JP6522085B1 - Heat recovery power generation equipment from flue gas and control method thereof - Google Patents

Heat recovery power generation equipment from flue gas and control method thereof Download PDF

Info

Publication number
JP6522085B1
JP6522085B1 JP2017222543A JP2017222543A JP6522085B1 JP 6522085 B1 JP6522085 B1 JP 6522085B1 JP 2017222543 A JP2017222543 A JP 2017222543A JP 2017222543 A JP2017222543 A JP 2017222543A JP 6522085 B1 JP6522085 B1 JP 6522085B1
Authority
JP
Japan
Prior art keywords
pressure
boiler
heat
power generation
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017222543A
Other languages
Japanese (ja)
Other versions
JP2019094792A (en
Inventor
大祐 鮎川
大祐 鮎川
雅由 叶
雅由 叶
弘敬 土肥
弘敬 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2017222543A priority Critical patent/JP6522085B1/en
Application granted granted Critical
Publication of JP6522085B1 publication Critical patent/JP6522085B1/en
Publication of JP2019094792A publication Critical patent/JP2019094792A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Chimneys And Flues (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】減圧ボイラが最大使用圧力を超えることなく安定した状態で連続運転できる熱回収発電設備を提供する。【解決手段】燃焼排ガスGで熱媒水Hを加熱して蒸気を発生させる減圧ボイラ4と、蒸発部26が減圧蒸気室22を設置し、蒸発部26内を流れる低沸点の冷媒Rを減圧蒸気室22内の蒸気で加熱蒸発した蒸気でタービン28を回して発電するバイナリー発電装置8と、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室22の圧力をそれぞれ検出する温度検出器23又は圧力検出器24と、減圧ボイラ4の減圧蒸気室22に設置され、冷却媒体Wが流れる受熱部34と、受熱部34へ冷却媒体Wを供給する冷却媒体供給管35と、圧力検出器24からの検出信号により制御される制御弁37と、を備え、圧力検出器24からの検出信号に基づいて制御弁37を開放して受熱部34へ冷却媒体Wを供給し、減圧ボイラ4内の圧力を低下させる。【選択図】図2The present invention provides a heat recovery power generation facility that can operate continuously in a stable state without the pressure reduction boiler exceeding the maximum working pressure. SOLUTION: A decompression boiler 4 for generating heat by heating heat transfer water H with combustion exhaust gas G and an evaporation unit 26 install a decompression steam chamber 22, and decompressing low boiling point refrigerant R flowing in the evaporation unit 26 A temperature sensor 23 for detecting the temperature of the heat transfer water H of the decompression boiler 4 or the pressure of the decompression steam chamber 22, respectively, which generates electric power by rotating the turbine 28 with the steam heated and evaporated by the steam in the steam chamber 22 Alternatively, the pressure detector 24, the heat receiving part 34 installed in the depressurized steam chamber 22 of the pressure reducing boiler 4, the cooling medium W flowing, the cooling medium supply pipe 35 for supplying the cooling medium W to the heat receiving part 34, the pressure detector 24 And opens the control valve 37 based on the detection signal from the pressure detector 24 to supply the cooling medium W to the heat receiving unit 34. Reduce pressure. [Selected figure] Figure 2

Description

本発明は、硫黄成分を含む下水汚泥や都市ごみ等の廃棄物を燃焼炉(例えば、焼却炉)で燃焼させ、発生した燃焼排ガスから減圧ボイラで熱回収し、この熱回収した熱をバイナリー発電装置で使用して発電するようにした燃焼排ガスからの熱回収発電設備及びその制御方法に関するものであり、特に、硫黄酸化物(SOx)等の腐食性ガスを含む燃焼排ガスから熱回収して発電するのに適している。   In the present invention, wastes such as sewage sludge containing sulfur components and municipal waste are burned in a combustion furnace (for example, an incinerator), heat is recovered from the generated combustion exhaust gas by a decompression boiler, and the heat recovered is subjected to binary power generation. TECHNICAL FIELD The present invention relates to a heat recovery power generation facility from combustion exhaust gas used for power generation by the apparatus and a control method thereof. Particularly, power generation is performed by recovering heat from combustion exhaust gas containing corrosive gas such as sulfur oxide (SOx). It is suitable for

一般に、下水汚泥や都市ごみ等の廃棄物を燃焼処理する燃焼設備においては、焼却炉等の燃焼炉で廃棄物を燃焼し、発生した燃焼排ガスからボイラで熱回収し、ボイラから発生する蒸気を用いて蒸気タービン及び発電機で発電するようにしている。   Generally, in a combustion facility that burns and processes waste such as sewage sludge and municipal waste, waste is burned in a combustion furnace such as an incinerator, heat is recovered from the generated flue gas by a boiler, and steam generated from the boiler is It is used to generate electricity with a steam turbine and a generator.

しかし、前記燃焼設備においては、ボイラにより水を大気圧以上で蒸発させているため、ボイラ及び蒸気タービンを設置するには、設置者にボイラ・タービン主任技術者が必要となり、運転者に資格が必要になるうえ、設備も発電量からすると、大掛かりな設備となる。   However, in the above-mentioned combustion equipment, the water is evaporated by the boiler at atmospheric pressure or higher, and thus the installer needs a boiler / turbine chief engineer to install the boiler and the steam turbine, and the operator is qualified. In addition to being necessary, in terms of the amount of power generation, it will be a large-scale equipment.

また、前記燃焼設備においては、燃焼排ガスが硫黄酸化物(SOx)を含んでいるため、SOの結露(SOの濃度にもよるが、露点は130℃程度)による硫酸腐食対策が必要である。 Further, in the combustion equipment, the combustion exhaust gas contains sulfur oxides (SOx), (depending on the concentration of SO 3, the dew point is about 130 ° C.) condensation of SO 3 is required sulfate corrosion protection by is there.

一方、本件出願人は、ボイラ・タービン主任技術者等の資格が不要になると共に、腐食性の燃焼排ガスから熱回収しても腐食を引き起こさないようにした燃焼排ガスからの熱回収発電設備を開発した(特許文献1参照)。   On the other hand, the applicant has developed a heat recovery power generation facility from flue gas that does not require qualification as a boiler / turbine chief engineer etc. and does not cause corrosion even if heat is recovered from corrosive flue gas. (See Patent Document 1).

即ち、前記燃焼排ガスからの熱回収発電設備は、図示していないが、燃焼炉内で発生した燃焼排ガスを流す煙道に設置され、燃焼排ガスを通して燃焼排ガスから熱回収すると共に、熱媒水を加熱して蒸気を発生させる内部圧が大気圧以下に保持された減圧ボイラと、低沸点の液状の冷媒を加熱、蒸発させてその蒸気でタービンを回して発電するバイナリー発電装置とを備えており、前記減圧ボイラの熱媒水を、大気圧以下で沸点が燃焼排ガス中に含まれているSOガスの露点以上となる水溶液(臭化リチウム水溶液)とし、また、前記バイナリー発電装置の蒸発部を減圧ボイラの減圧蒸気室に設置し、減圧蒸気室内の蒸気でバイナリー発電装置の蒸発部内の冷媒を気化させるようにしたものである。 That is, although not illustrated, the heat recovery power generation equipment from the combustion exhaust gas is installed in a flue which flows the combustion exhaust gas generated in the combustion furnace, recovers heat from the combustion exhaust gas through the combustion exhaust gas, and It has a pressure reducing boiler whose internal pressure for heating and generating steam is kept below atmospheric pressure, and a binary power generator for heating and evaporating a low boiling point liquid refrigerant and rotating the turbine with the steam to generate electricity. The heat transfer water of the decompression boiler is an aqueous solution (lithium bromide aqueous solution) whose boiling point is equal to or higher than the dew point of SO 3 gas contained in the combustion exhaust gas at atmospheric pressure or less, and the evaporation portion of the binary power generator Are installed in the decompression steam chamber of the decompression boiler, and the refrigerant in the evaporation section of the binary power generation apparatus is vaporized by the steam in the decompression steam chamber.

前記燃焼排ガスからの熱回収発電設備は、内部圧が大気圧以下に保持されて内部の熱媒水が大気圧以下で蒸発する減圧ボイラにより熱回収し、減圧ボイラの沸点がSOガスの露点以上となる熱媒水を用いて燃焼排ガスから熱回収するようにしているため、ボイラ・タービン主任技術者等の資格が不要になると共に、減圧ボイラの熱吸収部での硫酸腐食を防止できる等の利点を有する。 The heat recovery power generation facility from the combustion exhaust gas recovers heat by the pressure reducing boiler in which the internal pressure is maintained below atmospheric pressure and the heat medium water inside evaporates at atmospheric pressure or lower, and the boiling point of the pressure reducing boiler is the dew point of SO 3 gas Since heat is recovered from the combustion exhaust gas using the above-described heat transfer water, qualifications such as a boiler / turbine chief engineer are not required, and sulfuric acid corrosion in the heat absorbing portion of the decompression boiler can be prevented, etc. Have the advantages of

尚、ボイラ・タービン主任技術者等の資格が不要になる減圧ボイラとしては、上述した減圧ボイラの他に特開57−33701号公報(特許文献2参照)に記載された低圧ボイラが知られている。   In addition to the above-described decompression boiler, a low-pressure boiler described in JP-A-57-33701 (refer to Patent Document 2) is known as a decompression boiler that does not require qualification by a boiler / turbine chief engineer or the like. There is.

前記低圧ボイラは、熱媒水に臭化リチウム水溶液を使用し、大気圧以下の運転圧力で沸点がSOの結露温度(130℃)以上となるようにしている。また、低圧ボイラ内に予熱器及びこれに接続された熱交換器を設け、予熱器内及び熱交換器内を流れる作動流体(冷媒)を予熱、沸騰させるランキンサイクルを採用している。 The low-pressure boiler uses a lithium bromide aqueous solution as heat transfer water so that the boiling point is equal to or higher than the condensation temperature (130 ° C.) of SO 3 at an operating pressure below atmospheric pressure. Further, a low pressure boiler is provided with a preheater and a heat exchanger connected thereto, and a Rankine cycle is adopted in which the working fluid (refrigerant) flowing in the preheater and the heat exchanger is preheated and boiled.

しかし、前記低圧ボイラは、上述した燃焼排ガスからの熱回収発電設備のように下水汚泥等の廃棄物の燃焼により発生した燃焼排ガスから熱回収発電するものではなく、バーナによる燃焼排ガスからの熱回収発電であり、燃焼排ガスの量や温度が変動した場合の減圧ボイラ内の圧力維持、温度維持については全く記載されていない。   However, the low pressure boiler does not perform heat recovery power generation from combustion exhaust gas generated by combustion of wastes such as sewage sludge as in the above-described heat recovery power generation equipment from combustion exhaust gas, and heat recovery from combustion exhaust gas by burner It is power generation, and there is no description at all regarding the pressure maintenance and temperature maintenance in the pressure reduction boiler when the amount and temperature of the flue gas fluctuate.

また、低温の熱源から熱を回収して発電を行うバイナリー発電装置としては、特開2013-181398号公報(特許文献3参照)に記載されたバイナリー発電装置が知られている。   In addition, as a binary power generation apparatus that recovers heat from a low-temperature heat source to generate electric power, a binary power generation apparatus described in Japanese Patent Laid-Open No. 2013-181398 (see Patent Document 3) is known.

前記バイナリー発電装置は、温水を熱源とし、蒸発器から排出される温水の温度を所定の温度に調整した上で発電量を最大にするようにしたものである。   The binary power generation apparatus uses warm water as a heat source, adjusts the temperature of the warm water discharged from the evaporator to a predetermined temperature, and maximizes the amount of power generation.

しかし、前記バイナリー発電装置は、このバイナリー発電装置を上述した燃焼排ガスからの熱回収発電設備に用いると、燃焼排ガスの量や温度が急激に変化した場合に、冷媒の循環量の制御だけでは減圧ボイラの圧力、温度を許容範囲内に収めることができない。   However, when the binary power generation system uses this binary power generation system for the heat recovery power generation equipment from the combustion exhaust gas described above, when the amount and temperature of the combustion exhaust gas suddenly change, the control of the circulation amount of refrigerant only reduces the pressure. Boiler pressure and temperature can not be within the allowable range.

一方、上述した燃焼排ガスからの熱回収発電設備においては、燃焼炉に投入する廃棄物の量やカロリーの変化により燃焼排ガスの量や温度が変動した場合、第1の吸熱側である減圧ボイラの圧力と温度が変動し、この変動を第2の吸熱側であるバイナリー発電装置が吸収する方向に作動するようになっている。   On the other hand, in the above-described heat recovery power generation facility from combustion exhaust gas, if the amount and temperature of the combustion exhaust gas fluctuate due to changes in the amount and waste calories of the waste introduced into the combustion furnace, The pressure and temperature fluctuate, and the second heat absorption side binary power generator operates to absorb the fluctuation.

しかしながら、前記燃焼排ガスからの熱回収発電設備は、バイナリー発電装置の応答が敏速でないので、燃焼排ガスの変動が大きい場合やバイナリー発電装置の発電機が定格点(定格出力)に達した場合、対応できないと言う問題があった。   However, since the response of the binary power generation system is not quick, the heat recovery power generation facility from the flue gas responds when the fluctuation of the combustion exhaust gas is large or when the generator of the binary power generation system reaches the rated point (rated output). There was a problem that I could not do it.

例えば、燃焼排ガスの量と温度が急激に増える方に変動した場合、減圧ボイラの内部圧力が上がり、熱媒水の温度と蒸発水の温度が上がる。このとき、バイナリー発電装置側で冷媒の循環量を上げて吸熱量を増やすようにしている。   For example, when the amount and temperature of the combustion exhaust gas fluctuate in the direction of rapid increase, the internal pressure of the decompression boiler increases, and the temperature of the heat transfer water and the temperature of the evaporation water increase. At this time, the amount of heat absorption is increased by increasing the circulating amount of the refrigerant on the side of the binary power generation device.

ところが、バイナリー発電装置の応答が遅いので、減圧ボイラの内部圧力が上がり、最後は最大使用圧力(大気圧よりもやや小さい圧力)に設定された安全装置(安全弁等)が作動し、減圧ボイラの内部が大気と連通状態となり、大気が減圧ボイラ内に流入して減圧ボイラの内部圧力が大気と同じ圧力になる。   However, since the response of the binary power generation system is slow, the internal pressure of the pressure reducing boiler rises, and finally the safety device (safety valve etc.) set to the maximum working pressure (pressure slightly smaller than the atmospheric pressure) operates. The inside is in communication with the atmosphere, the atmosphere flows into the pressure reducing boiler, and the internal pressure of the pressure reducing boiler becomes the same pressure as the atmosphere.

このように、安全装置が作動すると、一旦熱回収発電設備の運転を停止し、減圧ボイラの内部を真空ポンプにより所定の真空になるまで吸引しなくてはならず、再運転するまでに時間がかかり、運転効率や発電効率が著しく低下すると言う問題がある。   In this way, once the safety device is activated, the operation of the heat recovery power generation facility must be stopped once, and the inside of the decompression boiler must be sucked by the vacuum pump until it reaches a predetermined vacuum. The problem is that the operation efficiency and the power generation efficiency are significantly reduced.

特許第6009009号公報Patent No. 6009009 特開昭57−33701号公報Japanese Patent Application Laid-Open No. 57-33701 特開2013-181398号公報JP, 2013-181398, A

本発明は、このような問題点に鑑みて為されたものであり、その目的は、減圧ボイラに流入する燃焼排ガスの量が増大したり、燃焼排ガスの温度が上昇したりした場合でも、減圧ボイラが最大使用圧力を超えることなく安定した状態で連続運転できるようにした燃焼排ガスからの熱回収発電設備及びその制御方法を提供することにある。   The present invention has been made in view of such problems, and an object thereof is to reduce the pressure even when the amount of the flue gas flowing into the pressure reducing boiler is increased or the temperature of the flue gas is increased. It is an object of the present invention to provide a heat recovery power generation facility from flue gas and a control method thereof that enable continuous operation in a stable state without exceeding the maximum working pressure of the boiler.

上記目的を達成するために、本発明の第1の発明は、廃棄物を燃焼処理する燃焼炉から排出されて煙道内を流れる腐食成分を含む燃焼排ガスから熱回収して発電するようにした燃焼排ガスからの熱回収発電設備であって、燃焼排ガスを流す煙道に設置され、燃焼排ガスを通して燃焼排ガスから熱回収すると共に、熱媒水を加熱して蒸気を発生させる内部圧が大気圧以下に保持された減圧ボイラと、蒸発部が減圧ボイラの減圧蒸気室に設置され、蒸発部内を流れる低沸点の液状の冷媒を減圧蒸気室内の蒸気により加熱、蒸発させてその蒸気でタービンを回して発電するバイナリー発電装置と、減圧ボイラの熱媒水の温度又は減圧蒸気室の圧力をそれぞれ検出する温度検出器又は圧力検出器と、減圧ボイラの減圧蒸気室に設置され、冷却媒体が流れる受熱部と、受熱部へ冷却媒体を供給する冷却媒体供給管と、冷却媒体供給管に介設され、圧力検出器からの検出信号により制御される制御弁と、を備えており、前記温度検出器又は圧力検出器からの検出信号に基づいて減圧ボイラの熱媒水の温度又は減圧蒸気室の圧力が所定の温度又は圧力に保たれるようにバイナリー発電装置の低沸点の冷媒を循環させる冷媒循環ポンプを制御して発電量を制御すると共に、前記減圧ボイラ内の圧力が設定値を超えたときに、圧力検出器からの検出信号に基づいて制御弁を開放して受熱部へ冷却媒体を供給し、減圧ボイラ内の圧力を低下させる構成としたことに特徴がある。   In order to achieve the above object, according to a first aspect of the present invention, combustion is carried out such that heat is recovered from combustion exhaust gas containing corrosive components which are discharged from a combustion furnace which burns waste and flows in the flue. Heat recovery power generation from exhaust gas, installed in a flue where flue gas flows, heat is recovered from flue gas through flue gas, and internal pressure for heating heat transfer water to generate steam is below atmospheric pressure The low pressure boiler and the evaporation unit are installed in the reduced pressure steam chamber of the pressure reduction boiler, and the low boiling point liquid refrigerant flowing in the evaporation unit is heated and evaporated by the steam in the reduced pressure steam chamber and the turbine is rotated by the steam to generate electricity Installed in the decompression steam chamber of the decompression boiler, and a temperature sensor or pressure detector for detecting the temperature of the heat transfer water of the decompression boiler or the pressure of the decompression steam chamber, respectively; A temperature receiving portion, a cooling medium supply pipe for supplying a cooling medium to the heat receiving portion, and a control valve interposed in the cooling medium supply pipe and controlled by a detection signal from a pressure detector; The low boiling point refrigerant of the binary power generation apparatus is circulated so that the temperature of the heat transfer water of the pressure reduction boiler or the pressure of the pressure reduction steam chamber is maintained at a predetermined temperature or pressure based on the detection signal from the detector or pressure detector. The refrigerant circulation pump is controlled to control the amount of power generation, and when the pressure in the pressure reducing boiler exceeds a set value, the control valve is opened based on the detection signal from the pressure detector and the cooling medium is transferred to the heat receiving portion To reduce the pressure in the pressure reducing boiler.

本発明の第2の発明は、前記第1の発明において、減圧ボイラの熱媒水を、大気圧以下で沸点が燃焼排ガス中に含まれているSOガスの露点以上となる水溶液とし、また、冷却媒体を、常温の水としたことに特徴がある。 According to a second aspect of the present invention, in the first aspect, the heat transfer water of the decompression boiler is an aqueous solution whose boiling point is equal to or higher than the dew point of SO 3 gas contained in the combustion exhaust gas under atmospheric pressure. The characteristic is that the cooling medium is water at normal temperature.

本発明の第3の発明は、前記第1の発明又は第2の発明において、減圧ボイラの熱媒水中に過熱管を配設すると共に、当該過熱管と減圧蒸気室の蒸発部とを接続し、蒸発部で加熱された冷媒を過熱管に導き、ここで減圧ボイラの熱媒水により更に過熱するようにしたことに特徴がある。   According to a third aspect of the present invention, in the first aspect or the second aspect, the superheat pipe is disposed in the heat medium water of the depressurization boiler, and the superheat pipe is connected to the evaporation portion of the depressurization steam chamber. The present invention is characterized in that the refrigerant heated in the evaporation section is led to the superheating pipe, where the refrigerant is further heated by the heat transfer water of the decompression boiler.

本発明の第4の発明は、前記第1の発明、第2の発明又は第3の発明の何れかに記載の燃焼排ガスからの熱回収発電設備の制御方法であって、圧力検出器により減圧ボイラ内の圧力を検出し、減圧ボイラ内の圧力が設定値を超えたときに、制御弁を開放して受熱部へ冷却媒体を供給し、減圧ボイラ内の圧力を低下させるようにしたことに特徴がある。   A fourth invention of the present invention is the control method of heat recovery power generation equipment from flue gas according to any of the first invention, the second invention or the third invention, wherein the pressure detector reduces pressure. The pressure in the boiler is detected, and when the pressure in the pressure reduction boiler exceeds the set value, the control valve is opened to supply the cooling medium to the heat receiving portion to reduce the pressure in the pressure reduction boiler. There is a feature.

本発明の第5の発明は、前記第4の発明において、減圧ボイラ内の圧力が設定圧力以下になれば、制御弁を徐々に閉めて行くようにしたことに特徴がある。   According to a fifth aspect of the present invention, in the fourth aspect, the control valve is gradually closed when the pressure in the pressure reducing boiler becomes equal to or lower than the set pressure.

本発明によれば、減圧ボイラの蒸気減圧室内に冷却媒体が流れる受熱部を設置し、当該受熱部に冷却媒体供給管により冷却媒体を供給すると共に、前記冷却媒体供給管に減圧ボイラ内の圧力を検出する圧力検出器からの検出信号に基づいて制御される制御弁を介設し、減圧ボイラ内の圧力が設定値を超えたときに、圧力検出器からの検出信号に基づいて制御弁を開放して受熱部へ冷却媒体を供給し、減圧ボイラ内の圧力を低下させるようにしているため、減圧ボイラに流入する燃焼排ガスの量が大幅に増大したり、燃焼排ガスの温度が急激に上昇したりした場合でも、減圧ボイラが最大使用圧力を超えることなく安定した状態で連続運転することができる。   According to the present invention, the heat receiving portion in which the cooling medium flows is installed in the steam pressure reducing chamber of the pressure reducing boiler, the cooling medium is supplied to the heat receiving portion by the cooling medium supply pipe, and the pressure in the pressure reducing boiler is supplied to the cooling medium supply pipe. Control valve controlled based on the detection signal from the pressure detector to detect the pressure, and when the pressure in the pressure reduction boiler exceeds the set value, the control valve is controlled based on the detection signal from the pressure detector Since the cooling medium is opened to supply the cooling medium to the heat receiving part and the pressure in the pressure reducing boiler is reduced, the amount of flue gas flowing into the pressure reducing boiler is significantly increased, or the temperature of the flue gas rises sharply. Even in such a case, the decompression boiler can be operated continuously in a stable state without exceeding the maximum working pressure.

また、本発明によれば、バイナリー発電装置側にトラブル(例えば、冷媒循環ポンプの故障)が発生し、冷媒を循環させることができないような場合でも、受熱部に冷却媒体を供給し、受熱部の受熱容量をバイナリー発電装置側の受熱容量以上とすることで設備自体の運転を停止することなく、廃棄物の燃焼処理を行うことができる。   Further, according to the present invention, even when a problem (for example, a failure of the refrigerant circulation pump) occurs on the binary power generation device side and the refrigerant can not be circulated, the cooling medium is supplied to the heat receiving unit to receive the heat receiving unit. By setting the heat receiving capacity of the above to be equal to or higher than the heat receiving capacity on the side of the binary power generation apparatus, it is possible to carry out the burning treatment of the waste without stopping the operation of the facility itself.

更に、本発明によれば、受熱部へ供給される冷却媒体を常温の水としているため、減圧ボイラの減圧蒸気室との温度差を大きく取れ、受熱部が燃焼排ガスと減圧ボイラや減圧ボイラと冷媒よりも早く受熱することができる。   Furthermore, according to the present invention, since the cooling medium supplied to the heat receiving portion is water at normal temperature, a large temperature difference with the pressure reducing steam chamber of the pressure reducing boiler can be obtained, and the heat receiving portion is the combustion exhaust gas and the pressure reducing boiler or pressure reducing boiler It can receive heat earlier than the refrigerant.

更に、本発明によれば、減圧ボイラ内の圧力が設定圧力以下になれば、制御弁を徐々に閉めて行くようにしているため、バイナリー発電装置側の冷媒循環ポンプによる冷媒の循環量制御が追い付き、減圧ボイラの内部の圧力は常用圧力で運転されることになる。   Furthermore, according to the present invention, since the control valve is gradually closed when the pressure in the pressure reducing boiler becomes equal to or less than the set pressure, circulation amount control of the refrigerant by the refrigerant circulation pump on the binary power generation device side is performed. The pressure inside the pressure reducing boiler will be operated at normal pressure.

本発明の一実施形態に係る燃焼排ガスからの熱回収発電設備を設置した燃焼設備の概略系統図である。It is a schematic diagram of the combustion equipment which installed the heat recovery power generation equipment from the flue gas concerning one embodiment of the present invention. 図1に示す燃焼排ガスからの熱回収発電設備の拡大概略系統図である。FIG. 2 is an enlarged schematic system diagram of a heat recovery power generation facility from flue gas shown in FIG. 1.

以下、本発明の一実施形態を図面に基づいて詳細に説明する。
図1は本発明の一実施形態に係る燃焼排ガスGからの熱回収発電設備を設置した燃焼設備を示し、当該燃焼設備は、燃焼炉1(焼却炉)からの燃焼排ガスGを燃焼用空気予熱器2、白煙防止空気予熱器3、減圧ボイラ4、集塵装置5、洗煙装置6の順に通し、煙道7内を流れる燃焼排ガスGから減圧ボイラ4により熱回収すると共に、回収した熱をバイナリー発電装置8に供給して発電に利用し、減圧ボイラ4を経た燃焼排ガスGを集塵装置5及び洗煙装置6により排ガス処理した後、誘引通風機9を介して煙突10から大気中へ放出するようにしたものである。
Hereinafter, an embodiment of the present invention will be described in detail based on the drawings.
FIG. 1 shows a combustion facility provided with a heat recovery power generation facility from a combustion exhaust gas G according to an embodiment of the present invention, which combustion air preheats the combustion exhaust gas G from the combustion furnace 1 (incinerator) for combustion. Heater, white smoke prevention air preheater 3, decompression boiler 4, dust collection device 5, and scrubbing device 6 in this order, heat is recovered from the combustion exhaust gas G flowing in the flue 7 by the decompression boiler 4 and the recovered heat Is supplied to the binary power generation system 8 and used for power generation, and the flue gas G passed through the decompression boiler 4 is treated with the dust collection device 5 and the smoke cleaning device 6 and then exhausted to the atmosphere from the chimney 10 via the induction ventilator 9 To release it.

前記燃焼炉1は、下水汚泥や都市ごみ等の廃棄物を燃焼処理するものであり、この燃焼炉1には、ストーカ11上で廃棄物を乾燥、燃焼、後燃焼させる従来公知のストーカ式の焼却炉が使用されている。   The combustion furnace 1 burns and treats waste such as sewage sludge and municipal waste, and the combustion furnace 1 is used to dry, burn, and burn the waste on the stoker 11. An incinerator is used.

尚、上記の実施形態においては、燃焼炉1にストーカ式の焼却炉を使用したが、他の実施形態においては、燃焼炉1に流動床式の焼却炉を使用するようにしても良い。   In the above embodiment, a stoker type incinerator is used as the combustion furnace 1. However, in another embodiment, a fluidized bed type incinerator may be used as the combustion furnace 1.

前記燃焼用空気予熱器2は、燃焼炉1の下流側の煙道7に設置されており、燃焼用空気ファン12から供給された燃焼用空気を燃焼排ガスGにより予熱し、予熱した燃焼用空気を燃焼用空気供給ダクト13により焼却炉1のストーカ11下へ供給するようになっている。   The combustion air preheater 2 is installed in the flue 7 downstream of the combustion furnace 1. The combustion air supplied from the combustion air fan 12 is preheated by the combustion exhaust gas G, and the preheated combustion air is preheated. Are supplied by the combustion air supply duct 13 below the stoker 11 of the incinerator 1.

前記白煙防止空気予熱器3は、燃焼用空気予熱器2の下流側の煙道7に設置されており、白煙防止ファン14から供給された白煙防止用空気を燃焼排ガスGにより加熱し、加熱した白煙防止用空気を白煙防止用空気供給ダクト15により誘引通風機9の下流側の煙道7に流すようになっている。   The white smoke prevention air preheater 3 is installed in the flue 7 downstream of the combustion air preheater 2 and heats the white smoke prevention air supplied from the white smoke prevention fan 14 with the combustion exhaust gas G. The heated white smoke preventing air is caused to flow to the flue 7 downstream of the induction ventilator 9 by the white smoke preventing air supply duct 15.

前記集塵装置5は、燃焼用空気予熱器2、白煙防止空気予熱器3及び減圧ボイラ4を経て熱回収された燃焼排ガスG中の煤塵を除去するものであり、この集塵装置5には、従来公知のバグフィルターが使用されている。   The dust collection device 5 removes dust in the combustion exhaust gas G heat-recovered through the combustion air preheater 2, the white smoke prevention air preheater 3, and the decompression boiler 4. Conventionally, known bag filters are used.

尚、上記の実施形態においては、集塵装置5にバグフィルターを使用したが、他の実施形態においては、電気集塵機やセラミック集塵機等を使用するようにしても良い。   In the above embodiment, a bag filter is used as the dust collecting device 5. However, in other embodiments, an electric dust collector, a ceramic dust collector, or the like may be used.

前記洗煙装置6は、装置内部に導入された燃焼排ガスGをノズル16から散水される水と接触させることにより燃焼排ガスG中の酸性ガスを除去するものであり、洗煙水を循環させる洗煙水循環ポンプ17と、汚れた洗煙水を排出する洗煙水排出ポンプ18と、新しい洗煙水を供給する洗煙水供給ポンプ19とを備えている。   The scrubbing device 6 removes the acid gas in the flue gas G by bringing the flue gas G introduced into the inside of the device into contact with the water sprayed from the nozzle 16. A smoke water circulation pump 17, a flush water discharge pump 18 for discharging dirty flush water, and a flush water supply pump 19 for supplying fresh flush water are provided.

そして、本発明に係る燃焼排ガスGからの熱回収発電設備は、図2に示す如く、燃焼排ガスGを流す煙道7(白煙防止空気予熱器3とバグフィルター5との間の煙道7)に設置され、燃焼排ガスGを通して燃焼排ガスGから熱回収すると共に、熱媒水Hを加熱して蒸気を発生させる内部圧が大気圧以下に保持された減圧ボイラ4と、蒸発部26が減圧ボイラ4の減圧蒸気室22に設置され、蒸発部26内を流れる低沸点の液状の冷媒Rを減圧蒸気室22内の蒸気により加熱、蒸発させてその蒸気でタービン28を回して発電するバイナリー発電装置8と、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室22の圧力をそれぞれ検出する温度検出器23又は圧力検出器24と、減圧ボイラ4の減圧蒸気室22に設置され、冷却媒体Wが流れる受熱部34と、受熱部34へ冷却媒体Wを供給する冷却媒体供給管35と、冷却媒体供給管35に介設され、圧力検出器24からの検出信号により制御される制御弁37と、を備えており、前記温度検出器23又は圧力検出器24からの検出信号に基づいて減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室22の圧力が所定の温度又は圧力に保たれるようにバイナリー発電装置8の低沸点の冷媒Rを循環させる冷媒循環ポンプ31を制御して発電量を制御すると共に、減圧ボイラ4内の圧力が設定値(最大使用圧力と常用使用圧力の中間値)を超えたときに、圧力検出器24からの検出信号に基づいて制御弁37を開放して受熱部34へ冷却媒体Wを供給し、減圧ボイラ4内の圧力を低下させるようにしたものである。   And as shown in FIG. 2, the heat recovery power generation facility from the combustion exhaust gas G according to the present invention, as shown in FIG. 2, the flue 7 which flows the combustion exhaust G (white smoke prevention air preheater 3 and the flue 7 between the bag filter 5 ), Which recovers heat from the combustion exhaust gas G through the combustion exhaust gas G, and heats the heat transfer water H to generate steam, the pressure reducing boiler 4 whose internal pressure is kept below atmospheric pressure, and the evaporation section 26 Binary power generation installed in the depressurized steam chamber 22 of the boiler 4 and heating and evaporating the low boiling point liquid refrigerant R flowing in the evaporation unit 26 with the vapor in the depressurized steam chamber 22 and rotating the turbine 28 with the vapor to generate electricity The temperature medium 23 or the pressure sensor 24 for detecting the temperature of the heat medium water H of the pressure reduction boiler 4 or the pressure of the pressure reduction steam chamber 22, and the pressure reduction steam chamber 22 of the pressure reduction boiler 4 Heat receiving W flows 34, a cooling medium supply pipe 35 for supplying the cooling medium W to the heat receiving unit 34, and a control valve 37 interposed in the cooling medium supply pipe 35 and controlled by a detection signal from the pressure detector 24 Binary power generation so that the temperature of the heat transfer water H of the decompression boiler 4 or the pressure of the decompression steam chamber 22 is maintained at a predetermined temperature or pressure based on the detection signal from the temperature detector 23 or the pressure detector 24 The amount of power generation is controlled by controlling the refrigerant circulation pump 31 for circulating the low boiling point refrigerant R of the device 8, and the pressure in the pressure reducing boiler 4 exceeds the set value (the intermediate value between the maximum working pressure and the normal working pressure) Occasionally, the control valve 37 is opened based on the detection signal from the pressure detector 24 to supply the cooling medium W to the heat receiving unit 34 so as to reduce the pressure in the pressure reducing boiler 4.

具体的には、前記減圧ボイラ4は、図2に示す如く、煙道7に接続され、内部圧が大気圧以下に保持されて熱媒水Hを貯留した缶体20と、缶体20の熱媒水Hを貯留した部分に貫通状に架設され、煙道7内の燃焼排ガスGが通過する複数の煙管21と、缶体20内の上部側空間に形成された減圧蒸気室22と、熱媒水Hの温度を検出する温度検出器23と、減圧蒸気室22の圧力を検出する圧力検出器24と、減圧蒸気室22の内部圧力が最大使用圧力(大気圧よりもやや小さい圧力)も高くなったときに減圧蒸気室22を大気に開放する安全装置25(例えば、安全弁)等を備えており、缶体20内の熱媒水Hを複数の煙管21内を通過する燃焼排ガスGとの間接熱交換により加熱して蒸発させ、発生した水蒸気を減圧蒸気室22に設置したバイナリー発電装置8の蒸発部26に接触させて凝縮液化させると共に、蒸発部26内を流れる冷媒Rを気化させるようにしている。   Specifically, as shown in FIG. 2, the pressure reducing boiler 4 is connected to the flue 7, and the can 20 which holds the heat transfer water H while the internal pressure is maintained below the atmospheric pressure, and the can 20. A plurality of smoke pipes 21 which are installed in a penetrating manner in a portion where the heat transfer water H is stored and through which the combustion exhaust gas G in the flue 7 passes and a reduced pressure steam chamber 22 formed in an upper side space in the can 20; Temperature detector 23 for detecting the temperature of the heat transfer water H, pressure detector 24 for detecting the pressure in the depressurized steam chamber 22, and the maximum working pressure (a pressure slightly smaller than the atmospheric pressure) of the internal pressure of the depressurized steam chamber 22 The combustion exhaust gas G which passes the heat medium water H in the can 20 through the inside of the plurality of smoke pipes 21 is provided with a safety device 25 (for example, a safety valve) or the like that opens the depressurized steam chamber 22 to the atmosphere when the temperature rises. Heat and evaporate by indirect heat exchange with the source, and place the generated steam in the reduced pressure steam chamber 22 They were together condensed to liquefy in contact with the evaporator section 26 of the binary power generation device 8, and to vaporize the refrigerant R flowing in the evaporator section 26.

尚、缶体20は、上部缶体20aと下部缶体20bとを連結管20cを介して連通状に接続した構造であり、下部缶体20b内に熱媒水Hが貯留されていると共に、下部缶体20bに煙管21が架設され、また、上部缶体20a内の空間と下部缶体20b内の上部空間と連絡管20cの空間とが減圧蒸気室22となっている。   The can 20 has a structure in which the upper can 20a and the lower can 20b are connected in a communicating manner via the connecting pipe 20c, and the heat transfer water H is stored in the lower can 20b. A smoke pipe 21 is installed over the lower can 20 b, and a space in the upper can 20 a, an upper space in the lower can 20 b, and a space of the communication pipe 20 c form a reduced pressure steam chamber 22.

また、熱媒水Hには、大気圧以下で100℃以上の沸点を持つ水溶液が使用されている。この水溶液の沸点は、燃焼排ガスG中に含まれているSOが通過する煙管21内部で結露しない温度としている。この実施形態においては、SOの露点が130℃程度であるので、水溶液の沸点を130℃とし、55Wt%の臭化リチウム水溶液を熱媒水Hとして使用している。 Further, as the heat transfer water H, an aqueous solution having a boiling point of 100 ° C. or higher at atmospheric pressure or lower is used. The boiling point of the aqueous solution is a temperature at which condensation does not occur in the smoke pipe 21 through which SO 3 contained in the combustion exhaust gas G passes. In this embodiment, since the dew point of SO 3 is about 130 ° C., the boiling point of the aqueous solution is 130 ° C., and a 55 wt% lithium bromide aqueous solution is used as the heat transfer water H.

前記バイナリー発電装置8は、図2に示す如く、蒸発部26、過熱管27、タービン28、発電機29、凝縮部30、冷媒循環ポンプ31、冷媒循環用配管32及び制御盤33等を備えており、前記蒸発部26、過熱管27、タービン28、凝縮部30及び冷媒循環ポンプ31を冷媒循環用配管32により閉ループ状に接続し、閉ループ内で低沸点の冷媒R(例えば、ペンタンやアンモニア等)を蒸発部26、過熱管27、タービン28、凝縮部30、冷媒循環ポンプ31の順に循環させて蒸発部26に戻すようにしている。   As shown in FIG. 2, the binary power generation apparatus 8 includes an evaporation unit 26, a superheat pipe 27, a turbine 28, a generator 29, a condenser 30, a refrigerant circulation pump 31, a refrigerant circulation pipe 32, a control board 33, and the like. The evaporation unit 26, the superheat pipe 27, the turbine 28, the condenser 30, and the refrigerant circulation pump 31 are connected in a closed loop by the refrigerant circulation pipe 32, and the low boiling point refrigerant R (for example, pentane, ammonia ) Are circulated in the order of the evaporating unit 26, the superheating pipe 27, the turbine 28, the condensing unit 30, and the refrigerant circulating pump 31, and are returned to the evaporating unit 26.

このバイナリー発電装置8は、その蒸発部26が減圧ボイラ4の減圧蒸気室22に設置されており、減圧蒸気室22内の蒸気により蒸発部26内の低沸点の液状の冷媒Rを気化させ、この気化した冷媒Rを過熱管27に導いてここで130℃の熱媒水Hにより更に過熱し、この過熱された冷媒Rでタービン28を回して発電機29で発電するようになっている。タービン28を回した蒸気は、凝縮部30で冷却されて液状の冷媒Rとなって蒸発部26に戻る。蒸発部26に戻った液状の冷媒Rは、ここで減圧蒸気室22内の蒸気により再び加熱されて気化し、過熱管27に流入してここで熱媒水Hにより更に過熱された後、タービン28に供給されてタービン28を回す。   The evaporation unit 26 of the binary power generation device 8 is installed in the depressurized steam chamber 22 of the depressurizing boiler 4, and the vapor in the depressurized vapor chamber 22 evaporates the low boiling point liquid refrigerant R in the evaporator 26. The vaporized refrigerant R is led to the superheating pipe 27 where it is further heated by heat medium water H at 130 ° C., and the turbine 28 is rotated by the superheated refrigerant R so that the generator 29 generates electric power. The steam that has rotated the turbine 28 is cooled in the condenser 30 and becomes liquid refrigerant R and returns to the evaporator 26. Here, the liquid refrigerant R returned to the evaporation section 26 is again heated and vaporized by the vapor in the depressurized steam chamber 22, flows into the superheating pipe 27 and is further superheated by the heat transfer water H here, and then the turbine It is supplied to 28 to turn the turbine 28.

このように、前記バイナリー発電装置8では、タービン28を回す役目を果たす冷媒Rが蒸気と液化を繰り返しながら閉ループ内を循環するようになっている。尚、減圧ボイラ4の減圧蒸気室22に設置される蒸発部26は、折り曲げ形成した蒸発管26aを減圧蒸気室22に配設することにより構成されている。   As described above, in the binary power generation system 8, the refrigerant R serving to turn the turbine 28 circulates in the closed loop while repeating steam and liquefaction. The evaporation unit 26 installed in the decompression steam chamber 22 of the decompression boiler 4 is configured by arranging the bent evaporation tube 26 a in the decompression steam chamber 22.

また、前記バイナリー発電装置8は、減圧ボイラ4に設けた温度検出器23又は圧力検出器24により減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室22の圧力をそれぞれ検出し、これらの検出信号に基づいて減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室22の圧力が所定の温度又は圧力に保たれるように制御盤33により低沸点の冷媒Rを循環させる冷媒循環ポンプ31を制御し、発電量を制御するように構成されている。   Further, the binary power generation device 8 detects the temperature of the heat transfer water H of the decompression boiler 4 or the pressure of the decompression steam chamber 22 respectively by the temperature detector 23 or the pressure detector 24 provided in the decompression boiler 4 and detects them. The refrigerant circulation pump 31 which circulates the low boiling point refrigerant R by the control panel 33 so that the temperature of the heat transfer water H of the decompression boiler 4 or the pressure of the decompression steam chamber 22 is maintained at a predetermined temperature or pressure based on the signal. It is configured to control and control the amount of power generation.

前記受熱部34は、折り曲げ形成した受熱管34aを減圧ボイラ4の減圧蒸気室22に配設することにより形成されており、この受熱部34の入口側の受熱管34aには、受熱部34へ冷却媒体Wを供給する冷却媒体供給管35が接続され、受熱部34の出口側の受熱管34aには、受熱された冷却媒体Wを排出するための冷却媒体排出管36が接続されている。尚、冷却媒体Wには、常温の水が使用されている。ここで常温の水とは、加熱も冷却もしていない水を意味する。また、この水は、スケール障害や腐食障害を引き起こす成分が取り除かれている。   The heat receiving portion 34 is formed by arranging the bent heat receiving pipe 34 a in the depressurized steam chamber 22 of the pressure reducing boiler 4, and the heat receiving pipe 34 a on the inlet side of the heat receiving portion 34 is connected to the heat receiving portion 34. A cooling medium supply pipe 35 for supplying the cooling medium W is connected, and a cooling medium discharge pipe 36 for discharging the heat receiving cooling medium W is connected to the heat receiving pipe 34 a on the outlet side of the heat receiving portion 34. As the cooling medium W, water at normal temperature is used. Here, water at normal temperature means water which is neither heated nor cooled. Also, this water has been freed from components that cause scale and corrosion problems.

冷却媒体Wを供給する冷却媒体供給管35には、制御弁37が介設されている。この制御弁37は、減圧ボイラ4内の圧力が設定値(最大使用圧力と常用使用圧力の中間値)を超えたときに、圧力検出器24からの検出信号に基づいて制御盤33により開放制御されるようになっている。これにより、冷却媒体Wは、冷却媒体供給管35から受熱部34へ供給され、ここで減圧蒸気室22内の蒸気から受熱し、減圧ボイラ4内の圧力を安全装置25が作動しない圧力まで低下させる。尚、受熱部34を通過して加熱された冷却媒体W(加熱されて温水となった水)は、他のプロセス(例えば、温水プール等)において2次利用されている。   A control valve 37 is interposed in the cooling medium supply pipe 35 for supplying the cooling medium W. The control valve 37 is controlled by the control panel 33 based on the detection signal from the pressure detector 24 when the pressure in the pressure reducing boiler 4 exceeds the set value (the intermediate value between the maximum working pressure and the normal working pressure). It is supposed to be Thereby, the cooling medium W is supplied from the cooling medium supply pipe 35 to the heat receiving unit 34, where heat is received from the steam in the depressurized steam chamber 22 and the pressure in the depressurizing boiler 4 is lowered to a pressure at which the safety device 25 does not operate. Let In addition, the cooling medium W (water heated to become warm water) which passed through the heat receiving part 34 and was heated is used secondarily in other processes (for example, a warm water pool etc.).

次に、上述した燃焼排ガスWから熱回収発電設備を設置した燃焼設備を用いて下水汚泥を燃焼処理する場合について説明する。   Next, the case where the sewage sludge is burnt-processed using the combustion equipment which installed the heat recovery electric power generation equipment from combustion exhaust gas W mentioned above is explained.

燃焼炉1内に供給された下水汚泥は、ストーカ11上で乾燥、燃焼、後燃焼されて炉外へ排出される。尚、下水汚泥の含水率は、70%とした。   Sewage sludge supplied into the combustion furnace 1 is dried, burned and post-burned on the stoker 11 and discharged out of the furnace. The moisture content of the sewage sludge was 70%.

燃焼により発生した燃焼排ガスGは、燃焼炉1から排出されて燃焼用空気予熱器2及び白煙防止空気予熱器3で熱回収されてその温度が約650℃になる。燃焼用空気予熱器2により予熱された燃焼用空気は、燃焼用空気供給ダクト13によりストーカ11下へ供給されて燃焼に使用され、白煙防止空気予熱器3により予熱された白煙防止用空気は、白煙防止用空気供給ダクト15により誘引通風機9の下流側の煙道7に供給される。   The combustion exhaust gas G generated by the combustion is discharged from the combustion furnace 1 and heat-recovered by the combustion air preheater 2 and the white smoke preventing air preheater 3 to a temperature of about 650.degree. The combustion air preheated by the combustion air preheater 2 is supplied below the stoker 11 by the combustion air supply duct 13 and used for combustion, and the white smoke prevention air preheated by the white smoke prevention air preheater 3 Is supplied to the flue 7 downstream of the induction ventilator 9 by the white smoke preventing air supply duct 15.

白煙防止空気予熱器3を通過した燃焼排ガスGは、煙道7を通って減圧ボイラ4に流入し、煙管23内を通過する間に熱吸収されて約180℃で集塵装置5に送られ、ここで燃焼排ガスG中に含まれる煤塵が除去される。   The flue gas G which has passed through the white smoke prevention air preheater 3 flows through the flue 7 into the decompression boiler 4 and is absorbed by heat while passing through the smoke pipe 23 and sent to the dust collector 5 at about 180 ° C. Here, the soot contained in the combustion exhaust gas G is removed.

煤塵が除去された燃焼排ガスGは、煙道7を通って洗煙装置6に送られ、ここで水噴霧により燃焼排ガスG中に含まれる酸性ガスが除去された後、誘引通風機9を経て白煙防止用空気と混合されて煙突10から大気中へ放出される。   The flue gas G from which the soot and dust have been removed is sent through the flue 7 to the scrubbing apparatus 6, where after the acid gas contained in the flue gas G is removed by water spraying, it passes through the induction ventilator 9. It is mixed with the white smoke prevention air and emitted from the chimney 10 to the atmosphere.

そして、熱回収発電設備の減圧ボイラ4においては、缶体20内が大気圧以下に保たれており、熱媒水Hが満たされている。この熱媒水Hは、大気圧以下で100℃以上の沸点を持っており、燃焼排ガスG中に含まれているSOが通過する減圧ボイラ4の煙管23内部で結露しない温度としている。この実施形態においては、SOの露点が130℃であるので、熱媒水Hの沸点を130℃としている。このときの減圧ボイラ4の煙管21の表面温度は、約140℃となり、腐食が防止される。 Then, in the decompression boiler 4 of the heat recovery power generation facility, the inside of the can 20 is maintained at the atmospheric pressure or lower, and the heat transfer water H is filled. The heat transfer water H has a boiling point of 100 ° C. or higher below atmospheric pressure, and is a temperature at which condensation does not occur inside the smoke pipe 23 of the decompression boiler 4 through which SO 3 contained in the combustion exhaust gas G passes. In this embodiment, since the dew point of SO 3 is 130 ° C., the boiling point of the heat medium water H is 130 ° C. The surface temperature of the smoke pipe 21 of the decompression boiler 4 at this time is about 140 ° C., and corrosion is prevented.

減圧ボイラ4の煙管21を介して燃焼排ガスGから受熱した熱媒水Hは、沸騰して90℃の蒸気を発生する。この発生した蒸気は、減圧ボイラ4の減圧蒸気室22に設置したバイナリー発電装置8の蒸発部26の蒸発管26aに接触して凝縮し、蒸発管28a内を流れる冷媒Rに熱を与える。尚、蒸発部26での熱交換により凝縮したドレン水は、下部缶体20aに貯留されている熱媒水H側へ流下する。   The heat transfer water H received from the combustion exhaust gas G through the smoke pipe 21 of the decompression boiler 4 is boiled to generate steam at 90 ° C. The generated steam contacts the evaporation pipe 26a of the evaporation unit 26 of the binary power generation device 8 installed in the decompression steam chamber 22 of the decompression boiler 4, condenses, and gives heat to the refrigerant R flowing in the evaporation tube 28a. The drain water condensed by the heat exchange in the evaporation unit 26 flows down to the side of the heat transfer water H stored in the lower can 20 a.

蒸発部26の蒸発管26a内を流れる冷媒Rは、受熱することにより液体から気体へと気化する。この気化した冷媒Rは、過熱管27に導かれ、ここで減圧ボイラ4の130℃の熱媒水Hから受熱して120℃に過熱されてバイナリー発電装置8のタービン28に送られ、タービン羽根を回転させて発電機29で発電させる。   The refrigerant R flowing in the evaporation pipe 26 a of the evaporation unit 26 is vaporized from liquid to gas by receiving heat. The vaporized refrigerant R is led to the superheating pipe 27, where it receives heat from the 130 ° C. heat medium water H of the decompression boiler 4 and is superheated to 120 ° C., and is sent to the turbine 28 of the binary power generation device 8 To cause the generator 29 to generate power.

タービン28から排出された気化した冷媒Rは、凝縮部30に送られてここで冷却水により冷却されて液状の冷媒Rとなり、冷媒循環ポンプ31により蒸発部26へ戻る。
以下、上述したサイクルを繰り返す。
The vaporized refrigerant R discharged from the turbine 28 is sent to the condenser 30 where it is cooled by the cooling water to become a liquid refrigerant R, and returns to the evaporator 26 by the refrigerant circulation pump 31.
Hereinafter, the above cycle is repeated.

次に、熱回収発電設備の減圧ボイラ4の制御について説明する。   Next, control of the pressure reducing boiler 4 of the heat recovery power generation facility will be described.

下水汚泥の燃焼量や発熱量が低下したときには、減圧ボイラ4の入口温度と燃焼排ガスGの流量が低下するので、減圧ボイラ4での吸収熱量も低下する。そのとき減圧ボイラ4の内部圧力(減圧蒸気室22の圧力)も低下する。減圧ボイラ4の内部圧力が低下すると、熱媒水Hの飽和温度も低下するので減圧ボイラ4の煙管21内部の温度が低下する。そのため、煙管21内部の温度がSOの露点以下となる。その結果、減圧ボイラ4の煙管21がSOの結露による硫酸腐食を引き起こすことがある。 When the amount of combustion and the amount of heat generation of the sewage sludge decrease, the inlet temperature of the pressure reducing boiler 4 and the flow rate of the combustion exhaust gas G decrease, so the amount of heat absorbed by the pressure reducing boiler 4 also decreases. At this time, the internal pressure of the pressure reducing boiler 4 (the pressure of the pressure reducing steam chamber 22) also decreases. When the internal pressure of the pressure reducing boiler 4 decreases, the saturation temperature of the heat transfer water H also decreases, so the temperature inside the smoke pipe 21 of the pressure reducing boiler 4 decreases. Therefore, the temperature inside the smoke pipe 21 becomes lower than the dew point of SO 3 . As a result, the smoke pipe 21 of the decompression boiler 4 may cause sulfuric acid corrosion due to condensation of SO 3 .

この現象(煙管21の硫酸腐食)を防止するため、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室22の圧力を温度検出器23又は圧力検出器24によりそれぞれ検出し、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室22の圧力が設定値以下になると、温度検出器23又は圧力検出器24からの検出信号がバイナリー発電装置8の制御盤33に送られて発電量を下げる。発電量を下げるには、制御盤33により冷媒循環ポンプ31の回転数を下げて冷媒Rの循環量を落とす。冷媒Rの循環量が下がると、蒸発部26での吸収熱量が下がっても、タービン28の入口冷媒条件は保たれる。   In order to prevent this phenomenon (sulfuric acid corrosion of the smoke pipe 21), the temperature of the heat medium water H of the decompression boiler 4 or the pressure of the decompression steam chamber 22 is detected by the temperature detector 23 or the pressure detector 24. When the temperature of the heat transfer water H or the pressure of the depressurized steam chamber 22 becomes lower than the set value, a detection signal from the temperature detector 23 or the pressure detector 24 is sent to the control panel 33 of the binary power generator 8 to reduce the power generation amount. . In order to reduce the power generation amount, the control board 33 reduces the rotational speed of the refrigerant circulation pump 31 to reduce the circulation amount of the refrigerant R. When the circulation amount of the refrigerant R decreases, the inlet refrigerant condition of the turbine 28 is maintained even if the amount of heat absorbed by the evaporation unit 26 decreases.

反対に、下水汚泥の燃焼量や発熱量が上昇したときには、減圧ボイラ4の入口温度と燃焼排ガスGの流量が上昇するので、減圧ボイラ4の吸収熱量も上昇する。そのとき減圧ボイラ4の内部圧力(減圧蒸気室22の圧力)も上昇する。   On the other hand, when the amount of combustion and the amount of heat generation of the sewage sludge rise, the inlet temperature of the pressure reducing boiler 4 and the flow rate of the combustion exhaust gas G rise, so the amount of heat absorbed by the pressure reducing boiler 4 also rises. At that time, the internal pressure of the pressure reducing boiler 4 (the pressure of the pressure reducing steam chamber 22) also increases.

減圧ボイラ4の内部圧力が上昇して設定圧力以上になると、安全装置25(安全弁)が開く方向に作動して減圧ボイラ4内の圧力を逃がし、大気圧と減圧ボイラ4の内部圧力が同じになる。   When the internal pressure of the pressure reducing boiler 4 rises and becomes equal to or higher than the set pressure, the safety device 25 (safety valve) operates in the direction of opening to release the pressure in the pressure reducing boiler 4 and the atmospheric pressure and the internal pressure of the pressure reducing boiler 4 are the same. Become.

しかし、この場合、減圧ボイラ4の再起動時に減圧ボイラ4の内部を減圧して大気圧以下にするために真空ポンプ(図示省略)が必要になる。   However, in this case, a vacuum pump (not shown) is required to reduce the pressure in the pressure reducing boiler 4 to the atmospheric pressure or less when the pressure reducing boiler 4 is restarted.

このような作業や手間をかけると、費用と時間がかかるので出来るだけ避けたい。この現象を防止するために、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室22の圧力を温度検出器23又は圧力検出器24によりそれぞれ検出し、減圧ボイラ4の熱媒水Hの温度又は減圧蒸気室22の圧力が設定値以上になると、温度検出器23又は圧力検出器24からの検出信号がバイナリー発電装置8の制御盤33に送られて発電量を上げる。発電量を上げるには、制御盤33により冷媒循環ポンプ31の回転数を上げて冷媒Rの循環量を増やす。冷媒Rの循環量が増えると、蒸発部26での吸収熱量が上っても、タービン28の入口冷媒条件は保たれる。   It is expensive and time consuming to spend such work and time, so I want to avoid it as much as possible. In order to prevent this phenomenon, the temperature of the heat medium water H of the pressure reducing boiler 4 or the pressure of the pressure reducing steam chamber 22 is detected by the temperature detector 23 or the pressure detector 24, and the temperature of the heat medium water H of the pressure reducing boiler 4 Alternatively, when the pressure in the depressurized steam chamber 22 exceeds the set value, a detection signal from the temperature detector 23 or the pressure detector 24 is sent to the control panel 33 of the binary power generation device 8 to increase the amount of power generation. In order to increase the power generation amount, the control board 33 increases the rotational speed of the refrigerant circulation pump 31 to increase the circulation amount of the refrigerant R. When the amount of circulation of the refrigerant R increases, the inlet refrigerant condition of the turbine 28 is maintained even if the amount of heat absorbed by the evaporator 26 increases.

このように、下水汚泥の燃焼量や発熱量が変化した場合、バイナリー発電装置8の冷媒Rの循環量による制御は、バイナリー発電装置8側の受熱速度が減圧ボイラ4側の受熱速度と同等か又はそれ以上の場合に成り立つものであり、減圧ボイラ4側の受熱速度が大きく、減圧ボイラ4内の熱媒水Hの保有量が少ない場合には、減圧ボイラ4の圧力が上昇することになる。また、燃焼排ガスGの量や温度の変動が大きい場合には、減圧ボイラ4内の圧力が最大使用圧力(大気圧よりやや小さい圧力)を超える場合がある。その結果、安全装置25が作動することになる。   As described above, when the amount of combustion and the amount of heat generation of the sewage sludge change, the control by the circulation amount of the refrigerant R of the binary power generation device 8 is the same as the heat reception rate on the binary power generation device 8 side with the heat reception rate on the pressure reduction boiler 4 side When the heat receiving speed on the side of the pressure reducing boiler 4 is large and the holding amount of the heat transfer water H in the pressure reducing boiler 4 is small, the pressure of the pressure reducing boiler 4 is increased. . Moreover, when the amount of combustion exhaust gas G and the fluctuation | variation of temperature are large, the pressure in the pressure reduction boiler 4 may exceed the maximum working pressure (pressure slightly smaller than atmospheric pressure). As a result, the safety device 25 is activated.

そこで、燃焼排ガスGの量や温度の変動が大きい場合、即ち、燃焼排ガスGの量が増大したり、燃焼排ガスGの温度が上昇したりした場合、受熱部34及び制御弁37等を制御して減圧ボイラ4の安全制御を行う。   Therefore, when the fluctuation of the amount and temperature of the combustion exhaust gas G is large, that is, when the amount of the combustion exhaust gas G increases and the temperature of the combustion exhaust gas G rises, the heat receiving portion 34 and the control valve 37 are controlled. The safety control of the pressure reducing boiler 4 is performed.

燃焼排ガスGの量や温度が変動して減圧ボイラ4内の圧力が設定値(最大使用圧力と常用使用圧力の中間値)を超えた場合、圧力検出器24からの検出信号が制御盤33に入力され、制御盤33により制御弁37が開放制御される。   When the amount and temperature of the flue gas G fluctuate and the pressure in the pressure reducing boiler 4 exceeds the set value (intermediate value between the maximum working pressure and the normal working pressure), the detection signal from the pressure detector 24 is sent to the control panel 33 The control valve 37 is controlled by the control panel 33 to be opened.

これにより、冷却媒体Wが冷却媒体供給管35を通して受熱部34の受熱管34aへ供給され、ここで減圧蒸気室22内の蒸気から受熱し、減圧蒸気室22内の温度を下げると共に、減圧ボイラ4内の圧力を安全装置25が作動しない圧力まで低下させる。このとき、受熱部34の受熱管34aは、自然対流や強制対流による伝熱よりも熱伝達率が高い凝縮熱伝達を伴い、また、受熱管34aを流れている受熱体である冷却媒体Wに常温の水を使用しているため、減圧蒸気室22との温度差も大きく取れ、燃焼排ガスGと減圧ボイラ4(第1の受熱部)や減圧ボイラ4と冷媒R(第2の受熱部)よりも早く受熱することができる。   Thereby, the cooling medium W is supplied to the heat receiving pipe 34a of the heat receiving unit 34 through the cooling medium supply pipe 35, where the heat is received from the steam in the reduced pressure steam chamber 22 to lower the temperature in the reduced pressure steam chamber 22. The pressure in 4 is reduced to a pressure at which the safety device 25 does not operate. At this time, the heat receiving pipe 34a of the heat receiving portion 34 is accompanied by condensation heat transfer having a heat transfer coefficient higher than that of heat transfer due to natural convection or forced convection, and the cooling medium W which is a heat receiving body flowing through the heat receiving pipe 34a. Since water at normal temperature is used, the temperature difference with the pressure reducing steam chamber 22 can be large, and the combustion exhaust gas G, the pressure reducing boiler 4 (first heat receiving portion), the pressure reducing boiler 4 and the refrigerant R (second heat receiving portion) The heat can be received earlier.

減圧蒸気室22に設置した受熱部34により受熱し、減圧ボイラ4内の圧力が設定圧力以下になれば、制御盤33により制御弁37を徐々に閉じて行く。このとき、制御弁37を徐々に閉じて行くので、バイナリー発電装置8側の冷媒循環ポンプ31による冷媒Rの循環量制御が追い付き、減圧ボイラ4の内部の圧力は常用圧力で運転されることになる。最終的には、制御弁37を完全に閉塞し、受熱部34への冷却媒体Wの供給を停止する。   The heat is received by the heat receiving unit 34 installed in the depressurized steam chamber 22. When the pressure in the depressurizing boiler 4 becomes equal to or less than the set pressure, the control valve 37 is gradually closed by the control panel 33. At this time, since the control valve 37 is gradually closed, the control of the amount of circulation of the refrigerant R by the refrigerant circulation pump 31 on the side of the binary power generation device 8 catches up, and the pressure inside the decompression boiler 4 is operated at the normal pressure. Become. Finally, the control valve 37 is completely closed, and the supply of the cooling medium W to the heat receiving portion 34 is stopped.

このように、上述した熱回収発電設備によれば、減圧ボイラ4内の圧力が設定値(最大使用圧力と常用使用圧力の中間値)を超えたときに、圧力検出器24からの検出信号に基づいて制御弁37を開放して受熱部34へ冷却媒体Wを供給し、減圧ボイラ4内の圧力を低下させるようにしているため、減圧ボイラ4に流入する燃焼排ガスGの量が大幅に増大したり、燃焼排ガスGの温度が急激に上昇したりした場合でも、減圧ボイラ4が最大使用圧力を超えることなく安定した状態で連続運転することができる。   As described above, according to the above-described heat recovery power generation facility, when the pressure in the pressure reducing boiler 4 exceeds the set value (the intermediate value between the maximum working pressure and the normal working pressure), a detection signal from the pressure detector 24 is used. Based on this, the control valve 37 is opened to supply the cooling medium W to the heat receiving unit 34 and the pressure in the pressure reducing boiler 4 is reduced, so the amount of the flue gas G flowing into the pressure reducing boiler 4 increases significantly. Also, even when the temperature of the combustion exhaust gas G rises rapidly, the decompression boiler 4 can be continuously operated in a stable state without exceeding the maximum working pressure.

また、バイナリー発電装置8側にトラブル(例えば、冷媒循環ポンプ31の故障)が発生し、冷媒Rを循環させることができないような場合でも、受熱部34に冷却媒体Wを供給し、受熱部34の受熱容量をバイナリー発電装置8側の受熱容量以上とすることで設備自体の運転を停止することなく、廃棄物の燃焼処理を行うことができる。   Further, even when a problem (for example, a failure of the refrigerant circulation pump 31) occurs on the side of the binary power generation apparatus 8 and the refrigerant R can not be circulated, the cooling medium W is supplied to the heat receiving unit 34 to receive the heat receiving unit 34. By making the heat receiving capacity of the heat generating capacity equal to or higher than the heat receiving capacity on the side of the binary power generation device 8, it is possible to carry out the burning treatment of the waste without stopping the operation of the facility itself.

1は焼却炉、2は燃焼用空気予熱器、3は白煙防止空気予熱器、4は減圧ボイラ、5は集塵装置、6は洗煙装置、7は煙道、8はバイナリー発電装置、9は誘引通風機、10は煙突、11はストーカ、12は燃焼用空気ファン、13は燃焼用空気供給ダクト、14は白煙防止ファン、15は白煙防止用空気供給ダクト、16はノズル、17は洗煙水循環ポンプ、18は洗煙水排出ポンプ、19は洗煙水供給ポンプ、20は缶体、20aは上部缶体、20bは下部缶体、20cは連絡管、21は煙管、22は減圧蒸気室、23は温度検出器、24は圧力検出器、25は安全装置、26は蒸発部、26aは蒸発管、27は過熱管、28はタービン、29は発電機、30は凝縮部、31は冷媒循環ポンプ、32は冷媒循環用配管、33は制御盤、34は受熱部、34aは受熱管、35は冷却媒体供給管、36は冷却媒体排出管、37は制御弁、Gは燃焼排ガス、Hは熱媒水、Rは冷媒、Wは冷却媒体。   1 is an incinerator, 2 is an air preheater for combustion, 3 is a white smoke prevention air preheater, 4 is a pressure reduction boiler, 5 is a dust collector, 6 is a smoke scrubber, 7 is a flue, 8 is a binary power generator, 9 is an induction ventilator, 10 is a chimney, 11 is a stoker, 12 is a combustion air fan, 13 is a combustion air supply duct, 14 is a white smoke prevention fan, 15 is a white smoke prevention air supply duct, 16 is a nozzle, 17 is a flushing water circulation pump, 18 is a flushing water discharge pump, 19 is a flushing water supply pump, 20 is a can, 20a is an upper can, 20b is a lower can, 20c is a connecting pipe, 21 is a smoke pipe, 22 Is a decompression steam chamber, 23 is a temperature detector, 24 is a pressure detector, 25 is a safety device, 26 is an evaporator, 26a is an evaporator, 27 is a superheater, 28 is a turbine, 29 is a generator, 30 is a condenser 31 is a refrigerant circulation pump, 32 is a refrigerant circulation pipe, 33 is a control panel, 3 The heat receiving portion, 34a is the heat receiving pipe, 35 is a cooling medium supply pipe, 36 cooling medium discharge pipe, 37 is a control valve, G is flue gas, H is the heat medium water, R represents a refrigerant, W is the cooling medium.

Claims (5)

廃棄物を燃焼処理する燃焼炉から排出されて煙道内を流れる腐食成分を含む燃焼排ガスから熱回収して発電するようにした燃焼排ガスからの熱回収発電設備であって、燃焼排ガスを流す煙道に設置され、燃焼排ガスを通して燃焼排ガスから熱回収すると共に、熱媒水を加熱して蒸気を発生させる内部圧が大気圧以下に保持された減圧ボイラと、蒸発部が減圧ボイラの減圧蒸気室に設置され、蒸発部内を流れる低沸点の液状の冷媒を減圧蒸気室内の蒸気により加熱、蒸発させてその蒸気でタービンを回して発電するバイナリー発電装置と、減圧ボイラの熱媒水の温度又は減圧蒸気室の圧力をそれぞれ検出する温度検出器又は圧力検出器と、減圧ボイラの減圧蒸気室に設置され、冷却媒体が流れる受熱部と、受熱部へ冷却媒体を供給する冷却媒体供給管と、冷却媒体供給管に介設され、圧力検出器からの検出信号により制御される制御弁と、を備えており、前記温度検出器又は圧力検出器からの検出信号に基づいて減圧ボイラの熱媒水の温度又は減圧蒸気室の圧力が所定の温度又は圧力に保たれるようにバイナリー発電装置の低沸点の冷媒を循環させる冷媒循環ポンプを制御して発電量を制御すると共に、前記減圧ボイラ内の圧力が設定値を超えたときに、圧力検出器からの検出信号に基づいて制御弁を開放して受熱部へ冷却媒体を供給し、減圧ボイラ内の圧力を低下させる構成としたことを特徴とする燃焼排ガスからの熱回収発電設備。   A heat recovery power generation facility for exhaust gas from combustion exhaust gas that is generated by recovering heat from exhaust gas that is discharged from a combustion furnace that burns waste and contains corrosive components flowing in the flue, and is a flue that flows the exhaust gas Installed in the heat recovery water from the combustion exhaust gas through the combustion exhaust gas, and the internal pressure for heating the heat transfer water to generate steam is maintained below atmospheric pressure, and the evaporation section is in the pressure reduction steam chamber of the pressure reduction boiler A binary power generator installed that heats and evaporates the low boiling point liquid refrigerant flowing in the evaporation section with steam in the reduced pressure steam chamber and turns the turbine with the steam to generate power, temperature of heat transfer water of the reduced pressure boiler or reduced pressure steam A temperature detector or pressure detector for detecting the pressure in the chamber, a heat receiving part installed in the reduced pressure steam chamber of the pressure reducing boiler, and a cooling medium flowing through the cooling medium, and a cooling medium supplying the cooling medium to the heat receiving part And a control valve connected to the cooling medium supply pipe and controlled by a detection signal from the pressure detector, the pressure reducing boiler based on the detection signal from the temperature detector or the pressure detector. Controlling the amount of power generation by controlling a refrigerant circulation pump that circulates the low boiling point refrigerant of the binary power generation device so that the temperature of the heat transfer water or the pressure of the depressurized steam chamber is maintained at a predetermined temperature or pressure; When the pressure in the pressure reducing boiler exceeds the set value, the control valve is opened based on the detection signal from the pressure detector to supply the cooling medium to the heat receiving portion, thereby reducing the pressure in the pressure reducing boiler Heat recovery power generation facility from flue gas characterized by 減圧ボイラの熱媒水を、大気圧以下で沸点が燃焼排ガス中に含まれているSOガスの露点以上となる水溶液とし、また、冷却媒体を、常温の水としたことを特徴とする請求項1に記載の燃焼排ガスからの熱回収発電設備。 The heat medium water of the pressure reduction boiler is an aqueous solution whose boiling point is equal to or higher than the dew point of SO 3 gas contained in the combustion exhaust gas at atmospheric pressure or lower, and the cooling medium is water at normal temperature. The heat recovery power generation equipment from the flue gas according to Item 1. 減圧ボイラの熱媒水中に過熱管を配設すると共に、当該過熱管と減圧蒸気室の蒸発部とを接続し、蒸発部で加熱された冷媒を過熱管に導き、ここで減圧ボイラの熱媒水により更に過熱するようにしたことを特徴とする請求項1又は請求項2に記載の燃焼排ガスからの熱回収発電設備。   A superheat pipe is disposed in the heat medium water of the decompression boiler, and the superheat pipe and the evaporation section of the decompression steam chamber are connected to lead the refrigerant heated in the evaporation section to the superheat pipe, where the heating medium of the decompression boiler The heat recovery power generation facility from flue gas according to claim 1 or 2, wherein the water is further heated by water. 請求項1、請求項2又は請求項3の何れかに記載の燃焼排ガスからの熱回収発電設備の制御方法であって、圧力検出器により減圧ボイラ内の圧力を検出し、減圧ボイラ内の圧力が設定値を超えたときに、制御弁を開放して受熱部へ冷却媒体を供給し、減圧ボイラ内の圧力を低下させるようにしたことを特徴とする燃焼排ガスからの熱回収発電設備の制御方法。   The method for controlling heat recovery power generation equipment from flue gas according to any one of claims 1 to 3, wherein the pressure in the pressure reduction boiler is detected by a pressure detector, and the pressure in the pressure reduction boiler is detected. When the pressure exceeds the set value, the control valve is opened to supply the cooling medium to the heat receiving section, and the pressure in the pressure reducing boiler is reduced. Control of heat recovery power generation equipment from flue gas Method. 減圧ボイラ内の圧力が設定圧力以下になれば、制御弁を徐々に閉めて行くようにしたことを特徴とする請求項4に記載の燃焼排ガスからの熱回収発電設備の制御方法。   The control method of heat recovery power generation equipment from flue gas according to claim 4, wherein the control valve is gradually closed when the pressure in the pressure reducing boiler becomes lower than the set pressure.
JP2017222543A 2017-11-20 2017-11-20 Heat recovery power generation equipment from flue gas and control method thereof Active JP6522085B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017222543A JP6522085B1 (en) 2017-11-20 2017-11-20 Heat recovery power generation equipment from flue gas and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017222543A JP6522085B1 (en) 2017-11-20 2017-11-20 Heat recovery power generation equipment from flue gas and control method thereof

Publications (2)

Publication Number Publication Date
JP6522085B1 true JP6522085B1 (en) 2019-05-29
JP2019094792A JP2019094792A (en) 2019-06-20

Family

ID=66655697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017222543A Active JP6522085B1 (en) 2017-11-20 2017-11-20 Heat recovery power generation equipment from flue gas and control method thereof

Country Status (1)

Country Link
JP (1) JP6522085B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6820126B1 (en) * 2019-12-25 2021-01-27 川崎重工業株式会社 Hot water generation method
KR102146647B1 (en) * 2020-02-24 2020-08-20 임창호 Eco-friendly disposal system of waste with heat exchange apparatus
KR102146646B1 (en) * 2020-02-24 2020-08-20 임창호 Eco-friendly disposal system of waste
JP7424930B2 (en) 2020-07-14 2024-01-30 株式会社タクマ Vacuum heaters, power generation equipment equipped with vacuum heaters, and heat recovery systems for combustion equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3166189B2 (en) * 1991-03-05 2001-05-14 東京瓦斯株式会社 Control method of decompression boiler type vaporizer
JPH05272743A (en) * 1992-03-27 1993-10-19 Kubota Corp Municipal waste incinerator
JPH11182212A (en) * 1997-12-15 1999-07-06 Toshiba Corp Thermal electric power station
JP6009009B2 (en) * 2015-02-13 2016-10-19 株式会社タクマ Heat recovery power generation facility from combustion exhaust gas
JP6670123B2 (en) * 2016-02-19 2020-03-18 株式会社神戸製鋼所 Exhaust heat recovery device and binary power generation device

Also Published As

Publication number Publication date
JP2019094792A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP6009009B2 (en) Heat recovery power generation facility from combustion exhaust gas
JP6522085B1 (en) Heat recovery power generation equipment from flue gas and control method thereof
JP3119718B2 (en) Low voltage power generation method and device
US6596248B2 (en) Method for removing carbon dioxide from exhaust gas
CA2731746C (en) Boiler apparatus
JP5881751B2 (en) Boiler unit extraction steam sludge drying system with heat compensation
JP6574504B2 (en) Control method for organic waste combustion plant
RU2539943C2 (en) Method for removing entrapped gas in power production system with combined cycle
JP2014509559A5 (en)
JP2013188723A (en) Sludge drying system and sludge drying and carbonizing system
JP3042394B2 (en) Power generation system utilizing waste incineration heat
JP2005098552A5 (en)
RU2670998C2 (en) Energy installation with oxygen boiler with integrated heat in air intake unit
JP2005321131A (en) Sludge incinerating system
KR100250365B1 (en) Heavy oil emulsion fuel combustion apparatus
JP7089626B1 (en) Waste heat recovery device
JP6552588B2 (en) Heat recovery power generation facility from combustion exhaust gas and control method thereof
JPS61209099A (en) Method and apparatus for drying and incinerating sludge
TWM573408U (en) Heat recovery power generation system for organic waste gas incineration equipment
JP2753347B2 (en) Steam turbine system and energy supply system
JPH08246816A (en) Generation method due to burning exhaust gas
JP7490186B1 (en) Waste treatment facility exhaust heat recovery system and method
JPH06238127A (en) Flue gas treating device and controller for same
JP2655227B2 (en) Absorption double-effect generator
JPH0626310A (en) Waste heat recovery method in wet sulfurization system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190423

R150 Certificate of patent or registration of utility model

Ref document number: 6522085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250