JP3776641B2 - Gas gas heat exchanger - Google Patents

Gas gas heat exchanger Download PDF

Info

Publication number
JP3776641B2
JP3776641B2 JP27690599A JP27690599A JP3776641B2 JP 3776641 B2 JP3776641 B2 JP 3776641B2 JP 27690599 A JP27690599 A JP 27690599A JP 27690599 A JP27690599 A JP 27690599A JP 3776641 B2 JP3776641 B2 JP 3776641B2
Authority
JP
Japan
Prior art keywords
heat
ggh
gas
drain
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27690599A
Other languages
Japanese (ja)
Other versions
JP2001099418A (en
Inventor
隆行 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP27690599A priority Critical patent/JP3776641B2/en
Publication of JP2001099418A publication Critical patent/JP2001099418A/en
Application granted granted Critical
Publication of JP3776641B2 publication Critical patent/JP3776641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chimneys And Flues (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスガス熱交換装置に関し、特に排煙処理システムの湿式脱硫装置出口のボイラ等の排ガスを再加熱するのに好適なガスガス再加熱装置に関する。
【0002】
【従来の技術】
一般的な排煙処理システムの系統を図2、図3に示す。図2に示す排煙処理システム(A)ではボイラ1から排出される排ガスは脱硝装置2に導入され、排ガス中の窒素酸化物が除去された後、空気予熱器3においてボイラ1へ供給される燃焼用空気と熱交換される。排ガスは電気集塵機4で排ガス中のばいじんの大半が除去された後、誘因ファン5により昇圧される。
【0003】
その後、GGH熱回収器11に導入され、熱回収された後、湿式脱硫装置6に導入され、気液接触により排ガス中の硫黄酸化物(SOx)が除去される。湿式脱硫装置6において飽和ガス温度にまで冷却された排ガスは、脱硫ファン7により昇圧され、GGH再加熱器13により昇温されて、煙突8より排出される。
【0004】
図3に示す排煙処理システム(B)ではボイラ1から排出される排ガスは脱硝装置2に導入され、排ガス中の窒素酸化物が除去された後、空気予熱器3においてボイラ1へ供給される燃焼用空気と熱交換される。
【0005】
その後、排ガスはガスガス熱交換機(以下GGHと記す)の熱回収器11に導入されて熱回収された後、電気集塵機4で排ガス中のばいじんの大半が除去される。排ガスは誘因ファン5により昇圧されて湿式脱硫装置6に導入され、気液接触により排ガス中のSOxが除去される。湿式脱硫装置6において飽和ガス温度にまで冷却された排ガスは、脱硫ファン7により昇圧され、さらにGGH再加熱器13により昇温されて煙突8より排出される。
【0006】
図3に示す排煙処理システム(B)は図2に示す排煙処理システム(A)の電気集塵機4をGGH熱回収器11の後流側に移設した配置構成であり、電気集塵機4での処理ガス温度が低くなるため、煤塵の電気抵抗が下がり、図2に示す排煙処理システム(A)に比べてばいじん除去性能が高い特徴を備えている。近年では煤塵排出規制がより厳しくなってきているため、図3に示す排煙処理システム(B)の方が主流となりつつある。
【0007】
前述の従来のGGHの系統を図4に示す。GGHの系統はGGH熱回収器設置部ダクト51に設けられたGGH熱回収器11内のGGH熱回収器伝熱管12とGGH再加熱器設置部ダクト53に設けられたGGH再加熱器13内のGGH再加熱記伝熱管14を一対の連絡配管15−1、15−2で連絡し、熱媒循環ポンプ16により熱媒を循環させる系統となっている。ここでGGH熱回収記伝熱管12、GGH再加熱器伝熱管14には通常熱交換効率を向上させるために、フィンチューブ等が用いられている。
【0008】
また、GGH熱回収器11の出口排ガス温度を制御するために、GGH熱回収器熱媒バイパスライン17が設けられ、GGH熱回収器出口排ガス温度計32の信号により、GGH熱回収器11の出口排ガス温度が設定値以上となるように、熱媒循環流量調整弁40、熱媒バイパス量調整弁41の開度が調整され、熱交換量が制御されている。また、様々な運転に対応させるため、連絡配管15−2には熱媒の膨張を吸収する目的で熱媒タンク18が設置される。
【0009】
一方、GGH再加熱記13の出口排ガス温度を設定値以上にするために、または熱媒最低温度を設定値以上にするために、熱媒ヒータ19がGGH熱回収器11の伝熱管12の出口側の連絡配管15−1に設置されている。
【0010】
熱媒ヒータ19にはGGH再加熱器13の出口排ガス温度計34やGGH熱回収器入口媒体温度計36の信号に応じて、GGH熱媒ヒータ19に供給する蒸気を通す蒸気供給配管22に設けられた蒸気供給量調整弁42の開度を調整し、連絡配管15−1内の熱媒温度加熱用の蒸気が供給される。
【0011】
熱媒ヒータ19に供給された蒸気は熱媒と熱交換し、蒸気潜熱が回収されて飽和ドレンとなり、熱交換器(以下、ドレンクーラと記す)20に回収される。ドレンクーラ20は連絡配管15−2に介設され、ドレンクーラ20に集められた飽和ドレンは連絡配管15−2内の熱媒と再度熱交換されてドレンの顕熱を回収することでドレン温度を下げ、発電プラントで再利用するため熱媒ヒータドレンポンプ21により熱媒ヒータドレン配管25を経由して回収先に返送される。
【0012】
また、排ガスGGH熱回収器設置部ダクト51のGGH熱回収器11入口側にはGGH熱回収器入口排ガス温度計31が設けられ、GGH再加熱器設置部ダクト53のGGH再加熱器入口側にはGGH器再加熱器入口排ガス温度計33が設けられ、GGH熱回収器入口側の連絡配管15−1の熱媒循環ポンプ16の出口側には熱媒循環ポンプ出口熱媒温度計35が設けられ、熱媒循環流量調整弁40の開度調整に利用される。また、連絡配管15−1の複数箇所に温度計37、38、39を設ける。
【0013】
【発明が解決しようとする課題】
図4に示すGGH系統においてドレンクーラ20で顕熱回収される蒸気ドレン量はプラント条件により多少の差はあるが通常20〜40t/hであり、また温度は80℃〜85℃となることが要求される。一方、熱媒の循環量はプラントの規模及び条件により若干の相違はあるが、1,000MWの発電プラントにおいては約1,300m/h程度となる。
【0014】
このような条件でドレンクーラ20を設計する場合、20〜40t/hのドレンの温度を80℃乃至85℃にするために必要な伝面(チューブ本数)より約1,300m/hの媒体を流す条件の方が支配的となる。
【0015】
つまり、従来系統のように冷却水として熱媒の全量(約1,300m/h)をドレンクーラ20に流す場合には、ドレンクーラ20内に設置するチューブ内流速を適正な流速(1〜2m/s)とするために必要以上に外径又はチューブ本数等が大きなドレンクーラ20となっていた。
【0016】
本発明の課題は、初期の目的であるドレン温度を80℃乃至85℃にするに必要最小限の大きさ(伝面)となるドレンクーラを設置したGGHシステムを提供することにある。
【0017】
【課題を解決するための手段】
上記課題を解決するには、ドレンクーラに全量の熱媒が冷却水として使用されないようにドレンクーラをバイパスさせるライン及びそのバイパスラインに流量調整用バルブを設置することによって達成される。
【0018】
すなわち、本発明は高温ガス流れの高温域へ熱回収器を配置し、熱回収器で冷却されたガス流れの低温域に再加熱器を配置し、前記熱回収器と再加熱器とにそれぞれ設けられる伝熱管内の熱媒が循環する一対の連絡ラインで連絡し、連絡ラインに熱媒を加熱する熱媒ヒータと熱媒ヒータの蒸気ドレンの顕熱を冷却水として回収するドレンクーラをそれぞれ設けたガスガス熱交換装置において、連絡ライン中の熱媒の一部をドレンクーラをバイパスさせるバイバスライン一対の連絡ライン間に設け、該バイバスラインにバイパス流量調整用バルブを設けたガスガス熱交換装置である。
【0019】
【作用】
本発明において、ドレンクーラのバイパスラインを設けることによってドレンクーラに全量の熱媒を流さないため、ドレンタンクを必要以上に大きく設計する必要がない。つまり初期の目的である、蒸気ドレン温度を低くする(80℃乃至85℃)に必要最小限の媒体(冷却水)を流すことができるので、ドレンクーラのコンパクトな設計が可能となる。
【0020】
【発明の実施の形態】
本発明の実施の形態になるGGH系統を図1に示す。図1に示すGGH系統は図4に示すGGH系統に、ドレンクーラ20をバイパスする連絡配管15−3と該連絡配管15−3に流量調整用のバルブ26を加えたものであり、その他の構成は図4に示すものと同一である。
【0021】
GGHの系統は、GGH熱回収器11内のGGH熱回収器伝熱管12、及びGGH再加熱器13内のGGH再加熱器伝熱管14を連絡配管15−1と15−2で連絡し、熱媒循環ポンプ16により熱媒を循環させる系統となっている。ここでGGH熱回収器伝熱管12とGGH再加熱器伝熱管14には通常熱交換率を向上させるために、フィンチューブ等が設けられている。
【0022】
また、GGH熱回収器11出口排ガス温度を制御するために、GGH熱回収期入口側の連絡配管15−1とGGH熱回収器出口側の連絡配管15−2を接続するGGH熱回収器熱媒バイパスライン17が設けられ、GGH熱回収器出口排ガス温度計32の信号により、GGH熱回収器11の出口排ガス温度が設定値以上となるように、熱媒循環流量調整弁41の開度が調整され、熱交換量が制御されている。
【0023】
また、様々な運転に対応させるため、熱媒循環ラインである連絡配管15−2には熱媒の膨張を吸収する目的で熱媒タンク18が設置される。
【0024】
一方、GGH再加熱器13の出口排ガス温度を設定値以上にするため及び熱媒最低温度を設定値以上にするために、熱媒ヒータ19がGGH熱媒回収器伝熱管12の出口連絡配管15−1に設置されており、熱媒ヒータ19には、GGH再加熱器出口排ガス温度計34やGGH熱回収器入口媒体温度計36の信号に応じて、GGH熱媒ヒータ蒸気供給量調整弁42の開度を調整し、熱媒温度加熱用の蒸気が供給される。
【0025】
熱媒ヒータ19に供給された蒸気は熱媒と熱交換し、蒸気潜熱が回収されて飽和ドレンとなり、ドレンクーラ20に回収される。ドレンクーラ20は連絡配管15−2の中間部に設置され、ドレンクーラ20に集められた飽和ドレンは熱媒と再度熱交換されてドレンの顕熱を回収することでドレン温度を下げ、発電プラントで再利用するため熱媒ヒータドレンポンプ21によって回収先に返送される。
【0026】
また、図4のシステムと同様に、排ガスGGH熱回収器入口排ガス温度計31、GGH器再加熱器入口排ガス温度計33及び熱媒循環ポンプ出口熱媒温度計35が設けられ、熱媒循環流量調整弁40の開度調整に利用される。
【0027】
ここで、本発明によるドレンクーラ20の熱媒出/入口を連絡する配管、つまりドレンクーラ20をバイパスする連絡配管15−3と該連絡配管15−3に流量調整用のバルブ26を設置し、熱媒を冷却水として必要なだけドレンクーラ20に流すことができる。
【0028】
こうして、GGHで使用する蒸気ドレンの回収温度を設定値以下に下げ、またドレンクーラ20の大きさ(チューブ本数、外径等)をコンパクトにできる。
【0029】
1,000MWクラスのボイラプラントにおけるGGHシステムでのドレンタンク(ドレンクーラ)20の本発明と従来技術との比較を下記の表1に示す。
【0030】
【表1】

Figure 0003776641
【0031】
【発明の効果】
本発明によれば、GGHで使用する蒸気ドレンの回収温度を設定値以下に下げることができると共にドレンタンクの大きさ(チューブ本数、外径等)をコンパクトにでき経済的な設計が可能となる。
【図面の簡単な説明】
【図1】 本発明の実施の形態のGGH系統を示す図である。
【図2】 一般的な排煙処理システムの一例(A)を示す図である。
【図3】 一般的な排煙処理システムの一例(B)を示す図である。
【図4】 従来のGGH系統を示す図である。
【符号の説明】
1 ボイラ 2 脱硝装置
3 空気予熱器 4 電気集塵器
5 誘因ファン 6 湿式排煙脱硫装置
7 脱硫ファン 8 煙突
11 GGH熱回収器 13 GGH再加熱器
15−1、15−2 連絡配管 15−3 バイパス連絡配管
16 熱媒循環ポンプ
17 GGH熱回収器熱媒バイパスライン
18 熱媒タンク 19 熱媒ヒータ
20 ドレンクーラ 21 熱媒ヒータドレンポンプ
22 熱媒ヒータ蒸気供給配管 25 熱媒ヒータドレン配管
26 ドレンタンク流量調整バルブ
31 GGH熱回収器入口排ガス温度計
32 GGH熱回収器出口排ガス温度計
33 GGH再加熱器入口排ガス温度計
34 GGH再加熱器出口排ガス温度計
35 熱媒循環ポンプ出口熱媒温度計
36 GGH熱回収器入口熱媒温度計
37 GGH熱回収器出口熱媒温度計
38 熱媒ヒータ入口温度計 39 熱媒ヒータ出口温度計
40 熱循環量調整弁 41 熱媒バイパス量調整弁
42 熱媒ヒータ蒸気供給量調整弁
51 GGH熱回収器設置部ダクト
53 GGH再加熱器設置部ダクト[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas gas heat exchange device, and more particularly to a gas gas reheating device suitable for reheating exhaust gas such as a boiler at the outlet of a wet desulfurization device of a flue gas treatment system.
[0002]
[Prior art]
A system of a general flue gas treatment system is shown in FIGS. In the flue gas treatment system (A) shown in FIG. 2, the exhaust gas discharged from the boiler 1 is introduced into the denitration device 2, and after nitrogen oxides in the exhaust gas are removed, the exhaust gas is supplied to the boiler 1 in the air preheater 3. Heat exchange with combustion air. The exhaust gas is pressurized by the incentive fan 5 after most of the dust in the exhaust gas is removed by the electric dust collector 4.
[0003]
After that, after being introduced into the GGH heat recovery device 11 and heat recovered, it is introduced into the wet desulfurization device 6 and the sulfur oxide (SOx) in the exhaust gas is removed by gas-liquid contact. The exhaust gas cooled to the saturated gas temperature in the wet desulfurization apparatus 6 is pressurized by the desulfurization fan 7, heated by the GGH reheater 13, and discharged from the chimney 8.
[0004]
In the flue gas treatment system (B) shown in FIG. 3, the exhaust gas discharged from the boiler 1 is introduced into the denitration device 2, and after nitrogen oxides in the exhaust gas are removed, the exhaust gas is supplied to the boiler 1 in the air preheater 3. Heat exchange with combustion air.
[0005]
Thereafter, the exhaust gas is introduced into a heat recovery unit 11 of a gas gas heat exchanger (hereinafter referred to as GGH) and recovered, and then most of the dust in the exhaust gas is removed by the electric dust collector 4. The exhaust gas is pressurized by the inducing fan 5 and introduced into the wet desulfurization device 6, and SOx in the exhaust gas is removed by gas-liquid contact. The exhaust gas cooled to the saturated gas temperature in the wet desulfurization apparatus 6 is pressurized by the desulfurization fan 7, further heated by the GGH reheater 13, and discharged from the chimney 8.
[0006]
The smoke exhaust treatment system (B) shown in FIG. 3 is an arrangement configuration in which the electric dust collector 4 of the smoke exhaust treatment system (A) shown in FIG. 2 is moved to the downstream side of the GGH heat recovery device 11. Since the process gas temperature is lowered, the electric resistance of the dust is lowered, and the dust removal performance is higher than that of the smoke emission treatment system (A) shown in FIG. In recent years, dust emission regulations have become more stringent, and therefore the smoke treatment system (B) shown in FIG. 3 is becoming more mainstream.
[0007]
The aforementioned conventional GGH system is shown in FIG. The GGH system includes a GGH heat recovery pipe 12 in the GGH heat recovery unit 11 provided in the GGH heat recovery unit installation duct 51 and a GGH reheater 13 provided in the GGH reheater installation unit duct 53. The GGH reheating heat transfer tube 14 is connected by a pair of connecting pipes 15-1 and 15-2, and the heat medium circulating pump 16 circulates the heat medium. Here, fin tubes or the like are used for the GGH heat recovery heat transfer tube 12 and the GGH reheater heat transfer tube 14 in order to improve the heat exchange efficiency.
[0008]
In addition, in order to control the exhaust gas temperature at the outlet of the GGH heat recovery unit 11, a GGH heat recovery unit heat medium bypass line 17 is provided, and the outlet of the GGH heat recovery unit 11 is detected by a signal from the GGH heat recovery unit outlet exhaust gas thermometer 32. The opening degree of the heat medium circulation flow rate adjustment valve 40 and the heat medium bypass amount adjustment valve 41 is adjusted so that the exhaust gas temperature becomes equal to or higher than the set value, and the heat exchange amount is controlled. Moreover, in order to respond | correspond to various driving | operations, the heat medium tank 18 is installed in the connection piping 15-2 in order to absorb expansion | swelling of a heat medium.
[0009]
On the other hand, in order to set the outlet exhaust gas temperature of the GGH reheating note 13 to a set value or more, or to set the heat medium minimum temperature to a set value or more, the heat medium heater 19 is provided at the outlet of the heat transfer tube 12 of the GGH heat recovery unit 11. It is installed in the side connection pipe 15-1.
[0010]
The heat medium heater 19 is provided in a steam supply pipe 22 through which the steam supplied to the GGH heat medium heater 19 is passed according to signals from the outlet exhaust gas thermometer 34 of the GGH reheater 13 and the GGH heat recovery apparatus inlet medium thermometer 36. The opening degree of the steam supply amount adjusting valve 42 is adjusted, and steam for heating the heating medium temperature in the communication pipe 15-1 is supplied.
[0011]
The steam supplied to the heat medium heater 19 exchanges heat with the heat medium, and the latent heat of the steam is recovered to become a saturated drain, which is recovered by a heat exchanger (hereinafter referred to as a drain cooler) 20. The drain cooler 20 is interposed in the connecting pipe 15-2, and the saturated drain collected in the drain cooler 20 is heat-exchanged again with the heat medium in the connecting pipe 15-2 to recover the sensible heat of the drain, thereby lowering the drain temperature. The heat medium heater drain pump 21 returns it to the recovery destination via the heat medium heater drain pipe 25 for reuse in the power plant.
[0012]
Also, a GGH heat recovery device inlet exhaust gas thermometer 31 is provided on the GGH heat recovery device 11 inlet side of the exhaust gas GGH heat recovery device installation portion duct 51, and on the GGH reheater inlet side of the GGH reheater installation portion duct 53. The GGH reheater inlet exhaust gas thermometer 33 is provided, and the heat medium circulation pump outlet heat medium thermometer 35 is provided on the outlet side of the heat medium circulation pump 16 of the communication pipe 15-1 on the GGH heat recovery apparatus inlet side. And used for adjusting the opening degree of the heat medium circulation flow rate adjustment valve 40. In addition, thermometers 37, 38, and 39 are provided at a plurality of locations on the communication pipe 15-1.
[0013]
[Problems to be solved by the invention]
In the GGH system shown in FIG. 4, the amount of steam drain recovered by the drain cooler 20 is usually 20 to 40 t / h, although there are some differences depending on the plant conditions, and the temperature is required to be 80 ° C. to 85 ° C. Is done. On the other hand, the circulation amount of the heat medium is slightly different depending on the scale and conditions of the plant, but is about 1,300 m 3 / h in a 1,000 MW power plant.
[0014]
When designing the drain cooler 20 under such conditions, a medium of about 1,300 m 3 / h is required from the transmission surface (the number of tubes) necessary to make the temperature of the drain of 20 to 40 t / h 80 to 85 ° C. The flowing condition becomes more dominant.
[0015]
That is, when the entire amount of the heat medium (about 1,300 m 3 / h) is supplied to the drain cooler 20 as cooling water as in the conventional system, the flow rate in the tube installed in the drain cooler 20 is set to an appropriate flow rate (1 to 2 m / h). In order to obtain s), the drain cooler 20 has an outer diameter or the number of tubes larger than necessary.
[0016]
An object of the present invention is to provide a GGH system provided with a drain cooler having a minimum size (transmission surface) necessary for setting a drain temperature of 80 ° C. to 85 ° C. as an initial object.
[0017]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, it is achieved by installing a line for bypassing the drain cooler so that the entire amount of heat medium is not used as cooling water in the drain cooler and a flow rate adjusting valve in the bypass line.
[0018]
That is, the present invention arranges the heat recovery device in the high temperature region of the high temperature gas flow, arranges the reheater in the low temperature region of the gas flow cooled by the heat recovery device, and each of the heat recovery device and the reheating device. A heating medium heater that heats the heating medium and a drain cooler that collects the sensible heat of the steam drain of the heating medium heater as cooling water are connected to each other through a pair of connecting lines through which the heating medium in the installed heat transfer tube circulates. In the gas gas heat exchange device, a part of the heat medium in the communication line is provided between a pair of bypass lines that bypass the drain cooler, and a bypass flow rate adjusting valve is provided in the bypass line.
[0019]
[Action]
In the present invention, since the entire amount of the heat medium does not flow through the drain cooler by providing the drain cooler bypass line, it is not necessary to design the drain tank larger than necessary. That is, since a minimum medium (cooling water) necessary for lowering the steam drain temperature (80 ° C. to 85 ° C.), which is the initial purpose, can flow, a compact design of the drain cooler is possible.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
A GGH system according to an embodiment of the present invention is shown in FIG. The GGH system shown in FIG. 1 is a GGH system shown in FIG. 4 in which a connecting pipe 15-3 for bypassing the drain cooler 20 and a flow adjustment valve 26 are added to the connecting pipe 15-3. It is the same as that shown in FIG.
[0021]
The GGH system connects the GGH heat recovery unit heat transfer tube 12 in the GGH heat recovery unit 11 and the GGH reheater heat transfer tube 14 in the GGH reheater 13 through connection pipes 15-1 and 15-2, The heat medium is circulated by the medium circulation pump 16. Here, the GGH heat recovery device heat transfer tube 12 and the GGH reheater heat transfer tube 14 are usually provided with fin tubes or the like in order to improve the heat exchange rate.
[0022]
Further, in order to control the exhaust gas temperature at the outlet of the GGH heat recovery unit 11, the GGH heat recovery unit heat medium connecting the communication pipe 15-1 at the inlet side of the GGH heat recovery period and the connection pipe 15-2 at the outlet side of the GGH heat recovery unit. A bypass line 17 is provided, and the opening degree of the heat medium circulation flow rate adjustment valve 41 is adjusted by the signal of the GGH heat recovery device outlet exhaust gas thermometer 32 so that the outlet exhaust gas temperature of the GGH heat recovery device 11 becomes equal to or higher than a set value. The amount of heat exchange is controlled.
[0023]
In order to cope with various operations, a heat medium tank 18 is installed in the connection pipe 15-2, which is a heat medium circulation line, to absorb expansion of the heat medium.
[0024]
On the other hand, in order to set the outlet exhaust gas temperature of the GGH reheater 13 to a set value or more and to set the minimum heat medium temperature to a set value or more, the heating medium heater 19 is connected to the outlet communication pipe 15 of the GGH heating medium recovery pipe 12. -1 and the GGH heat medium heater steam supply amount adjusting valve 42 is connected to the heat medium heater 19 in accordance with signals from the GGH reheater outlet exhaust gas thermometer 34 and the GGH heat recovery apparatus inlet medium thermometer 36. The steam for heating the heating medium temperature is supplied.
[0025]
The steam supplied to the heat medium heater 19 exchanges heat with the heat medium, and the latent heat of the steam is recovered to become saturated drain, which is recovered by the drain cooler 20. The drain cooler 20 is installed in the middle part of the connecting pipe 15-2, and the saturated drain collected in the drain cooler 20 is heat-exchanged again with the heat medium, recovering the sensible heat of the drain, lowering the drain temperature, and regenerating at the power plant. It is returned to the collection destination by the heat medium heater drain pump 21 for use.
[0026]
As in the system of FIG. 4, an exhaust gas GGH heat recovery device inlet exhaust gas thermometer 31, a GGH reheater inlet exhaust gas thermometer 33, and a heat medium circulation pump outlet heat medium thermometer 35 are provided, and the heat medium circulation flow rate is provided. This is used for adjusting the opening of the adjusting valve 40.
[0027]
Here, a pipe for connecting the heat medium outlet / inlet of the drain cooler 20 according to the present invention, that is, a connecting pipe 15-3 for bypassing the drain cooler 20, and a valve 26 for adjusting the flow rate are installed in the connecting pipe 15-3. Can be passed through the drain cooler 20 as much as necessary as cooling water.
[0028]
In this way, the recovery temperature of the steam drain used in the GGH can be lowered below the set value, and the size (number of tubes, outer diameter, etc.) of the drain cooler 20 can be made compact.
[0029]
A comparison between the present invention of the drain tank (drain cooler) 20 in the GGH system in a 1,000 MW class boiler plant and the prior art is shown in Table 1 below.
[0030]
[Table 1]
Figure 0003776641
[0031]
【The invention's effect】
According to the present invention, the recovery temperature of the steam drain used in the GGH can be lowered to a set value or less, and the size (number of tubes, outer diameter, etc.) of the drain tank can be made compact and an economical design is possible. .
[Brief description of the drawings]
FIG. 1 is a diagram showing a GGH system according to an embodiment of the present invention.
FIG. 2 is a diagram showing an example (A) of a general smoke emission processing system.
FIG. 3 is a diagram showing an example (B) of a general smoke emission processing system.
FIG. 4 is a diagram showing a conventional GGH system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Boiler 2 Denitration device 3 Air preheater 4 Electric dust collector 5 Induction fan 6 Wet flue gas desulfurization device 7 Desulfurization fan 8 Chimney 11 GGH heat recovery device 13 GGH reheater 15-1, 15-2 Connection piping 15-3 Bypass communication piping 16 Heat medium circulation pump 17 GGH heat recovery device Heat medium bypass line 18 Heat medium tank 19 Heat medium heater 20 Drain cooler 21 Heat medium heater drain pump 22 Heat medium heater steam supply piping 25 Heat medium heater drain piping 26 Drain tank flow rate adjustment Valve 31 GGH heat recovery device inlet exhaust gas thermometer 32 GGH heat recovery device outlet exhaust gas thermometer 33 GGH reheater inlet exhaust gas thermometer 34 GGH reheater outlet exhaust gas thermometer 35 Heat medium circulation pump outlet heat medium thermometer 36 GGH heat Recovery machine inlet heat medium thermometer 37 GGH heat recovery apparatus outlet heat medium thermometer 38 Heat medium heater inlet thermometer 39 Heat medium heater outlet thermometer 40 Heat circulation amount adjustment valve 41 Heat medium bypass amount adjustment valve 42 Heat medium heater steam supply amount adjustment valve 51 GGH heat recovery unit installation duct 53 GGH reheater installation unit duct

Claims (1)

高温ガス流れの高温域へ熱回収器を配置し、熱回収器で冷却されたガス流れの低温域に再加熱器を配置し、前記熱回収器と再加熱器とにそれぞれ設けられる伝熱管内の熱媒が循環する一対の連絡ラインで連絡し、連絡ラインに熱媒を加熱する熱媒ヒータと熱媒ヒータの蒸気ドレンの顕熱を冷却水として回収するドレンクーラをそれぞれ設けたガスガス熱交換装置において、
連絡ライン中の熱媒の一部をドレンクーラをバイパスさせるバイバスラインを一対の連絡ライン間に設け、該バイバスラインにバイパス流量調整用バルブを設けたことを特徴とするガスガス熱交換装置。
A heat recovery device is arranged in the high temperature region of the high temperature gas flow, a reheater is arranged in the low temperature region of the gas flow cooled by the heat recovery device, and the heat transfer tubes provided in the heat recovery device and the reheater respectively. Gas gas heat exchange device provided with a drain cooler that recovers the sensible heat of the steam drain of the heating medium heater as a cooling water, and a heating medium heater that heats the heating medium to the communication line and a sensible heat of the steam drain of the heating medium heater. In
A gas gas heat exchange device, characterized in that a bypass line for bypassing the drain cooler for a part of the heat medium in the communication line is provided between the pair of communication lines, and a bypass flow rate adjusting valve is provided in the bypass line.
JP27690599A 1999-09-29 1999-09-29 Gas gas heat exchanger Expired - Fee Related JP3776641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27690599A JP3776641B2 (en) 1999-09-29 1999-09-29 Gas gas heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27690599A JP3776641B2 (en) 1999-09-29 1999-09-29 Gas gas heat exchanger

Publications (2)

Publication Number Publication Date
JP2001099418A JP2001099418A (en) 2001-04-13
JP3776641B2 true JP3776641B2 (en) 2006-05-17

Family

ID=17576032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27690599A Expired - Fee Related JP3776641B2 (en) 1999-09-29 1999-09-29 Gas gas heat exchanger

Country Status (1)

Country Link
JP (1) JP3776641B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101668969B1 (en) * 2012-09-26 2016-10-28 상하이 푸보 이피 이큅프먼트 컴퍼니 리미티드 Natural circulation indirect type flue gas reheater
JP2019100612A (en) * 2017-12-01 2019-06-24 株式会社Ihi Heat exchanger for boiler exhaust gas
CN108443906B (en) * 2018-05-08 2024-03-15 山东电力工程咨询院有限公司 Flue gas waste heat utilization system and method based on multi-energy level and recirculated heating cold air
JP7221440B1 (en) 2022-06-28 2023-02-13 三菱重工パワー環境ソリューション株式会社 Bundle, heat exchanger, flue gas treatment device, and method for manufacturing bundle

Also Published As

Publication number Publication date
JP2001099418A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
TWI274130B (en) Exhaust gas treating apparatus
CN102330968A (en) Two-stage flue gas heat exchanger system applied to thermal power plant
CN109668165B (en) Hot secondary air and flue gas waste heat utilization system and thermal generator set
JP2001239129A (en) Exhaust gas treatment apparatus and operation method therefor
JP3776641B2 (en) Gas gas heat exchanger
JP2000161647A (en) Waste gas processing device, and gas re-heater
CN206247373U (en) A kind of pipe heat exchanger residual neat recovering system
JP2001074229A (en) Flue gas processor and method of operating the same
JP3783122B2 (en) Smoke removal equipment
CN205807384U (en) A kind of MGGH condensation water heating system
JP2002372223A (en) Gas-gas heater
JPH1199317A (en) Flue gas desulfurizer and its operation
JP3023922B2 (en) Power station equipment
JP2009216279A (en) Gas-gas heat exchanger and its heat exchanging method
JP2004333033A (en) Heat medium circulating device and method for gas-gas heat exchanger
CN205897183U (en) A do wet mixing exhaust gas heat exchanging system for power boiler
CN111609393A (en) Boiler synergy integration system
CN205897182U (en) A wet flue gas heat transfer system for power boiler
CN216171403U (en) Desulfurization and denitrification treatment system
CN205897184U (en) A dry -type exhaust gas heat exchanging system for power boiler
JP2556596B2 (en) Heat recovery device for coke dry fire extinguishing equipment
JP3783417B2 (en) Reheater for gas gas heater in flue gas treatment facility
JP2014009835A (en) Exhaust gas treatment apparatus
CN218409984U (en) Large capacity air preheater bypass flue gas waste heat utilization system
JPS58164923A (en) Treating device for exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees