転時において、減圧ボイラ4の熱媒水Hの温度や減圧蒸気室24の圧力が上昇する場合には、次の(1)〜(4)の何れかに記載の方法を講じる。
(1)焼却炉1内に投入する下水汚泥の投入量を低下させ、下水汚泥の焼却量を下げて燃 焼排ガスGの発生量を減らす。
(2)水噴霧手段20により減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室24の圧力を 一定に保つ。即ち、温度検出器25′又は圧力検出器26′からの検出信号に基づい て制御器37により水噴霧弁36を開閉制御して煙道7内の水噴霧量を制御し、減圧 ボイラ4の熱媒水Hの温度又は減圧蒸気室24の圧力を一定にする。
(3)バイパスダクト21及びバイパスダンパー38を用いて煙道7内の燃焼排ガスGの 一部又は全てを減圧ボイラ4を迂回するように流し、減圧ボイラ4の煙管23内に流 れる燃焼排ガスGの量を制御し、減圧ボイラ4の入口温度を一定にする。
(4)上述した(1)〜(3)の方法を適宜に組み合わせて用いる。
When the temperature of the heat transfer water H of the decompression boiler 4 or the pressure of the decompression steam chamber 24 increases during the rated operation of the binary power generation device 8, it is described in any one of (1) to (4) below. Take the method.
(1) Reduce the amount of sewage sludge input into the incinerator 1 and reduce the amount of combustion exhaust gas G by reducing the amount of sewage sludge incinerated.
(2) The temperature of the heat transfer water H of the decompression boiler 4 or the pressure of the decompression steam chamber 24 is kept constant by the water spray means 20. That is, based on the detection signal from the temperature detector 25 ′ or the pressure detector 26 ′, the controller 37 controls the opening and closing of the water spray valve 36 to control the amount of water spray in the flue 7, and The temperature of the medium water H or the pressure of the decompression steam chamber 24 is made constant.
(3) A part or all of the flue gas G in the flue 7 is caused to flow around the decompression boiler 4 using the bypass duct 21 and the bypass damper 38, and the flue gas G flowing in the smoke pipe 23 of the decompression boiler 4 And the inlet temperature of the decompression boiler 4 is made constant.
(4) The above methods (1) to (3) are used in appropriate combination.

前記熱回収発電設備においては、焼却炉1で含水率が70%の下水汚泥を一日に100ton燃焼処理すると、バイナリー発電装置8の効率を5%とした場合、115kW発電することができる。   In the heat recovery power generation facility, when sewage sludge having a water content of 70% is burned 100 tons in a day in the incinerator 1, 115 kW can be generated when the efficiency of the binary power generation device 8 is 5%.

上述した熱回収発電設備を設置した燃焼設備は、内部圧が大気圧以下に保持されて内部の熱媒水Hが大気圧以下で蒸発する減圧ボイラ4により熱回収するようにしているため、ボイラ・タービン主任技術者等の資格が不要になる。   The combustion facility provided with the above-described heat recovery power generation facility recovers heat by the decompression boiler 4 in which the internal pressure is kept below atmospheric pressure and the internal heat transfer water H evaporates below atmospheric pressure.・ No need for qualifications as turbine chief engineer.

また、熱回収発電設備を設置した燃焼設備は、減圧ボイラ4の沸点がSOガスの露点以上となる熱媒水Hを用いて燃焼排ガスGから熱回収しているため、減圧ボイラ4の熱吸収部での硫酸腐食を防止することができる。また、バイナリー発電装置8の蒸発部28を減圧ボイラ4の減圧蒸気室24に設置し、バイナリー発電装置8の冷媒Rが減圧ボイラ4内の蒸気から受熱するため、蒸発部28の腐食を防止することができる。 Moreover, since the combustion facility in which the heat recovery power generation facility is installed recovers heat from the combustion exhaust gas G using the heat transfer water H in which the boiling point of the decompression boiler 4 is equal to or higher than the dew point of SO 3 gas, the heat of the decompression boiler 4 It is possible to prevent sulfuric acid corrosion at the absorption part. Further, the evaporation unit 28 of the binary power generation device 8 is installed in the decompression steam chamber 24 of the decompression boiler 4, and the refrigerant R of the binary power generation device 8 receives heat from the steam in the decompression boiler 4, thereby preventing the evaporation unit 28 from being corroded. be able to.

更に、熱回収発電設備を設置した燃焼設備は、バイナリー発電装置8の蒸発部28を減圧ボイラ4の減圧蒸気室24に設置してバイナリー発電装置8の冷媒Rを加熱するようにしているため、図7及び図8に示すようにバイナリー発電装置の冷媒Rを加熱するための熱媒油の循環用ポンプや空気の循環用ファンを必要とせず、これらを動かすための動力が不要となり、バイナリー発電装置8で発電した電力を有効に使用できる。   Furthermore, the combustion facility provided with the heat recovery power generation facility heats the refrigerant R of the binary power generation apparatus 8 by installing the evaporation section 28 of the binary power generation apparatus 8 in the decompression steam chamber 24 of the decompression boiler 4. As shown in FIG. 7 and FIG. 8, there is no need for a heat medium oil circulation pump or an air circulation fan for heating the refrigerant R of the binary power generation apparatus, and no power is required to move them. The electric power generated by the device 8 can be used effectively.

更に、熱回収発電設備を設置した燃焼設備は、白煙防止用空気をバイナリー発電装置8を経由せずに煙突10へ導くことができるため、白煙防止用ファンの動力を低減することができる。   Furthermore, since the combustion facility provided with the heat recovery power generation facility can guide the white smoke prevention air to the chimney 10 without going through the binary power generation device 8, the power of the white smoke prevention fan can be reduced. .

更に、熱回収発電設備を設置した燃焼設備は、洗煙装置6からの排水をバイナリー発電装置8を経由せずに排水することができるため、洗煙排水ポンプの動力を低減するとこができる。   Furthermore, since the combustion facility provided with the heat recovery power generation facility can drain the waste water from the smoke washing device 6 without going through the binary power generation device 8, the power of the smoke washing drain pump can be reduced.

ところで、図1に示す熱回収発電設備においては、バイナリー発電装置8の気化した冷媒Rは、減圧ボイラ4で発生した90℃の蒸気からの受熱であるので90℃以上に上がらない。一方、気化した冷媒Rを熱源として発電するバイナリー発電装置8は、気化した冷媒Rの温度が高い程、発電効率が上がって発電量が増える。   Incidentally, in the heat recovery power generation facility shown in FIG. 1, the refrigerant R vaporized by the binary power generation device 8 receives heat from the steam at 90 ° C. generated in the decompression boiler 4 and therefore does not rise above 90 ° C. On the other hand, in the binary power generation apparatus 8 that generates power using the vaporized refrigerant R as a heat source, the higher the temperature of the vaporized refrigerant R, the higher the power generation efficiency and the amount of power generation.

図3は本発明の他の実施形態に係る燃焼排ガスGからの熱回収発電設備を示し、当該熱回収発電設備は、過熱管40を用いて発電効率を上げるようにしたものである。   FIG. 3 shows a heat recovery power generation facility from the combustion exhaust gas G according to another embodiment of the present invention. The heat recovery power generation facility uses a superheat pipe 40 to increase the power generation efficiency.

即ち、前記熱回収発電設備は、図3に示す如く、燃焼排ガスGを流す煙道7に設置され、燃焼排ガスGを通して燃焼排ガスGから熱回収すると共に、熱媒水Hを加熱して蒸気を発生させる内部圧が大気圧以下に保持された減圧ボイラ4と、低沸点の液状の冷媒Rを加熱、蒸発させてその蒸気でタービン29を回して発電するバイナリー発電装置8と、減圧ボイラ4の入口側の煙道7に水を噴霧する水噴霧手段20と、減圧ボイラ4の上流側の煙道7及び下流側の煙道7に接続されて燃焼排ガスGの一部又は全てを減圧ボイラ4を迂回するように流すバイパスダクト21と、減圧ボイラ4の熱媒水H中に配設された過熱管40等を備えており、前記バイナリー発電装置8の蒸発部28を減圧ボイラ4の減圧蒸気室24に設置すると共に、前記蒸発部28と熱媒水H中の過熱管40とを接続し、減圧蒸気室24内の蒸気でバイナリー発電装置8の蒸発部28内の冷媒Rを気化させ、この気化した冷媒Rを過熱管40に導いてここで減圧ボイラ4の130℃の熱媒水Hにより更に加熱するようにしたものである。尚、図2に示す熱回収発電設備と同じ部位・部材には、同一の参照番号を付している。   That is, as shown in FIG. 3, the heat recovery power generation facility is installed in the flue 7 through which the combustion exhaust gas G flows, recovers heat from the combustion exhaust gas G through the combustion exhaust gas G, and heats the heat transfer water H to generate steam. A decompression boiler 4 in which the generated internal pressure is maintained below atmospheric pressure, a binary power generator 8 that heats and evaporates a low-boiling-point liquid refrigerant R and rotates the turbine 29 with the steam to generate power, and a decompression boiler 4 A water spraying means 20 for spraying water onto the inlet side flue 7 and a part of or all of the combustion exhaust gas G connected to the upstream side flue 7 and the downstream side flue 7 of the decompression boiler 4 are reduced pressure boiler 4. A bypass duct 21 that flows in a detour, and a superheater tube 40 and the like disposed in the heat transfer water H of the decompression boiler 4, and the evaporator 28 of the binary power generator 8 serves as the decompression steam of the decompression boiler 4. Installed in the chamber 24 and the steam The part 28 and the superheater tube 40 in the heat transfer water H are connected, the refrigerant R in the evaporation part 28 of the binary power generation device 8 is vaporized by the steam in the decompression steam chamber 24, and the vaporized refrigerant R is In this case, the vacuum boiler 4 is further heated by the heat transfer water H at 130 ° C. In addition, the same reference number is attached | subjected to the site | part and member same as the heat recovery power generation equipment shown in FIG.

前記熱回収発電設備によれば、バイナリー発電装置8の蒸発部28の蒸発管28aから出た約85℃の気化した冷媒Rは、熱媒水H中の過熱管40に入り、ここで130℃の熱媒水Hから受熱して120℃に過熱されてバイナリー発電装置8のタービン29に送られる。気化した冷媒Rの温度を120℃に上げることによりバイナリー発電装置8の発電量が10%上がる。   According to the heat recovery power generation facility, the vaporized refrigerant R of about 85 ° C. coming out from the evaporation pipe 28a of the evaporation section 28 of the binary power generation device 8 enters the superheat pipe 40 in the heat transfer water H, where 130 ° C. The heat is received from the heat transfer water H, heated to 120 ° C., and sent to the turbine 29 of the binary power generator 8. By increasing the temperature of the vaporized refrigerant R to 120 ° C., the power generation amount of the binary power generation device 8 increases by 10%.

上述した熱回収発電設備を設置した燃焼設備は、図1に示す燃焼設備と同様の作用効果を奏することができる。特に、前記熱回収発電設備は、減圧ボイラ4の熱媒水H中に過熱管40を配設すると共に、当該過熱管40とバイナリー発電装置8の蒸発部28とを接続し、蒸発部28で加熱された冷媒Rを過熱管40に導き、ここで減圧ボイラ4の熱媒水Hにより更に過熱するようにしているため、冷媒Rの気体温度を上げることができ、バイナリー発電装置8による発電量が上がる。   The combustion facility in which the heat recovery power generation facility described above is installed can achieve the same effects as the combustion facility shown in FIG. In particular, in the heat recovery power generation facility, the superheater tube 40 is disposed in the heat transfer water H of the decompression boiler 4, and the superheater tube 40 is connected to the evaporation unit 28 of the binary power generator 8. Since the heated refrigerant R is guided to the superheater tube 40 and further heated by the heat transfer water H of the decompression boiler 4, the gas temperature of the refrigerant R can be increased, and the amount of power generated by the binary power generator 8 can be increased. Goes up.

1は焼却炉、2は燃焼用空気予熱器、3は白煙防止空気予熱器、4は減圧ボイラ、5は集塵装置、6は洗煙装置、7は煙道、8はバイナリー発電装置、9は誘引通風機、10は煙突、11はストーカ、12は燃焼用空気ファン、13は燃焼用空気供給ダクト、14は白煙防止ファン、15は白煙防止用空気供給ダクト、16はノズル、17は洗煙水循環ポンプ、18は洗煙水排出ポンプ、19は洗煙水供給ポンプ、20は水噴霧手段、21はバイパスダクト、22は缶体、22aは上部缶体、22bは下部缶体、22cは連絡管、23は煙管、24は減圧蒸気室、25,25′は温度検出器、26,26′は圧力検出器、27は安全装置、28は蒸発部、28aは蒸発管、29はタービン、30は発電機、31は凝縮部、32は冷媒循環ポンプ、33は冷媒循環用配管、34は制御盤、35は水供給管、36は水噴霧弁、37は制御器、38はバイパスダンパー、39はダンパー、40は過熱管、Gは燃焼排ガス、Hは熱媒水、Rは冷媒。   1 is an incinerator, 2 is a combustion air preheater, 3 is a white smoke prevention air preheater, 4 is a decompression boiler, 5 is a dust collector, 6 is a smoke cleaner, 7 is a flue, 8 is a binary power generator, 9 is an induction fan, 10 is a chimney, 11 is a stoker, 12 is a combustion air fan, 13 is a combustion air supply duct, 14 is a white smoke prevention fan, 15 is a white smoke prevention air supply duct, 16 is a nozzle, 17 is a smoke wash water circulation pump, 18 is a smoke wash water discharge pump, 19 is a smoke wash water supply pump, 20 is a water spray means, 21 is a bypass duct, 22 is a can, 22a is an upper can, and 22b is a lower can. 22c is a communication pipe, 23 is a smoke pipe, 24 is a decompression steam chamber, 25 and 25 'are temperature detectors, 26 and 26' are pressure detectors, 27 is a safety device, 28 is an evaporating section, 28a is an evaporation pipe, 29 Is a turbine, 30 is a generator, 31 is a condensing part, 32 is a refrigerant circulation pump , 33 is a refrigerant circulation pipe, 34 is a control panel, 35 is a water supply pipe, 36 is a water spray valve, 37 is a controller, 38 is a bypass damper, 39 is a damper, 40 is a superheat pipe, G is a combustion exhaust gas, H Is heat transfer water, R is refrigerant.

Claims (5)

焼却炉からの燃焼排ガスを白煙防止空気予熱器、集塵装置、洗煙装置の順次に通すようにした焼却設備に設置され、煙道内を流れる燃焼排ガスから熱回収して発電するようにした燃焼排ガスからの熱回収発電設備であって、燃焼排ガスを流す煙道に設置され、燃焼排ガスを通して燃焼排ガスから熱回収すると共に、熱媒水を加熱して蒸気を発生させる内部圧が大気圧以下に保持された減圧ボイラと、低沸点の液状の冷媒を加熱、蒸発させてその蒸気でタービンを回して発電するバイナリー発電装置とを備えており、前記減圧ボイラの熱媒水を、大気圧以下で沸点が燃焼排ガス中に含まれているSO ガスの露点以上となる水溶液とし、また、前記バイナリー発電装置の蒸発部を減圧ボイラの減圧蒸気室に設置し、減圧蒸気室内の蒸気でバイナリー発電装置の蒸発部内の冷媒を気化させるようにしたことを特徴とする燃焼排ガスからの熱回収発電設備。 Installed in an incinerator where the flue gas from the incinerator passes through the white smoke prevention air preheater, the dust collector, and the smoke cleaner in order, and recovers heat from the flue gas flowing through the flue to generate electricity. Heat recovery power generation equipment from combustion exhaust gas, installed in a flue through which combustion exhaust gas flows, and recovering heat from combustion exhaust gas through combustion exhaust gas, and the internal pressure for heating the heat transfer water to generate steam is below atmospheric pressure And a binary power generation device that heats and evaporates a low-boiling liquid refrigerant and rotates a turbine with the steam to generate power, and the heat transfer water of the decompression boiler is less than atmospheric pressure. And the boiling point of the SO 3 gas contained in the combustion exhaust gas is equal to or higher than the dew point, and the evaporation portion of the binary power generation device is installed in the vacuum steam chamber of the vacuum boiler, and the steam is removed by the steam in the vacuum steam chamber. A heat recovery power generation facility from combustion exhaust gas, characterized in that the refrigerant in the evaporation section of the Lee power generation device is vaporized. 減圧ボイラの熱媒水の温度又は減圧蒸気室の圧力をそれぞれ検出する温度検出器又は圧力検出器を設け、温度検出器又は圧力検出器からの検出信号に基づいて減圧ボイラの熱媒水の温度又は減圧蒸気室の圧力が所定の温度又は圧力に保たれるようにバイナリー発電装置の制御盤により低沸点の冷媒を循環させる冷媒循環ポンプを制御して発電量を制御するようにしたことを特徴とする請求項1に記載の燃焼排ガスからの熱回収発電設備。 A temperature detector or pressure detector for detecting the temperature of the heat transfer water of the decompression boiler or the pressure of the decompression steam chamber is provided, and the temperature of the heat transfer water of the pressure reduction boiler based on the detection signal from the temperature detector or the pressure detector. Alternatively, the power generation amount is controlled by controlling a refrigerant circulation pump that circulates a low-boiling point refrigerant by a control panel of the binary power generation device so that the pressure of the decompression steam chamber is maintained at a predetermined temperature or pressure. The heat recovery power generation facility from the combustion exhaust gas according to claim 1. 減圧ボイラの入口側の煙道に水を噴霧する水噴霧手段を設けると共に、減圧ボイラの熱媒水の温度又は減圧蒸気室の圧力をそれぞれ検出する温度検出器又は圧力検出器を設け、温度検出器又は圧力検出器からの検出信号に基づいて減圧ボイラの熱媒水の温度又は減圧蒸気室の圧力が所定の温度又は圧力に保たれるように制御器により水噴霧手段を制御して減圧ボイラの入口側の燃焼排ガスの温度を一定にするようにしたことを特徴とする請求項1に記載の燃焼排ガスからの熱回収発電設備。 In addition to providing water spraying means for spraying water on the flue on the inlet side of the decompression boiler, a temperature detector or pressure detector for detecting the temperature of the heat transfer water in the decompression boiler or the pressure in the decompression steam chamber, respectively, is provided to detect the temperature. Based on the detection signal from the pressure detector or the pressure detector, the controller controls the water spraying means so that the temperature of the heat transfer water of the pressure reduction boiler or the pressure of the pressure reduction steam chamber is maintained at a predetermined temperature or pressure. The heat recovery power generation facility from combustion exhaust gas according to claim 1, wherein the temperature of the combustion exhaust gas on the inlet side of the exhaust gas is made constant . 煙道に減圧ボイラを迂回するバイパスダクトを接続すると共に、当該バイパスダクトにバイパスダンパーを設け、減圧ボイラの熱媒水の温度又は減圧蒸気室の圧力が所定の温度又は圧力に保たれるようにバイパスダンパーを開閉制御して燃焼排ガスの一部又は全てをバイパスダクト側へバイパスするようにしたことを特徴とする請求項1に記載の燃焼排ガスからの熱回収発電設備。 A bypass duct that bypasses the decompression boiler is connected to the flue, and a bypass damper is provided in the bypass duct so that the temperature of the heat transfer water of the decompression boiler or the pressure of the decompression steam chamber is maintained at a predetermined temperature or pressure. The heat recovery power generation facility from combustion exhaust gas according to claim 1, wherein the bypass damper is controlled to be opened and closed so that part or all of the combustion exhaust gas is bypassed to the bypass duct side . 減圧ボイラの熱媒水中に過熱管を配設すると共に、当該過熱管とバイナリー発電装置の蒸発部とを接続し、蒸発部で加熱された冷媒を過熱管に導き、ここで減圧ボイラの熱媒水により更に過熱するようにしたことを特徴とする請求項1、請求項2、請求項3又は請求項4に記載の燃焼排ガスからの熱回収発電設備。 A superheater pipe is disposed in the heat transfer medium of the decompression boiler, and the superheater pipe is connected to the evaporation unit of the binary power generator, and the refrigerant heated in the evaporation unit is guided to the superheater pipe, where the heat transfer medium of the decompression boiler is used. The heat recovery power generation facility from combustion exhaust gas according to claim 1, 2, 3, or 4 , wherein the water is further superheated by water .
JP2015026767A 2015-02-13 2015-02-13 Heat recovery power generation facility from combustion exhaust gas Active JP6009009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015026767A JP6009009B2 (en) 2015-02-13 2015-02-13 Heat recovery power generation facility from combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015026767A JP6009009B2 (en) 2015-02-13 2015-02-13 Heat recovery power generation facility from combustion exhaust gas

Publications (2)

Publication Number Publication Date
JP2016148317A JP2016148317A (en) 2016-08-18
JP6009009B2 true JP6009009B2 (en) 2016-10-19

Family

ID=56691057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015026767A Active JP6009009B2 (en) 2015-02-13 2015-02-13 Heat recovery power generation facility from combustion exhaust gas

Country Status (1)

Country Link
JP (1) JP6009009B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108939894A (en) * 2018-07-27 2018-12-07 常州市新港热电有限公司 A kind of flue gas takes off white device and method
CN109405288A (en) * 2017-08-17 2019-03-01 中国石油化工股份有限公司 Oil field waste heat of flue gas of heating furnace recyclable device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016422298A1 (en) * 2016-09-07 2019-03-28 Aurae Technologies Limited Method of generating power, cold, and distilled water using atmospheric evaporation driven systems
CN106287771B (en) * 2016-09-14 2018-06-22 西安热工研究院有限公司 A kind of coal-fired power station boiler fume afterheat utilizes system with moisture combined recovery
JP6522085B1 (en) * 2017-11-20 2019-05-29 株式会社タクマ Heat recovery power generation equipment from flue gas and control method thereof
CN108151050A (en) * 2018-02-07 2018-06-12 无锡雪浪环境科技股份有限公司 A kind of dangerous waste burns wet method depickling flue gas and takes off white system and its application method
CN109708135A (en) * 2018-12-21 2019-05-03 江苏理文造纸有限公司 Boiler smoke heat recovery system
CN110273735B (en) * 2019-06-26 2023-06-30 中国石油天然气股份有限公司 Waste heat recovery device for engine
CN110394019B (en) * 2019-08-18 2022-01-18 泰山电建集团有限公司 Flue gas dehumidification and white elimination integrated desulfurization device and operation method thereof
CN110925839A (en) * 2019-12-20 2020-03-27 林小帅 Energy-saving self-suction type oil fume extraction device for smart home
KR102607367B1 (en) * 2022-08-22 2023-11-30 주식회사 아이엠쿡 Stack-free waste pure oxygen plasma incineration power generation system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733701A (en) * 1980-08-06 1982-02-23 Ishikawajima Harima Heavy Ind Low pressure boiler
JPH05272743A (en) * 1992-03-27 1993-10-19 Kubota Corp Municipal waste incinerator
JPH0783401A (en) * 1993-09-13 1995-03-28 Ishikawajima Harima Heavy Ind Co Ltd Exhaust gas flow controller for plant facility
JP3774487B2 (en) * 1995-03-07 2006-05-17 株式会社東芝 Combined cycle power plant
JP4221790B2 (en) * 1998-11-16 2009-02-12 株式会社Ihi Waste treatment equipment
JP2000317266A (en) * 1999-04-30 2000-11-21 Chiyoda Corp Wet treatment for making dioxin harmless
JP2001311501A (en) * 2000-04-27 2001-11-09 Ishikawajima Harima Heavy Ind Co Ltd Small boiler
JP2002333103A (en) * 2001-05-10 2002-11-22 Katsumi Shibata Generating method of superheated steam and equipment therefor
JP2004309076A (en) * 2003-04-10 2004-11-04 Ishikawajima Harima Heavy Ind Co Ltd Corrosion preventing device for bag filter bypass line
JP2012207617A (en) * 2011-03-30 2012-10-25 Kubota Corp Exhaust heat recovery method and exhaust heat recovery system
JP2013076383A (en) * 2011-09-30 2013-04-25 Toshiba Corp Binary power generation system
JP5871661B2 (en) * 2012-02-29 2016-03-01 株式会社神戸製鋼所 Binary power generator control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405288A (en) * 2017-08-17 2019-03-01 中国石油化工股份有限公司 Oil field waste heat of flue gas of heating furnace recyclable device
CN109405288B (en) * 2017-08-17 2021-06-11 中国石油化工股份有限公司 Heating furnace flue gas waste heat recovery device for oil field
CN108939894A (en) * 2018-07-27 2018-12-07 常州市新港热电有限公司 A kind of flue gas takes off white device and method

Also Published As

Publication number Publication date
JP2016148317A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6009009B2 (en) Heat recovery power generation facility from combustion exhaust gas
JP5881751B2 (en) Boiler unit extraction steam sludge drying system with heat compensation
JP6522085B1 (en) Heat recovery power generation equipment from flue gas and control method thereof
JPH05321612A (en) Low pressure power generating method and device therefor
JP2011190696A (en) Coal-fired power plant, and method for operating coal-fired power plant
JP6574504B2 (en) Control method for organic waste combustion plant
JP2014009877A (en) Flue gas treatment equipment and method
JP2014509559A5 (en)
JP5462067B2 (en) Operation method of waste incineration plant
WO2011105064A1 (en) Method for generating power from exhaust heat and system for generating power from exhaust heat
JP3042394B2 (en) Power generation system utilizing waste incineration heat
JP2014009624A (en) Waste heat utilization method, waste heat utilization system and treatment method of boiler exhaust gas
JP5818307B2 (en) Boiler equipment and method for controlling gas temperature at outlet thereof
RU2670998C2 (en) Energy installation with oxygen boiler with integrated heat in air intake unit
KR20200145132A (en) Recovery of vacuum-circulated condensate in closed circuit and boiler water supply system
JP5518796B2 (en) Power generation system and power generation method
CN108443904A (en) A kind of power-plant flue gas based on heat pipe heat exchanging technology disappears white system
JP6552588B2 (en) Heat recovery power generation facility from combustion exhaust gas and control method thereof
JP2023068871A (en) Exhaust heat recovery system
JPH08260909A (en) Fresh water generator
JP3725862B2 (en) Boiler blow water treatment method for exhaust gas treatment system in waste melting treatment facility
JPH06238127A (en) Flue gas treating device and controller for same
KR102139099B1 (en) Apparatus for reducing white smoke of cooling tower and method for reducing white smoke of tower using the same
JP7533842B2 (en) Waste heat power generation method
JP7490186B1 (en) Waste treatment facility exhaust heat recovery system and method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160913

R150 Certificate of patent or registration of utility model

Ref document number: 6009009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250