JP2013100726A - Residual heat low boiling point electric power generation system - Google Patents

Residual heat low boiling point electric power generation system Download PDF

Info

Publication number
JP2013100726A
JP2013100726A JP2011243639A JP2011243639A JP2013100726A JP 2013100726 A JP2013100726 A JP 2013100726A JP 2011243639 A JP2011243639 A JP 2011243639A JP 2011243639 A JP2011243639 A JP 2011243639A JP 2013100726 A JP2013100726 A JP 2013100726A
Authority
JP
Japan
Prior art keywords
boiling point
power generation
steam
low
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011243639A
Other languages
Japanese (ja)
Other versions
JP6100456B2 (en
Inventor
Masuo Inoue
益男 井上
Koki Sato
弘毅 佐藤
Shunichi Mishima
俊一 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2011243639A priority Critical patent/JP6100456B2/en
Publication of JP2013100726A publication Critical patent/JP2013100726A/en
Application granted granted Critical
Publication of JP6100456B2 publication Critical patent/JP6100456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a residual heat low boiling point electric power generation system capable of performing condensing process of a steam power generation system and a process for using residual heat in a well-balanced manner, while significantly increasing efficiency of energy of the entire system including the steam power generation system with a simple structure.SOLUTION: A low boiling point heat cycle is formed, which includes a heat exchanger 22 performing heat exchange by separating and introducing some of residual heat steam discharged from a steam turbine ST from a pipe passage from a steam turbine ST outlet to a low pressure condenser 15 in a steam power generation system 10 and a low boiling point medium turbine T using a low boiling point medium as compared with water and driving an electric power generator by the low boiling point medium heated via the heat exchanger 22, and is connected to the steam power generation system 10.

Description

この発明は、簡易な構成で、水蒸気発電システムを含むシステム全体のエネルギー効率を格段に高めつつ、水蒸気発電システムの復水処理と余熱の利用処理とをバランスよく行うことができる余熱低沸点発電システムに関するものである。   The present invention is a residual heat low-boiling point power generation system capable of performing a condensate process and a residual heat utilization process of a steam power generation system in a well-balanced manner with a simple configuration while significantly improving the energy efficiency of the entire system including the steam power generation system It is about.

従来から、汚泥などの焼却炉では、焼却炉からの排ガスの熱を熱源として、水蒸気発電装置や白煙防止装置などの各種装置を設置し、排熱の有効利用を図っている。   Conventionally, incinerators such as sludge have been using heat from exhaust gas from the incinerator as a heat source, and various devices such as a steam power generation device and a white smoke prevention device have been installed to effectively use the exhaust heat.

ここで、特許文献1では、原子力を熱源とし、水蒸気によって駆動される蒸気タービンを有する水蒸気系と、蒸気タービンの排気で加熱された気体状の混合媒体によって駆動される混合媒体タービンを有する混合媒体系とを備えた発電プラントが記載されている。   Here, in Patent Document 1, a mixed medium having a steam system having a steam turbine driven by steam using nuclear power as a heat source and a mixed medium turbine driven by a gaseous mixed medium heated by the exhaust of the steam turbine. A power plant with a system is described.

特開平11−257025号公報Japanese Patent Laid-Open No. 11-257025

ところで、上述した焼却炉に付設される水蒸気発電装置の水蒸気タービンから出力された水蒸気の余熱は復水器などで捨てられており、焼却システム全体のエネルギー効率向上を阻害しているという問題があった。   By the way, the residual heat of the steam output from the steam turbine of the steam power generator attached to the incinerator described above is discarded by a condenser or the like, which hinders improvement in energy efficiency of the entire incineration system. It was.

また、復水器などで水蒸気の余熱を冷却するための冷却器および冷却ポンプなどを駆動するエネルギーを余分に必要としており、焼却システム全体のさらなるエネルギー効率の向上が要望されている。   Further, an extra energy is required to drive a cooler, a cooling pump, and the like for cooling the residual heat of the water vapor in a condenser and the like, and further improvement in energy efficiency of the entire incineration system is desired.

なお、先行文献1では、詳細には記載されていないが、復水器と熱交換機能とを一体化するものが記載されている。この場合、一体化した復水器の構成では、すべての余熱水蒸気の熱交換が行われるものと考えられるため、水蒸気発電装置の発電能力と熱交換装置を介して発電する発電装置の発電能力との配分が困難であり、水蒸気発電装置の発電状態に応じた高温水蒸気の復水処理と余熱の利用処理とをバランスよく行うことができない場合があった。   In addition, although it is not described in detail in the prior art document 1, what integrates a condenser and a heat exchange function is described. In this case, in the configuration of the integrated condenser, since it is considered that heat exchange of all the remaining heat steam is performed, the power generation capacity of the steam power generation apparatus and the power generation capacity of the power generation apparatus that generates power via the heat exchange apparatus In some cases, it is difficult to distribute the high-temperature steam condensate treatment and the residual heat utilization treatment in a well-balanced manner according to the power generation state of the steam power generation apparatus.

この発明は、上記に鑑みてなされたものであって、簡易な構成で、水蒸気発電システムを含むシステム全体のエネルギー効率を格段に高めつつ、水蒸気発電システムの復水処理と余熱の利用処理とをバランスよく行うことができる余熱低沸点発電システムを提供することを目的とする。   The present invention has been made in view of the above, and with a simple configuration, while significantly improving the energy efficiency of the entire system including the steam power generation system, the condensate process of the steam power generation system and the residual heat utilization process are performed. An object of the present invention is to provide a residual heat low boiling point power generation system that can be performed in a well-balanced manner.

上述した課題を解決し、目的を達成するために、この発明にかかる余熱低沸点発電システムは、水蒸気発電システム内の水蒸気発電タービン出口から復水器までの管路から該水蒸気発電タービンが排出した余熱水蒸気の一部を分離導入して熱交換を行う熱交換装置と、水よりも低沸点の媒体を用い、前記熱交換装置を介して加熱された低沸点の媒体によって発電機を駆動する低沸点発電タービンと、を備えた低沸点熱サイクルを形成し、前記水蒸気発電システムに接続されたことを特徴とする。   In order to solve the above-described problems and achieve the object, a residual heat low boiling point power generation system according to the present invention is discharged from a steam power generation turbine outlet to a condenser in a steam power generation system. A heat exchanger that separates and introduces a portion of the residual heat steam and performs heat exchange, and a low-boiling medium that has a lower boiling point than water and that drives the generator with the low-boiling medium heated through the heat exchanger. A low-boiling point heat cycle including a boiling point power generation turbine is formed and connected to the steam power generation system.

また、この発明にかかる余熱低沸点発電システムは、上記の発明において、前記管路から前記復水器側への水蒸気流量と前記管路から前記熱交換装置側への水蒸気流量との配分調整を行う調整弁を備えたことを特徴とする。   Further, the residual heat low boiling point power generation system according to the present invention, in the above invention, adjusts the distribution of the water vapor flow rate from the pipe line to the condenser side and the water vapor flow rate from the pipe line to the heat exchanger side. It is characterized by having a regulating valve for performing.

また、この発明にかかる余熱低沸点発電システムは、上記の発明において、前記外部の水蒸気発電システムの熱源からの排ガスを冷却処理する排煙処理装置が排出する高温排水を導入して熱交換を行う高温排水熱交換装置を、前記低沸点熱サイクル上に設けたことを特徴とする。   The residual heat low-boiling point power generation system according to the present invention performs heat exchange by introducing high-temperature wastewater discharged from a flue gas treatment device that cools exhaust gas from a heat source of the external steam power generation system in the above-described invention. A high-temperature waste water heat exchange device is provided on the low boiling point heat cycle.

また、この発明にかかる余熱低沸点発電システムは、上記の発明において、前記外部の水蒸気発電システムの低圧蒸気だめから蒸気の一部を抽気し、前記低沸点熱サイクル上であって前記低沸点発電タービンの前段に設けられた低圧蒸気熱交換装置によって、該抽気した蒸気と前記低沸点の蒸気との熱交換を行い、該低沸点の蒸気を過熱蒸気として前記低沸点発電タービンに送出することを特徴とする。   The remaining heat low boiling point power generation system according to the present invention is the above invention, wherein a part of the steam is extracted from the low pressure steam sump of the external steam power generation system, and the low boiling point power generation system is on the low boiling point heat cycle. The low-pressure steam heat exchange device provided in the front stage of the turbine performs heat exchange between the extracted steam and the low boiling steam, and sends the low boiling steam to the low boiling power turbine as superheated steam. Features.

また、この発明にかかる余熱低沸点発電システムは、上記の発明において、前記低沸点熱サイクルは、前記低沸点の媒体を用いたランキンサイクルであることを特徴とする。   In the remaining heat low boiling point power generation system according to the present invention as set forth in the invention described above, the low boiling point heat cycle is a Rankine cycle using the low boiling point medium.

また、この発明にかかる余熱低沸点発電システムは、上記の発明において、前記低沸点熱サイクルは、前記低沸点の媒体と水との混合媒体を用いたカリーナサイクルであることを特徴とする。   In the remaining heat low boiling point power generation system according to the present invention as set forth in the invention described above, the low boiling point thermal cycle is a carina cycle using a mixed medium of the low boiling point medium and water.

この発明によれば、水蒸気発電システム内の水蒸気発電タービン出口から復水器までの管路から該水蒸気発電タービンが排出した余熱水蒸気の一部を分離導入して熱交換を行う熱交換装置と、水蒸気よりも低沸点の媒体を用い、前記熱交換装置を介して加熱された低沸点の媒体によって発電機を駆動する低沸点発電タービンと、を備えた低沸点熱サイクルを形成し、前記水蒸気発電システムにカスケード接続しているので、簡易な構成で、水蒸気発電システムを含むシステム全体のエネルギー効率を格段に高めつつ、水蒸気発電システムの復水処理と余熱の利用処理とをバランスよく行うことができる。   According to the present invention, a heat exchange device that performs heat exchange by separating and introducing a part of the remaining steam discharged from the steam power generation turbine from a pipeline from the steam power generation turbine outlet to the condenser in the steam power generation system, A low-boiling point heat cycle comprising a low-boiling point power cycle using a medium having a lower boiling point than water vapor and driving a generator with the low-boiling point medium heated via the heat exchange device, Since it is cascade-connected to the system, the condensate treatment of the steam power generation system and the residual heat utilization treatment can be performed in a well-balanced manner with a simple configuration while significantly improving the energy efficiency of the entire system including the steam power generation system. .

図1は、この発明の実施の形態1にかかる余熱発電システムを含む焼却システムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an incineration system including a residual heat power generation system according to Embodiment 1 of the present invention. 図2は、この発明の実施の形態2にかかる余熱発電システムを含む焼却システムの構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of an incineration system including a residual heat power generation system according to Embodiment 2 of the present invention.

以下、添付図面を参照してこの発明を実施するための形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

(実施の形態1)
図1は、この発明の実施の形態1にかかる余熱発電システムを含む焼却システムの構成を示すブロック図である。図1に示すように、この焼却システム1は、焼却炉2、ボイラ3、集塵装置4、排煙処理塔5、水蒸気発電システム10、および余熱低沸点発電システム20を有する。
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of an incineration system including a residual heat power generation system according to Embodiment 1 of the present invention. As shown in FIG. 1, the incineration system 1 includes an incinerator 2, a boiler 3, a dust collector 4, a flue gas treatment tower 5, a steam power generation system 10, and a residual heat low boiling point power generation system 20.

焼却炉2は、汚泥などの焼却対象物を焼却するものであり、ブロワ6から供給される空気と、必要に応じて供給される燃料とを用いて焼却対象物を燃焼させ、たとえば850℃程度の高温の燃焼ガスとしてボイラ3に出力する。焼却炉2は、流動焼却炉や循環焼却炉などによって実現されるが、その他の焼却方式で実現してもよい。   The incinerator 2 incinerates an incineration object such as sludge, and incinerates the incineration object using air supplied from the blower 6 and fuel supplied as necessary, for example, about 850 ° C. Is output to the boiler 3 as a high-temperature combustion gas. The incinerator 2 is realized by a fluidized incinerator or a circulating incinerator, but may be realized by other incineration methods.

ボイラ3は、水蒸気発電システム10の熱源となる。集塵装置4は、ボイラ3を介して送られる燃焼炉2の燃焼ガスから、燃焼灰を集塵し除去し、燃焼灰が除去された燃焼ガスを排煙処理塔5に送出する。なお、ボイラ3から送られる燃焼ガスの温度は、たとえば250〜300℃程度である。排煙処理塔5は、常温の水を給水して、集塵装置4から送られた燃焼ガスの温度をたとえば40〜50℃程度まで降下させ、ブロワ7を介して図示しない煙突から燃焼ガスを大気に放出する。この排煙処理塔が熱交換された水のうちの高温排水の熱は、余熱低沸点発電システム20に利用される。   The boiler 3 serves as a heat source for the steam power generation system 10. The dust collector 4 collects and removes the combustion ash from the combustion gas of the combustion furnace 2 sent through the boiler 3, and sends the combustion gas from which the combustion ash has been removed to the flue gas treatment tower 5. In addition, the temperature of the combustion gas sent from the boiler 3 is about 250-300 degreeC, for example. The flue gas treatment tower 5 supplies normal temperature water, lowers the temperature of the combustion gas sent from the dust collector 4 to, for example, about 40 to 50 ° C., and blows the combustion gas from a chimney (not shown) via the blower 7. Release into the atmosphere. The heat of the high temperature waste water out of the water in which the smoke treatment tower is heat-exchanged is used for the residual heat low boiling point power generation system 20.

水蒸気発電システム10は、ボイラ3の燃焼ガスを熱源として、水を媒体とするランキンサイクルによって水蒸気タービンSTを駆動し、水蒸気タービンSTに結合された発電機14を駆動することによって発電するシステムである。   The steam power generation system 10 is a system that generates electricity by driving the steam turbine ST by a Rankine cycle using water as a medium, using the combustion gas of the boiler 3 as a heat source, and driving a generator 14 coupled to the steam turbine ST. .

ボイラ3は、循環する水を加熱して水蒸気に変換し、この変換された高温高圧状態の水蒸気は、スチームヘッダー11に入力される。スチームヘッダー11は、蒸気管寄せであり、ボイラ3からの水蒸気を一旦蓄積し、各配管に分配する。図1では、複数の配管を示していないが、水蒸気発電システム10以外のシステム等に対して水蒸気を供給する配管が結合されている。   The boiler 3 heats the circulating water to convert it into water vapor, and the converted high-temperature and high-pressure water vapor is input to the steam header 11. The steam header 11 is a steam header, temporarily accumulates water vapor from the boiler 3, and distributes it to each pipe. Although a plurality of pipes are not shown in FIG. 1, pipes that supply water vapor to a system other than the water vapor power generation system 10 are combined.

スチームヘッダー11から高圧蒸気だめ12に水蒸気が供給される。高圧蒸気だめ12は、水蒸気タービンSTの仕事量に対応し、必要な水蒸気を水蒸気タービンSTに供給して水蒸気タービンSTを駆動するとともに、余剰の水蒸気を高圧復水器13に送出して水蒸気のバランスをとる。たとえば、高圧蒸気だめ12は、水蒸気タービンSTが低負荷状態であったり、水蒸気タービンSTが必要とする水蒸気量よりも多い水蒸気がボイラ3側から供給された場合などに、高圧復水器13側に水蒸気を戻す。   Water vapor is supplied from the steam header 11 to the high-pressure steam sump 12. The high-pressure steam sump 12 corresponds to the work of the steam turbine ST, supplies necessary steam to the steam turbine ST to drive the steam turbine ST, and sends surplus steam to the high-pressure condenser 13 to supply steam. to keep balance. For example, the high-pressure steam sump 12 is provided on the high-pressure condenser 13 side when the steam turbine ST is in a low load state or when more steam than the steam amount required by the steam turbine ST is supplied from the boiler 3 side. Return water vapor to

水蒸気タービンSTは、高圧蒸気だめ12から供給された高温高圧水蒸気が入口に入力されることによって駆動され、発電機14を駆動して発電させる。水蒸気タービンSTの出口からは、仕事済みの低温低圧状態の水蒸気(余熱水蒸気)が排出される。この余熱水蒸気は、調整弁10aを介して低圧復水器15に入力されるが、一部の余熱水蒸気は、調整弁10aとともに、調整弁10aの水蒸気タービンST側から分岐する配管途中に設けられた調整弁10bと、調整弁10aの低圧復水器15側から合流する配管途中に設けられた調整弁10cとを用いて、余熱低沸点発電システム10の熱交換装置22に供給される。この3つの調整弁10a〜10cは、流量調整弁であり、蒸気タービンST出口から排出される余熱水蒸気の低圧復水器15側と余熱低沸点発電システム20側とへの流量配分を行う。たとえば、水蒸気タービンSTの負荷が低い場合には、余熱低沸点発電システム20側への供給流量を多くして、余熱低沸点発電システム20の安定発電が行えるようにする。   The steam turbine ST is driven when high-temperature and high-pressure steam supplied from the high-pressure steam sump 12 is input to the inlet, and drives the generator 14 to generate power. Worked low-temperature and low-pressure steam (preheated steam) is discharged from the outlet of the steam turbine ST. This residual heat steam is input to the low-pressure condenser 15 through the regulating valve 10a, but a part of the residual heat steam is provided along with the regulating valve 10a in the middle of the piping branched from the steam turbine ST side of the regulating valve 10a. The control valve 10b and the control valve 10c provided in the middle of the piping that joins from the low pressure condenser 15 side of the control valve 10a are supplied to the heat exchange device 22 of the residual heat low boiling point power generation system 10. The three regulating valves 10a to 10c are flow regulating valves, and distribute the flow rate of the residual heat steam discharged from the steam turbine ST outlet to the low pressure condenser 15 side and the residual heat low boiling point power generation system 20 side. For example, when the load of the steam turbine ST is low, the supply flow rate to the residual heat low boiling point power generation system 20 side is increased so that stable power generation of the residual heat low boiling point power generation system 20 can be performed.

低圧復水器15は、冷却ポンプ15aおよび冷却器15bによって生成された冷却水によって、余熱水蒸気の温度をさげ凝縮させる。この凝縮によって水蒸気タービンST出口側は負圧状態となり、水蒸気タービンSTの変換効率を高めることができる。   The low-pressure condenser 15 reduces the temperature of the residual heat steam by the cooling water generated by the cooling pump 15a and the cooling device 15b and condenses them. By this condensation, the outlet side of the steam turbine ST becomes a negative pressure state, and the conversion efficiency of the steam turbine ST can be increased.

ここで、調整弁10b,10cを介して循環する余熱水蒸気も熱交換装置22によって熱交換が行われ、余熱水蒸気は低温化される。このため、低圧復水器15の復水能力は従来に比して小さくて済み、低圧復水器15の構成を簡易なものとすることができる。さらに、冷却ポンプ15aおよび冷却器15bの冷却能力および構成も小さくて済む。しかも、低圧復水器15で捨てていた余熱量を小さくすることができ、従来の低圧復水器15で捨てていた一部の余熱量を余熱低沸点発電システムで利用することができる。すなわち、従来の低圧復水器15で捨てていた熱エネルギーの一部を余熱低沸点発電システム20で有効利用することができるとともに、低圧復水器15の復水能力を実現する冷却ポンプ15a,15bの駆動エネルギーが減少するため、システム全体のエネルギー効率が相乗的に向上することになる。さらに、水蒸気発電システム10の水蒸気タービンSTから出力される余熱水蒸気が比較的高温状態である場合であっても、余熱水蒸気の低圧復水器15側への流量と熱交換装置22側への流量とを調整できるので、余熱水蒸気の復水処理と余熱の利用処理とをバランスよく行うことができる。   Here, the heat exchange of the preheated steam circulating through the regulating valves 10b and 10c is also performed by the heat exchange device 22, and the temperature of the preheated steam is lowered. For this reason, the condensing capacity of the low-pressure condenser 15 is smaller than that of the conventional one, and the configuration of the low-pressure condenser 15 can be simplified. Further, the cooling capacity and configuration of the cooling pump 15a and the cooler 15b can be small. In addition, it is possible to reduce the amount of residual heat that was discarded in the low-pressure condenser 15, and to use a part of the residual heat that was discarded in the conventional low-pressure condenser 15 in the residual heat low-boiling point power generation system. That is, a part of the heat energy discarded in the conventional low-pressure condenser 15 can be effectively used in the residual heat low-boiling point power generation system 20, and the cooling pump 15 a that realizes the condensing capacity of the low-pressure condenser 15. Since the driving energy of 15b is reduced, the energy efficiency of the entire system is synergistically improved. Furthermore, even when the remaining heat steam output from the steam turbine ST of the steam power generation system 10 is in a relatively high temperature state, the flow rate of the remaining heat steam to the low pressure condenser 15 side and the flow rate to the heat exchange device 22 side. Therefore, the condensate treatment of the remaining heat steam and the utilization processing of the remaining heat can be performed in a well-balanced manner.

復水タンク16は、ポンプ16aを介して低圧復水器15から供給される水と高圧復水器13から供給される水とを溜めておき、ポンプ16bを介して脱気器17に送出される。なお、復水タンク16の圧力バランスは、ポンプ16a,16bの駆動を制御することによって達成される。   The condensate tank 16 stores the water supplied from the low-pressure condenser 15 and the water supplied from the high-pressure condenser 13 via the pump 16a, and is sent to the deaerator 17 via the pump 16b. The The pressure balance in the condensate tank 16 is achieved by controlling the driving of the pumps 16a and 16b.

脱気器17は、入力された復水をさらに加熱し、水に溶け込んでいる酸素などの空気を除去する。脱気器17が空気を除去することによって、ボイラ3や配管などの腐食を防止できる。なお、減圧減温装置18は、高圧蒸気だめ12に溜められた水蒸気を減圧減温し、低圧蒸気だめ19に溜めておき、脱気器17は、この低圧蒸気だめ19の水蒸気を用いて加熱し、水を一旦揮発させ再凝縮させることで、水に溶存する空気を除去する。この脱気された水は、再びボイラ3に供給されて、水蒸気発電システム10のランキンサイクルを循環する。   The deaerator 17 further heats the input condensate to remove air such as oxygen dissolved in the water. When the deaerator 17 removes air, corrosion of the boiler 3 and piping can be prevented. The decompression and temperature reduction device 18 decompresses and reduces the water vapor stored in the high-pressure steam sump 12 and stores it in the low-pressure steam sump 19. The deaerator 17 heats the steam using the low-pressure steam sump 19. Then, the water dissolved in water is removed by once volatilizing and recondensing the water. The degassed water is supplied again to the boiler 3 and circulates through the Rankine cycle of the steam power generation system 10.

一方、余熱低沸点発電システム20は、上述した水蒸気発電システム10にカスケード接続されるシステムであり、水よりも低沸点の媒体を用いたランキンサイクルによって、低沸点媒体タービンTを駆動し、低沸点媒体タービンTに結合された発電機23を駆動することによって発電するシステムである。低沸点の媒体を用いるのは、余熱蒸気という低温熱源で容易に高圧蒸気を得ることができるからである。この低沸点の媒体は、たとえば、アンモニアや代替フロンである。アンモニアは、元々自然界に存在する無色透明の低沸点媒体で、その蒸発温度は、大気下で、−33.3℃、4.0MPaで、79.6℃であり、熱物性が良く、また、地球温暖化係数ゼロ、オゾン層破壊係数ゼロであり、環境負荷がほとんどなく、好ましい。   On the other hand, the residual heat low boiling point power generation system 20 is a system cascade-connected to the steam power generation system 10 described above, and drives the low boiling point medium turbine T by a Rankine cycle using a medium having a boiling point lower than that of water. This is a system for generating electricity by driving a generator 23 coupled to a medium turbine T. The reason why the low boiling point medium is used is that high-pressure steam can be easily obtained with a low-temperature heat source called residual heat steam. This low boiling point medium is, for example, ammonia or alternative chlorofluorocarbon. Ammonia is a colorless and transparent low-boiling medium that naturally exists in nature, and its evaporation temperature is -33.3 ° C., 4.0 MPa, 79.6 ° C. under air, and has good thermophysical properties. The global warming potential is zero and the ozone depletion potential is zero.

余熱低沸点発電システム20は、水蒸気発電システム10側から供給される余熱水蒸気と、水よりも低沸点の媒体との熱交換を行う熱交換装置22を有する。また、この熱交換装置22の前段には、排煙処理塔5から供給される高温排水と低沸点の媒体との熱交換を行う熱交換装置21が配置されても良い。この排煙処理塔5から供給される高温排水を用いることによって、一層、焼却システム1全体のエネルギー効率を高めることができる。   The residual heat low boiling point power generation system 20 includes a heat exchange device 22 that performs heat exchange between residual heat steam supplied from the steam power generation system 10 side and a medium having a lower boiling point than water. In addition, a heat exchange device 21 that performs heat exchange between the high-temperature wastewater supplied from the flue gas treatment tower 5 and the low-boiling point medium may be disposed in the front stage of the heat exchange device 22. By using the high temperature waste water supplied from the smoke treatment tower 5, the energy efficiency of the entire incineration system 1 can be further increased.

ポンプ25によって供給された低沸点の媒体であるアンモニアは、熱交換装置21,22を介して容易にアンモニア蒸気となり、この高圧のアンモニア蒸気は、低沸点媒体タービンTの入口に供給され、発電機23を駆動する仕事を行う。仕事済みのアンモニア蒸気は、低沸点媒体タービンTの出口から排出され、凝縮器24に入力され、アンモニア蒸気をアンモニア液にし、ポンプ25を介して循環される。   Ammonia, which is a low-boiling point medium supplied by the pump 25, easily becomes ammonia vapor via the heat exchange devices 21 and 22, and this high-pressure ammonia vapor is supplied to the inlet of the low-boiling point turbine T to generate a generator. The work which drives 23 is performed. The worked ammonia vapor is discharged from the outlet of the low-boiling-point medium turbine T, is input to the condenser 24, is converted into ammonia liquid, and is circulated through the pump 25.

また、低圧蒸気だめ19から抽気した蒸気を蒸気加熱器35に導くことで、低沸点媒体蒸気を過熱することができ効率を向上させることも可能である。   Further, by introducing the steam extracted from the low-pressure steam sump 19 to the steam heater 35, the low-boiling-point medium steam can be superheated and the efficiency can be improved.

この実施の形態1では、余熱低沸点発電システム20が水蒸気発電システム10にカスケード接続され、水蒸気タービンST出口から低圧復水器15までの管路から水蒸気タービンSTが排出した余熱水蒸気の一部を分離導入して熱交換するようにしているので、水蒸気発電システム10が捨てていた熱エネルギーを有効利用することができるとともに、低圧復水器15、冷却ポンプ15a、冷却器15bの構成および能力を小さくすることができ使用するエネルギーを低減できるため、焼却システム1全体のエネルギー効率を格段に向上させることができる。しかも、余熱低沸点発電システム20は、低沸点の媒体を用いて発電を行うようにしているので、熱エネルギーの小さい余熱水蒸気を用いる場合であっても、容易に蒸気化することができ、十分な発電を行うことができる。さらに、水蒸気発電システムの水蒸気タービンから出力される余熱水蒸気が比較的高温状態である場合であっても、余熱水蒸気の低圧復水器15側への流量と熱交換装置22側への流量とを調整できるので、余熱水蒸気の復水処理と余熱の利用処理とをバランスよく行うことができる。   In the first embodiment, the residual heat low boiling point power generation system 20 is cascade-connected to the steam power generation system 10, and a part of the residual heat steam discharged by the steam turbine ST from the pipe line from the outlet of the steam turbine ST to the low pressure condenser 15 is obtained. Since heat exchange is performed by separating and introducing heat, the thermal energy discarded by the steam power generation system 10 can be used effectively, and the configurations and capacities of the low-pressure condenser 15, the cooling pump 15a, and the cooler 15b can be increased. Since it can be made small and the energy used can be reduced, the energy efficiency of the entire incineration system 1 can be remarkably improved. Moreover, since the residual heat low-boiling point power generation system 20 generates power using a low-boiling point medium, it can be easily vaporized even when using the residual heat steam with a small thermal energy. Power generation. Furthermore, even when the residual heat steam output from the steam turbine of the steam power generation system is in a relatively high temperature state, the flow rate of the residual heat steam to the low-pressure condenser 15 side and the flow rate to the heat exchange device 22 side are determined. Since it can adjust, the condensate process of residual heat steam and the utilization process of residual heat can be performed with good balance.

(実施の形態2)
上述した実施の形態1では、余熱低沸点発電システム20がアンモニアを用いたランキンサイクルを構成するようにしていたが、この実施の形態2では、余熱低沸点発電システム20に対応する余熱低沸点発電システム30が、低沸点媒体と水との混合媒体の一例であるアンモニアと水との混合媒体を用いたカリーナサイクルを構成するようにしている。
(Embodiment 2)
In the first embodiment described above, the residual heat low boiling point power generation system 20 constitutes a Rankine cycle using ammonia, but in this second embodiment, the residual heat low boiling point power generation system corresponding to the residual heat low boiling point power generation system 20. The system 30 constitutes a carina cycle using a mixed medium of ammonia and water, which is an example of a mixed medium of a low boiling point medium and water.

図2は、この発明の実施の形態2にかかる余熱発電システムを含む焼却システムの構成を示すブロック図である。図2に示すように、この焼却システム101の余熱発電システム30は、余熱発電システム20の構成に加えて、気液分離器31が熱交換装置22と低沸点媒体タービンTとの間に設けられ、再生器32がポンプ25と熱交換装置21との間に設けられ、吸収器34が低沸点媒体タービンTと凝縮器24との間に設けられ、減圧弁33が再生器32と吸収器34との間に設けられる。   FIG. 2 is a block diagram showing a configuration of an incineration system including a residual heat power generation system according to Embodiment 2 of the present invention. As shown in FIG. 2, in the residual heat power generation system 30 of the incineration system 101, in addition to the configuration of the residual heat power generation system 20, a gas-liquid separator 31 is provided between the heat exchange device 22 and the low boiling point medium turbine T. The regenerator 32 is provided between the pump 25 and the heat exchange device 21, the absorber 34 is provided between the low boiling point medium turbine T and the condenser 24, and the pressure reducing valve 33 is provided with the regenerator 32 and the absorber 34. Between.

カリーナサイクルは、低沸点の媒体としてのアンモニアと水との混合媒体を用い、蒸発・凝縮の過程で、それぞれ非等温蒸発・非等温凝縮(吸収)することにより、効率のよい熱回収を行うものである。   The Carina cycle uses a mixed medium of ammonia and water as a low boiling point medium, and performs efficient heat recovery by non-isothermal evaporation and non-isothermal condensation (absorption) in the process of evaporation and condensation, respectively. It is.

気液分離器31は、熱交換装置22から入力された混合媒体に対して、高濃度アンモニア蒸気と、熱交換装置22で蒸発し切れなかった低濃度アンモニア水とに分離する。高圧状態の高濃度アンモニア蒸気は、低沸点媒体タービンTに送り込まれ、ランキンサイクルと同様に低沸点媒体タービンTを駆動する。一方、低濃度アンモニア水は、熱交換装置である再生器32に送られ、ポンプ25から循環される混合媒体と熱交換されて降温した低濃度アンモニア水は、減圧弁33を介して吸収器34に送られる。   The gas-liquid separator 31 separates the mixed medium input from the heat exchange device 22 into high-concentration ammonia vapor and low-concentration ammonia water that cannot be completely evaporated by the heat exchange device 22. The high-concentration ammonia vapor in a high pressure state is sent to the low boiling point medium turbine T, and drives the low boiling point medium turbine T as in the Rankine cycle. On the other hand, the low-concentration aqueous ammonia is sent to the regenerator 32 that is a heat exchange device, and the low-concentration aqueous ammonia that has been cooled by the heat exchange with the mixed medium circulated from the pump 25 is absorbed through the pressure reducing valve 33. Sent to.

吸収器34では、低沸点媒体タービンT出口から排出される高濃度アンモニア蒸気と減圧弁33を介して入力された低濃度アンモニア水とが合流し、吸収器34内で、高濃度アンモニア蒸気は、冷却、減圧された低濃度アンモニア水によって一気に凝縮吸収される。この吸収によって、低沸点媒体タービンTの排気を負圧にし、タービン出力を向上させることができる。また、低圧蒸気だめ19から抽気した蒸気を蒸気加熱器35に導くことで、低沸点媒体蒸気を過熱することができ更に効率を向上させることも可能である。   In the absorber 34, the high-concentration ammonia vapor discharged from the low-boiling-point medium turbine T outlet and the low-concentration ammonia water input via the pressure reducing valve 33 are merged, and in the absorber 34, the high-concentration ammonia vapor is It is condensed and absorbed all at once by the cooled and decompressed low concentration ammonia water. By this absorption, the exhaust of the low boiling point medium turbine T can be set to a negative pressure, and the turbine output can be improved. Further, by introducing the steam extracted from the low-pressure steam sump 19 to the steam heater 35, the low boiling point medium steam can be superheated, and the efficiency can be further improved.

この実施の形態2では、余熱低沸点発電システムが低沸点と水との混合媒体を用いてカリーナサイクルを構成しているので、実施の形態1に比してさらにエネルギー効率を高めることができる。   In the second embodiment, since the residual heat low boiling point power generation system forms a carina cycle using a mixed medium of low boiling point and water, the energy efficiency can be further increased as compared with the first embodiment.

1,101 焼却システム
2 焼却炉
3 ボイラ
4 集塵装置
5 排煙処理塔
6,7 ブロワ
10 水蒸気発電システム
10a〜10c 調整弁
11 スチームヘッダー
12 高圧蒸気だめ
13 高圧復水器
14,23 発電機
15 低圧復水器
15a 冷却ポンプ
15b 冷却器
16 復水タンク
16a,16b ポンプ
17 脱気器
18 減圧減温装置
19 低圧蒸気だめ
20,30 余熱低沸点発電システム
21,22 熱交換装置
24 凝縮器
25 ポンプ
31 気液分離器
32 再生器
33 減圧弁
34 吸収器
35 蒸気加熱器
ST 水蒸気タービン
T 低沸点媒体タービン
DESCRIPTION OF SYMBOLS 1,101 Incineration system 2 Incinerator 3 Boiler 4 Dust collector 5 Smoke treatment tower 6,7 Blower 10 Steam power generation system 10a-10c Regulating valve 11 Steam header 12 High-pressure steam sump 13 High-pressure condenser 14, 23 Generator 15 Low-pressure condenser 15a Cooling pump 15b Cooler 16 Condensate tank 16a, 16b Pump 17 Deaerator 18 Depressurization and temperature reduction device 19 Low-pressure steam sump 20, 30 Residual heat low boiling point power generation system 21, 22 Heat exchanger 24 Condenser 25 Pump 31 Gas-liquid separator 32 Regenerator 33 Pressure reducing valve 34 Absorber 35 Steam heater ST Steam turbine T Low boiling point medium turbine

Claims (6)

水蒸気発電システム内の水蒸気発電タービン出口から復水器までの管路から該水蒸気発電タービンが排出した余熱水蒸気の一部を分離導入して熱交換を行う熱交換装置と、
水よりも低沸点の媒体を用い、前記熱交換装置を介して加熱された低沸点の媒体によって発電機を駆動する低沸点発電タービンと、
を備えた低沸点熱サイクルを形成し、前記水蒸気発電システムに接続されたことを特徴とする余熱低沸点発電システム。
A heat exchange device that separates and introduces a portion of the remaining steam discharged from the steam power generation turbine from a pipeline from the steam power generation turbine outlet to the condenser in the steam power generation system, and performs heat exchange;
A low-boiling-point power generation turbine that uses a medium having a lower boiling point than water and drives a generator by the low-boiling point medium heated through the heat exchange device;
A residual heat low boiling point power generation system, characterized in that a low boiling point heat cycle comprising: is formed and connected to the steam power generation system.
前記管路から前記復水器側への水蒸気流量と前記管路から前記熱交換装置側への水蒸気流量との配分調整を行う調整弁を備えたことを特徴とする請求項1に記載の余熱低沸点発電システム。   2. The residual heat according to claim 1, further comprising an adjustment valve that performs distribution adjustment between a water vapor flow rate from the pipe line to the condenser side and a water vapor flow rate from the pipe line to the heat exchange device side. Low boiling point power generation system. 前記外部の水蒸気発電システムの熱源からの排ガスを冷却処理する排煙処理装置が排出する高温排水を導入して熱交換を行う高温排水熱交換装置を、前記低沸点熱サイクル上に設けたことを特徴とする請求項1または2に記載の余熱低沸点発電システム。   A high-temperature wastewater heat exchange device that performs heat exchange by introducing high-temperature wastewater discharged by a smoke treatment device that cools exhaust gas from a heat source of the external steam power generation system is provided on the low-boiling-point heat cycle. The residual heat low boiling point power generation system according to claim 1 or 2, characterized in that 前記外部の水蒸気発電システムの低圧蒸気だめから蒸気の一部を抽気し、前記低沸点熱サイクル上であって前記低沸点発電タービンの前段に設けられた低圧蒸気熱交換装置によって、該抽気した蒸気と前記低沸点の蒸気との熱交換を行い、該低沸点の蒸気を過熱蒸気として前記低沸点発電タービンに送出することを特徴とする請求項1〜3のいずれか一つに記載の余熱低沸点発電システム。   A portion of the steam is extracted from the low-pressure steam reservoir of the external steam power generation system, and the extracted steam is extracted by a low-pressure steam heat exchange device provided on the low-boiling point heat cycle and before the low-boiling point power generation turbine. The low-boiling point steam is sent to the low-boiling-point power generation turbine as superheated steam by performing heat exchange between the low-boiling point steam and the low-boiling point steam. Boiling point power generation system. 前記低沸点熱サイクルは、前記低沸点の媒体を用いたランキンサイクルであることを特徴とする請求項1〜4のいずれか一つに記載の余熱低沸点発電システム。   The residual heat low boiling point power generation system according to any one of claims 1 to 4, wherein the low boiling point thermal cycle is a Rankine cycle using the low boiling point medium. 前記低沸点熱サイクルは、前記低沸点の媒体と水との混合媒体を用いたカリーナサイクルであることを特徴とする請求項1〜4のいずれか一つに記載の余熱低沸点発電システム。   The residual heat low boiling point power generation system according to any one of claims 1 to 4, wherein the low boiling point heat cycle is a carina cycle using a mixed medium of the low boiling point medium and water.
JP2011243639A 2011-11-07 2011-11-07 Residual heat low boiling point power generation system Active JP6100456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011243639A JP6100456B2 (en) 2011-11-07 2011-11-07 Residual heat low boiling point power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243639A JP6100456B2 (en) 2011-11-07 2011-11-07 Residual heat low boiling point power generation system

Publications (2)

Publication Number Publication Date
JP2013100726A true JP2013100726A (en) 2013-05-23
JP6100456B2 JP6100456B2 (en) 2017-03-22

Family

ID=48621548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243639A Active JP6100456B2 (en) 2011-11-07 2011-11-07 Residual heat low boiling point power generation system

Country Status (1)

Country Link
JP (1) JP6100456B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199025A (en) * 2013-03-29 2014-10-23 メタウォーター株式会社 Binary power generation system and binary power generation system operating method
JP2016142147A (en) * 2015-01-30 2016-08-08 株式会社神鋼環境ソリューション Binary power generator and binary power generating method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113805A (en) * 1985-11-12 1987-05-25 Mitsubishi Electric Corp Control device for back pressure turbine
JPS6297203U (en) * 1985-12-10 1987-06-20
JPH04124411A (en) * 1990-09-17 1992-04-24 Toshiba Corp Steam turbine combine generator equipment
JPH1037717A (en) * 1996-07-22 1998-02-10 Toshiba Corp Complex power generating facility
JPH1136818A (en) * 1997-07-18 1999-02-09 Toshiba Corp Controller for cogeneration plant utilizing waste heat
JP2002372206A (en) * 2001-06-18 2002-12-26 Kubota Corp Heat utilization system
JP2003269114A (en) * 2002-03-14 2003-09-25 Toshiba Corp Power and cold heat supply combined system and its operating method
JP2003269113A (en) * 2002-03-15 2003-09-25 Toshiba Corp Combined energy system
JP2004261696A (en) * 2003-02-28 2004-09-24 Toshiba Corp Wood based biomass liquefying system utilizing waste heat and method for manufacturing ethanol
JP2010174845A (en) * 2009-02-02 2010-08-12 Metawater Co Ltd Waste heat power generation method by exhaust gas of incinerator
US20100295306A1 (en) * 2009-05-21 2010-11-25 Advanced Solar Power Israel Ltd. System for converting solar radiation into electricity
WO2011105064A1 (en) * 2010-02-24 2011-09-01 メタウォーター株式会社 Method for generating power from exhaust heat and system for generating power from exhaust heat

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113805A (en) * 1985-11-12 1987-05-25 Mitsubishi Electric Corp Control device for back pressure turbine
JPS6297203U (en) * 1985-12-10 1987-06-20
JPH04124411A (en) * 1990-09-17 1992-04-24 Toshiba Corp Steam turbine combine generator equipment
JPH1037717A (en) * 1996-07-22 1998-02-10 Toshiba Corp Complex power generating facility
JPH1136818A (en) * 1997-07-18 1999-02-09 Toshiba Corp Controller for cogeneration plant utilizing waste heat
JP2002372206A (en) * 2001-06-18 2002-12-26 Kubota Corp Heat utilization system
JP2003269114A (en) * 2002-03-14 2003-09-25 Toshiba Corp Power and cold heat supply combined system and its operating method
JP2003269113A (en) * 2002-03-15 2003-09-25 Toshiba Corp Combined energy system
JP2004261696A (en) * 2003-02-28 2004-09-24 Toshiba Corp Wood based biomass liquefying system utilizing waste heat and method for manufacturing ethanol
JP2010174845A (en) * 2009-02-02 2010-08-12 Metawater Co Ltd Waste heat power generation method by exhaust gas of incinerator
US20100295306A1 (en) * 2009-05-21 2010-11-25 Advanced Solar Power Israel Ltd. System for converting solar radiation into electricity
WO2011105064A1 (en) * 2010-02-24 2011-09-01 メタウォーター株式会社 Method for generating power from exhaust heat and system for generating power from exhaust heat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199025A (en) * 2013-03-29 2014-10-23 メタウォーター株式会社 Binary power generation system and binary power generation system operating method
JP2016142147A (en) * 2015-01-30 2016-08-08 株式会社神鋼環境ソリューション Binary power generator and binary power generating method

Also Published As

Publication number Publication date
JP6100456B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
KR102071105B1 (en) Gas-steam combined cycle centralized heat supply device and heat supply method
JP5427741B2 (en) Multipurpose thermal power generation system
JP5320423B2 (en) Thermal power plant, steam turbine equipment, and control method thereof
EP2253807A1 (en) Gas turbine cycle or combined steam-gas cycle for production of power from solid fuels and waste heat
JP2011231765A (en) Operation method of power plant system and power plant system
JP2008101521A (en) Power generation system by exhaust heat
CN105091016B (en) Coal-fired oxygen plant with heat integration
JP2007205188A (en) Energy saving installation using waste heat
JP2010243012A (en) Exhaust gas heat recovery device
JP2007315301A (en) Highly humid gas turbine plant
US20150000249A1 (en) Combined cycle power plant
JP2022023871A (en) Thermal power generation plant and exhaust heat recovery method
JP5935124B2 (en) Turbine equipment and power generation equipment
JPH09203304A (en) Compound power generating system using waste as fuel
JP3905967B2 (en) Power generation / hot water system
JP6100456B2 (en) Residual heat low boiling point power generation system
JP2010038160A (en) System and method for use in combined or rankine cycle power plant
JP5463313B2 (en) Thermal power plant
JP4666641B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
KR101644237B1 (en) Combined cycle power generation system
KR101593827B1 (en) Combined cycle power generation system
KR101644236B1 (en) Integrated gasification combined cycle system
JP2014070847A (en) Power generating facility
JP2012149792A (en) Exhausts gas treatment system
JPH08260909A (en) Fresh water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160413

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170223

R150 Certificate of patent or registration of utility model

Ref document number: 6100456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250