WO2011105064A1 - Method for generating power from exhaust heat and system for generating power from exhaust heat - Google Patents

Method for generating power from exhaust heat and system for generating power from exhaust heat Download PDF

Info

Publication number
WO2011105064A1
WO2011105064A1 PCT/JP2011/001009 JP2011001009W WO2011105064A1 WO 2011105064 A1 WO2011105064 A1 WO 2011105064A1 JP 2011001009 W JP2011001009 W JP 2011001009W WO 2011105064 A1 WO2011105064 A1 WO 2011105064A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
heat exchange
heat
temperature
temperature air
Prior art date
Application number
PCT/JP2011/001009
Other languages
French (fr)
Japanese (ja)
Inventor
三島 俊一
伸季 河合
康之 池上
Original Assignee
メタウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メタウォーター株式会社 filed Critical メタウォーター株式会社
Priority to CN201180010772.8A priority Critical patent/CN102770709B/en
Priority to KR1020127024894A priority patent/KR101674705B1/en
Publication of WO2011105064A1 publication Critical patent/WO2011105064A1/en
Priority to HK13104123.7A priority patent/HK1176988A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/008Adaptations for flue gas purification in steam generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/10Waste heat recuperation reintroducing the heat in the same process, e.g. for predrying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/203Waste heat recuperation using the heat in association with another installation with a power/heat generating installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters
    • F23J2217/104High temperature resistant (ceramic) type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Definitions

  • the present invention relates to a waste heat power generation method and a waste heat power generation system, and more particularly, a waste heat power generation method and waste heat using retained heat of high-temperature exhaust gas discharged from an incinerator such as a sewage sludge incinerator or a waste incinerator.
  • an incinerator such as a sewage sludge incinerator or a waste incinerator.
  • Patent Document 1 discloses a configuration in which steam is generated using the retained heat of exhaust gas generated from a sewage sludge incinerator and power is generated using the steam.
  • Patent Document 2 discloses a configuration in which power is generated by superheating steam using combustion gas generated by waste incineration and guiding the steam to a steam turbine.
  • Patent Document 3 the working liquefied medium of the power generation system is evaporated by the retained heat of the smoke washing wastewater obtained from the smoke treatment apparatus of the sewage purification processing system, and the turbine is driven by the working medium vapor to generate power.
  • a configuration is disclosed.
  • the temperature of the exhaust gas from the incinerator is approximately 800 ° C to 850 ° C.
  • high-temperature exhaust gas from an incinerator is passed through a white smoke prevention air preheater or other heat exchanger to collect a part of the exhaust heat, and then dust is collected in a dust collector. Separated and removed, and further passed through a flue gas cleaning tower for water cleaning to remove components such as NOX and SOX in the exhaust gas.
  • a fluidized air preheater may be installed in front of the white smoke prevention air preheater.
  • the dust collector is a ceramic filter, high-temperature dust collection is possible, but when it is a bag filter, dust collection is performed after the temperature is lowered to 300 ° C. or lower in a cooling tower.
  • exhaust gas at about 200 ° C. to 400 ° C. is cooled to about 40 ° C. in the flue gas cleaning tower, while smoke wash wastewater is discharged at about 60 ° C. to 70 ° C. Is done.
  • smoke washing wastewater is relatively low in temperature, the specific heat of water is large, so the amount of heat is large and often exceeds 50% of the heat amount of the exhaust gas.
  • the heat source discharged from the incinerator is not always constant, and the amount of heat may change.
  • the exhaust heat source is applied to the power generation system as it is, the power generation efficiency is affected by the change in the amount of heat of the exhaust heat source, and there is a problem that stable and efficient power generation cannot be performed.
  • the present invention has been made in view of the above circumstances, and is an exhaust that can effectively and efficiently use a heat source discharged from an incinerator to improve its energy recovery efficiency and generate power stably and efficiently. It is an exemplary problem to provide a thermal power generation method and an exhaust heat power generation system.
  • an exhaust heat power generation method as an exemplary aspect of the present invention is configured to rotate high-temperature air heated by exhaust gas discharged from an incinerator included in an incineration processing system by rotating a turbine with a working fluid.
  • Heat exchange between the hot air and the working fluid at the first position by applying the first position upstream of the turbine and downstream of the separator on the working fluid path in the exhaust heat power generation system that generates power Applying the hot air after the heat exchange at the first position to the second position upstream from the separator on the working fluid path, thereby A second heat exchange step for exchanging heat with the working fluid, and a heat exchange between the smoke-washed wastewater discharged from the incineration processing system after washing the exhaust gas and the high-temperature air after the heat exchange at the second position.
  • a third heat exchanging step for exchanging heat with the working fluid By applying the heat exchange step for waste water and the smoke washing waste water after heat exchange with the high-temperature air to the third position upstream of the second position on the working fluid path, A third heat exchanging step for exchanging heat with the working fluid; and a contact step for bringing the hot air after heat exchanging with the smoke washing wastewater into contact with the exhaust gas as white smoke preventing air.
  • high-temperature air from the incineration treatment system is applied to the exhaust heat power generation system and heat exchange is performed between the high-temperature air and the working fluid, efficient power generation can be performed using waste heat. Further, the high-temperature air is applied to the exhaust heat power generation system over a plurality of locations at a first position upstream from the turbine and downstream from the separator and a second position upstream from the separator. Therefore, the amount of heat exchange with the working fluid can be increased, and sufficient heat can be given to the working fluid.
  • heat exchange is first performed to overheat the working fluid in the gaseous state. Then, heat exchange is performed at the second position before the separator where the working fluid is in a gas-liquid two-phase state, and vaporization of the working fluid is promoted.
  • the high-temperature air gives heat to the working fluid in a gas state with a small heat capacity, and then gives surplus heat to the working fluid in a gas-liquid two-phase state with a large heat capacity. Therefore, efficient heat exchange can be performed, and as a result, it can contribute to suppression of the fall of power generation efficiency, and the suppression of the fall of power generation amount.
  • the temperature of the high-temperature air heated by the exhaust gas in the incineration processing system is about 300 ° C.
  • the temperature of the high-temperature air after the heat exchange at the first position is about 170 ° C. to 200 ° C. is there.
  • the temperature of the high-temperature air after the heat exchange at the second position is about 100 ° C. to 150 ° C.
  • the temperature of the smoke effluent from the incineration system is about 60 ° C. to 70 ° C.
  • the temperature of the smoke effluent after heat exchange with high-temperature air is about 70 ° C. to 73 ° C.
  • the temperature of the high-temperature air after heat exchange with the smoke-washing wastewater is still in a high temperature state of about 90 ° C to 100 ° C.
  • this high-temperature air is brought into contact with the exhaust gas from the incinerator, it is sufficiently used as white smoke prevention air. be able to. Therefore, in this exhaust heat power generation method, efficient energy recovery is realized by exchanging a lot of heat before using high-temperature air as white smoke prevention air without impairing the function as white smoke prevention air is doing.
  • an incineration processing system with a large incineration capacity (for example, 5 units of normal capacity) has a limit of enlargement, and there is a risk of periodic maintenance or a stoppage of the incineration processing system at the time of failure. For this reason, when the capacity of five units is required, five large incineration processing systems are connected and used instead of a large incineration processing system.
  • aggregation across multiple incineration systems means that there are multiple incineration systems as a whole, and is not limited to the aggregation of them. “There are multiple incinerators in the incineration system. , Including the case of “aggregating over the plurality of incinerators”. In the following text, “inclusive of multiple incineration systems” includes “when multiple incinerators exist in the incineration system and are aggregated in multiple incinerators”. It is the same.
  • adjusting means for adjusting the discharge amount from each incineration processing system is provided in the discharge path, and these adjusting means are adjusted by computer control.
  • adjusting means such as an adjusting valve
  • Heat exchange at the first position or the second position between the hot air and the working fluid can be avoided as necessary. Therefore, depending on the discharge amount / temperature (heat amount) of high-temperature air and smoke-washed wastewater from the incineration treatment system, or depending on the power generation amount required in the exhaust heat power generation system, the high-temperature air and the working fluid Heat exchange can be performed or stopped.
  • heat exchange is performed only at the first position to avoid heat exchange at the second position, heat exchange is avoided only at the first position and heat exchange is performed at the second position, Since heat exchange can be performed at both the position and the second position, the heat exchange execution position can be selected according to the situation.
  • the heat transfer area of the heat exchanger at the first position is relatively large, and the heat transfer area of the heat exchanger at the second position is relatively small, so that the heat exchange efficiency at the first position is the heat exchange at the second position. If all hot air is applied to the first position when the efficiency is higher than the efficiency, heat exchange may be performed more than necessary.
  • the appropriate amount as needed Can generate electricity.
  • first and second adjustment steps for example, a flow rate adjustment step using a flow rate adjustment valve, etc.
  • the heat exchange amount that is, the application amount of high-temperature gas
  • the adjustment effect of the power generation amount (generated power) by adjusting the application amount / avoidance amount of high-temperature air is high when the heat transfer area of the heat exchanger at the first position is large, and when the heat transfer area is small, the effect is high.
  • the effect is low. In other words, when the heat transfer area of the heat exchanger at the first position is small, there is little decrease in the amount of power generated when the amount of high-temperature air applied is reduced (the amount of avoidance is increased), and there are a plurality of incinerators. Considering the fluctuations on the heat output side, the investment effect is also high.
  • the heat transfer area of either the first position or the second position of the heat exchanger is set large, and if the other is set small, the high temperature air to the heat exchanger having the larger heat transfer area is set.
  • the degree of change in the amount of power generation due to the change in the amount of applied high-temperature air is small.
  • the amount of power generation can be secured. For example, when high-temperature air from multiple incineration processing systems is aggregated and used in an exhaust heat power generation system, not all incineration processing systems are always operating and some incineration processing systems are not operating It may become.
  • the heat transfer area of the heat exchanger at the first position is set to be relatively small, even if the amount of high-temperature air decreases due to partial non-operation, the power generation amount is reduced as much as possible. Can be suppressed.
  • the cost of the heat exchanger can also be reduced.
  • the distribution of the high-temperature air amount that is applied / not applied to the first position is adjusted, so that appropriate heat exchange based on the temperature difference is performed at the first position.
  • This temperature difference is small, heat exchange is not performed much even if high temperature air is applied to the first position.
  • the distribution of the high-temperature air amount that is not applied / applied to the second position is adjusted based on the temperature difference between the second working fluid temperature and the second high-temperature air temperature, appropriate adjustment based on the temperature difference is also made at the second position.
  • Heat exchange can be realized. For example, when this temperature difference is small, heat exchange is not performed much even if high temperature air is applied to the second position. In such a case, it is preferable to reduce the amount of high-temperature air applied to the second position and increase the amount of high-temperature air that avoids (does not apply) the second position.
  • the step of measuring the first working fluid temperature of the working fluid immediately before the heat exchange at the first position, the step of measuring the first high temperature air temperature of the high temperature air before the heat exchange at the first position, and the first high temperature air A first adjustment step for adjusting a distribution between a high-temperature air amount applied to the first position and a high-temperature air amount avoiding application to the first position based on a difference between the temperature and the first working fluid temperature; and a second position Measuring the second working fluid temperature of the working fluid immediately before the heat exchange in step, measuring the second high temperature air temperature of the hot air before the heat exchange at the second position, and the second high temperature air temperature and the second operation. It may of course have a second adjustment step for adjusting the distribution of the high-temperature air amount applied to the second position and the high-temperature air amount avoiding application to the second position based on the difference from the fluid temperature.
  • the exhaust heat power generation method as another exemplary aspect of the present invention consolidates each high-temperature air heated by exhaust gas discharged from a plurality of incinerators included in a plurality of incineration systems over a plurality of incineration systems. And applying the aggregated high temperature air to the first position upstream of the turbine on the working fluid path in the exhaust heat power generation system that generates power by rotating the turbine with the working fluid.
  • the energy recovery can be stabilized as described above, and the exhaust heat power generation system
  • the apparatus cost can be reduced. It can also contribute to the improvement of the life of the exhaust heat power generation system.
  • adjustment means for adjusting the discharge amount from each incineration processing system are provided in the discharge path, and these adjustment means are adjusted by computer control. Of course it is good.
  • the temperature of the high-temperature air after heat exchange with the working fluid is generally still sufficiently high, and when this high-temperature air is brought into contact with the exhaust gas from the incinerator, it can be sufficiently utilized as white smoke prevention air. Therefore, in this exhaust heat power generation method, efficient energy recovery is performed by exchanging heat with the working fluid until high-temperature air is used as white smoke prevention air without impairing the function as white smoke prevention air. Is realized.
  • heat exchange is first performed to overheat the working fluid in the gaseous state. Then, heat exchange is performed at the second position before the separator where the working fluid is in a gas-liquid two-phase state, and vaporization of the working fluid is promoted.
  • the high-temperature air gives heat to the working fluid in a gas state with a small heat capacity, and then gives surplus heat to the working fluid in a gas-liquid two-phase state with a large heat capacity. Therefore, efficient heat exchange can be performed, and as a result, it can contribute to suppression of the fall of power generation efficiency, and the suppression of the fall of power generation amount.
  • a step of applying cooling water to a position on the downstream side of the turbine on the working fluid path, and the cooling water after cooling the working fluid as flue gas And a step of contacting with.
  • the cooling fluid of the working fluid is brought into contact with the exhaust gas as smoke wash water, it can contribute to the saving of the amount of water used as an entire incineration processing system and exhaust heat power generation system.
  • the temperature of the cooling water is raised after cooling the working fluid (ie, exchanging heat with the working fluid)
  • it if it is used for supplying water to the flue gas cleaning tower of the incineration processing system, it contributes to an increase in the temperature inside the tower. And has the effect of increasing the temperature of the smoke drainage.
  • the working fluid may be any of ammonia, chlorofluorocarbon or ammonia / water mixed fluid.
  • a waste heat power generation system as still another exemplary aspect of the present invention is a waste heat power generation system that generates power by rotating a turbine with a working fluid, and is heated by exhaust gas discharged from an incinerator included in the incineration processing system. Applied to the first position upstream of the turbine and downstream of the separator in the working fluid path, thereby performing heat exchange between the hot air and the working fluid in the first position.
  • the hot air and the working fluid at the second position A second heat exchange function for exchanging heat, and a waste heat exchange function for exchanging heat between the smoke-washed wastewater discharged from the incineration processing system after washing the exhaust gas and the high-temperature air after heat exchange at the second position, ,
  • the smoke washing drain after heat exchange with warm air By applying the smoke washing drain after heat exchange with warm air to the third position upstream of the second position on the working fluid path, heat exchange between the smoke washing drain and the working fluid at the third position is performed.
  • high-temperature air from the incineration treatment system is applied to the exhaust heat power generation system and heat exchange is performed between the high-temperature air and the working fluid, efficient power generation can be performed using waste heat. Further, the high-temperature air is applied to the exhaust heat power generation system over a plurality of locations at a first position upstream from the turbine and downstream from the separator and a second position upstream from the separator. Therefore, the amount of heat exchange with the working fluid can be increased, and sufficient heat can be given to the working fluid.
  • heat exchange is first performed to overheat the working fluid in the gaseous state. Then, heat exchange is performed at the second position before the separator where the working fluid is in a gas-liquid two-phase state, and vaporization of the working fluid is promoted.
  • the high-temperature air gives heat to the working fluid in a gas state with a small heat capacity, and then gives surplus heat to the working fluid in a gas-liquid two-phase state with a large heat capacity. Therefore, efficient heat exchange can be performed, and as a result, it can contribute to suppression of the fall of power generation efficiency, and the suppression of the fall of power generation amount.
  • an exhaust heat power generation system is an exhaust heat power generation system that generates power by rotating a turbine with a working fluid, and each exhaust gas is discharged from a plurality of incinerators included in the plurality of incineration processing systems.
  • a function of consolidating the high temperature air heated by the exhaust gas to be distributed over a plurality of incineration processing systems, and applying the aggregated high temperature air to the first position upstream of the turbine on the working fluid path A first heat exchange function for exchanging heat between the high-temperature air and the working fluid at the first position, and a contact function for bringing the high-temperature air after the heat exchange at the first position into contact with the exhaust gas as white smoke prevention air.
  • the energy recovery can be stabilized as described above, and the exhaust heat power generation system
  • the apparatus cost can be reduced. It can also contribute to the improvement of the life of the exhaust heat power generation system.
  • adjustment means for adjusting the discharge amount from each incineration processing system are provided in the discharge path, and these adjustment means are adjusted by computer control. Of course it is good.
  • the temperature of the high-temperature air after heat exchange with the working fluid is generally still sufficiently high, and when this high-temperature air is brought into contact with the exhaust gas from the incinerator, it can be sufficiently utilized as white smoke prevention air. Therefore, in this exhaust heat power generation method, efficient energy recovery is performed by exchanging heat with the working fluid until high-temperature air is used as white smoke prevention air without impairing the function as white smoke prevention air. Is realized.
  • the heat source discharged from the incinerator can be used effectively, the energy recovery efficiency can be improved, and power generation can be performed stably and efficiently.
  • efficient energy recovery of previously discarded thermal energy can be achieved.
  • white smoke prevention function can be sufficiently achieved.
  • the exhaust heat power generation system By consolidating high-temperature air and smoke-washed wastewater from multiple incineration treatment systems and applying them to the exhaust heat power generation system, the impact of changes in the operating status of each incineration treatment system is reduced and stable energy recovery is realized. ing.
  • the exhaust heat power generation system can be adapted to changes in the amount of waste heat from the incineration system and the required power generation amount. The amount of high-temperature air to be applied can be changed, and the required amount of power generation can be appropriately performed stably.
  • FIG. 1 is a block diagram showing a schematic configuration of a sewage treatment plant including a power generation system that realizes an exhaust heat power generation method according to an embodiment of the present invention. It is a block diagram which shows the outline of an internal structure of the processing system shown in FIG. It is a block diagram which shows the outline of the internal structure of the electric power generation system shown in FIG. It is a block diagram of the electric power generation system which concerns on Example 1 of this invention. It is a block diagram of the electric power generation system which concerns on the comparative example 1 of this invention. It is a block diagram of the electric power generation system which concerns on the comparative example 2 of this invention. It is a block diagram of the electric power generation system which concerns on the comparative example 3 of this invention. It is a block diagram of the electric power generation system which concerns on the comparative example 4 of this invention.
  • FIG. 1 is a block diagram showing a schematic configuration of a sewage treatment plant (hereinafter abbreviated as a plant) P according to an embodiment of the present invention.
  • the plant P includes a sewage treatment system (hereinafter abbreviated as a treatment system) S and a power generation system (exhaust heat power generation system) G as a plurality of incineration treatment systems.
  • a sewage treatment system hereinafter abbreviated as a treatment system
  • a power generation system exhaust heat power generation system
  • G exhaust heat power generation system
  • the high-temperature air 2 after heat exchange in the power generation system G is sent from the power generation system G to the flue gas cleaning tower 105 (see FIG. 2) of each processing system S as white smoke prevention air 2. It has become. Further, the cooling water C used for cooling the working fluid in the power generation system G is sent to the flue gas cleaning tower 105 of each processing system S as a part of the smoke cleaning water.
  • FIG. 2 is a block diagram showing an outline of the internal configuration of the processing system S. Since the plurality of processing systems S have almost the same configuration, the configuration of one processing system S will be described, and the description of the configuration of other processing systems S will be omitted.
  • This processing system S is roughly configured to include an incinerator 101, a fluidized air preheater 102, a white smoke prevention air preheater 103, a dust collector 104, and a flue gas cleaning tower 105.
  • 101 is an incinerator, and in this embodiment, a fluidized incinerator for incinerating a sewage sludge dewatered cake.
  • the incinerator 101 is not limited to this, and may be a waste incinerator.
  • the exhaust gas is usually a high temperature exhaust gas of about 800 to 850 ° C.
  • Reference numeral 102 denotes a fluidized air preheater into which this high-temperature exhaust gas is introduced.
  • the fluidized air is preheated to, for example, 650 ° C. and supplied to the dispersion tube at the bottom of the furnace.
  • the fluidized air preheater 102 is omitted.
  • a white smoke prevention air preheater 103 is installed after the flowing air preheater 102.
  • This white smoke prevention air preheater 103 is a heat exchanger for obtaining high-temperature air (white smoke prevention air) 2 for preventing the water vapor in the exhaust gas discharged from the chimney from being seen as white smoke, and is about 300 A heated gas (white smoke prevention air) at 0 ° C. is obtained.
  • the temperature is lowered to 250 to 400 ° C., and is led to the next dust collector 104 to remove dust.
  • the high-temperature air (white smoke prevention air) 2
  • air is generally conceivable, but of course, other various gases may be applied.
  • the air heated by the white smoke prevention air preheater 103 and before being sent to the chimney 108 described later is called high-temperature air
  • the air sent to the chimney 108 and exhibiting the white smoke prevention function is called white smoke prevention air.
  • the same reference numeral 2 is used for explanation.
  • the dust collector 104 is a ceramic dust collector excellent in heat resistance, and can collect the exhaust gas at 250 to 400 ° C. that has passed through the white smoke prevention air preheater 103 as it is.
  • a bag filter can also be used as the dust collector 104. In that case, it is necessary to arrange a cooling tower in the preceding stage and to lower the temperature to the heat resistance temperature of the bag filter. The temperature drop of the exhaust gas in the dust collector 104 is small, and the exhaust gas enters the next flue gas cleaning tower 105 at 200 to 400 ° C.
  • the flue gas cleaning tower 105 is an apparatus that removes components such as NOX and SOX in the exhaust gas by introducing the exhaust gas from the lower part of the tower and bringing it into contact with water (smoke water) W sprayed from the upper nozzle 106. .
  • water smoke water
  • the water in the tower is sent to the nozzle 106 by the pump 107 and circulated for use.
  • a chimney 108 is connected to the upper part of the tower, and the exhaust gas cleaned in the tower is discharged from the chimney 108.
  • a multi-stage shelf portion 109 is formed at an intermediate portion between the flue gas cleaning tower 105 and the chimney 108, and washing with water is sufficiently performed by sufficiently bringing the clean water supplied from the upper portion into contact with the exhaust gas. It is devised to be done.
  • the exhaust heat power generation is performed using the retained heat of the high-temperature air 2 at about 300 ° C., but the retained heat of the smoke washing waste water W is also utilized together with this.
  • the smoke-washed waste water W coming out of the smoke-flushing tower 105 is heated by heat exchange with the high-temperature air 2 (drain heat exchange step, waste heat exchange function). Therefore, it is supplied to the exhaust heat power generation system G.
  • the temperature rise varies depending on the equipment and operation method, but is usually in the range of 5 to 15 ° C. Since the high temperature air 2 after heat exchange with the smoke washing waste water W maintains a temperature of about 90 ° C. to 100 ° C., it can be sent to the chimney 108 to perform its original function as the white smoke prevention air 2 it can.
  • the temperature rise of the smoke washing waste water W is increased, the temperature of the high-temperature air 2 after heat exchange with the smoke washing waste water W (the heat exchange step for waste water, the heat exchange function for waste water) decreases, Even if the temperature is reduced to the extent, white smoke is not generated under the climatic conditions where the atmospheric temperature is 20 ° C. and the humidity is 100%, but white smoke is generated when the atmospheric temperature is 0 ° C. and the humidity is 100%. However, there are no legal restrictions on the generation of white smoke, and this condition is only a few days even in winter. Further, the smoke-washed waste water W that has been heated by heat exchange with the high-temperature air 2 in this way becomes warm water of about 70 ° C. to 73 ° C. and is supplied to the exhaust heat power generation system G.
  • FIG. 3 is a block diagram showing an outline of the internal configuration of the power generation system G.
  • a temperature difference power generation system using a working fluid L as a low boiling point fluid such as ammonia, chlorofluorocarbon or an ammonia / water mixed fluid.
  • a temperature difference power generation system itself is already known as described in, for example, Japanese Patent Application Laid-Open No. 7-91361, which is filed by Saga University.
  • surface seawater having relatively high temperature and cold seawater having a deep layer are known. It is a system that can perform temperature difference power generation using the temperature difference between.
  • the power generation system G includes a turbine 10, a generator 11, an absorber 12, a condenser 13, a circulation pump 14, a regenerator 15, an evaporator 16, a heater 17, a separator 18, and a superheater.
  • a (steam heater) 19 and a pressure reducing valve 20 are provided for the general configuration.
  • the power generation system G also includes temperature sensors 21 to 24, first control means 25, second control means 26, first adjustment valve 27, and second adjustment valve 28.
  • first control means 25 since the working fluid L circulates in the working fluid path R while repeating heating and cooling, the working fluid L is sequentially directed from the circulation pump 14 toward the downstream (the direction in which the working fluid flows).
  • the liquid-phase working fluid L sent out by the circulation pump 14 is preheated by the regenerator 15 and then sent to the evaporator 16.
  • the position where the evaporator 16 is installed is a third position in the working fluid path R.
  • heat exchange between the working fluid L and the smoke washing waste water W is performed (third heat exchange step, third heat exchange function), and heat transfer from the smoke washing waste water W to the working fluid L is performed. .
  • the working fluid L becomes a gas-liquid two-phase state in which the internal heat energy state is increased, and is sent to the next heater 17.
  • the position where the heater 17 is installed is the second position in the working fluid path R.
  • heat exchange between the working fluid L and the high temperature air 2 is performed (second heat exchange step, second heat exchange function), and heat transfer from the high temperature air 2 to the working fluid L is performed.
  • the working fluid L becomes a gas-liquid two-phase state in which the internal thermal energy state is further increased, and is sent to the separator 18.
  • the separator 18 separates the working fluid L in a gas-liquid two-phase state into a gas phase and a liquid phase.
  • the working fluid L in the liquid phase portion is again sent to the regenerator 15 to take heat, and is further sent to the absorber 12 through the pressure reducing valve 20.
  • the working fluid L in the gas phase is sent from the separator 18 to the superheater 19.
  • the position where the superheater 19 is installed is the first position in the working fluid path R.
  • heat exchange between the working fluid L and the high temperature air 2 is performed (first heat exchange step, first heat exchange function), and heat transfer from the high temperature air 2 to the working fluid L is performed.
  • the working fluid L becomes superheated steam whose internal thermal energy state is further increased and is sent to the turbine 10.
  • the working fluid L in the superheated steam state rotates the turbine 10 and generates power by a generator connected to the turbine 10. Then, the working fluid L that has finished the power generation work is sent to the absorber 12 and merges with the working fluid L sent via the pressure reducing valve 20.
  • the absorber 12 is, for example, a nozzle spray type, and the working fluid L (liquid phase) from the pressure reducing valve 20 is sprayed toward the working fluid L (gas phase) after the power generation, and the gas phase The working fluid L is deprived of heat and cooled.
  • the working fluid L sent to the condenser 13 is cooled by the cooling water C, returns to the liquid phase, and reaches the circulation pump 14 again.
  • the working fluid L is heated by the smoke washing waste water W and the high-temperature air 2 while being sent by the circulation pump 14, cooled by the cooling water C after rotating the turbine 10, and circulated in the path R.
  • the superheater 19 is provided at a first position upstream from the turbine 10 and downstream from the separator 18, and the heater 17 is provided at a second position upstream from the separator 18, The evaporator 16 is provided at a third position upstream of the heater 17.
  • the high-temperature air 2 from the processing system S is aggregated from the plurality of processing systems S (high-temperature air aggregation step, high-temperature air aggregation function) and sent to the power generation system G in a combined state. Thereby, the influence of the fluctuation
  • the concentrated hot air 2 is first applied to the superheater 19 in the first position. Then, it is applied to the heater 17 at the second position, and then applied to the drainage heater 29 to perform heat exchange with the smoke washing drainage W (drainage heat exchange step, drainage heat exchange). Function). Then, the high-temperature air 2 after completion of the waste heat exchange step is sent to the processing system S again, applied to the flue gas cleaning tower 105 of each processing system S, and used as white smoke prevention air 2. It has become.
  • the white smoke prevention air 2 comes into contact with the exhaust gas (contact step, contact function) and prevents the generation of white smoke in the exhaust gas.
  • a superheater avoidance path 30 for avoiding application of the high-temperature air 2 to the superheater 19 (first heat exchange avoidance step, first heat exchange avoidance function) is arranged, and on the path 30 Is provided with a first regulating valve 27.
  • the first adjusting valve 27 opens or closes the valve based on a control signal from the first control means 25 to apply the hot air 2 to the superheater 19 or to the superheater avoidance path 30. In other words, the application to the superheater 19 is avoided.
  • the first control means 25 is composed of, for example, a computer, a sequencer, a relay switch, etc., receives the sensor outputs of the temperature sensors 21 and 22, and controls the opening and closing of the first adjustment valve 27 based on those sensor outputs.
  • the temperature sensor 21 measures the temperature t1 of the working fluid L on the downstream side of the working fluid path R from the superheater 19 (first working fluid temperature measuring step, first working fluid temperature measuring function). It is.
  • the temperature sensor 22 is a sensor for measuring the temperature T1 of the high-temperature air 2 upstream of the superheater 19 on the high-temperature air 2 path (first high-temperature air temperature measurement step, first high-temperature air temperature measurement function). It is.
  • the first control means 25 determines the amount of gas of the high-temperature air 2 applied to the superheater 19 based on the temperature difference between the measured temperature T1 measured by the temperature sensor 22 and the measured temperature t1 measured by the temperature sensor 21, and the superheater.
  • the distribution of the gas amount of the high-temperature air 2 that avoids the application to 19 is adjusted by the opening / closing control of the first adjustment valve 27.
  • the first regulating valve 27 is opened so that as much hot air 2 as possible passes through the superheater avoidance path 30, and the temperature T1
  • the first adjustment valve 27 is closed, and control is performed so that as much hot air 2 as possible passes through the superheater 19.
  • a heater avoidance path 31 for avoiding application of the high-temperature air 2 to the heater 17 (second heat exchange avoidance step, second heat exchange avoidance function) is disposed. Is provided with a second regulating valve 28. The second adjustment valve 28 opens or closes the valve based on a control signal from the second control means 26 to apply the high temperature air 2 to the heater 17 or to the heater avoidance path 31. To avoid application to the heater 17.
  • the second control means 26 is composed of, for example, a computer, a sequencer, a relay switch, etc., receives the sensor outputs of the temperature sensors 23 and 24, and controls the opening and closing of the second adjustment valve 28 based on those sensor outputs.
  • the temperature sensor 23 measures the temperature t2 of the working fluid L on the downstream side of the working fluid path R from the heater 17 (second working fluid temperature measuring step, second working fluid temperature measuring function). It is.
  • the temperature sensor 24 measures the temperature T2 of the high temperature air 2 on the upstream side (and downstream side of the superheater 19) on the high temperature air 2 path from the heater 17 (second high temperature air temperature measurement step, 2 high temperature air temperature measuring function).
  • the second control means 26 determines the amount of gas of the high-temperature air 2 applied to the heater 17 based on the temperature difference between the measured temperature T2 measured by the temperature sensor 24 and the measured temperature t2 measured by the temperature sensor 23, and the heater.
  • the distribution of the gas amount of the high-temperature air 2 that avoids application to 17 is adjusted by opening / closing control of the second adjustment valve 28.
  • the second adjustment valve 28 is opened so that as much hot air 2 as possible passes through the heater avoidance path 31, and the temperature T2
  • the second regulating valve 28 is closed and control is performed so that as much hot air 2 as possible passes through the heater 17.
  • Smoke washing wastewater W from the treatment system S is aggregated from a plurality of treatment systems S (smoke wash drainage concentration step, smoke wash drainage concentration function) into the power generation system G in a combined state. Sent. Thereby, the influence of the fluctuation
  • the collected smoke washing waste water W is subjected to heat exchange with the high-temperature air 2 after the second heat exchange step or the second heat exchange avoidance step in the waste water heater 29 (drain heat exchange step, drain heat exchange function). It is like that. Then, the smoke washing waste water W is applied to the evaporator 16 at the third position, and heat exchange with the working fluid L is performed (third heat exchange step, third heat exchange function).
  • Normal temperature water can be used as the cooling water C which is a low-temperature heat source.
  • the cooling water C applied to the condenser 13 is clean water.
  • the amount of water used can be suppressed.
  • the cooling water C is reused as the smoke washing waste water W, it contributes to water saving as a whole system and contributes to improvement of environmental suitability.
  • the cooling water C is also heated by the condenser 13, if it is used for water supply to the flue gas cleaning tower 105, it contributes to an increase in the temperature in the tower and has an effect of increasing the temperature of the smoke washing waste water W. .
  • Example 1 The power generation amount (turbine output) in the power generation system G having the configuration shown in FIG. 4 was estimated by simulation calculation.
  • the calculation conditions are as follows.
  • the enthalpy H was estimated.
  • the calculation results are shown in Table 1.
  • the density index value means the reciprocal of the density (kg / m 3 ).
  • Comparative Example 1 The power generation amount (turbine output) in the power generation system G configured as shown in FIG. 5 was estimated by simulation calculation. In this comparative example 1, high-temperature air 2 is not applied to the power generation system G. The conditions are the same as in Example 1. In Comparative Example 1, the temperature, pressure, and density of the working fluid L were estimated at the respective positions r1 to r10 on the working fluid path R shown in FIG. Table 2 shows the calculation results.
  • the density index value means the reciprocal of the density (kg / m 3 ).
  • the power generation amount (turbine output) in the power generation system G configured as shown in FIG. 6 was estimated by simulation calculation.
  • the calculation conditions for the hot air 2 are as follows.
  • the calculation conditions regarding the smoke-washing waste water W (temperature at the positions w1 and w2), the cooling water C (temperature at the positions c1 and c2) and the working fluid L are the same as those in the first embodiment.
  • the temperature, pressure, and density of the working fluid L were estimated at each position r1 to r10 on the working fluid path R shown in FIG. Table 3 shows the calculation results.
  • the density index value means the reciprocal of the density (kg / m 3 ).
  • the power generation amount (turbine output) in the power generation system G having the configuration shown in FIG. 7 was estimated by simulation calculation.
  • the calculation conditions for the hot air 2 are as follows.
  • the calculation conditions regarding the smoke-washing waste water W (temperature at the positions w1 and w2), the cooling water C (temperature at the positions c1 and c2) and the working fluid L are the same as those in the first embodiment.
  • the temperature, pressure, and density of the working fluid L were estimated at the respective positions r1 to r10 on the working fluid path R shown in FIG. Table 4 shows the calculation results.
  • the density index value means the reciprocal of the density (kg / m 3 ).
  • the power generation amount (turbine output) in the power generation system G configured as shown in FIG. 8 was estimated by simulation calculation.
  • the calculation conditions for the hot air 2 are as follows.
  • the calculation conditions regarding the smoke-washing waste water W (temperature at the positions w1 and w2), the cooling water C (temperature at the positions c1 and c2) and the working fluid L are the same as those in the first embodiment.
  • the temperature, pressure and density of the working fluid L were estimated at the respective positions r1 to r10 on the working fluid path R shown in FIG. Table 5 shows the calculation results.
  • the density index value means the reciprocal of the density (kg / m 3 ).
  • the power generation system G according to the first embodiment of the present invention (hot air 2 is applied to the first position downstream of the separator 18 and the second position upstream of the separator 18 to exchange heat with the working fluid L. Then, the high-temperature air 2 is applied to the smoke washing waste water W to exchange heat with the smoke washing waste water W, and the subsequent smoke washing waste water W is applied to the third position upstream from the second position to apply the working fluid L and heat. According to the replacement configuration, the power generation efficiency can be significantly improved.
  • the turbine output (power generation amount) is 181% higher than Comparative Example 1, 29% higher than Comparative Example 2, 26% higher than Comparative Example 3, and 0.6% higher than Comparative Example 4. is doing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Chimneys And Flues (AREA)
  • Air Supply (AREA)

Abstract

Disclosed is a method for generating power from exhaust heat by effectively using the heat emitted from an incinerator. The method for generating power from exhaust heat includes: a first heat exchange step, in which hot air (2) heated by the exhaust gas from the incinerator (101) of a sewage treatment system (S) is supplied to a superheater (19), which is provided to the power generation system (G) at a position upstream from a turbine (10) and downstream from a separator (18), and undergoes heat exchange with a working liquid (L); a second heat exchange step, in which the hot air (2) is supplied to a heater (17) located upstream from the separator (18) and undergoes heat exchange with the working liquid (L); a waste water heat exchange step, in which the hot air (2) from the heater (17) undergoes heat exchange with the waste scrubbing water (W) emitted from the sewage treatment system (S) after scrubbing the exhaust gas; a third heat exchange step, in which the waste scrubbing water (W) is supplied to a vaporizer (16) upstream from the heater (17) and undergoes heat exchange with the working liquid (L); and a contact step when the hot air (2) comes into contact with the exhaust gas.

Description

排熱発電方法及び排熱発電システムWaste heat power generation method and waste heat power generation system
 本発明は、排熱発電方法及び排熱発電システムに係り、特に、下水汚泥焼却炉やごみ焼却炉などの焼却炉から排出される高温の排ガスの保有熱を利用した排熱発電方法及び排熱発電システムに関する。 The present invention relates to a waste heat power generation method and a waste heat power generation system, and more particularly, a waste heat power generation method and waste heat using retained heat of high-temperature exhaust gas discharged from an incinerator such as a sewage sludge incinerator or a waste incinerator. The power generation system.
 近年、地球温暖化や環境問題への取り組みが重要視され、省エネルギー化技術への期待度が年々増している。その環境問題等への取り組みとして、新エネルギーや未利用エネルギーの有効利用に注目が集まっており、例えば、従来有効利用されずに廃棄されていたエネルギーを利用して新たなエネルギーを産出する試みも為されている。 In recent years, efforts to global warming and environmental issues have been emphasized, and expectations for energy-saving technologies are increasing year by year. As efforts to address such environmental problems, attention has been focused on the effective use of new energy and unused energy. For example, attempts to produce new energy using energy that has been discarded without being used effectively are also included. It has been done.
 例えば、特許文献1には、下水汚泥焼却炉から発生した排ガスの保有熱を用いて蒸気を発生させ、その蒸気によって発電を行う構成が開示されている。また、特許文献2には、ごみ焼却で発生した燃焼ガスを用いて蒸気を過熱し、その蒸気を蒸気タービンに導くことにより発電を行う構成が開示されている。更に、特許文献3には、汚水浄化処理システムの排煙処理装置から得られる洗煙排水の保有熱により発電システムの作動液化媒体を蒸発させ、その作動媒体蒸気によりタービンを駆動して発電を行う構成が開示されている。 For example, Patent Document 1 discloses a configuration in which steam is generated using the retained heat of exhaust gas generated from a sewage sludge incinerator and power is generated using the steam. Patent Document 2 discloses a configuration in which power is generated by superheating steam using combustion gas generated by waste incineration and guiding the steam to a steam turbine. Further, in Patent Document 3, the working liquefied medium of the power generation system is evaporated by the retained heat of the smoke washing wastewater obtained from the smoke treatment apparatus of the sewage purification processing system, and the turbine is driven by the working medium vapor to generate power. A configuration is disclosed.
 このように、汚泥やごみを焼却する際には高温のガスや排水が発生するが、従来廃棄されていたこれらの熱エネルギーを発電に利用し、電気エネルギーの形でその一部を回収する提案が数多く存在する。 In this way, when incinerating sludge and waste, high-temperature gas and wastewater are generated. Proposal to recover a part of them in the form of electric energy by using these heat energy that was previously discarded for power generation. There are many.
 なお、下水汚泥焼却炉を例にとると、その焼却炉からの排ガスの温度は概ね800℃~850℃程度である。そして、一般的な焼却プラントにおいて、焼却炉からの高温の排ガスを、白煙防止空気予熱器やその他の熱交換器に通して排熱の一部を回収した上で、集塵装置においてダストを分離除去し、更に排煙洗浄塔に通して水洗浄を行い、排ガス中のNOX,SOX等の成分を除去している。 In the case of a sewage sludge incinerator, for example, the temperature of the exhaust gas from the incinerator is approximately 800 ° C to 850 ° C. In a general incineration plant, high-temperature exhaust gas from an incinerator is passed through a white smoke prevention air preheater or other heat exchanger to collect a part of the exhaust heat, and then dust is collected in a dust collector. Separated and removed, and further passed through a flue gas cleaning tower for water cleaning to remove components such as NOX and SOX in the exhaust gas.
 なお焼却炉が流動焼却炉である場合には白煙防止空気予熱器の前段に流動空気予熱器が設置されることがある。また集塵装置がセラミックフィルタである場合には高温集塵が可能であるが、バグフィルタである場合には冷却塔において300℃以下にまで降温した上で集塵を行っている。 If the incinerator is a fluidized incinerator, a fluidized air preheater may be installed in front of the white smoke prevention air preheater. When the dust collector is a ceramic filter, high-temperature dust collection is possible, but when it is a bag filter, dust collection is performed after the temperature is lowered to 300 ° C. or lower in a cooling tower.
 このような通常の焼却プラントにおける排ガス処理システムにおいては、排煙洗浄塔において200℃~400℃程度の排ガスが40℃程度にまで冷却される一方、洗煙排水は60℃~70℃程度で排出される。この洗煙排水は比較的低温ではあるが水の比熱が大きいために熱量は大きく、排ガスの持つ熱量の50%を超えることが多い。 In such an exhaust gas treatment system in an ordinary incineration plant, exhaust gas at about 200 ° C. to 400 ° C. is cooled to about 40 ° C. in the flue gas cleaning tower, while smoke wash wastewater is discharged at about 60 ° C. to 70 ° C. Is done. Although the smoke washing wastewater is relatively low in temperature, the specific heat of water is large, so the amount of heat is large and often exceeds 50% of the heat amount of the exhaust gas.
特開2005-321131号公報JP 2005-323131 A 特開平9-310606号公報JP-A-9-310606 特開平9-32513号公報JP 9-32513 A
 しかしながら、上記各特許文献1~3に記載のものは、単に廃棄物等の焼却の際に排出される熱源を発電システムに適用するに留まり、エネルギー利用の効率が充分高いとはいえない。熱エネルギーの回収効率は、その熱源を発電システムに適用する位置や適用方法によって大きく変化するが、上記各特許文献には、そのようなエネルギー回収の効率向上のための充分な提案がされていない。 However, those described in the above-mentioned patent documents 1 to 3 simply apply to the power generation system a heat source that is discharged during incineration of waste or the like, and it cannot be said that the efficiency of energy use is sufficiently high. The recovery efficiency of thermal energy varies greatly depending on the position where the heat source is applied to the power generation system and the application method. However, the above patent documents do not provide sufficient proposals for improving the efficiency of such energy recovery. .
 また、焼却炉から排出される熱源も常に一定とは限らずその熱量が変化する場合がある。そのような場合に、排出熱源をそのまま発電システムに適用すると、排出熱源の熱量の変化に発電効率が影響されてしまい、安定的かつ効率的な発電が行えないという問題もある。 Also, the heat source discharged from the incinerator is not always constant, and the amount of heat may change. In such a case, if the exhaust heat source is applied to the power generation system as it is, the power generation efficiency is affected by the change in the amount of heat of the exhaust heat source, and there is a problem that stable and efficient power generation cannot be performed.
 本発明は、上記の事情に鑑みて為されたもので、焼却炉から排出される熱源を有効に利用し、そのエネルギー回収効率を向上させて安定的・効率的に発電を行うことのできる排熱発電方法及び排熱発電システムを提供することを例示的課題とする。 The present invention has been made in view of the above circumstances, and is an exhaust that can effectively and efficiently use a heat source discharged from an incinerator to improve its energy recovery efficiency and generate power stably and efficiently. It is an exemplary problem to provide a thermal power generation method and an exhaust heat power generation system.
 上記の課題を解決するために、本発明の例示的側面としての排熱発電方法は、焼却処理システムが備える焼却炉から排出される排ガスによって加熱された高温空気を、作動流体によってタービンを回転させて発電を行う排熱発電システムにおける作動流体経路上でのタービンより上流側であって分離器より下流側の第1位置に適用することにより、第1位置における高温空気と作動流体との熱交換を行う第1熱交換ステップと、第1位置での熱交換後の高温空気を、作動流体経路上での分離器より上流側の第2位置に適用することにより、第2位置における高温空気と作動流体との熱交換を行う第2熱交換ステップと、排ガスを洗浄した後に焼却処理システムから排出される洗煙排水と第2位置における熱交換後の高温空気との熱交換を行う排水用熱交換ステップと、高温空気との熱交換後の洗煙排水を、作動流体経路上での第2位置より上流側の第3位置に適用することにより、第3位置における洗煙排水と作動流体との熱交換を行う第3熱交換ステップと、洗煙排水との熱交換後の高温空気を、白煙防止空気として排ガスと接触させる接触ステップと、を有する。 In order to solve the above-described problems, an exhaust heat power generation method as an exemplary aspect of the present invention is configured to rotate high-temperature air heated by exhaust gas discharged from an incinerator included in an incineration processing system by rotating a turbine with a working fluid. Heat exchange between the hot air and the working fluid at the first position by applying the first position upstream of the turbine and downstream of the separator on the working fluid path in the exhaust heat power generation system that generates power Applying the hot air after the heat exchange at the first position to the second position upstream from the separator on the working fluid path, thereby A second heat exchange step for exchanging heat with the working fluid, and a heat exchange between the smoke-washed wastewater discharged from the incineration processing system after washing the exhaust gas and the high-temperature air after the heat exchange at the second position. By applying the heat exchange step for waste water and the smoke washing waste water after heat exchange with the high-temperature air to the third position upstream of the second position on the working fluid path, A third heat exchanging step for exchanging heat with the working fluid; and a contact step for bringing the hot air after heat exchanging with the smoke washing wastewater into contact with the exhaust gas as white smoke preventing air.
 焼却処理システムからの高温空気を排熱発電システムに適用し、高温空気と作動流体との熱交換を行っているので、廃熱を利用して効率的な発電を行うことができる。また、その高温空気を、タービンより上流側であって分離器よりも下流側の第1位置、分離器よりも上流側の第2位置の複数個所に亘って排熱発電システムに適用しているので、作動流体との熱交換量を大きくすることができ、充分な熱を作動流体に与えることができる。 Since high-temperature air from the incineration treatment system is applied to the exhaust heat power generation system and heat exchange is performed between the high-temperature air and the working fluid, efficient power generation can be performed using waste heat. Further, the high-temperature air is applied to the exhaust heat power generation system over a plurality of locations at a first position upstream from the turbine and downstream from the separator and a second position upstream from the separator. Therefore, the amount of heat exchange with the working fluid can be increased, and sufficient heat can be given to the working fluid.
 作動流体が気体状態である分離器後の第1位置においてまず熱交換を行い、気体状態の作動流体を過熱している。そして、その後に作動流体が気液2相状態である分離器前の第2位置において熱交換を行い、作動流体の気化を促進している。高温空気は、熱容量の小さい気体状態での作動流体に熱を与えた後に、熱容量の大きい気液2相状態での作動流体に剰余熱を与えることとなる。そのため、効率的な熱交換を行うことができ、ひいては発電効率の低下の抑制、発電量の低下の抑制に寄与することができる。 At the first position after the separator where the working fluid is in a gaseous state, heat exchange is first performed to overheat the working fluid in the gaseous state. Then, heat exchange is performed at the second position before the separator where the working fluid is in a gas-liquid two-phase state, and vaporization of the working fluid is promoted. The high-temperature air gives heat to the working fluid in a gas state with a small heat capacity, and then gives surplus heat to the working fluid in a gas-liquid two-phase state with a large heat capacity. Therefore, efficient heat exchange can be performed, and as a result, it can contribute to suppression of the fall of power generation efficiency, and the suppression of the fall of power generation amount.
 更に、第2位置での熱交換後に、高温空気と洗煙排水との熱交換を行い、その高温空気との熱交換後の洗煙排水と作動流体との熱交換を第2位置よりも上流側の第3位置において行っている。そのため、焼却処理システムから高温空気や洗煙排水という形で排出される廃熱を余すところなく充分に再利用し、排熱発電に利用することができる。 Further, after the heat exchange at the second position, heat exchange between the high temperature air and the smoke washing waste water is performed, and the heat exchange between the smoke washing waste water and the working fluid after the heat exchange with the high temperature air is performed upstream of the second position. In the third position on the side. Therefore, the waste heat discharged from the incineration processing system in the form of high-temperature air or smoke-washed wastewater can be fully reused and used for exhaust heat power generation.
 なお、一般的な例を示すと、焼却処理システムにおいて排ガスによって加熱された高温空気の温度は300℃程度であり、第1位置における熱交換後の高温空気の温度は170℃~200℃程度である。更に、第2位置における熱交換後の高温空気の温度は100℃~150℃程度である。また、焼却処理システムからの洗煙排水の温度は60℃~70℃程度であり、高温空気との熱交換後の洗煙排水の温度は70℃~73℃程度である。 As a general example, the temperature of the high-temperature air heated by the exhaust gas in the incineration processing system is about 300 ° C., and the temperature of the high-temperature air after the heat exchange at the first position is about 170 ° C. to 200 ° C. is there. Further, the temperature of the high-temperature air after the heat exchange at the second position is about 100 ° C. to 150 ° C. The temperature of the smoke effluent from the incineration system is about 60 ° C. to 70 ° C., and the temperature of the smoke effluent after heat exchange with high-temperature air is about 70 ° C. to 73 ° C.
 洗煙排水との熱交換後の高温空気の温度は、まだ90℃~100℃程度の高温状態であり、この高温空気を焼却炉からの排ガスと接触させると充分に白煙防止空気として利用することができる。したがって、この排熱発電方法においては、白煙防止空気としての機能を損なうことなく、高温空気を白煙防止空気として利用するまでの間に多くの熱交換を行って効率的なエネルギー回収を実現している。 The temperature of the high-temperature air after heat exchange with the smoke-washing wastewater is still in a high temperature state of about 90 ° C to 100 ° C. When this high-temperature air is brought into contact with the exhaust gas from the incinerator, it is sufficiently used as white smoke prevention air. be able to. Therefore, in this exhaust heat power generation method, efficient energy recovery is realized by exchanging a lot of heat before using high-temperature air as white smoke prevention air without impairing the function as white smoke prevention air is doing.
 なお、高温空気との熱交換後の洗煙排水は70℃~73℃程度にまで温度上昇するので、この洗煙排水を第3位置に適用して作動流体との熱交換を行うことにより、エネルギー回収の一層の効率化を図ることができる。 In addition, since the temperature of the smoke-washed wastewater after heat exchange with high-temperature air rises to about 70 ° C to 73 ° C, by applying this smoke-washed wastewater to the third position and exchanging heat with the working fluid, Further efficiency improvement of energy recovery can be achieved.
 複数の焼却処理システムからの各高温空気を、第1位置における熱交換の前に複数の焼却処理システムに亘って集約するステップと、複数の焼却処理システムからの各洗煙排水を、高温空気との熱交換の前に複数の焼却処理システムに亘って集約するステップと、を更に有してもよい。 Consolidating each hot air from the plurality of incineration systems over the plurality of incineration systems prior to heat exchange at the first location; And aggregating over a plurality of incineration systems prior to the heat exchange.
 1つの焼却処理システムにおける下水汚泥やごみ等の廃棄物処理の状況は、一定とは限らない。したがって、1つの焼却処理システムからの高温空気や洗煙排水の排出量・温度(熱量)等も安定的とはいえない。 廃 棄 The situation of waste disposal such as sewage sludge and garbage in one incineration treatment system is not always constant. Therefore, it cannot be said that the discharge amount / temperature (amount of heat) of high-temperature air or smoke-washed wastewater from one incineration processing system is stable.
 しかしながら、複数の焼却処理システムからの各高温空気や洗煙排水を各々集約した上で、排熱発電システムに適用することにより、エネルギー回収の安定化を図ることができて、排熱発電システムのスケールメリットを生かすことができる。 However, by collecting each high-temperature air and smoke-washed wastewater from multiple incineration treatment systems and applying them to the exhaust heat power generation system, energy recovery can be stabilized, and the exhaust heat power generation system The merit of scale can be utilized.
 例えば、焼却能力が大型の(例えば、通常能力の5台分の)焼却処理システムにおいては、大型化の限界があったり、定期メンテナンスや故障時における焼却処理システムの停止のリスクがある。そのため、5台分の能力が必要な場合には、大型の焼却処理システムとせず、通常能力の焼却処理システムを5台接続して使用する。 For example, an incineration processing system with a large incineration capacity (for example, 5 units of normal capacity) has a limit of enlargement, and there is a risk of periodic maintenance or a stoppage of the incineration processing system at the time of failure. For this reason, when the capacity of five units is required, five large incineration processing systems are connected and used instead of a large incineration processing system.
 このとき、5台の通常能力の焼却処理システムに対して、各々通常能力の排熱発電システムを5台接続すると、5台分の排熱発電システムの設備費用が必要となりコスト高となる。また、焼却処理システムの稼動時には各排熱発電システムは通常能力の目一杯近くで稼動するので、第1位置における熱交換器の金属温度が限界近くまで上昇し(温度差が小さくなって熱交換があまり行われなくなり)、装置寿命の観点から好ましくない。 At this time, if five waste heat power generation systems with normal capacity are connected to five incineration treatment systems with normal capacity, the equipment costs of the five waste heat power generation systems are required, resulting in high costs. In addition, when the incineration system is in operation, each exhaust heat power generation system operates near full capacity, so the metal temperature of the heat exchanger at the first position rises to near the limit (the temperature difference becomes smaller and heat exchange takes place). Is not preferable from the viewpoint of the life of the apparatus.
 しかしながら、通常能力の焼却処理システム5台に対し、大型の(例えば、通常能力の5台分の)排熱発電システムを集約的に接続すれば、まず、排熱発電システムの設備コストが1台分で済むので、コスト的なメリットがある。しかも、5台の焼却処理システムが常に稼動しているわけでなく、平均的に3台程度の焼却処理システムが稼動している場合には、大型排熱発電システムの第1位置における熱交換器の容量を(5台分の大型とすることなく)3台分の容量とすることができる。したがって、その点でも熱交換器のコストメリットがある。 However, if a large-scale (for example, five units of normal capacity) waste heat power generation system is connected to five normal capacity incineration treatment systems, the equipment cost of the exhaust heat power generation system is one unit first. Since it only takes a minute, there is a cost advantage. In addition, the five incineration processing systems are not always in operation, and if an average of about three incineration processing systems are in operation, the heat exchanger in the first position of the large exhaust heat power generation system The capacity can be set to a capacity of three cars (without making it large for five cars). Therefore, there is also a cost merit of the heat exchanger in this respect.
 また、排熱発電システム自体が大型で容量に余裕があり、第1位置における熱交換器の金属温度があまり上昇しない場合には、熱交換器の寿命向上にも寄与することができる。ここで、”複数の焼却処理システムに亘って集約”とは、焼却処理システム全体が複数存在し、それらを集約する場合に限られず、”焼却処理システム内に複数の焼却炉が存在しており、それら複数の焼却炉に亘って集約”する場合を含む。以下の本文において、”複数の焼却処理システムに亘って集約”が”焼却処理システム内に複数の焼却炉が存在しており、それら複数の焼却炉に亘って集約”する場合を含む点については同様である。 Also, if the exhaust heat power generation system itself is large and has a sufficient capacity, and the metal temperature of the heat exchanger at the first position does not rise so much, it can contribute to the improvement of the life of the heat exchanger. Here, “aggregation across multiple incineration systems” means that there are multiple incineration systems as a whole, and is not limited to the aggregation of them. “There are multiple incinerators in the incineration system. , Including the case of “aggregating over the plurality of incinerators”. In the following text, “inclusive of multiple incineration systems” includes “when multiple incinerators exist in the incineration system and are aggregated in multiple incinerators”. It is the same.
 なお、各高温空気の集約においては、各焼却処理システムからの排出量を調整する調整手段(調整弁等)が排出経路内に設けられ、コンピュータ制御によりそれらの調整手段が調整されるようになっていてももちろんよいし、それは各焼却処理システムからの洗煙排水についても同様である。 In addition, in the concentration of each high-temperature air, adjusting means (such as an adjusting valve) for adjusting the discharge amount from each incineration processing system is provided in the discharge path, and these adjusting means are adjusted by computer control. Of course, the same applies to the smoke-washed waste water from each incineration system.
 高温空気を、第1位置に適用することなく第1位置における熱交換後の高温空気と合流させる第1熱交換回避ステップと、合流後の高温空気を、第2位置に適用することなく第2位置における熱交換後の高温空気と合流させる第2熱交換回避ステップと、を更に有してもよい。 A first heat exchange avoidance step for joining the hot air with the hot air after the heat exchange at the first position without applying the hot air to the first position, and the second without applying the hot air after joining to the second position. You may further have the 2nd heat exchange avoidance step combined with the hot air after the heat exchange in a position.
 高温空気と作動流体との第1位置又は第2位置における熱交換を、必要に応じて回避させることができる。したがって、焼却処理システムからの高温空気や洗煙排水の排出量・温度(熱量)等に応じて、又は、排熱発電システムにおいて必要とされる発電量に応じて、高温空気と作動流体との熱交換を実行したり停止したりすることができる。 Heat exchange at the first position or the second position between the hot air and the working fluid can be avoided as necessary. Therefore, depending on the discharge amount / temperature (heat amount) of high-temperature air and smoke-washed wastewater from the incineration treatment system, or depending on the power generation amount required in the exhaust heat power generation system, the high-temperature air and the working fluid Heat exchange can be performed or stopped.
 しかも、第1位置でのみ熱交換を行わせて第2位置では熱交換を回避したり、第1位置でのみ熱交換を回避して第2位置では熱交換を行わせたり、また、第1位置と第2位置の両方で熱交換を行わせたりすることができるので、状況に応じて熱交換実行位置を選択することができる。 In addition, heat exchange is performed only at the first position to avoid heat exchange at the second position, heat exchange is avoided only at the first position and heat exchange is performed at the second position, Since heat exchange can be performed at both the position and the second position, the heat exchange execution position can be selected according to the situation.
 例えば、第1位置における熱交換器の伝熱面積が比較的大きく、第2位置における熱交換器の伝熱面積が比較的小さいことにより、第1位置における熱交換効率が第2位置における熱交換効率よりも高効率である場合に、第1位置にすべての高温空気を適用すると、必要以上に熱交換が行われてしまう場合がある。 For example, the heat transfer area of the heat exchanger at the first position is relatively large, and the heat transfer area of the heat exchanger at the second position is relatively small, so that the heat exchange efficiency at the first position is the heat exchange at the second position. If all hot air is applied to the first position when the efficiency is higher than the efficiency, heat exchange may be performed more than necessary.
 しかしながら、第1熱交換回避ステップによって第1位置での高温空気と作動流体との熱交換を回避することができれば、発電必要量に応じた適正な熱回収を行うことができる。そのため、例えば負荷側(電力消費側)における必要電力以上に過大な発電電力が生成されることによる、いわゆる逆調等を予防することができる。 However, if heat exchange between the high-temperature air and the working fluid at the first position can be avoided by the first heat exchange avoidance step, appropriate heat recovery according to the required amount of power generation can be performed. Therefore, for example, so-called reverse tone caused by generation of excessively generated power more than necessary power on the load side (power consumption side) can be prevented.
 もちろん、第1位置や第2位置における高温空気と作動流体との熱交換を回避するか否かを選択するだけでなく、その回避量を調整することができれば、より一層必要に応じた適正量の発電を行うことができる。例えば、第1及び第2熱交換回避ステップに加え、後述するような、第1及び第2調整ステップ(例えば、流量調整バルブ等による流量調整ステップ。)を有することにより、各熱交換位置への高温空気の適用量と回避量とを調整することができれば、必要発電量に応じて、細やかに熱交換量(すなわち、高温ガスの適用量)を調整することができる。 Of course, if not only whether to avoid heat exchange between the high-temperature air and the working fluid in the first position or the second position, but also if the avoidance amount can be adjusted, the appropriate amount as needed Can generate electricity. For example, in addition to the first and second heat exchange avoidance steps, by having first and second adjustment steps (for example, a flow rate adjustment step using a flow rate adjustment valve, etc.) as will be described later, If the application amount and the avoidance amount of high-temperature air can be adjusted, the heat exchange amount (that is, the application amount of high-temperature gas) can be finely adjusted according to the required power generation amount.
 なお、高温空気の適用量/回避量の調整による発電量(発電電力)の調整効果は、第1位置における熱交換器の伝熱面積が大きいとその効果が高く、伝熱面積が小さいとその効果が低い。換言すれば、第1位置における熱交換器の伝熱面積が小さい場合は、高温空気の適用量を減少(回避量を増加)させたときの発電量低下が少なく、焼却炉が複数である場合の出熱側の変動を考えると投資効果も高い。 In addition, the adjustment effect of the power generation amount (generated power) by adjusting the application amount / avoidance amount of high-temperature air is high when the heat transfer area of the heat exchanger at the first position is large, and when the heat transfer area is small, the effect is high. The effect is low. In other words, when the heat transfer area of the heat exchanger at the first position is small, there is little decrease in the amount of power generated when the amount of high-temperature air applied is reduced (the amount of avoidance is increased), and there are a plurality of incinerators. Considering the fluctuations on the heat output side, the investment effect is also high.
 この性質を利用すれば、第1位置及び第2位置のいずれか一方の熱交換器の伝熱面積を大きく、他方を小さく設定すれば、伝熱面積の大きい方の熱交換器への高温空気の適用量及び回避量を調整することにより、必要に応じた発電量の調整を精密かつ効果的に行うことができる。伝熱面積の小さい方の熱交換器では、高温空気による流入熱量が多少変動しても、発電量への影響が少ないからである。 If this property is used, the heat transfer area of either the first position or the second position of the heat exchanger is set large, and if the other is set small, the high temperature air to the heat exchanger having the larger heat transfer area is set. By adjusting the application amount and the avoidance amount, it is possible to precisely and effectively adjust the power generation amount as necessary. This is because in the heat exchanger with the smaller heat transfer area, even if the inflow heat amount due to the high-temperature air slightly varies, the influence on the power generation amount is small.
 また、第1位置における熱交換器の伝熱面積が小さい場合には、適用高温空気量の変化による発電量の変化の度合いが小さいので、高温空気量が変動しても安定的に所定量の発電量を確保することができる。例えば、複数の焼却処理システムからの高温空気を集約して排熱発電システムに利用する場合において、すべての焼却処理システムが常時稼動しているとは限らず、一部の焼却処理システムが非稼動となる場合がある。 Further, when the heat transfer area of the heat exchanger at the first position is small, the degree of change in the amount of power generation due to the change in the amount of applied high-temperature air is small. The amount of power generation can be secured. For example, when high-temperature air from multiple incineration processing systems is aggregated and used in an exhaust heat power generation system, not all incineration processing systems are always operating and some incineration processing systems are not operating It may become.
 そのような場合においても、第1位置における熱交換器の伝熱面積を比較的小さく設定しておけば、一部非稼動により高温空気量が減少しても、それによる発電量の低下を極力抑制することができる。熱交換器の伝熱面積を小さく設定することにより、熱交換器のコストも低減することができる。 Even in such a case, if the heat transfer area of the heat exchanger at the first position is set to be relatively small, even if the amount of high-temperature air decreases due to partial non-operation, the power generation amount is reduced as much as possible. Can be suppressed. By setting the heat transfer area of the heat exchanger small, the cost of the heat exchanger can also be reduced.
 第1位置における熱交換後の作動流体の第1作動流体温度を計測するステップと、第1位置における熱交換前の高温空気の第1高温空気温度を計測するステップと、第1高温空気温度と第1作動流体温度との差分に基づいて第1位置に適用する高温空気量と第1位置への適用を回避する高温空気量との配分を調整する第1調整ステップと、第2位置における熱交換後の作動流体の第2作動流体温度を計測するステップと、第2位置における熱交換前の高温空気の第2高温空気温度を計測するステップと、第2高温空気温度と第2作動流体温度との差分に基づいて第2位置に適用する高温空気量と第2位置への適用を回避する高温空気量との配分を調整する第2調整ステップと、を更に有してもよい。 Measuring the first working fluid temperature of the working fluid after heat exchange at the first position; measuring the first high temperature air temperature of the hot air before heat exchange at the first position; and the first high temperature air temperature; A first adjustment step for adjusting a distribution between a high-temperature air amount applied to the first position and a high-temperature air amount avoiding application to the first position based on a difference from the first working fluid temperature; and heat at the second position A step of measuring the second working fluid temperature of the working fluid after the exchange, a step of measuring a second hot air temperature of the hot air before the heat exchange at the second position, a second hot air temperature and a second working fluid temperature. And a second adjustment step of adjusting the distribution of the high-temperature air amount applied to the second position and the high-temperature air amount avoided to be applied to the second position based on the difference between the second position and the second position.
 第1作動流体温度と第1高温空気温度との温度差分に基づいて、第1位置への適用/不適用の高温空気量配分を調整するので、第1位置において温度差分に基づく適切な熱交換を実現することができる。例えば、この温度差分が小さい場合、第1位置に高温空気を適用してもあまり熱交換が行われない。そのような場合には、第1位置に適用する高温空気量を低減し、第1位置を回避する(不適用とする)高温空気量を増大させることが好ましい。 Based on the temperature difference between the first working fluid temperature and the first high-temperature air temperature, the distribution of the high-temperature air amount that is applied / not applied to the first position is adjusted, so that appropriate heat exchange based on the temperature difference is performed at the first position. Can be realized. For example, when this temperature difference is small, heat exchange is not performed much even if high temperature air is applied to the first position. In such a case, it is preferable to reduce the amount of high-temperature air applied to the first position and increase the amount of high-temperature air that avoids (does not apply) the first position.
 また、第2作動流体温度と第2高温空気温度との温度差分に基づいて、第2位置への適用/不適用の高温空気量配分を調整するので、第2位置においても温度差分に基づく適切な熱交換を実現することができる。例えば、この温度差分が小さい場合、第2位置に高温空気を適用してもあまり熱交換が行われない。そのような場合には、第2位置に適用する高温空気量を低減し、第2位置を回避する(不適用とする)高温空気量を増大させることが好ましい。 Further, since the distribution of the high-temperature air amount that is not applied / applied to the second position is adjusted based on the temperature difference between the second working fluid temperature and the second high-temperature air temperature, appropriate adjustment based on the temperature difference is also made at the second position. Heat exchange can be realized. For example, when this temperature difference is small, heat exchange is not performed much even if high temperature air is applied to the second position. In such a case, it is preferable to reduce the amount of high-temperature air applied to the second position and increase the amount of high-temperature air that avoids (does not apply) the second position.
 なお、第1位置における熱交換直前の作動流体の第1作動流体温度を計測するステップと、第1位置における熱交換前の高温空気の第1高温空気温度を計測するステップと、第1高温空気温度と第1作動流体温度との差分に基づいて第1位置に適用する高温空気量と第1位置への適用を回避する高温空気量との配分を調整する第1調整ステップと、第2位置における熱交換直前の作動流体の第2作動流体温度を計測するステップと、第2位置における熱交換前の高温空気の第2高温空気温度を計測するステップと、第2高温空気温度と第2作動流体温度との差分に基づいて第2位置に適用する高温空気量と第2位置への適用を回避する高温空気量との配分を調整する第2調整ステップと、を有してももちろんよい。 Note that the step of measuring the first working fluid temperature of the working fluid immediately before the heat exchange at the first position, the step of measuring the first high temperature air temperature of the high temperature air before the heat exchange at the first position, and the first high temperature air A first adjustment step for adjusting a distribution between a high-temperature air amount applied to the first position and a high-temperature air amount avoiding application to the first position based on a difference between the temperature and the first working fluid temperature; and a second position Measuring the second working fluid temperature of the working fluid immediately before the heat exchange in step, measuring the second high temperature air temperature of the hot air before the heat exchange at the second position, and the second high temperature air temperature and the second operation. It may of course have a second adjustment step for adjusting the distribution of the high-temperature air amount applied to the second position and the high-temperature air amount avoiding application to the second position based on the difference from the fluid temperature.
 本発明の他の例示的側面としての排熱発電方法は、複数の焼却処理システムが備える複数の焼却炉から各々排出される排ガスによって加熱された各高温空気を複数の焼却処理システムに亘って集約するステップと、集約後の高温空気を、作動流体によってタービンを回転させて発電を行う排熱発電システムにおける作動流体経路上でのタービンより上流側の第1位置に適用することにより、第1位置における高温空気と作動流体との熱交換を行う第1熱交換ステップと、第1位置での熱交換後の高温空気を、白煙防止空気として排ガスと接触させる接触ステップと、を有する。 The exhaust heat power generation method as another exemplary aspect of the present invention consolidates each high-temperature air heated by exhaust gas discharged from a plurality of incinerators included in a plurality of incineration systems over a plurality of incineration systems. And applying the aggregated high temperature air to the first position upstream of the turbine on the working fluid path in the exhaust heat power generation system that generates power by rotating the turbine with the working fluid. A first heat exchange step for exchanging heat between the high-temperature air and the working fluid, and a contact step for bringing the high-temperature air after heat exchange at the first position into contact with exhaust gas as white smoke prevention air.
 焼却処理システムからの高温空気を排熱発電システムに適用し、高温空気と作動流体との熱交換を行っているので、廃熱を利用して効率的な発電を行うことができる。ただし、1つの焼却処理システムにおける下水汚泥やごみ等の廃棄物処理の状況は、一定とは限らない。したがって、1つの焼却処理システムからの高温空気や洗煙排水の排出量・温度(熱量)等も安定的とはいえない。 Since high-temperature air from the incineration treatment system is applied to the exhaust heat power generation system and heat exchange is performed between the high-temperature air and the working fluid, efficient power generation can be performed using waste heat. However, the situation of waste disposal such as sewage sludge and garbage in one incineration treatment system is not always constant. Therefore, it cannot be said that the discharge amount / temperature (amount of heat) of high-temperature air or smoke-washed wastewater from one incineration processing system is stable.
 しかしながら、複数の焼却処理システムからの各高温空気を各々集約した上で、排熱発電システムに適用することにより、上述したように、エネルギー回収の安定化を図ることができて、排熱発電システムのスケールメリットを生かすことができる。例えば、複数の焼却処理システムからの高温空気や洗煙排水を各々集約して、大型の1つの排熱発電システムに適用することにより、排熱発電システムを複数台分設置するのに比べてその装置コストを低減することができる。また、排熱発電システムの寿命向上にも寄与することができる。 However, by collecting each high-temperature air from a plurality of incineration processing systems and applying it to the exhaust heat power generation system, the energy recovery can be stabilized as described above, and the exhaust heat power generation system You can take advantage of the economies of scale. For example, by collecting high-temperature air and smoke-washed wastewater from multiple incineration treatment systems and applying them to a single large-scale exhaust heat power generation system, compared to installing multiple exhaust heat power generation systems. The apparatus cost can be reduced. It can also contribute to the improvement of the life of the exhaust heat power generation system.
 各高温空気の集約においては、各焼却処理システムからの排出量を調整する調整手段(調整弁等)が排出経路内に設けられ、コンピュータ制御によりそれらの調整手段が調整されるようになっていてももちろんよい。 In the concentration of each high-temperature air, adjustment means (adjustment valves, etc.) for adjusting the discharge amount from each incineration processing system are provided in the discharge path, and these adjustment means are adjusted by computer control. Of course it is good.
 なお、作動流体との熱交換後の高温空気の温度は一般的にまだ充分高温であり、この高温空気を焼却炉からの排ガスと接触させると充分に白煙防止空気として利用することができる。したがって、この排熱発電方法においては、白煙防止空気としての機能を損なうことなく、高温空気を白煙防止空気として利用するまでの間に作動流体との熱交換を行って効率的なエネルギー回収を実現している。 Note that the temperature of the high-temperature air after heat exchange with the working fluid is generally still sufficiently high, and when this high-temperature air is brought into contact with the exhaust gas from the incinerator, it can be sufficiently utilized as white smoke prevention air. Therefore, in this exhaust heat power generation method, efficient energy recovery is performed by exchanging heat with the working fluid until high-temperature air is used as white smoke prevention air without impairing the function as white smoke prevention air. Is realized.
 第1位置が排熱発電システムにおける分離器よりも下流側である場合に、第1熱交換ステップ後であってかつ接触ステップ前の高温空気を、作動流体経路上での分離器より上流側の第2位置に適用することにより、第2位置における高温空気と作動流体との熱交換を行う第2熱交換ステップを、更に有してもよい。 When the first position is downstream of the separator in the exhaust heat power generation system, hot air after the first heat exchange step and before the contact step is upstream of the separator on the working fluid path. You may further have the 2nd heat exchange step which performs heat exchange with the hot air in the 2nd position, and a working fluid by applying to the 2nd position.
 作動流体が気体状態である分離器後の第1位置においてまず熱交換を行い、気体状態の作動流体を過熱している。そして、その後に作動流体が気液2相状態である分離器前の第2位置において熱交換を行い、作動流体の気化を促進している。高温空気は、熱容量の小さい気体状態での作動流体に熱を与えた後に、熱容量の大きい気液2相状態での作動流体に剰余熱を与えることとなる。そのため、効率的な熱交換を行うことができ、ひいては発電効率の低下の抑制、発電量の低下の抑制に寄与することができる。 At the first position after the separator where the working fluid is in a gaseous state, heat exchange is first performed to overheat the working fluid in the gaseous state. Then, heat exchange is performed at the second position before the separator where the working fluid is in a gas-liquid two-phase state, and vaporization of the working fluid is promoted. The high-temperature air gives heat to the working fluid in a gas state with a small heat capacity, and then gives surplus heat to the working fluid in a gas-liquid two-phase state with a large heat capacity. Therefore, efficient heat exchange can be performed, and as a result, it can contribute to suppression of the fall of power generation efficiency, and the suppression of the fall of power generation amount.
 タービンを回転させた後の作動流体を冷却するために、作動流体経路上でのタービンより下流側の位置に冷却水を適用するステップと、作動流体冷却後の冷却水を、洗煙水として排ガスと接触させるステップと、を更に有してもよい。 In order to cool the working fluid after rotating the turbine, a step of applying cooling water to a position on the downstream side of the turbine on the working fluid path, and the cooling water after cooling the working fluid as flue gas And a step of contacting with.
 作動流体の冷却水を洗煙水として排ガスと接触させるので、焼却処理システム及び排熱発電システム全体として使用する水量の節約に寄与することができる。また、冷却水は、作動流体の冷却(すなわち、作動流体との熱交換)後に昇温しているので、焼却処理システムの排煙洗浄塔への給水に利用すれば塔内温度の上昇に寄与し、洗煙排水の温度を高める効果がある。 Since the cooling fluid of the working fluid is brought into contact with the exhaust gas as smoke wash water, it can contribute to the saving of the amount of water used as an entire incineration processing system and exhaust heat power generation system. In addition, since the temperature of the cooling water is raised after cooling the working fluid (ie, exchanging heat with the working fluid), if it is used for supplying water to the flue gas cleaning tower of the incineration processing system, it contributes to an increase in the temperature inside the tower. And has the effect of increasing the temperature of the smoke drainage.
 作動流体が、アンモニア、フロン又はアンモニア/水混合流体のうちいずれかであってもよい。 The working fluid may be any of ammonia, chlorofluorocarbon or ammonia / water mixed fluid.
 これらの流体は沸点が比較的低温で気化し易い。したがって、これらの流体を作動流体として用いることにより、温度は低いが大量に存在した廃熱(低温熱源)からの熱を有効に利用して、温度差を利用した排熱発電を実現することができる。 These fluids are easy to vaporize at a relatively low boiling point. Therefore, by using these fluids as working fluids, it is possible to effectively use the heat from waste heat (low-temperature heat source) that is present in a large quantity but at a low temperature, thereby realizing exhaust heat power generation using a temperature difference. it can.
 本発明の更に他の例示的側面としての排熱発電システムは、作動流体によってタービンを回転させて発電を行う排熱発電システムであって、焼却処理システムが備える焼却炉から排出される排ガスによって加熱された高温空気を、作動流体経路上でのタービンより上流側であって分離器より下流側の第1位置に適用することにより、第1位置における高温空気と作動流体との熱交換を行う第1熱交換機能と、第1位置での熱交換後の高温空気を、作動流体経路上での分離器より上流側の第2位置に適用することにより、第2位置における高温空気と作動流体との熱交換を行う第2熱交換機能と、排ガスを洗浄した後に焼却処理システムから排出される洗煙排水と第2位置における熱交換後の高温空気との熱交換を行う排水用熱交換機能と、高温空気との熱交換後の洗煙排水を、作動流体経路上での第2位置より上流側の第3位置に適用することにより、第3位置における洗煙排水と作動流体との熱交換を行う第3熱交換機能と、洗煙排水との熱交換後の高温空気を、白煙防止空気として排ガスと接触させる接触機能と、を有する。 A waste heat power generation system as still another exemplary aspect of the present invention is a waste heat power generation system that generates power by rotating a turbine with a working fluid, and is heated by exhaust gas discharged from an incinerator included in the incineration processing system. Applied to the first position upstream of the turbine and downstream of the separator in the working fluid path, thereby performing heat exchange between the hot air and the working fluid in the first position. By applying the heat exchange function and the hot air after heat exchange at the first position to the second position upstream of the separator on the working fluid path, the hot air and the working fluid at the second position A second heat exchange function for exchanging heat, and a waste heat exchange function for exchanging heat between the smoke-washed wastewater discharged from the incineration processing system after washing the exhaust gas and the high-temperature air after heat exchange at the second position, , By applying the smoke washing drain after heat exchange with warm air to the third position upstream of the second position on the working fluid path, heat exchange between the smoke washing drain and the working fluid at the third position is performed. A third heat exchange function to be performed and a contact function for bringing the high-temperature air after heat exchange with the smoke-washing wastewater into contact with the exhaust gas as white smoke prevention air.
 焼却処理システムからの高温空気を排熱発電システムに適用し、高温空気と作動流体との熱交換を行っているので、廃熱を利用して効率的な発電を行うことができる。また、その高温空気を、タービンより上流側であって分離器よりも下流側の第1位置、分離器よりも上流側の第2位置の複数個所に亘って排熱発電システムに適用しているので、作動流体との熱交換量を大きくすることができ、充分な熱を作動流体に与えることができる。 Since high-temperature air from the incineration treatment system is applied to the exhaust heat power generation system and heat exchange is performed between the high-temperature air and the working fluid, efficient power generation can be performed using waste heat. Further, the high-temperature air is applied to the exhaust heat power generation system over a plurality of locations at a first position upstream from the turbine and downstream from the separator and a second position upstream from the separator. Therefore, the amount of heat exchange with the working fluid can be increased, and sufficient heat can be given to the working fluid.
 作動流体が気体状態である分離器後の第1位置においてまず熱交換を行い、気体状態の作動流体を過熱している。そして、その後に作動流体が気液2相状態である分離器前の第2位置において熱交換を行い、作動流体の気化を促進している。高温空気は、熱容量の小さい気体状態での作動流体に熱を与えた後に、熱容量の大きい気液2相状態での作動流体に剰余熱を与えることとなる。そのため、効率的な熱交換を行うことができ、ひいては発電効率の低下の抑制、発電量の低下の抑制に寄与することができる。 At the first position after the separator where the working fluid is in a gaseous state, heat exchange is first performed to overheat the working fluid in the gaseous state. Then, heat exchange is performed at the second position before the separator where the working fluid is in a gas-liquid two-phase state, and vaporization of the working fluid is promoted. The high-temperature air gives heat to the working fluid in a gas state with a small heat capacity, and then gives surplus heat to the working fluid in a gas-liquid two-phase state with a large heat capacity. Therefore, efficient heat exchange can be performed, and as a result, it can contribute to suppression of the fall of power generation efficiency, and the suppression of the fall of power generation amount.
 更に、第2位置での熱交換後に、高温空気と洗煙排水との熱交換を行い、その高温空気との熱交換後の洗煙排水と作動流体との熱交換を第2位置よりも上流側の第3位置において行っている。そのため、焼却処理システムから高温空気や洗煙排水という形で排出される廃熱を余すところなく充分に再利用し、排熱発電に利用することができる。 Further, after the heat exchange at the second position, heat exchange between the high temperature air and the smoke washing waste water is performed, and the heat exchange between the smoke washing waste water and the working fluid after the heat exchange with the high temperature air is performed upstream of the second position. In the third position on the side. Therefore, the waste heat discharged from the incineration processing system in the form of high-temperature air or smoke-washed wastewater can be fully reused and used for exhaust heat power generation.
 本発明の更に他の例示的側面としての排熱発電システムは、作動流体によってタービンを回転させて発電を行う排熱発電システムであって、複数の焼却処理システムが備える複数の焼却炉から各々排出される排ガスによって加熱された各高温空気を複数の焼却処理システムに亘って集約する機能と、集約後の高温空気を、作動流体経路上でのタービンより上流側の第1位置に適用することにより、第1位置における高温空気と作動流体との熱交換を行う第1熱交換機能と、第1位置での熱交換後の高温空気を、白煙防止空気として排ガスと接触させる接触機能と、を有する。 According to still another exemplary aspect of the present invention, an exhaust heat power generation system is an exhaust heat power generation system that generates power by rotating a turbine with a working fluid, and each exhaust gas is discharged from a plurality of incinerators included in the plurality of incineration processing systems. A function of consolidating the high temperature air heated by the exhaust gas to be distributed over a plurality of incineration processing systems, and applying the aggregated high temperature air to the first position upstream of the turbine on the working fluid path A first heat exchange function for exchanging heat between the high-temperature air and the working fluid at the first position, and a contact function for bringing the high-temperature air after the heat exchange at the first position into contact with the exhaust gas as white smoke prevention air. Have.
 焼却処理システムからの高温空気を排熱発電システムに適用し、高温空気と作動流体との熱交換を行っているので、廃熱を利用して効率的な発電を行うことができる。ただし、1つの焼却処理システムにおける下水汚泥やごみ等の廃棄物処理の状況は、一定とは限らない。したがって、1つの焼却処理システムからの高温空気や洗煙排水の排出量・温度(熱量)等も安定的とはいえない。 Since high-temperature air from the incineration treatment system is applied to the exhaust heat power generation system and heat exchange is performed between the high-temperature air and the working fluid, efficient power generation can be performed using waste heat. However, the situation of waste disposal such as sewage sludge and garbage in one incineration treatment system is not always constant. Therefore, it cannot be said that the discharge amount / temperature (amount of heat) of high-temperature air or smoke-washed wastewater from one incineration processing system is stable.
 しかしながら、複数の焼却処理システムからの各高温空気を各々集約した上で、排熱発電システムに適用することにより、上述したように、エネルギー回収の安定化を図ることができて、排熱発電システムのスケールメリットを生かすことができる。例えば、複数の焼却処理システムからの高温空気や洗煙排水を各々集約して、大型の1つの排熱発電システムに適用することにより、排熱発電システムを複数台分設置するのに比べてその装置コストを低減することができる。また、排熱発電システムの寿命向上にも寄与することができる。 However, by collecting each high-temperature air from a plurality of incineration processing systems and applying it to the exhaust heat power generation system, the energy recovery can be stabilized as described above, and the exhaust heat power generation system You can take advantage of the economies of scale. For example, by collecting high-temperature air and smoke-washed wastewater from multiple incineration treatment systems and applying them to a single large-scale exhaust heat power generation system, compared to installing multiple exhaust heat power generation systems. The apparatus cost can be reduced. It can also contribute to the improvement of the life of the exhaust heat power generation system.
 各高温空気の集約においては、各焼却処理システムからの排出量を調整する調整手段(調整弁等)が排出経路内に設けられ、コンピュータ制御によりそれらの調整手段が調整されるようになっていてももちろんよい。 In the concentration of each high-temperature air, adjustment means (adjustment valves, etc.) for adjusting the discharge amount from each incineration processing system are provided in the discharge path, and these adjustment means are adjusted by computer control. Of course it is good.
 なお、作動流体との熱交換後の高温空気の温度は一般的にまだ充分高温であり、この高温空気を焼却炉からの排ガスと接触させると充分に白煙防止空気として利用することができる。したがって、この排熱発電方法においては、白煙防止空気としての機能を損なうことなく、高温空気を白煙防止空気として利用するまでの間に作動流体との熱交換を行って効率的なエネルギー回収を実現している。 Note that the temperature of the high-temperature air after heat exchange with the working fluid is generally still sufficiently high, and when this high-temperature air is brought into contact with the exhaust gas from the incinerator, it can be sufficiently utilized as white smoke prevention air. Therefore, in this exhaust heat power generation method, efficient energy recovery is performed by exchanging heat with the working fluid until high-temperature air is used as white smoke prevention air without impairing the function as white smoke prevention air. Is realized.
 本発明の更なる課題又はその他の特徴は、以下添付図面を参照して説明される好ましい実施例によって明らかにされるであろう。 Further problems or other features of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.
 本発明によれば、焼却炉から排出される熱源を有効に利用し、そのエネルギー回収効率を向上させて安定的・効率的に発電を行うことができる。例えば、その焼却炉を備える焼却処理システムからの高温空気を排熱発電システムに複数個所で適用した後に白煙防止空気として利用することにより、従来廃棄されていた熱エネルギーの効率的なエネルギー回収を実現すると共に、白煙防止機能も充分に達成させることができる。 According to the present invention, the heat source discharged from the incinerator can be used effectively, the energy recovery efficiency can be improved, and power generation can be performed stably and efficiently. For example, by applying high-temperature air from an incineration treatment system equipped with the incinerator to the exhaust heat power generation system at multiple locations and then using it as white smoke prevention air, efficient energy recovery of previously discarded thermal energy can be achieved. In addition, the white smoke prevention function can be sufficiently achieved.
 複数の焼却処理システムからの高温空気や洗煙排水を集約して排熱発電システムに適用することにより、焼却処理システムごとの稼動状況の変化の影響を低減し、安定的なエネルギー回収を実現している。また、排熱発電システムに適用する高温空気量と適用しない高温空気量との調整を可能とすることにより、焼却処理システムからの廃熱量の変化や必要発電量に対応して排熱発電システムに適用する高温空気量を変化させることができ、安定的に必要量の発電を適切に行うことができる。 By consolidating high-temperature air and smoke-washed wastewater from multiple incineration treatment systems and applying them to the exhaust heat power generation system, the impact of changes in the operating status of each incineration treatment system is reduced and stable energy recovery is realized. ing. In addition, by adjusting the amount of high-temperature air that is applied to the exhaust heat power generation system and the amount of high-temperature air that is not applicable, the exhaust heat power generation system can be adapted to changes in the amount of waste heat from the incineration system and the required power generation amount. The amount of high-temperature air to be applied can be changed, and the required amount of power generation can be appropriately performed stably.
本発明の実施の形態に係る排熱発電方法を実現する発電システムを含む下水処理プラントの概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a sewage treatment plant including a power generation system that realizes an exhaust heat power generation method according to an embodiment of the present invention. 図1に示す処理システムの内部構成の概略を示すブロック図である。It is a block diagram which shows the outline of an internal structure of the processing system shown in FIG. 図1に示す発電システムの内部構成の概略を示すブロック図である。It is a block diagram which shows the outline of the internal structure of the electric power generation system shown in FIG. 本発明の実施例1に係る発電システムの構成図である。It is a block diagram of the electric power generation system which concerns on Example 1 of this invention. 本発明の比較例1に係る発電システムの構成図である。It is a block diagram of the electric power generation system which concerns on the comparative example 1 of this invention. 本発明の比較例2に係る発電システムの構成図である。It is a block diagram of the electric power generation system which concerns on the comparative example 2 of this invention. 本発明の比較例3に係る発電システムの構成図である。It is a block diagram of the electric power generation system which concerns on the comparative example 3 of this invention. 本発明の比較例4に係る発電システムの構成図である。It is a block diagram of the electric power generation system which concerns on the comparative example 4 of this invention.
 以下、本発明の実施の形態に係る排熱発電方法を実現する排熱発電システムについて、図面を用いて説明する。図1は、本発明の実施の形態に係る下水処理プラント(以下、プラントと略す。)Pの概略構成を示すブロック図である。このプラントPは、複数の焼却処理システムとしての下水処理システム(以下、処理システムと略す。)Sと発電システム(排熱発電システム)Gとを有して構成されている。このプラントPにおいては、処理システムSからの高温空気(白煙防止空気)2と洗煙排水Wとが発電システムGに適用されるようになっている。複数の処理システムSからの各々の高温空気2と各々の洗煙排水Wとは、それぞれ集約されて発電システムGへと適用されるようになっている。 Hereinafter, an exhaust heat power generation system that realizes an exhaust heat power generation method according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of a sewage treatment plant (hereinafter abbreviated as a plant) P according to an embodiment of the present invention. The plant P includes a sewage treatment system (hereinafter abbreviated as a treatment system) S and a power generation system (exhaust heat power generation system) G as a plurality of incineration treatment systems. In the plant P, high-temperature air (white smoke prevention air) 2 and smoke-washed waste water W from the processing system S are applied to the power generation system G. Each high-temperature air 2 and each smoke-washing waste water W from the plurality of processing systems S are aggregated and applied to the power generation system G.
 また、発電システムG内での熱交換を行った後の高温空気2が、発電システムGから白煙防止空気2として各処理システムSの排煙洗浄塔105(図2参照)へと送られるようになっている。更に、発電システムG内で作動流体の冷却に用いた冷却水Cが、洗煙水の一部として各処理システムSの排煙洗浄塔105へと送られるようになっている。 Further, the high-temperature air 2 after heat exchange in the power generation system G is sent from the power generation system G to the flue gas cleaning tower 105 (see FIG. 2) of each processing system S as white smoke prevention air 2. It has become. Further, the cooling water C used for cooling the working fluid in the power generation system G is sent to the flue gas cleaning tower 105 of each processing system S as a part of the smoke cleaning water.
 図2は、処理システムSの内部構成の概略を示すブロック図である。複数の処理システムSは、いずれも大略同様の構成を有しているので、1つの処理システムSの構成について説明し、その他の処理システムSの構成についての説明は省略する。この処理システムSは、焼却炉101、流動空気予熱器102、白煙防止空気予熱器103、集塵機104、排煙洗浄塔105を有して大略構成されている。 FIG. 2 is a block diagram showing an outline of the internal configuration of the processing system S. Since the plurality of processing systems S have almost the same configuration, the configuration of one processing system S will be described, and the description of the configuration of other processing systems S will be omitted. This processing system S is roughly configured to include an incinerator 101, a fluidized air preheater 102, a white smoke prevention air preheater 103, a dust collector 104, and a flue gas cleaning tower 105.
 図2において101は焼却炉であり、この実施形態では下水汚泥脱水ケーキを焼却するための流動焼却炉である。しかし本発明において焼却炉101はこれに限定されるものではなく、ごみ焼却炉であってもよい。その排ガスは通常は800~850℃程度の高温排ガスである。102はこの高温排ガスが導入される流動空気予熱器であり、流動空気を例えば650℃に予熱して炉底部の分散管に供給している。焼却炉101が流動焼却炉でない場合には流動空気予熱器102は省略される。 In FIG. 2, 101 is an incinerator, and in this embodiment, a fluidized incinerator for incinerating a sewage sludge dewatered cake. However, in the present invention, the incinerator 101 is not limited to this, and may be a waste incinerator. The exhaust gas is usually a high temperature exhaust gas of about 800 to 850 ° C. Reference numeral 102 denotes a fluidized air preheater into which this high-temperature exhaust gas is introduced. The fluidized air is preheated to, for example, 650 ° C. and supplied to the dispersion tube at the bottom of the furnace. When the incinerator 101 is not a fluidized incinerator, the fluidized air preheater 102 is omitted.
 流動空気予熱器102の後段には白煙防止空気予熱器103が設置されている。この白煙防止空気予熱器103は煙突から放出される排ガス中の水蒸気が白煙として見えることを防止するための高温空気(白煙防止空気)2を得るための熱交換器であり、約300℃の加熱ガス(白煙防止空気)が得られる。一方、排ガスは白煙防止空気予熱器103を通過すると250~400℃にまで温度が低下し、次の集塵機104に導かれてダストが除去される。 A white smoke prevention air preheater 103 is installed after the flowing air preheater 102. This white smoke prevention air preheater 103 is a heat exchanger for obtaining high-temperature air (white smoke prevention air) 2 for preventing the water vapor in the exhaust gas discharged from the chimney from being seen as white smoke, and is about 300 A heated gas (white smoke prevention air) at 0 ° C. is obtained. On the other hand, when the exhaust gas passes through the white smoke prevention air preheater 103, the temperature is lowered to 250 to 400 ° C., and is led to the next dust collector 104 to remove dust.
 ここで、高温空気(白煙防止空気)2の典型例としては、一般的に空気が考えられるが、もちろんその他の種々の気体を適用しても良い。また、白煙防止空気予熱器103によって加熱され、後述する煙突108に送られる前のものを高温空気と呼び、煙突108に送られて白煙防止機能を発揮するものを白煙防止空気と呼ぶが、両者は実態上同じものであるので、同じ引用符号2を付して説明する。 Here, as a typical example of the high-temperature air (white smoke prevention air) 2, air is generally conceivable, but of course, other various gases may be applied. Also, the air heated by the white smoke prevention air preheater 103 and before being sent to the chimney 108 described later is called high-temperature air, and the air sent to the chimney 108 and exhibiting the white smoke prevention function is called white smoke prevention air. However, since both are the same in practice, the same reference numeral 2 is used for explanation.
 集塵機104はこの実施形態では耐熱性に優れたセラミック集塵機であり、白煙防止空気予熱器103を通過した250~400℃の排ガスをそのまま集塵することができる。しかし集塵機104としてはバグフィルタを使用することもでき、その場合にはその前段に冷却塔を配置してバグフィルタの耐熱温度まで降温することが必要である。集塵機104における排ガスの温度降下は小さく、排ガスは200~400℃で次の排煙洗浄塔105に入る。 In this embodiment, the dust collector 104 is a ceramic dust collector excellent in heat resistance, and can collect the exhaust gas at 250 to 400 ° C. that has passed through the white smoke prevention air preheater 103 as it is. However, a bag filter can also be used as the dust collector 104. In that case, it is necessary to arrange a cooling tower in the preceding stage and to lower the temperature to the heat resistance temperature of the bag filter. The temperature drop of the exhaust gas in the dust collector 104 is small, and the exhaust gas enters the next flue gas cleaning tower 105 at 200 to 400 ° C.
 排煙洗浄塔105は塔の下部から排ガスを導入し、上部のノズル106から散水される水(洗煙水)Wと接触させることによって排ガス中のNOX,SOX等の成分を除去する装置である。従来と同様に、塔内水はポンプ107によりノズル106に送水されて循環使用される。この実施形態の排煙洗浄塔105は塔の上部に煙突108が接続されており、塔内で洗浄された排ガスは煙突108から放出される。なお排煙洗浄塔105と煙突108との中間部分には複数段の棚板部109が形成されており、その上部から給水された清浄水と排ガスとを充分に接触させることにより、水洗が十分に行われるように工夫されている。 The flue gas cleaning tower 105 is an apparatus that removes components such as NOX and SOX in the exhaust gas by introducing the exhaust gas from the lower part of the tower and bringing it into contact with water (smoke water) W sprayed from the upper nozzle 106. . As in the prior art, the water in the tower is sent to the nozzle 106 by the pump 107 and circulated for use. In the exhaust gas cleaning tower 105 of this embodiment, a chimney 108 is connected to the upper part of the tower, and the exhaust gas cleaned in the tower is discharged from the chimney 108. In addition, a multi-stage shelf portion 109 is formed at an intermediate portion between the flue gas cleaning tower 105 and the chimney 108, and washing with water is sufficiently performed by sufficiently bringing the clean water supplied from the upper portion into contact with the exhaust gas. It is devised to be done.
 この排煙洗浄塔105においては排ガスが水と接触するため、200~400℃の排ガスの保有熱の大半は水側に移動し、前記したように排煙洗浄塔105から排出される洗煙排水Wは60~70℃の温水となる。本発明では約300℃の高温空気2の保有熱を利用して排熱発電を行うが、これと共に洗煙排水Wの保有熱をも利用する。 In the flue gas cleaning tower 105, since the exhaust gas comes into contact with water, most of the retained heat of the exhaust gas at 200 to 400 ° C. moves to the water side, and the smoke washing drain discharged from the flue gas cleaning tower 105 as described above. W is warm water of 60-70 ° C. In the present invention, the exhaust heat power generation is performed using the retained heat of the high-temperature air 2 at about 300 ° C., but the retained heat of the smoke washing waste water W is also utilized together with this.
 このため本実施形態においては、後述するように排煙洗浄塔105から出る洗煙排水Wを高温空気2との熱交換(排水用熱交換ステップ、排水用熱交換機能)によって昇温させた上で、排熱発電システムGに供給している。その昇温幅は設備や運転方法によって様々であるが、通常は5~15℃の範囲である。洗煙排水Wとの熱交換後の高温空気2は90℃~100℃程度の温度を保持しているので、煙突108に送られて白煙防止空気2としての本来の機能を発揮することができる。 For this reason, in the present embodiment, as will be described later, the smoke-washed waste water W coming out of the smoke-flushing tower 105 is heated by heat exchange with the high-temperature air 2 (drain heat exchange step, waste heat exchange function). Therefore, it is supplied to the exhaust heat power generation system G. The temperature rise varies depending on the equipment and operation method, but is usually in the range of 5 to 15 ° C. Since the high temperature air 2 after heat exchange with the smoke washing waste water W maintains a temperature of about 90 ° C. to 100 ° C., it can be sent to the chimney 108 to perform its original function as the white smoke prevention air 2 it can.
 なお洗煙排水Wの昇温量を増加させようとすると洗煙排水Wとの熱交換(排水用熱交換ステップ、排水用熱交換機能)後の高温空気2の温度が低下するが、100℃程度まで低下しても、大気温度が20℃、湿度100%の気候条件においては白煙は生じないが、冬場の条件である大気温度が0℃、湿度100%では、白煙が生じる。ただし、白煙の発生について法的規制は無く、冬場でもこの条件となるのは、数日程度である。また、このようにして高温空気2との熱交換によって昇温された洗煙排水Wは70℃~73℃程度の温水となり、排熱発電システムGに供給される。 If the temperature rise of the smoke washing waste water W is increased, the temperature of the high-temperature air 2 after heat exchange with the smoke washing waste water W (the heat exchange step for waste water, the heat exchange function for waste water) decreases, Even if the temperature is reduced to the extent, white smoke is not generated under the climatic conditions where the atmospheric temperature is 20 ° C. and the humidity is 100%, but white smoke is generated when the atmospheric temperature is 0 ° C. and the humidity is 100%. However, there are no legal restrictions on the generation of white smoke, and this condition is only a few days even in winter. Further, the smoke-washed waste water W that has been heated by heat exchange with the high-temperature air 2 in this way becomes warm water of about 70 ° C. to 73 ° C. and is supplied to the exhaust heat power generation system G.
 図3は、発電システムGの内部構成の概略を示すブロック図である。発電システムGとしては、アンモニア、フロン又はアンモニア/水混合流体のような低沸点流体を作動流体Lとする温度差発電システムを用いることが好ましい。このような温度差発電システム自体は、例えば佐賀大学の出願に係る特開平7-91361号公報に記載のように既に知られたものであり、例えば比較的温度の高い表層海水と深層の冷海水との温度差を利用した温度差発電を行うことができるシステムである。 FIG. 3 is a block diagram showing an outline of the internal configuration of the power generation system G. As the power generation system G, it is preferable to use a temperature difference power generation system using a working fluid L as a low boiling point fluid such as ammonia, chlorofluorocarbon or an ammonia / water mixed fluid. Such a temperature difference power generation system itself is already known as described in, for example, Japanese Patent Application Laid-Open No. 7-91361, which is filed by Saga University. For example, surface seawater having relatively high temperature and cold seawater having a deep layer are known. It is a system that can perform temperature difference power generation using the temperature difference between.
 この発電システムGは、図3に示すように、タービン10、発電機11、吸収器12、凝縮器13、循環ポンプ14、再生器15、蒸発器16、加熱器17、分離器18、過熱器(蒸気加熱器)19、減圧弁20を有して大略構成されている。また、この発電システムGは、温度センサ21~24、第1制御手段25、第2制御手段26、第1調整バルブ27、第2調整バルブ28をも有している。なお、作動流体Lは、図3に示すように、加熱冷却を繰り返しながら作動流体経路R内を循環しているので、以下、循環ポンプ14から順に、下流(作動流体の流れる方向)に向けて上記各構成の説明をする。 As shown in FIG. 3, the power generation system G includes a turbine 10, a generator 11, an absorber 12, a condenser 13, a circulation pump 14, a regenerator 15, an evaporator 16, a heater 17, a separator 18, and a superheater. A (steam heater) 19 and a pressure reducing valve 20 are provided for the general configuration. The power generation system G also includes temperature sensors 21 to 24, first control means 25, second control means 26, first adjustment valve 27, and second adjustment valve 28. As shown in FIG. 3, since the working fluid L circulates in the working fluid path R while repeating heating and cooling, the working fluid L is sequentially directed from the circulation pump 14 toward the downstream (the direction in which the working fluid flows). Each of the above configurations will be described.
 循環ポンプ14で送り出された液相の作動流体Lは、再生器15によって予熱され、その後に蒸発器16へと送られる。この蒸発器16が設置されている位置は、作動流体経路R内における第3位置である。この蒸発器16において、作動流体Lと洗煙排水Wとの熱交換が行われ(第3熱交換ステップ、第3熱交換機能)、洗煙排水Wから作動流体Lへの熱移動が行われる。その結果、作動流体Lは内部熱エネルギー状態を高めた気液2相状態となり、次の加熱器17へと送られる。 The liquid-phase working fluid L sent out by the circulation pump 14 is preheated by the regenerator 15 and then sent to the evaporator 16. The position where the evaporator 16 is installed is a third position in the working fluid path R. In the evaporator 16, heat exchange between the working fluid L and the smoke washing waste water W is performed (third heat exchange step, third heat exchange function), and heat transfer from the smoke washing waste water W to the working fluid L is performed. . As a result, the working fluid L becomes a gas-liquid two-phase state in which the internal heat energy state is increased, and is sent to the next heater 17.
 この加熱器17が設置されている位置は、作動流体経路R内における第2位置である。この加熱器17において、作動流体Lと高温空気2との熱交換が行われ(第2熱交換ステップ、第2熱交換機能)、高温空気2から作動流体Lへの熱移動が行われる。その結果、作動流体Lは更に内部熱エネルギー状態を高めた気液2相状態となり、分離器18へと送られる。 The position where the heater 17 is installed is the second position in the working fluid path R. In the heater 17, heat exchange between the working fluid L and the high temperature air 2 is performed (second heat exchange step, second heat exchange function), and heat transfer from the high temperature air 2 to the working fluid L is performed. As a result, the working fluid L becomes a gas-liquid two-phase state in which the internal thermal energy state is further increased, and is sent to the separator 18.
 分離器18は、気液2相状態の作動流体Lを気相と液相とに分離するものである。液相部分の作動流体Lは、再び再生器15へと送られて熱を取られた後、更に減圧弁20を介して吸収器12へと送られるようになっている。一方、気相状態の作動流体Lは、分離器18から過熱器19へと送られる。その過熱器19が設置されている位置は、作動流体経路R内における第1位置である。この過熱器19において、作動流体Lと高温空気2との熱交換が行われ(第1熱交換ステップ、第1熱交換機能)、高温空気2から作動流体Lへの熱移動が行われる。その結果、作動流体Lは更に内部熱エネルギー状態を高めた過熱蒸気となり、タービン10へと送られる。 The separator 18 separates the working fluid L in a gas-liquid two-phase state into a gas phase and a liquid phase. The working fluid L in the liquid phase portion is again sent to the regenerator 15 to take heat, and is further sent to the absorber 12 through the pressure reducing valve 20. On the other hand, the working fluid L in the gas phase is sent from the separator 18 to the superheater 19. The position where the superheater 19 is installed is the first position in the working fluid path R. In the superheater 19, heat exchange between the working fluid L and the high temperature air 2 is performed (first heat exchange step, first heat exchange function), and heat transfer from the high temperature air 2 to the working fluid L is performed. As a result, the working fluid L becomes superheated steam whose internal thermal energy state is further increased and is sent to the turbine 10.
 過熱蒸気状態の作動流体Lは、タービン10を回転させ、タービン10に連結された発電機によって発電を行う。そして、発電の仕事を終えた作動流体Lは、吸収器12へと送られて減圧弁20を介して送られてきた作動流体Lと合流する。この吸収器12は、例えばノズル噴霧式のものが採用されており、減圧弁20からの作動流体L(液相)が発電を終えた作動流体L(気相)に向かって噴霧され、気相の作動流体Lから熱を奪って冷却するようになっている。 The working fluid L in the superheated steam state rotates the turbine 10 and generates power by a generator connected to the turbine 10. Then, the working fluid L that has finished the power generation work is sent to the absorber 12 and merges with the working fluid L sent via the pressure reducing valve 20. The absorber 12 is, for example, a nozzle spray type, and the working fluid L (liquid phase) from the pressure reducing valve 20 is sprayed toward the working fluid L (gas phase) after the power generation, and the gas phase The working fluid L is deprived of heat and cooled.
 その後、凝縮器13へと送られた作動流体Lは、冷却水Cによって冷却されて液相へと戻り、再び循環ポンプ14へと至る。このように、循環ポンプ14によって送られつつ洗煙排水W及び高温空気2によって加熱され、タービン10を回転させた後に冷却水Cによって冷却されて経路R内を循環することにより、作動流体Lは発電を行う。なお、過熱器19は、タービン10よりも上流側であって分離器18よりも下流側の第1位置に設けられ、加熱器17は分離器18よりも上流側の第2位置に設けられ、蒸発器16は加熱器17よりも上流側の第3位置に設けられている。 Thereafter, the working fluid L sent to the condenser 13 is cooled by the cooling water C, returns to the liquid phase, and reaches the circulation pump 14 again. In this way, the working fluid L is heated by the smoke washing waste water W and the high-temperature air 2 while being sent by the circulation pump 14, cooled by the cooling water C after rotating the turbine 10, and circulated in the path R. Generate electricity. The superheater 19 is provided at a first position upstream from the turbine 10 and downstream from the separator 18, and the heater 17 is provided at a second position upstream from the separator 18, The evaporator 16 is provided at a third position upstream of the heater 17.
 処理システムSからの高温空気2は、複数の処理システムSからのものが集約されて(高温空気集約ステップ、高温空気集約機能)、1つにまとめられた状態で発電システムGへと送られる。それにより、処理システムSごとの処理状況の変動の影響を低減し、安定した高温空気2の提供を可能としている。 The high-temperature air 2 from the processing system S is aggregated from the plurality of processing systems S (high-temperature air aggregation step, high-temperature air aggregation function) and sent to the power generation system G in a combined state. Thereby, the influence of the fluctuation | variation of the processing condition for every processing system S is reduced, and the provision of the stable high temperature air 2 is enabled.
 集約された高温空気2は、まず第1位置の過熱器19へと適用されるようになっている。そして、その後に第2位置の加熱器17へと適用され、更にその後に排水加熱器29へと適用されて洗煙排水Wとの熱交換が行われる(排水用熱交換ステップ、排水用熱交換機能)ようになっている。そして、排水用熱交換ステップ完了後の高温空気2は再び処理システムSへと送られて、各処理システムSの排煙洗浄塔105へと適用されて白煙防止空気2として利用されるようになっている。白煙防止空気2は排ガスと接触し(接触ステップ、接触機能)、排ガスの白煙発生を防止する。 The concentrated hot air 2 is first applied to the superheater 19 in the first position. Then, it is applied to the heater 17 at the second position, and then applied to the drainage heater 29 to perform heat exchange with the smoke washing drainage W (drainage heat exchange step, drainage heat exchange). Function). Then, the high-temperature air 2 after completion of the waste heat exchange step is sent to the processing system S again, applied to the flue gas cleaning tower 105 of each processing system S, and used as white smoke prevention air 2. It has become. The white smoke prevention air 2 comes into contact with the exhaust gas (contact step, contact function) and prevents the generation of white smoke in the exhaust gas.
 発電システムGには、高温空気2の過熱器19への適用を回避する(第1熱交換回避ステップ、第1熱交換回避機能)ための過熱器回避経路30が配置され、その経路30上には第1調整バルブ27が設けられている。この第1調整バルブ27は、第1制御手段25からの制御信号に基づき、バルブを開放したり閉鎖したりして、高温空気2を過熱器19へと適用させたり、過熱器回避経路30へと導いて過熱器19への適用を回避させたりするものである。 In the power generation system G, a superheater avoidance path 30 for avoiding application of the high-temperature air 2 to the superheater 19 (first heat exchange avoidance step, first heat exchange avoidance function) is arranged, and on the path 30 Is provided with a first regulating valve 27. The first adjusting valve 27 opens or closes the valve based on a control signal from the first control means 25 to apply the hot air 2 to the superheater 19 or to the superheater avoidance path 30. In other words, the application to the superheater 19 is avoided.
 なお、第1制御手段25は、例えば、コンピュータ、シーケンサ、リレースイッチ等で構成され、温度センサ21,22のセンサ出力を受け取り、それらのセンサ出力に基づき第1調整バルブ27を開閉制御する。なお、温度センサ21は、過熱器19より作動流体経路R上での下流側における作動流体Lの温度t1を計測する(第1作動流体温度計測ステップ、第1作動流体温度計測機能)ためのセンサである。また、温度センサ22は、過熱器19より高温空気2経路上での上流側における高温空気2の温度T1を計測する(第1高温空気温度計測ステップ、第1高温空気温度計測機能)ためのセンサである。 The first control means 25 is composed of, for example, a computer, a sequencer, a relay switch, etc., receives the sensor outputs of the temperature sensors 21 and 22, and controls the opening and closing of the first adjustment valve 27 based on those sensor outputs. The temperature sensor 21 measures the temperature t1 of the working fluid L on the downstream side of the working fluid path R from the superheater 19 (first working fluid temperature measuring step, first working fluid temperature measuring function). It is. The temperature sensor 22 is a sensor for measuring the temperature T1 of the high-temperature air 2 upstream of the superheater 19 on the high-temperature air 2 path (first high-temperature air temperature measurement step, first high-temperature air temperature measurement function). It is.
 より具体的には、第1制御手段25は、温度センサ22による計測温度T1と温度センサ21による計測温度t1との温度差分に基づいて過熱器19に適用する高温空気2のガス量と過熱器19への適用を回避する高温空気2のガス量との配分を、第1調整バルブ27の開閉制御によって調整する。このとき、温度T1と温度t1との温度差分(T1-t1)が小さいときは第1調整バルブ27を開放し、なるべく多くの高温空気2が過熱器回避経路30を通過するようにし、温度T1と温度t1との温度差分(T1-t1)が大きいときは第1調整バルブ27を閉鎖し、なるべく多くの高温空気2が過熱器19を通過するように制御する。 More specifically, the first control means 25 determines the amount of gas of the high-temperature air 2 applied to the superheater 19 based on the temperature difference between the measured temperature T1 measured by the temperature sensor 22 and the measured temperature t1 measured by the temperature sensor 21, and the superheater. The distribution of the gas amount of the high-temperature air 2 that avoids the application to 19 is adjusted by the opening / closing control of the first adjustment valve 27. At this time, when the temperature difference (T1-t1) between the temperature T1 and the temperature t1 is small, the first regulating valve 27 is opened so that as much hot air 2 as possible passes through the superheater avoidance path 30, and the temperature T1 When the temperature difference (T1−t1) between the temperature t1 and the temperature t1 is large, the first adjustment valve 27 is closed, and control is performed so that as much hot air 2 as possible passes through the superheater 19.
 発電システムGには、高温空気2の加熱器17への適用を回避する(第2熱交換回避ステップ、第2熱交換回避機能)ための加熱器回避経路31が配置され、その経路31上には第2調整バルブ28が設けられている。この第2調整バルブ28は、第2制御手段26からの制御信号に基づき、バルブを開放したり閉鎖したりして、高温空気2を加熱器17へと適用させたり、加熱器回避経路31へと導いて加熱器17への適用を回避させたりするものである。 In the power generation system G, a heater avoidance path 31 for avoiding application of the high-temperature air 2 to the heater 17 (second heat exchange avoidance step, second heat exchange avoidance function) is disposed. Is provided with a second regulating valve 28. The second adjustment valve 28 opens or closes the valve based on a control signal from the second control means 26 to apply the high temperature air 2 to the heater 17 or to the heater avoidance path 31. To avoid application to the heater 17.
 なお、第2制御手段26は、例えば、コンピュータ、シーケンサ、リレースイッチ等で構成され、温度センサ23,24のセンサ出力を受け取り、それらのセンサ出力に基づき第2調整バルブ28を開閉制御する。なお、温度センサ23は、加熱器17より作動流体経路R上での下流側における作動流体Lの温度t2を計測する(第2作動流体温度計測ステップ、第2作動流体温度計測機能)ためのセンサである。また、温度センサ24は、加熱器17より高温空気2経路上での上流側(かつ、過熱器19より下流側)における高温空気2の温度T2を計測する(第2高温空気温度計測ステップ、第2高温空気温度計測機能)ためのセンサである。 The second control means 26 is composed of, for example, a computer, a sequencer, a relay switch, etc., receives the sensor outputs of the temperature sensors 23 and 24, and controls the opening and closing of the second adjustment valve 28 based on those sensor outputs. The temperature sensor 23 measures the temperature t2 of the working fluid L on the downstream side of the working fluid path R from the heater 17 (second working fluid temperature measuring step, second working fluid temperature measuring function). It is. The temperature sensor 24 measures the temperature T2 of the high temperature air 2 on the upstream side (and downstream side of the superheater 19) on the high temperature air 2 path from the heater 17 (second high temperature air temperature measurement step, 2 high temperature air temperature measuring function).
 より具体的には、第2制御手段26は、温度センサ24による計測温度T2と温度センサ23による計測温度t2との温度差分に基づいて加熱器17に適用する高温空気2のガス量と加熱器17への適用を回避する高温空気2のガス量との配分を、第2調整バルブ28の開閉制御によって調整する。このとき、温度T2と温度t2との温度差分(T2-t2)が小さいときは第2調整バルブ28を開放し、なるべく多くの高温空気2が加熱器回避経路31を通過するようにし、温度T2と温度t2との温度差分(T2-t2)が大きいときは第2調整バルブ28を閉鎖し、なるべく多くの高温空気2が加熱器17を通過するように制御する。 More specifically, the second control means 26 determines the amount of gas of the high-temperature air 2 applied to the heater 17 based on the temperature difference between the measured temperature T2 measured by the temperature sensor 24 and the measured temperature t2 measured by the temperature sensor 23, and the heater. The distribution of the gas amount of the high-temperature air 2 that avoids application to 17 is adjusted by opening / closing control of the second adjustment valve 28. At this time, when the temperature difference (T2−t2) between the temperature T2 and the temperature t2 is small, the second adjustment valve 28 is opened so that as much hot air 2 as possible passes through the heater avoidance path 31, and the temperature T2 When the temperature difference (T2−t2) between the temperature t2 and the temperature t2 is large, the second regulating valve 28 is closed and control is performed so that as much hot air 2 as possible passes through the heater 17.
 処理システムSからの洗煙排水Wは、複数の処理システムSからのものが集約されて(洗煙排水集約ステップ、洗煙排水集約機能)、1つにまとめられた状態で発電システムGへと送られる。それにより、処理システムSごとの処理状況の変動の影響を低減し、安定した洗煙排水Wの提供を可能としている。 Smoke washing wastewater W from the treatment system S is aggregated from a plurality of treatment systems S (smoke wash drainage concentration step, smoke wash drainage concentration function) into the power generation system G in a combined state. Sent. Thereby, the influence of the fluctuation | variation of the processing condition for every processing system S is reduced, and the provision of the stable smoke washing waste water W is enabled.
 集約された洗煙排水Wは、排水加熱器29において第2熱交換ステップ又は第2熱交換回避ステップ後の高温空気2と熱交換が行われる(排水用熱交換ステップ、排水用熱交換機能)ようになっている。そして、その後に洗煙排水Wが第3位置の蒸発器16へと適用され、作動流体Lとの熱交換が行われる(第3熱交換ステップ、第3熱交換機能)ようになっている。 The collected smoke washing waste water W is subjected to heat exchange with the high-temperature air 2 after the second heat exchange step or the second heat exchange avoidance step in the waste water heater 29 (drain heat exchange step, drain heat exchange function). It is like that. Then, the smoke washing waste water W is applied to the evaporator 16 at the third position, and heat exchange with the working fluid L is performed (third heat exchange step, third heat exchange function).
 低温熱源である冷却水Cとしては常温の水を用いることができる。凝縮器13に適用する冷却水Cは清浄水であり、凝縮器13後に処理システムSの排煙洗浄塔105の上部に給水することにより、その使用水量を抑制することができる。冷却水Cを洗煙排水Wとして再利用しているので、システム全体としての節水に寄与し、環境適性の向上に貢献している。なお冷却水Cも凝縮器13により加温されることとなるため、排煙洗浄塔105への給水に利用すれば塔内温度の上昇に寄与し、洗煙排水Wの温度を高める効果がある。 Normal temperature water can be used as the cooling water C which is a low-temperature heat source. The cooling water C applied to the condenser 13 is clean water. By supplying water to the upper part of the flue gas cleaning tower 105 of the processing system S after the condenser 13, the amount of water used can be suppressed. Since the cooling water C is reused as the smoke washing waste water W, it contributes to water saving as a whole system and contributes to improvement of environmental suitability. Since the cooling water C is also heated by the condenser 13, if it is used for water supply to the flue gas cleaning tower 105, it contributes to an increase in the temperature in the tower and has an effect of increasing the temperature of the smoke washing waste water W. .
[実施例1]
 図4に示す構成の発電システムGにおける発電量(タービン出力)を、シミュレーション計算により見積った。計算条件は以下の通りである。なお、本実施例1においては、図4に示す作動流体経路R上での各位置r1~r10で、作動流体Lの温度T、圧力p、密度指標値ρ、アンモニア/水比率Y、エントロピーs及びエンタルピーHを見積もった。演算結果を表1に示す。ここで、密度指標値とは、密度(kg/m)の逆数を意味する。
[Example 1]
The power generation amount (turbine output) in the power generation system G having the configuration shown in FIG. 4 was estimated by simulation calculation. The calculation conditions are as follows. In the first embodiment, the temperature T, the pressure p, the density index value ρ, the ammonia / water ratio Y, the entropy s of the working fluid L at each position r1 to r10 on the working fluid path R shown in FIG. And the enthalpy H was estimated. The calculation results are shown in Table 1. Here, the density index value means the reciprocal of the density (kg / m 3 ).
 <計算条件>
 ・高温空気2:
  -流量:9300m/h
  -位置g1における温度:300℃
  -位置g2における温度:170℃
  -位置g3における温度:150℃
  -位置g4における温度:100℃
 ・洗煙排水W:
  -流量:53m/h
  -位置w1における温度:70℃
  -位置w2における温度:60℃
  -位置w3における温度:73℃
 ・冷却水C:
  -位置c1における温度:20℃
  -位置c2における温度:25℃
 ・作動流体L:
  -成分:アンモニア/水比=0.95
<Calculation conditions>
-Hot air 2:
-Flow rate: 9300 m 3 / h
-Temperature at position g1: 300 ° C
The temperature at position g2: 170 ° C.
-Temperature at position g3: 150 ° C
-Temperature at position g4: 100 ° C
-Smoke drainage W:
-Flow rate: 53m 3 / h
-Temperature at position w1: 70 ° C
-Temperature at position w2: 60 ° C
The temperature at position w3: 73 ° C.
・ Cooling water C:
-Temperature at position c1: 20 ° C
The temperature at position c2: 25 ° C.
・ Working fluid L:
-Component: ammonia / water ratio = 0.95
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[比較例1]
 図5に示す構成の発電システムGにおける発電量(タービン出力)を、シミュレーション計算により見積った。本比較例1においては高温空気2を発電システムGに適用していないが、洗煙排水W(位置w1,w2における温度)、冷却水C(位置c1,c2における温度)及び作動流体Lに関する計算条件は実施例1と同様である。なお、本比較例1においては、図5に示す作動流体経路R上での各位置r1~r10で、作動流体Lの温度、圧力及び密度を見積もった。演算結果を表2に示す。ここで、密度指標値とは、密度(kg/m)の逆数を意味する。
[Comparative Example 1]
The power generation amount (turbine output) in the power generation system G configured as shown in FIG. 5 was estimated by simulation calculation. In this comparative example 1, high-temperature air 2 is not applied to the power generation system G. The conditions are the same as in Example 1. In Comparative Example 1, the temperature, pressure, and density of the working fluid L were estimated at the respective positions r1 to r10 on the working fluid path R shown in FIG. Table 2 shows the calculation results. Here, the density index value means the reciprocal of the density (kg / m 3 ).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[比較例2]
 図6に示す構成の発電システムGにおける発電量(タービン出力)を、シミュレーション計算により見積った。高温空気2に関する計算条件は以下の通りである。洗煙排水W(位置w1,w2における温度)、冷却水C(位置c1,c2における温度)及び作動流体Lに関する計算条件は実施例1と同様である。なお、本比較例2においては、図6に示す作動流体経路R上での各位置r1~r10で、作動流体Lの温度、圧力及び密度を見積もった。演算結果を表3に示す。ここで、密度指標値とは、密度(kg/m)の逆数を意味する。
[Comparative Example 2]
The power generation amount (turbine output) in the power generation system G configured as shown in FIG. 6 was estimated by simulation calculation. The calculation conditions for the hot air 2 are as follows. The calculation conditions regarding the smoke-washing waste water W (temperature at the positions w1 and w2), the cooling water C (temperature at the positions c1 and c2) and the working fluid L are the same as those in the first embodiment. In Comparative Example 2, the temperature, pressure, and density of the working fluid L were estimated at each position r1 to r10 on the working fluid path R shown in FIG. Table 3 shows the calculation results. Here, the density index value means the reciprocal of the density (kg / m 3 ).
<計算条件>
 ・高温空気2:
  -流量:9300m/h
  -位置g1における温度:300℃
  -位置g2における温度:100℃
<Calculation conditions>
-Hot air 2:
-Flow rate: 9300 m 3 / h
-Temperature at position g1: 300 ° C
The temperature at position g2: 100 ° C.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[比較例3]
 図7に示す構成の発電システムGにおける発電量(タービン出力)を、シミュレーション計算により見積った。高温空気2に関する計算条件は以下の通りである。洗煙排水W(位置w1,w2における温度)、冷却水C(位置c1,c2における温度)及び作動流体Lに関する計算条件は実施例1と同様である。なお、本比較例3においては、図7に示す作動流体経路R上での各位置r1~r10で、作動流体Lの温度、圧力及び密度を見積もった。演算結果を表4に示す。ここで、密度指標値とは、密度(kg/m)の逆数を意味する。
[Comparative Example 3]
The power generation amount (turbine output) in the power generation system G having the configuration shown in FIG. 7 was estimated by simulation calculation. The calculation conditions for the hot air 2 are as follows. The calculation conditions regarding the smoke-washing waste water W (temperature at the positions w1 and w2), the cooling water C (temperature at the positions c1 and c2) and the working fluid L are the same as those in the first embodiment. In Comparative Example 3, the temperature, pressure, and density of the working fluid L were estimated at the respective positions r1 to r10 on the working fluid path R shown in FIG. Table 4 shows the calculation results. Here, the density index value means the reciprocal of the density (kg / m 3 ).
<計算条件>
 ・高温空気2:
  -流量:9300m/h
  -位置g1における温度:300℃
  -位置g2における温度:100℃
<Calculation conditions>
-Hot air 2:
-Flow rate: 9300 m 3 / h
-Temperature at position g1: 300 ° C
The temperature at position g2: 100 ° C.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[比較例4]
 図8に示す構成の発電システムGにおける発電量(タービン出力)を、シミュレーション計算により見積った。高温空気2に関する計算条件は以下の通りである。洗煙排水W(位置w1,w2における温度)、冷却水C(位置c1,c2における温度)及び作動流体Lに関する計算条件は実施例1と同様である。なお、本比較例4においては、図8に示す作動流体経路R上での各位置r1~r10で、作動流体Lの温度、圧力及び密度を見積もった。演算結果を表5に示す。ここで、密度指標値とは、密度(kg/m)の逆数を意味する。
[Comparative Example 4]
The power generation amount (turbine output) in the power generation system G configured as shown in FIG. 8 was estimated by simulation calculation. The calculation conditions for the hot air 2 are as follows. The calculation conditions regarding the smoke-washing waste water W (temperature at the positions w1 and w2), the cooling water C (temperature at the positions c1 and c2) and the working fluid L are the same as those in the first embodiment. In Comparative Example 4, the temperature, pressure and density of the working fluid L were estimated at the respective positions r1 to r10 on the working fluid path R shown in FIG. Table 5 shows the calculation results. Here, the density index value means the reciprocal of the density (kg / m 3 ).
<計算条件>
 ・高温空気2:
  -流量:9300m/h 
  -位置g1における温度:300℃
  -位置g2における温度:170℃
  -位置g3における温度:100℃
<Calculation conditions>
-Hot air 2:
-Flow rate: 9300 m 3 / h
-Temperature at position g1: 300 ° C
The temperature at position g2: 170 ° C.
-Temperature at position g3: 100 ° C
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記に示すように、本発明の実施例1に係る発電システムG(高温空気2を分離器18下流の第1位置、分離器18上流の第2位置に適用して作動流体Lと熱交換し、その後の高温空気2を洗煙排水Wに適用して洗煙排水Wと熱交換し、更にその後の洗煙排水Wを第2位置より上流の第3位置に適用して作動流体Lと熱交換する構成のもの。)によれば、発電効率を著しく向上させることができる。そのタービン出力(発電量)は、比較例1に対して181%向上、比較例2に対して29%向上、比較例3に対して26%向上、比較例4に対して0.6%向上している。 As described above, the power generation system G according to the first embodiment of the present invention (hot air 2 is applied to the first position downstream of the separator 18 and the second position upstream of the separator 18 to exchange heat with the working fluid L. Then, the high-temperature air 2 is applied to the smoke washing waste water W to exchange heat with the smoke washing waste water W, and the subsequent smoke washing waste water W is applied to the third position upstream from the second position to apply the working fluid L and heat. According to the replacement configuration, the power generation efficiency can be significantly improved. The turbine output (power generation amount) is 181% higher than Comparative Example 1, 29% higher than Comparative Example 2, 26% higher than Comparative Example 3, and 0.6% higher than Comparative Example 4. is doing.
 以上、本発明の好ましい実施の形態を説明したが、本発明はこれらに限定されるものではなく、その要旨の範囲内で様々な変形や変更が可能である。例えば、発電に用いる保有熱として、焼却炉から排出される排ガス保有熱の代わりに、工場排熱や温泉熱なども利用可能である。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist. For example, as the retained heat used for power generation, factory exhaust heat or hot spring heat can be used instead of the exhaust gas retained heat discharged from the incinerator.
C:冷却水
G:発電システム(排熱発電システム)
L:作動流体
P:プラント(下水処理プラント)
R:作動流体経路
S:処理システム(下水処理システム、焼却処理システム)
W:水(洗煙水、洗煙排水)
2:高温空気(白煙防止空気)
10:タービン
11:発電機
12:吸収器
13:凝縮器
14:循環ポンプ
15:再生器
16:蒸発器
17:加熱器
18:分離器
19:過熱器(蒸気加熱器)
20:減圧弁
21~24:温度センサ
25:第1制御手段
26:第2制御手段
27:第1調整バルブ
28:第2調整バルブ
29:排水加熱器
30:過熱器回避経路
31:加熱器回避経路
101 焼却炉
102 流動空気予熱器
103 白煙防止空気予熱器
104 集塵機
105 排煙洗浄塔
106 ノズル
107 ポンプ
108 煙突
109 棚板部
C: Cooling water G: Power generation system (exhaust heat power generation system)
L: Working fluid P: Plant (sewage treatment plant)
R: Working fluid path S: Treatment system (sewage treatment system, incineration treatment system)
W: Water (smoke wash water, smoke wash drain)
2: High temperature air (white smoke prevention air)
10: turbine 11: generator 12: absorber 13: condenser 14: circulation pump 15: regenerator 16: evaporator 17: heater 18: separator 19: superheater (steam heater)
20: Pressure reducing valve 21 to 24: Temperature sensor 25: First control means 26: Second control means 27: First adjustment valve 28: Second adjustment valve 29: Drain heater 30: Superheater avoidance path 31: Heater avoidance Path 101 Incinerator 102 Fluid air preheater 103 White smoke prevention air preheater 104 Dust collector 105 Smoke exhaust cleaning tower 106 Nozzle 107 Pump 108 Chimney 109 Shelf

Claims (10)

  1.  焼却処理システムが備える焼却炉から排出される排ガスによって加熱された高温空気を、作動流体によってタービンを回転させて発電を行う排熱発電システムにおける作動流体経路上での該タービンより上流側であって分離器より下流側の第1位置に適用することにより、前記第1位置における高温空気と前記作動流体との熱交換を行う第1熱交換ステップと、
     前記第1位置での熱交換後の前記高温空気を、前記作動流体経路上での前記分離器より上流側の第2位置に適用することにより、前記第2位置における前記高温空気と前記作動流体との熱交換を行う第2熱交換ステップと、
     前記排ガスを洗浄した後に前記焼却処理システムから排出される洗煙排水と前記第2位置における熱交換後の前記高温空気との熱交換を行う排水用熱交換ステップと、
     前記高温空気との熱交換後の前記洗煙排水を、前記作動流体経路上での前記第2位置より上流側の第3位置に適用することにより、前記第3位置における前記洗煙排水と前記作動流体との熱交換を行う第3熱交換ステップと、
     前記洗煙排水との熱交換後の前記高温空気を、白煙防止空気として前記排ガスと接触させる接触ステップと、を有する排熱発電方法。
    The high-temperature air heated by the exhaust gas discharged from the incinerator included in the incineration processing system is upstream of the turbine on the working fluid path in the exhaust heat power generation system that generates power by rotating the turbine with the working fluid. A first heat exchanging step for exchanging heat between the hot air at the first position and the working fluid by applying to a first position downstream of the separator;
    The hot air after the heat exchange at the first position is applied to the second position upstream of the separator on the working fluid path, so that the hot air and the working fluid at the second position are A second heat exchange step for exchanging heat with
    A waste water heat exchange step for performing heat exchange between the smoke washed waste water discharged from the incineration processing system after washing the exhaust gas and the high temperature air after heat exchange in the second position;
    By applying the smoke-washed waste water after heat exchange with the high-temperature air to a third position upstream of the second position on the working fluid path, the smoke-washed waste water at the third position and the A third heat exchange step for exchanging heat with the working fluid;
    And a contact step of bringing the high-temperature air after heat exchange with the smoke-washing wastewater into contact with the exhaust gas as white smoke prevention air.
  2.  複数の前記焼却処理システムからの前記各高温空気を、前記第1位置における熱交換の前に前記複数の焼却処理システムに亘って集約するステップと、
     前記複数の焼却処理システムからの前記各洗煙排水を、前記高温空気との熱交換の前に前記複数の焼却処理システムに亘って集約するステップと、を更に有する請求項1に記載の排熱発電方法。
    Concentrating the high temperature air from a plurality of the incineration treatment systems across the plurality of incineration treatment systems prior to heat exchange at the first location;
    The exhaust heat according to claim 1, further comprising the step of consolidating the smoke effluent from the plurality of incineration processing systems over the plurality of incineration processing systems before heat exchange with the high temperature air. Power generation method.
  3.  前記高温空気を、前記第1位置に適用することなく前記第1位置における熱交換後の前記高温空気と合流させる第1熱交換回避ステップと、
     前記合流後の高温空気を、前記第2位置に適用することなく前記第2位置における熱交換後の前記高温空気と合流させる第2熱交換回避ステップと、を更に有する請求項1又は請求項2に記載の排熱発電方法。
    A first heat exchange avoidance step of joining the high temperature air with the high temperature air after heat exchange at the first position without applying the high temperature air to the first position;
    The second heat exchange avoiding step of joining the high-temperature air after the merging with the high-temperature air after the heat exchange at the second position without applying to the second position. The exhaust heat power generation method described in 1.
  4.  前記第1位置における熱交換後の前記作動流体の第1作動流体温度を計測するステップと、
     前記第1位置における熱交換前の前記高温空気の第1高温空気温度を計測するステップと、
     前記第1高温空気温度と前記第1作動流体温度との差分に基づいて前記第1位置に適用する前記高温空気量と前記第1位置への適用を回避する前記高温空気量との配分を調整する第1調整ステップと、
     前記第2位置における熱交換後の前記作動流体の第2作動流体温度を計測するステップと、
     前記第2位置における熱交換前の前記高温空気の第2高温空気温度を計測するステップと、
     前記第2高温空気温度と前記第2作動流体温度との差分に基づいて前記第2位置に適用する前記高温空気量と前記第2位置への適用を回避する前記高温空気量との配分を調整する第2調整ステップと、を更に有する請求項1から請求項3のうちいずれか1項に記載の排熱発電方法。
    Measuring a first working fluid temperature of the working fluid after heat exchange at the first position;
    Measuring a first hot air temperature of the hot air before heat exchange at the first position;
    Based on the difference between the first high-temperature air temperature and the first working fluid temperature, the distribution of the high-temperature air amount applied to the first position and the high-temperature air amount avoiding application to the first position is adjusted. A first adjusting step,
    Measuring a second working fluid temperature of the working fluid after heat exchange at the second position;
    Measuring a second hot air temperature of the hot air before heat exchange at the second position;
    Based on the difference between the second high temperature air temperature and the second working fluid temperature, the distribution of the high temperature air amount applied to the second position and the high temperature air amount avoiding application to the second position is adjusted. The exhaust heat power generation method according to any one of claims 1 to 3, further comprising: a second adjustment step.
  5.  複数の焼却処理システムが備える複数の焼却炉から各々排出される排ガスによって加熱された各高温空気を前記複数の焼却処理システムに亘って集約するステップと、
     該集約後の高温空気を、作動流体によってタービンを回転させて発電を行う排熱発電システムにおける作動流体経路上での該タービンより上流側の第1位置に適用することにより、前記第1位置における高温空気と前記作動流体との熱交換を行う第1熱交換ステップと、
     前記第1位置での熱交換後の前記高温空気を、白煙防止空気として前記排ガスと接触させる接触ステップと、を有する排熱発電方法。
    Aggregating each high temperature air heated by the exhaust gas discharged from each of the plurality of incinerators included in the plurality of incineration systems over the plurality of incineration systems;
    By applying the aggregated high temperature air to the first position upstream of the turbine on the working fluid path in the exhaust heat power generation system that generates power by rotating the turbine with the working fluid, the first position A first heat exchanging step for exchanging heat between the hot air and the working fluid;
    And a contact step of bringing the high-temperature air after heat exchange at the first position into contact with the exhaust gas as white smoke prevention air.
  6.  前記第1位置が前記排熱発電システムにおける分離器よりも下流側である場合に、
     前記第1熱交換ステップ後であってかつ前記接触ステップ前の前記高温空気を、前記作動流体経路上での前記分離器より上流側の第2位置に適用することにより、前記第2位置における前記高温空気と前記作動流体との熱交換を行う第2熱交換ステップを、更に有する請求項5に記載の排熱発電方法。
    When the first position is downstream of the separator in the exhaust heat power generation system,
    Applying the hot air after the first heat exchanging step and before the contacting step to a second position upstream of the separator on the working fluid path; The exhaust heat power generation method according to claim 5, further comprising a second heat exchange step for performing heat exchange between the high-temperature air and the working fluid.
  7.  前記タービンを回転させた後の前記作動流体を冷却するために、前記作動流体経路上での前記タービンより下流側の位置に冷却水を適用するステップと、
     該作動流体冷却後の冷却水を、洗煙水として前記排ガスと接触させるステップと、を更に有する請求項1から請求項6のうちいずれか1項に記載の排熱発電方法。
    Applying cooling water to a position downstream of the turbine on the working fluid path to cool the working fluid after rotating the turbine;
    The exhaust heat power generation method according to any one of claims 1 to 6, further comprising a step of bringing the cooling water after cooling the working fluid into contact with the exhaust gas as smoke wash water.
  8.  前記作動流体が、アンモニア、フロン又はアンモニア/水混合流体のうちいずれかである請求項1から請求項7のうちいずれか1項に記載の排熱発電方法。 The exhaust heat power generation method according to any one of claims 1 to 7, wherein the working fluid is any one of ammonia, chlorofluorocarbon, and an ammonia / water mixed fluid.
  9.  作動流体によってタービンを回転させて発電を行う排熱発電システムであって、
     焼却処理システムが備える焼却炉から排出される排ガスによって加熱された高温空気を、前記作動流体経路上での前記タービンより上流側であって分離器より下流側の第1位置に適用することにより、前記第1位置における高温空気と前記作動流体との熱交換を行う第1熱交換機能と、
     前記第1位置での熱交換後の前記高温空気を、前記作動流体経路上での前記分離器より上流側の第2位置に適用することにより、前記第2位置における前記高温空気と前記作動流体との熱交換を行う第2熱交換機能と、
     前記排ガスを洗浄した後に前記焼却処理システムから排出される洗煙排水と前記第2位置における熱交換後の前記高温空気との熱交換を行う排水用熱交換機能と、
     前記高温空気との熱交換後の前記洗煙排水を、前記作動流体経路上での前記第2位置より上流側の第3位置に適用することにより、前記第3位置における前記洗煙排水と前記作動流体との熱交換を行う第3熱交換機能と、
     前記洗煙排水との熱交換後の前記高温空気を、白煙防止空気として前記排ガスと接触させる接触機能と、を有する排熱発電システム。
    An exhaust heat power generation system that generates power by rotating a turbine with a working fluid,
    By applying the high temperature air heated by the exhaust gas discharged from the incinerator included in the incineration processing system to the first position on the working fluid path upstream from the turbine and downstream from the separator, A first heat exchange function for exchanging heat between the hot air and the working fluid in the first position;
    The hot air after the heat exchange at the first position is applied to the second position upstream of the separator on the working fluid path, so that the hot air and the working fluid at the second position are A second heat exchange function for exchanging heat with
    A heat exchange function for drainage that performs heat exchange between the smoke-washed wastewater discharged from the incineration processing system after washing the exhaust gas and the high-temperature air after heat exchange in the second position;
    By applying the smoke-washed waste water after heat exchange with the high-temperature air to a third position upstream of the second position on the working fluid path, the smoke-washed waste water at the third position and the A third heat exchange function for exchanging heat with the working fluid;
    A waste heat power generation system having a contact function for bringing the high-temperature air after heat exchange with the smoke washing waste water into contact with the exhaust gas as white smoke prevention air.
  10.  作動流体によってタービンを回転させて発電を行う排熱発電システムであって、
     複数の焼却処理システムが備える複数の焼却炉から各々排出される排ガスによって加熱された各高温空気を前記複数の焼却処理システムに亘って集約する機能と、
     該集約後の高温空気を、前記作動流体経路上での前記タービンより上流側の第1位置に適用することにより、前記第1位置における高温空気と前記作動流体との熱交換を行う第1熱交換機能と、
     前記第1位置での熱交換後の前記高温空気を、白煙防止空気として前記排ガスと接触させる接触機能と、を有する排熱発電システム。
    An exhaust heat power generation system that generates power by rotating a turbine with a working fluid,
    A function of consolidating each high-temperature air heated by the exhaust gas discharged from each of the plurality of incinerators included in the plurality of incineration systems over the plurality of incineration systems;
    By applying the aggregated high temperature air to the first position upstream of the turbine on the working fluid path, the first heat for exchanging heat between the high temperature air and the working fluid at the first position. Exchange function,
    A waste heat power generation system comprising: a contact function for bringing the high-temperature air after heat exchange at the first position into contact with the exhaust gas as white smoke prevention air.
PCT/JP2011/001009 2010-02-24 2011-02-23 Method for generating power from exhaust heat and system for generating power from exhaust heat WO2011105064A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180010772.8A CN102770709B (en) 2010-02-24 2011-02-23 Method for generating power from exhaust heat and system for generating power from exhaust heat
KR1020127024894A KR101674705B1 (en) 2010-02-24 2011-02-23 Method for generating power from exhaust heat and system for generating power from exhaust heat
HK13104123.7A HK1176988A1 (en) 2010-02-24 2013-04-03 Method for generating power from exhaust heat and system for generating power from exhaust heat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010038561A JP5457880B2 (en) 2010-02-24 2010-02-24 Waste heat power generation method and waste heat power generation system
JP2010-038561 2010-02-24

Publications (1)

Publication Number Publication Date
WO2011105064A1 true WO2011105064A1 (en) 2011-09-01

Family

ID=44506494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001009 WO2011105064A1 (en) 2010-02-24 2011-02-23 Method for generating power from exhaust heat and system for generating power from exhaust heat

Country Status (5)

Country Link
JP (1) JP5457880B2 (en)
KR (1) KR101674705B1 (en)
CN (1) CN102770709B (en)
HK (1) HK1176988A1 (en)
WO (1) WO2011105064A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100726A (en) * 2011-11-07 2013-05-23 Metawater Co Ltd Residual heat low boiling point electric power generation system
JP2013209328A (en) * 2012-03-30 2013-10-10 Nippon Shokubai Co Ltd Method for recovering heat from production process of ethylene oxide
JP5531250B1 (en) * 2013-03-15 2014-06-25 メタウォーター株式会社 Binary power generation system
WO2014141719A1 (en) * 2013-03-15 2014-09-18 メタウォーター株式会社 Binary power generating system
JP2014181697A (en) * 2014-02-17 2014-09-29 Metawater Co Ltd Binary power generation system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5800295B2 (en) * 2011-08-19 2015-10-28 国立大学法人佐賀大学 Steam power cycle system
JP6334270B2 (en) * 2013-05-31 2018-05-30 メタウォーター株式会社 Control method for organic waste combustion plant.
CN105386803B (en) * 2015-12-08 2017-03-22 中船重工重庆智能装备工程设计有限公司 Low-grade waste heat power generation system capable of achieving gas-liquid hybrid recycling and control method
CN107448965A (en) * 2017-07-14 2017-12-08 兰州理工大学 A kind of Novel incineration furnace fume afterheat depth recovery and energy level lifting process system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425348A (en) * 1977-07-27 1979-02-26 Ishikawajima Harima Heavy Ind Co Ltd Power generating process by using water heat energy
JPH0932513A (en) * 1995-07-13 1997-02-04 Ngk Insulators Ltd Exhaust washing waste water power generation system
JPH1136821A (en) * 1997-07-24 1999-02-09 Ebara Corp Cogeneration system using waste as fuel
JPH1182917A (en) * 1997-08-29 1999-03-26 Nkk Corp Waste heat boiler for waste incinerator
JP2002061801A (en) * 2000-08-21 2002-02-28 Kubota Corp Method of stop control for incinerator
JP2004225951A (en) * 2003-01-21 2004-08-12 Jfe Engineering Kk Waste heat recovering device for exhaust gas and its operating method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105304A (en) * 1994-01-31 1996-04-23 Yoshihide Nakamura Double current cycle plant
JPH09310606A (en) 1996-05-20 1997-12-02 Hitachi Ltd Power generation system using waste
US6381962B1 (en) * 1997-10-14 2002-05-07 Ebara Corporation Method and apparatus for generating electric power by combusting wastes
JP2001065840A (en) * 1999-08-31 2001-03-16 Mitsubishi Heavy Ind Ltd Combustion gas processing method in refuse incinerator equipment
JP2005321131A (en) 2004-05-07 2005-11-17 Sanki Eng Co Ltd Sludge incinerating system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425348A (en) * 1977-07-27 1979-02-26 Ishikawajima Harima Heavy Ind Co Ltd Power generating process by using water heat energy
JPH0932513A (en) * 1995-07-13 1997-02-04 Ngk Insulators Ltd Exhaust washing waste water power generation system
JPH1136821A (en) * 1997-07-24 1999-02-09 Ebara Corp Cogeneration system using waste as fuel
JPH1182917A (en) * 1997-08-29 1999-03-26 Nkk Corp Waste heat boiler for waste incinerator
JP2002061801A (en) * 2000-08-21 2002-02-28 Kubota Corp Method of stop control for incinerator
JP2004225951A (en) * 2003-01-21 2004-08-12 Jfe Engineering Kk Waste heat recovering device for exhaust gas and its operating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100726A (en) * 2011-11-07 2013-05-23 Metawater Co Ltd Residual heat low boiling point electric power generation system
JP2013209328A (en) * 2012-03-30 2013-10-10 Nippon Shokubai Co Ltd Method for recovering heat from production process of ethylene oxide
JP5531250B1 (en) * 2013-03-15 2014-06-25 メタウォーター株式会社 Binary power generation system
WO2014141719A1 (en) * 2013-03-15 2014-09-18 メタウォーター株式会社 Binary power generating system
JP2014181697A (en) * 2014-02-17 2014-09-29 Metawater Co Ltd Binary power generation system

Also Published As

Publication number Publication date
HK1176988A1 (en) 2013-08-09
CN102770709A (en) 2012-11-07
JP2011174652A (en) 2011-09-08
JP5457880B2 (en) 2014-04-02
KR101674705B1 (en) 2016-11-09
KR20130010470A (en) 2013-01-28
CN102770709B (en) 2015-02-11

Similar Documents

Publication Publication Date Title
JP5457880B2 (en) Waste heat power generation method and waste heat power generation system
JP5260585B2 (en) Coal-fired power plant and method for operating coal-fired power plant
JP6214885B2 (en) Waste heat recovery system and waste heat recovery method
JP5271100B2 (en) Waste heat power generation method using exhaust gas from incinerator
JP6009009B2 (en) Heat recovery power generation facility from combustion exhaust gas
JP6574504B2 (en) Control method for organic waste combustion plant
JP2014009877A (en) Flue gas treatment equipment and method
JP2008101521A (en) Power generation system by exhaust heat
JP5636955B2 (en) Heat recovery system
JP5787303B2 (en) Operation method of municipal waste incineration plant
JP3042394B2 (en) Power generation system utilizing waste incineration heat
JP2015000360A (en) Exhaust gas treatment device and exhaust gas treatment method
JP2014009624A (en) Waste heat utilization method, waste heat utilization system and treatment method of boiler exhaust gas
JP2013234848A (en) Incineration plant
JP5444439B2 (en) Incineration plant
KR20200145132A (en) Recovery of vacuum-circulated condensate in closed circuit and boiler water supply system
JP6100456B2 (en) Residual heat low boiling point power generation system
JP2753347B2 (en) Steam turbine system and energy supply system
JP7533842B2 (en) Waste heat power generation method
JP2014009623A (en) Boiler exhaust gas cleaning method in thermal power generation system and thermal power generation system
JP2007120846A (en) Hot water supply system and its control method
JP7373801B2 (en) Waste power generation system and its operation method
JPH1199317A (en) Flue gas desulfurizer and its operation
JP2002005402A (en) Waste heat recovery system for refuse disposal plant
JPH08193505A (en) Power generating system using refuse burning exhaust heat

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010772.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127024894

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11747033

Country of ref document: EP

Kind code of ref document: A1