JPH0626310A - Waste heat recovery method in wet sulfurization system - Google Patents

Waste heat recovery method in wet sulfurization system

Info

Publication number
JPH0626310A
JPH0626310A JP4179976A JP17997692A JPH0626310A JP H0626310 A JPH0626310 A JP H0626310A JP 4179976 A JP4179976 A JP 4179976A JP 17997692 A JP17997692 A JP 17997692A JP H0626310 A JPH0626310 A JP H0626310A
Authority
JP
Japan
Prior art keywords
flue gas
slurry
heat
heat exchange
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4179976A
Other languages
Japanese (ja)
Inventor
Chisato Takano
千里 高野
Kimio Nishio
公男 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP4179976A priority Critical patent/JPH0626310A/en
Publication of JPH0626310A publication Critical patent/JPH0626310A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To provide a method of recovering low temperature level heat energy in exhaust gas or slurry from a wet exhaust gas desulfurization system as electricity while economizing make-up water. CONSTITUTION:The exhaust gas 21 of a generator boiler is desulfurized by a desulfurizer 2, and the exhaust gas or slurry is led into an indirect type heat exchanger 4 to vaporize a heat exchanger medium 28-1. The vaporized medium 23 is made into hot vapor 24 using extraction steam 26-1, -2, -3, -4 from the generator boiler and supplied into a binary generator tubine 10 to generate power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は湿式排煙脱硫システムの
脱硫装置から排出される排煙もしくは前記装置内に生成
されるスラリーの廃熱を回収して発電に利用する方法に
関し、それと同時に当該システムの補給水の節減をも図
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering flue gas discharged from a desulfurization unit of a wet flue gas desulfurization system or a waste heat of a slurry generated in the unit and utilizing it for power generation. It also aims to save the makeup water of the system.

【0002】[0002]

【従来の技術】発電所の発電ボイラー排煙は通常エコノ
マイザーでの熱回収、脱硝処理、エアーヒーターでの排
煙間接冷却、次いで低温電気集塵機でフライアッシュを
除去した後湿式脱硫システムに導入され、ガス−ガスヒ
ーターでの間接冷却、水での断熱増湿冷却、湿式脱硫装
置での脱硫等により順次処理されて冷却されると同時に
有害物質硫黄含有化合物等も除去されたのち煙突から排
出される。すなわち、ボイラー排煙は脱硫システムのガ
ス−ガスヒーターによる間接冷却後で約100℃前後、断
熱増湿冷却後では約50℃そして脱硫後での排煙および脱
硫器内吸収液スラリーも同様に50℃前後の温度を有す
る。
2. Description of the Related Art Exhaust gas from a power generation boiler of a power plant is usually introduced into a wet desulfurization system after heat recovery by an economizer, denitration treatment, indirect exhaust gas cooling by an air heater, and removal of fly ash by a low-temperature electrostatic precipitator. , The gas-gas heater, indirect cooling with water, adiabatic humidification cooling with water, desulfurization with a wet desulfurization system, etc. are sequentially processed and cooled, and at the same time harmful compounds such as sulfur-containing compounds are removed and then discharged from the chimney. It That is, the boiler flue gas is about 100 ° C. after indirect cooling by the gas-gas heater of the desulfurization system, about 50 ° C. after adiabatic humidification, and the flue gas after desulfurization and the desulfurizer absorption liquid slurry are also 50%. It has a temperature around ℃.

【0003】[0003]

【発明が解決しようとする課題】ところで近年の電力需
要の伸びに伴い、発電単基容量も従来の200MWから500
MW、700MW、そして1000MWのものへと順次巨大化してき
ており、それに伴って単基当りの用水量、排水量、固形
廃棄物量等すべての面にわたって量的に拡大しており、
その対策も小規模における場合と質的に変化してきてい
る。
[Problems to be Solved by the Invention] By the way, along with the recent increase in the demand for electric power, the unit capacity of power generation is changed from the conventional 2000MW to 500MW.
MW, 7,000 MW, and 1000 MW are gradually becoming larger, and along with that, the amount of water used per unit, the amount of wastewater, the amount of solid waste, etc. are expanding quantitatively,
The measures are also qualitatively different from those in small scale.

【0004】例えば用水に関して言えば、ボイラー湿式
排煙脱硫装置は非常に多量の補給水を必要とする装置で
あって、その蒸発水補給用水分が 4/4 ECR 200MW発
電基の場合で毎時約21トンであったものが1000MWでは毎
時約105トンとなる。その他に燃料炭種の含塩素または
含弗素量により変動はあるが排水用補給水が200MW時の
毎時約5トンから1000MWでは毎時約25トンに増大する。
従って脱硫装置の補給水のみで毎時約130トンに達し、
これだけの量の用水の安定的供給を図るには発電所の建
設立地をよく選択しても自治体からの供給のみには依存
しきれなくなってきている。必然的に発電所内における
用水の使用合理化、節減等の必要に迫られている。
For example, in terms of water, a boiler wet flue gas desulfurization device is a device that requires an extremely large amount of make-up water, and when the evaporative water make-up water is 4/4 ECR 200 MW power generation plant, it is about 1 hour / hour. What was 21 tons is about 105 tons per hour at 1000 MW. In addition, the amount of make-up water for drainage increases from about 5 tons per hour at 200 MW to about 25 tons per hour at 1000 MW, although it varies depending on the chlorine-containing or fluorine-containing amount of the fuel coal type.
Therefore, with only make-up water of the desulfurizer, it reaches about 130 tons per hour
In order to ensure the stable supply of this amount of water, even if the construction site of the power plant is often selected, it is no longer possible to rely solely on the supply from the local government. Inevitably, there is an urgent need to rationalize and reduce the amount of water used in power plants.

【0005】発電規模の拡大に伴うさらに大きな問題
は、ボイラー排煙を湿式脱硫システムに導入後に排出さ
れる排煙もしくはその際生成するスラリーが約50℃前後
の低温度レベルではあるが比較的大きな熱エネルギーを
有したままであることである。かかる低温レベルの熱エ
ネルギーは利用効率が悪いにもかかわらず、発電規模の
拡大に伴いこれら排煙およびスラリー量のみは増大し、
それらが有する熱エネルギーの総量は累積すると莫大な
ものになりつつある。
A further serious problem associated with the expansion of power generation scale is that the flue gas discharged after the boiler flue gas is introduced into the wet desulfurization system or the slurry produced at that time is at a low temperature level of about 50 ° C., but is relatively large. To have thermal energy. Despite the poor utilization efficiency of such low-temperature thermal energy, only the amount of smoke and slurry increases with the expansion of power generation scale.
The total amount of heat energy they have is becoming enormous when accumulated.

【0006】例えば発電規模700MWベースにおける湿式
脱硫処理水飽和排煙の有する43℃以上の熱エネルギー量
は毎時約3000万キロカロリー、1000MWベースでは毎時約
4260万キロカロリーに達するものと概算される。かかる
低温レベル熱エネルギーの効率的回収が求められている
一方、湿式脱硫装置への補給水増大に対していかに対処
すべきかが課題となっていた。
For example, the amount of heat energy of wet desulfurization water saturated flue gas at a power generation scale of 700 MW at 43 ° C. or higher is about 30 million kcal / hour, and at 1000 MW base is about hourly.
It is estimated to reach 42.6 million kcal. While there is a demand for efficient recovery of low-temperature level thermal energy, how to deal with an increase in make-up water to the wet desulfurization device has been an issue.

【0007】[0007]

【課題を解決するための手段】本発明者らは湿式脱硫シ
ステムから排出される排煙もしくは前記脱硫システム内
で生成する50℃前後の吸収液スラリーを間接型熱交換器
に導入し、この熱交換器内を循環する熱交換媒体 (冷
媒) を蒸発させてベーパーとなすことにより巨大な低温
レベルの熱をベーパーとして回収し、このベーパーをさ
らに昇温させて過熱ベーパーとなし、バイナリー発電タ
ービンに供給して発電させると同時に、排煙の冷却によ
り生成する凝縮水を回収して脱硫装置その他の補給水と
して再利用し、またはスラリーの場合は熱交換により温
度が低下したスラリーを再び脱硫装置に還流させて脱硫
装置内のスラリーの温度を低下させ脱硫の際の随伴蒸発
水分量を低下せしめることにより補給水の低減を図り、
それにより前記課題が同時に解決できることを見出し
た。
The inventors of the present invention introduced flue gas discharged from a wet desulfurization system or an absorption liquid slurry of about 50 ° C. generated in the desulfurization system into an indirect heat exchanger, A huge low-temperature level of heat is recovered as vapor by evaporating the heat exchange medium (refrigerant) that circulates in the exchanger to form vapor, and this vapor is further heated to become superheated vapor, which is converted into a binary power generation turbine. At the same time as supplying and generating electricity, the condensed water generated by cooling the flue gas is recovered and reused as desulfurization equipment or other make-up water, or in the case of slurry, the slurry whose temperature has been lowered by heat exchange is returned to the desulfurization equipment. By recirculating, the temperature of the slurry in the desulfurizer is lowered to reduce the amount of water vaporized during desulfurization to reduce the make-up water,
It was found that the above problems can be solved at the same time.

【0008】すなわち本発明は湿式排煙脱硫システムか
ら廃熱を回収するにあたり、 1) 湿式排煙脱硫システムの脱硫装置から排出される排
煙もしくは前記装置内に生成される50℃前後のスラリー
を間接型熱交換器に導入し、 2) 前記熱交換器内を循環する熱交換媒体を熱交換によ
り蒸発させてベーパーとなし、 3) このベーパーを更に発電ボイラーからの抽気を用い
て昇温させ過熱ベーパーとなし、そして 4) バイナリー発電用タービンに供給して発電させる、 ことを特徴とする、湿式排煙脱硫システムからの廃熱回
収法に関する。
That is, in the present invention, when recovering the waste heat from the wet flue gas desulfurization system, 1) the flue gas discharged from the desulfurization device of the wet flue gas desulfurization system or the slurry of about 50 ° C. generated in the device is used. It is introduced into an indirect heat exchanger, and 2) the heat exchange medium circulating in the heat exchanger is evaporated by heat exchange to form a vapor, and 3) the vapor is further heated by using bleed air from a power generation boiler. The present invention relates to a method for recovering waste heat from a wet flue gas desulfurization system, characterized in that it does not use superheated vapor, and 4) it is supplied to a turbine for binary power generation to generate power.

【0009】本明細書で言及する湿式脱硫装置とは、ボ
イラー排煙中の硫黄含有化合物特に亜硫酸ガスを排煙か
らとり除くことを目的として、カルシウムベースの吸収
剤を含有する吸収液を排煙と接触させる装置である。吸
収液と接触して脱硫後の排煙は亜硫酸ガス固定時に反応
熱として生ずる熱を含みかつ当該温度の飽和水蒸気を随
伴しており、生成するスラリーも共に約50℃前後の比較
的低温レベルの熱エネルギーを保有する。
The wet desulfurization apparatus referred to in the present specification refers to an absorbent containing a calcium-based absorbent as a flue gas for the purpose of removing sulfur-containing compounds in boiler flue gas, especially sulfurous acid gas, from the flue gas. It is a device to contact. The flue gas after desulfurization in contact with the absorbing liquid contains heat generated as reaction heat when fixing the sulfurous acid gas and is accompanied by saturated steam of the temperature, and both of the generated slurries have a relatively low temperature level of about 50 ° C. Possesses thermal energy.

【0010】これら排煙またはスラリーを間接型熱交換
器に導入し、熱交換器内を循環する熱交換媒体を40℃前
後で蒸発させ、同時に排煙またはスラリー自身は冷却さ
れ、排煙の場合は比較的多量の凝縮水が生成し、これが
回収され再利用される。またスラリーの場合は冷却され
たスラリーが湿式脱硫装置に循環使用されることによ
り、脱硫時の随伴蒸発水分を低減させることができるの
で同じく用水の節減に寄与できる。
When these flue gas or slurry is introduced into an indirect heat exchanger, the heat exchange medium circulating in the heat exchanger is evaporated at around 40 ° C., and at the same time, the flue gas or slurry itself is cooled. Produces a relatively large amount of condensed water, which is recovered and reused. Further, in the case of slurry, the cooled slurry is circulated and used in the wet desulfurization apparatus, so that it is possible to reduce the amount of water vaporized during desulfurization, which also contributes to the saving of water.

【0011】本発明で用いられる間接型熱交換器は、導
入される排煙またはスラリーが比較的低温であるゆえ耐
熱性はさほど要求されない。従って間接型である以外に
は決定的な限定要因はない。排煙の場合、煙道内管群組
み込み (管は裸管又はフイン付) エコノマイザー型その
他を適宜使用できる。管が排煙の流れに対し十字流位置
の2〜3°斜管で内管が媒体の蒸発、外管はフイン付ま
たは裸管で煙道内に組み込まれたエコノマイザータイプ
のもの、また吸収液スラリーの場合は竪置套管型で内管
側が吸収液スラリーの単パス型の多管套管型等の使用が
望ましい。
The indirect heat exchanger used in the present invention is not required to have high heat resistance because the introduced smoke or slurry has a relatively low temperature. Therefore, there is no definite limiting factor other than the indirect type. For flue gas, a flue tube group built-in tube (bare tube or finned), economizer type, etc. can be used as appropriate. The pipe is a 2 to 3 ° oblique pipe in the cross-flow position with respect to the flow of smoke, the inner pipe is the evaporation of the medium, the outer pipe is a finned or bare pipe and is an economizer type that is built in the flue, or an absorbing liquid. In the case of a slurry, it is desirable to use a vertical sleeve type and a single-pass type sleeve type of the absorbing liquid slurry on the inner pipe side.

【0012】本発明で使用できる熱交換媒体としては炭
素数2−5個を有するアルカン、フロン、フレオン (du
Pont 社製品) 、アンモニアなど通常使用される熱交換
媒体があげられるが、40℃、5.2kgf/cm2 で気化し、昇
温に伴うエンタルピー増加特性がよく、バイナリー発電
熱交換媒体として通常使用されるイソブタンが最も好都
合である。
The heat exchange medium usable in the present invention includes alkanes, freons and freons (dunes) having 2 to 5 carbon atoms.
(Ponto's product), ammonia and other commonly used heat exchange media are used, but they are well used as a binary power generation heat exchange medium because they vaporize at 40 ° C and 5.2 kgf / cm 2 and increase the enthalpy with temperature rise. Most preferred is isobutane.

【0013】前記低温レベル熱エネルギーは熱交換媒体
により蒸発潜熱として回収されるが、そのままでは熱交
換媒体ベーパーは発電タービンを駆動させるには極めて
効率が悪いので、主にボイラー抽気を使用し、抽気取得
場所、量、を最も経済的に組み合せ使用するものとし、
好ましくは第3〜第6抽気を利用して昇温させ、過熱ベ
ーパーとなしたのちバイナリー発電タービンに導入し、
発電させて電気として回収する。媒体ベーパー昇温用熱
交換器は内管スチーム加熱、外管フイン付のボックス型
(エロフインタイプ) 、又はフイン型熱交換器等が用い
られ最も経済的な構成を採用することが出来る。ベーパ
ーの昇温はボイラ抽気を最適化し、スチームコンデンセ
ートはボイラー抜き出し抽気部に再循環させる。
The low-temperature level heat energy is recovered as evaporation latent heat by the heat exchange medium, but since the heat exchange medium vapor is very inefficient for driving the power generation turbine as it is, the boiler bleed air is mainly used to extract the bleed air. The most economical combination of acquisition location and quantity shall be used.
Preferably, the temperature is raised by utilizing the third to sixth bleed air, and after being made into a superheated vapor, it is introduced into a binary power generation turbine,
Generate electricity and collect it as electricity. The heat exchanger for heating the medium vapor is a box type with inner tube steam heating and outer tube fins.
(Elofin type) or fin type heat exchanger is used, and the most economical structure can be adopted. The heating of the vapor optimizes the boiler bleed air, and the steam condensate is recirculated to the boiler bleed air extraction section.

【0014】また本発明においては熱交換により気化し
た媒体を増湿部上流のダクト内の高温排煙を用いて予備
的に昇温させたのち、ボイラー抽気によりさらに過熱さ
せて発電タービンに導入することもできる。熱交換によ
り気化された媒体ベーパーはバイナリー発電タービンに
導入して発電させたのち海水冷却によるコンデンサにて
凝縮させ、媒体液槽に貯留し、負荷の緩衝をさせ、液状
熱交換媒体を負荷に対応して間接型熱交換器に再循環さ
せる。本発明による方法においては、排煙またはスラリ
ー、またはその両者を熱交換対象とすることができる。
Further, in the present invention, the medium vaporized by heat exchange is preliminarily heated by using the high temperature exhaust gas in the duct upstream of the humidifying section, and then further heated by the boiler bleed air and introduced into the power generation turbine. You can also The medium vapor vaporized by heat exchange is introduced into a binary power generation turbine to generate power, then condensed in a condenser by seawater cooling, stored in a medium liquid tank, buffering the load, and corresponding the liquid heat exchange medium to the load. And recirculate to the indirect heat exchanger. In the method according to the present invention, the flue gas or the slurry, or both of them can be subjected to heat exchange.

【0015】[0015]

【実施例】図面を参照して本発明の廃熱回収法を説明す
る。図1は排煙からの廃熱回収法を示すフローダイヤグ
ラムであり、図2はスラリーからの廃熱回収法を示すフ
ローダイヤグラムである。 実施例1 湿式脱硫システム排煙からの廃熱回収法を図1を参照し
て説明する。
The waste heat recovery method of the present invention will be described with reference to the drawings. 1 is a flow diagram showing a method for recovering waste heat from flue gas, and FIG. 2 is a flow diagram showing a method for recovering waste heat from slurry. Example 1 A method for recovering waste heat from flue gas of a wet desulfurization system will be described with reference to FIG.

【0016】増湿冷却部1に導入された排煙21はそこで
増湿により冷却されて約50℃前後まで温度低下し、次に
湿式脱硫装置2でカルシウムベースの吸収液と接触する
ことにより脱硫されさらに間接熱交換器4に導かれ冷却
されて約43℃となる。脱硫装置2から排出された排煙は
ミストエリミネーター3でミストを除去され、熱交換媒
体28−1が循環されている竪型エコノマイザー型間接熱
交換器4 (伝熱管部15m×15m×15m) に導入され、そ
こで熱交換媒体イソブタンを蒸発気化させる。その際排
煙自身は冷却されて随伴水蒸気が凝縮され、この凝縮さ
れた水分27は凝縮水ポンプ16により凝縮水タンク17に集
められ、前記増湿冷却部1や脱硫装置2の補給水として
再利用される。一方熱交換処理排煙22はミスト除去後ガ
ス−ガスヒーターで昇温され、煙突に導かれ、大気中に
放出される。
The flue gas 21 introduced into the humidifying / cooling unit 1 is cooled there by humidifying and is lowered in temperature to about 50 ° C., and then desulfurized by contacting with a calcium-based absorbent in the wet desulfurization device 2. Then, it is guided to the indirect heat exchanger 4 and cooled to about 43 ° C. The smoke discharged from the desulfurization device 2 has its mist removed by the mist eliminator 3 and the heat exchange medium 28-1 is circulated. Vertical vertical economizer type indirect heat exchanger 4 (heat transfer pipe part 15 m × 15 m × 15 m) Where the heat exchange medium isobutane is vaporized. At that time, the flue gas itself is cooled and the associated water vapor is condensed, and the condensed water 27 is collected in the condensed water tank 17 by the condensed water pump 16 and re-constituted as makeup water for the humidification cooling unit 1 and the desulfurization device 2. Used. On the other hand, the heat exchange treated flue gas 22 is heated by the gas-gas heater after the mist is removed, guided to the chimney, and released into the atmosphere.

【0017】熱交換器4で気化されたイソブタンベーパ
ー23はボイラーからの第3〜第6抽気26−1, 26−2,
26−3, 26−4を用いる加熱器7−1, 7−2, 7−
3, 7−4により順次昇温され過熱ベーパー24となって
バイナリー発電タービン10に送られ、そこで動力に変換
され発電機11により電気に変えられる。バイナリー発電
タービン10から排出されるイソブタンベーパーはコンデ
ンサ12で海水29により冷却、凝縮され、凝縮液25は凝縮
液受槽13に送られたのち熱交換媒体移送用ポンプ14によ
り熱交換媒体28−1として熱交換器4に再循環される。
The isobutane vapor 23 vaporized in the heat exchanger 4 is the third to sixth extraction airs 26-1, 26-2, 26-2 from the boiler.
Heaters 7-1, 7-2, 7-using 26-3, 26-4
It is sequentially heated by 3, 7-4 and becomes the superheated vapor 24 and is sent to the binary power generation turbine 10, where it is converted into power and converted into electricity by the generator 11. Isobutane vapor discharged from the binary power generation turbine 10 is cooled and condensed by the seawater 29 in the condenser 12, the condensate 25 is sent to the condensate receiving tank 13, and then as the heat exchange medium 28-1 by the heat exchange medium transfer pump 14. It is recirculated to the heat exchanger 4.

【0018】ボイラーからの第3〜第6抽気を用いて過
熱させる際生成するスチームコンデンセートはスチーム
コンデンセート受槽8−1, 8−2, 8−3, 8−4に
集められたのちそれぞれポンプ9によりボイラーの抽気
部に再循環される。熱交換器4で蒸発しなかった媒体28
−2は底部から熱交換媒体循環ポンプ5により移送さ
れ、凝縮水冷却器6で凝縮水を冷却させ、自身は熱交換
器のベーパー分離器に導入される。冷却器6で冷却され
た凝縮水は熱交換器4の頂部に導入されて均一スプレー
され、流下して熱交換器4の冷却効率を高めるのに役立
てられる。
The steam condensate produced when superheated using the third to sixth bleed air from the boiler is collected in the steam condensate receiving tanks 8-1, 8-2, 8-3, 8-4, and then by the pump 9, respectively. Recirculated to the extraction section of the boiler. Medium 28 not evaporated in heat exchanger 4
-2 is transferred from the bottom by the heat exchange medium circulation pump 5, the condensed water cooler 6 cools the condensed water, and it is introduced into the vapor separator of the heat exchanger. The condensed water cooled by the cooler 6 is introduced to the top of the heat exchanger 4 and sprayed uniformly, and flows down to help increase the cooling efficiency of the heat exchanger 4.

【0019】700MWベース発電プラントの湿式脱硫装置
吸収器処理排煙の間接冷却後の排煙の有する温度が約43
℃の場合、間接熱交換器で排煙から回収された熱エネル
ギー量は概算して毎時約3000万キロカロリーと推定さ
れ、イソブタンの蒸発気化によりこの熱エネルギーを回
収すると、生成するイソブタンベーパーは毎時約460ト
ンと概算され、その際回収される凝縮水は毎時約50トン
である。
Wet desulfurization equipment of a 700 MW base power plant Absorber treatment The temperature of the flue gas after indirect cooling of the flue gas is about 43.
In the case of ℃, the amount of heat energy recovered from flue gas in an indirect heat exchanger is estimated to be about 30 million kcal / hour, and when this heat energy is recovered by evaporative vaporization of isobutane, the isobutane vapor produced is about It is estimated to be 460 tons and the condensed water collected at that time is about 50 tons per hour.

【0020】このバイナリーベーパーをボイラーの余剰
熱源である第3〜第6抽気で160℃迄過熱させ、バイナ
リータービンを駆動させて発電し、タービン通過後のベ
ーパーを海水で凝縮 (凝縮温度最高28℃) させることに
より、バイナリー発電サイクルを稼働させた場合、バイ
ナリータービンの効率を70%、発電機効率を95%、そし
てバイナリー発電サイクルを含む関連設備 (冷却水、循
環ポンプ等) の所内動力費を約30%と仮定すると毎時15
500kwの電力が得られる。
This binary vapor is superheated up to 160 ° C. by the third to sixth extraction air which is a surplus heat source of the boiler, the binary turbine is driven to generate electricity, and the vapor after passing the turbine is condensed with seawater (condensing temperature maximum 28 ° C. ), When operating the binary power generation cycle, the efficiency of the binary turbine is 70%, the efficiency of the generator is 95%, and the in-house power cost of the related equipment including the binary power generation cycle (cooling water, circulation pump, etc.) Assuming about 30% 15 per hour
Power of 500kw can be obtained.

【0021】過熱用のボイラー抽気スチームはトン当り
1100円とするとスチームは毎時約40トン使用されるの
で、1100円/トン×40トン/時=44000円/時のスチー
ム原価がかかる。電力単価を1キロワット時当り12円と
仮定すると前記毎時15500kwの電力代は186000円/時と
なり、スチーム原価を差し引くと142000円/時の余剰金
をもたらすと概算される。
Boiler bleed steam for overheating is per ton
At 1100 yen, about 40 tons of steam is used every hour, so a steam cost of 1100 yen / ton x 40 tons / hour = 44000 yen / hour will be required. Assuming that the unit price of electricity is 12 yen per kilowatt hour, the electricity cost of 15500 kw per hour is 186,000 yen / hour, and it is estimated that 142,000 yen / hour will be surplus when steam costs are subtracted.

【0022】このようにして湿式脱硫装置排煙の低温レ
ベル熱エネルギーが有効に回収され、それと同時に相当
多量の補給水を回収することができた。 実施例2 湿式脱硫システムからのスラリーの廃熱回収法を図2を
参照して説明する。湿式脱硫装置2からのスラリー30が
スラリー循環ポンプ18により、竪置套管型の間接型熱交
換器4 (管は套管、管側単パス) に送られる。そこで内
管側にスラリーをスケーリングの発生を防止するため毎
秒2.5mの流速で流下させ、外管側に熱交換媒体イソブ
タン28−1を導入してイソブタンを気化ベーパーとす
る。この場合の伝熱管内外温度差は25℃であった。
In this way, the low temperature heat energy of the flue gas of the wet desulfurizer was effectively recovered, and at the same time, a considerably large amount of makeup water could be recovered. Example 2 A method for recovering waste heat of slurry from a wet desulfurization system will be described with reference to FIG. The slurry 30 from the wet desulfurization device 2 is sent by a slurry circulation pump 18 to a vertical tube type indirect heat exchanger 4 (tube is tube, tube side single pass). Therefore, in order to prevent the occurrence of scaling on the inner pipe side, the slurry is made to flow down at a flow rate of 2.5 m / s, and the heat exchange medium isobutane 28-1 is introduced to the outer pipe side to use isobutane as a vaporization vapor. In this case, the temperature difference between the inside and outside of the heat transfer tube was 25 ° C.

【0023】蒸発気化したイソブタン23は実施例1にお
けると同様にして過熱ベーパーとなし、電気として熱エ
ネルギーを回収した。熱交換により冷却されたスラリー
30は再び脱硫装置2に再循環させて脱硫装置のスラリー
温度を低下させ、排煙に随伴し去る水分量を低下させる
ことにより補給水を節減できた。
The vaporized isobutane 23 was used as a superheated vapor in the same manner as in Example 1 to recover heat energy as electricity. Slurry cooled by heat exchange
No. 30 was recirculated to the desulfurization apparatus 2 again to lower the slurry temperature of the desulfurization apparatus, and to reduce the amount of water that accompanies flue gas, so that make-up water could be saved.

【0024】[0024]

【発明の効果】本発明方法により、湿式排煙脱硫システ
ムの脱硫装置から排出される排煙または前記装置内に生
成されるスラリーの有する低温レベル熱エネルギーが有
効に回収、再利用でき、しかも凝縮水の再利用または補
給水の低減も達成できる。従って熱エネルギーの有効利
用と水資源の節減が同時に達成できる工業上極めて価値
の高い方法が提供される。
According to the method of the present invention, the flue gas discharged from the desulfurization unit of the wet flue gas desulfurization system or the low-temperature level heat energy of the slurry generated in the unit can be effectively recovered and reused and condensed. Reuse of water or reduction of makeup water can also be achieved. Therefore, an industrially extremely valuable method is provided which can achieve effective use of thermal energy and reduction of water resources at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】湿式脱硫システムからの排煙からの廃熱回収を
示すフローダイヤグラムである。
FIG. 1 is a flow diagram showing waste heat recovery from flue gas from a wet desulfurization system.

【図2】湿式脱硫システムのスラリーからの廃熱回収を
示すフローダイヤグラムである。
FIG. 2 is a flow diagram showing waste heat recovery from slurry in a wet desulfurization system.

【符号の説明】[Explanation of symbols]

1 増湿冷却部 2 脱硫装置 3 ミストエリミネーター 4 間接型熱
交換器 5 熱交換媒体循環ポンプ 6 凝縮水冷
却器 7−1, 7−2, 7−3, 7−4 熱交換媒体ベーパー
加熱器 8−1, 8−2, 8−3, 8−4 スチームコンデンセ
ート受槽 9 スチームコンデンセート用ポンプ 10 発電ター
ビン 11 発電機 12 コンデン
サ 13 熱交換媒体凝縮液受槽 14 熱交換媒
体移送用ポンプ 15 海水用ポンプ 16 凝縮水ポ
ンプ 17 凝縮水タンク 18 スラリー
循環ポンプ 21 排煙 22 熱交換処
理排煙 23 熱交換媒体ベーパー 24 過熱ベー
パー 25 熱交換媒体凝縮液 26−1, 26−2, 26−3, 26−4 第3〜第6抽気 27 凝縮水 28−1, 28−
2 熱交換媒体 29 海水 30 スラリー
1 Humidification cooling part 2 Desulfurization device 3 Mist eliminator 4 Indirect heat exchanger 5 Heat exchange medium circulation pump 6 Condensed water cooler 7-1, 7-2, 7-3, 7-4 Heat exchange medium vapor heater 8 1, 8-2, 8-3, 8-4 Steam condensate receiving tank 9 Steam condensate pump 10 Power generation turbine 11 Generator 12 Condenser 13 Heat exchange medium condensate receiving tank 14 Heat exchange medium transfer pump 15 Seawater pump 16 Condensation Water pump 17 Condensed water tank 18 Slurry circulation pump 21 Smoke exhaust 22 Heat exchange treatment flue gas 23 Heat exchange medium vapor 24 Overheat vapor 25 Heat exchange medium condensate 26-1, 26-2, 26-3, 26-4 Third ~ 6th extraction 27 Condensed water 28-1, 28-
2 Heat exchange medium 29 Seawater 30 Slurry

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月24日[Submission date] July 24, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】 また本発明においては熱交換により気化
した媒体を増湿部上流のダクト内の高温排煙を用いて予
備的に昇温させたのち、ボイラー抽気によりさらに過熱
させて発電タービンに導入することもできる。又、場合
によっては気化した媒体をヒートポンプを用い予備的に
昇圧昇温させた後、ボイラー抽気により更に過熱させて
発電タービンに導入することも出来る。熱交換により気
化された媒体ベーパーはバイナリー発電タービンに導入
して発電させたのち海水冷却によるコンデンサにて凝縮
させ、媒体液槽に貯留し、負荷の緩衝をさせ、液状熱交
換媒体を負荷に対応して間接型熱交換器に再循環させる
本発明による方法においては、排煙またはスラリー、ま
たはその両者を熱交換対象とすることができる。
Further, in the present invention, the medium vaporized by heat exchange is preliminarily heated by using the high-temperature exhaust gas in the duct upstream of the humidification unit, and then further heated by the boiler bleed air to be introduced into the power generation turbine. You can also Also, if
Depending on the situation, the vaporized medium may be
After raising the pressure and temperature, heat it further by boiler extraction.
It can also be installed in a power generation turbine. The medium vapor vaporized by heat exchange is introduced into a binary power generation turbine to generate power, then condensed in a condenser by seawater cooling, stored in a medium liquid tank, buffering the load, and corresponding the liquid heat exchange medium to the load. In the method according to the present invention in which the heat is recirculated to the indirect heat exchanger, flue gas or slurry, or both of them can be subjected to heat exchange.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 湿式排煙脱硫システムから廃熱を回収す
る方法であって、 1) 湿式排煙脱硫システムの脱硫装置から排出される排
煙もしくは前記装置内に生成されるスラリーを間接型熱
交換器に導入し、 2) 前記熱交換器内を循環する熱交換媒体を熱交換によ
り蒸発させてベーパーとなし、 3) このベーパーを更に発電ボイラーからの抽気を用い
て昇温させ過熱ベーパーとし、そして 4) バイナリー発電用タービンに供給して発電させる、 ことを特徴とする、湿式排煙脱硫システムからの廃熱回
収法。
1. A method for recovering waste heat from a wet flue gas desulfurization system, which comprises: 1) indirect heat of flue gas discharged from a desulfurization device of a wet flue gas desulfurization system or slurry produced in the device. 2) Introduced into the exchanger, 2) the heat exchange medium circulating in the heat exchanger is evaporated by heat exchange to form a vapor, 3) this vapor is further heated by using bleed air from the power generation boiler to become a superheated vapor And 4) A method for recovering waste heat from a wet flue gas desulfurization system, characterized in that it is supplied to a binary power generation turbine to generate electric power.
JP4179976A 1992-07-07 1992-07-07 Waste heat recovery method in wet sulfurization system Pending JPH0626310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4179976A JPH0626310A (en) 1992-07-07 1992-07-07 Waste heat recovery method in wet sulfurization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4179976A JPH0626310A (en) 1992-07-07 1992-07-07 Waste heat recovery method in wet sulfurization system

Publications (1)

Publication Number Publication Date
JPH0626310A true JPH0626310A (en) 1994-02-01

Family

ID=16075281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4179976A Pending JPH0626310A (en) 1992-07-07 1992-07-07 Waste heat recovery method in wet sulfurization system

Country Status (1)

Country Link
JP (1) JPH0626310A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041986A1 (en) * 2012-09-12 2014-03-20 三菱重工業株式会社 Desulfurization device and method for using condensate water generated thereby
WO2015025941A1 (en) 2013-08-23 2015-02-26 国立大学法人東北大学 Method for treating organic matter in the presence of water, contact reaction device and system including same, and method for recovering waste heat from low-temperature heat source
CN105253939A (en) * 2015-11-12 2016-01-20 国家海洋局天津海水淡化与综合利用研究所 High-temperature sulfur-containing nitrogen-containing flue gas waste heat type multi-effect distillation seawater desalination system
CN110285439A (en) * 2019-07-25 2019-09-27 李爱华 Flue gas processing method and its device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041986A1 (en) * 2012-09-12 2014-03-20 三菱重工業株式会社 Desulfurization device and method for using condensate water generated thereby
JPWO2014041986A1 (en) * 2012-09-12 2016-08-18 三菱重工業株式会社 Desulfurization apparatus and method of using condensed water generated there
EP2896448B1 (en) * 2012-09-12 2023-10-25 Mitsubishi Heavy Industries, Ltd. Desulfurization apparatus and method of using condensed water produced therein
WO2015025941A1 (en) 2013-08-23 2015-02-26 国立大学法人東北大学 Method for treating organic matter in the presence of water, contact reaction device and system including same, and method for recovering waste heat from low-temperature heat source
KR20160045698A (en) 2013-08-23 2016-04-27 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Method for treating organic matter in the presence of water, contact reaction device and system including same, and method for recovering waste heat from low-temperature heat source
CN105253939A (en) * 2015-11-12 2016-01-20 国家海洋局天津海水淡化与综合利用研究所 High-temperature sulfur-containing nitrogen-containing flue gas waste heat type multi-effect distillation seawater desalination system
CN110285439A (en) * 2019-07-25 2019-09-27 李爱华 Flue gas processing method and its device

Similar Documents

Publication Publication Date Title
CN105909330B (en) A kind of flue gas waste heat recovery and smoke processing system based on Organic Rankine Cycle
CN208011678U (en) The afterheat utilizing system of waste incineration
KR100805385B1 (en) Method of and apparatus for producing power
US20010037728A1 (en) Method for removing carbon dioxide from the exhaust gas from a gas turbine plant, and device for carrying out the method
JPH05321612A (en) Low pressure power generating method and device therefor
CN103574630B (en) Improve the method for temperature of smoke discharged by chimney of thermal power and flue gas heating system and fired power generating unit
JP6574504B2 (en) Control method for organic waste combustion plant
JP4155898B2 (en) High moisture waste incineration facility equipped with gas turbine
CN102466414B (en) Method for recycling heat and water of steam evaporated during drying of fuel coal in power plant
JP2005098552A5 (en)
JP3042394B2 (en) Power generation system utilizing waste incineration heat
JP6522085B1 (en) Heat recovery power generation equipment from flue gas and control method thereof
KR101499810B1 (en) Hybrid type condenser system
JP5893964B2 (en) Sludge drying system
JPH0626310A (en) Waste heat recovery method in wet sulfurization system
CN104061030A (en) Waste incineration power plant low temperature flue gas waste heat power generating system
JP2014070847A (en) Power generating facility
US20170175589A1 (en) Condensing heat recovery steam generator
CN113465422A (en) Heat energy recovery system for sludge drying tail gas of paddle type drying machine and using method thereof
JPH11264528A (en) Waste treatment facility
CN113483347A (en) Working method of white smoke eliminating device with cooperation of flue gas waste heat and moisture recovery
KR101856194B1 (en) System that recovers and resumes cookers waste steam
JPH09256818A (en) Waste incinerating exhaust heat using power generation plant
RU2787622C1 (en) Thermal power plant with a regeneration system and method of its operation
EP3184757A1 (en) Condensing heat recovery steam generator