JP7392687B2 - Boiler fuel preheating device and preheating method - Google Patents

Boiler fuel preheating device and preheating method Download PDF

Info

Publication number
JP7392687B2
JP7392687B2 JP2021097134A JP2021097134A JP7392687B2 JP 7392687 B2 JP7392687 B2 JP 7392687B2 JP 2021097134 A JP2021097134 A JP 2021097134A JP 2021097134 A JP2021097134 A JP 2021097134A JP 7392687 B2 JP7392687 B2 JP 7392687B2
Authority
JP
Japan
Prior art keywords
temperature
temperature fluid
low
temperature region
boiler fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021097134A
Other languages
Japanese (ja)
Other versions
JP2022188875A (en
Inventor
智敬 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2021097134A priority Critical patent/JP7392687B2/en
Publication of JP2022188875A publication Critical patent/JP2022188875A/en
Application granted granted Critical
Publication of JP7392687B2 publication Critical patent/JP7392687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

本発明は、ボイラ燃料の予熱装置及び予熱方法に係り、特に、予熱用熱源として、硫黄分を含むボイラ燃焼排ガスを用いるボイラ燃料の予熱装置および予熱方法に関する。 The present invention relates to a boiler fuel preheating device and preheating method, and more particularly to a boiler fuel preheating device and preheating method that uses boiler combustion exhaust gas containing sulfur as a preheating heat source.

製鉄所では、製銑・製鋼、コークス等の生産工程で、不可避的に副生ガス(高炉ガス、コークス炉ガス、転炉ガス等)が発生する。これらの副生ガスは、例えば、図3に示すように、ボイラ燃料として蒸気を発生させるために利用され、さらに、発生させた蒸気により、蒸気タービンを付設した発電設備で発電を行うなど、エネルギー、資源の効率的な活用が行われている。 In steel plants, by-product gases (blast furnace gas, coke oven gas, converter gas, etc.) are inevitably generated during production processes such as pig iron making, steel making, and coke production. These by-product gases are used, for example, to generate steam as boiler fuel, as shown in Figure 3, and the generated steam is used to generate energy in power generation equipment equipped with a steam turbine. , resources are used efficiently.

また、ボイラ等の各種燃焼システムで排出される燃焼排ガスの顕熱を、熱交換器、例えば図3に示す空気予熱器、Bガスヒータ等で回収し、熱効率の改善を図っている。しかし、燃焼排ガス中に硫黄分(SOx)が含まれていると、熱交換により、燃焼排ガスの温度が硫酸露点(以下、酸露点ともいう)以下の低温に冷却された場合には、熱交換器の伝熱チューブの表面に、SOxが硫酸として結露(凝縮)し、伝熱チューブの腐食を招くという問題が生じる。 In addition, the sensible heat of combustion exhaust gas discharged from various combustion systems such as boilers is recovered by heat exchangers, such as the air preheater and B gas heater shown in FIG. 3, to improve thermal efficiency. However, if the combustion exhaust gas contains sulfur (SOx), if the temperature of the combustion exhaust gas is cooled to a low temperature below the sulfuric acid dew point (hereinafter also referred to as the acid dew point), the heat exchange A problem arises in that SOx condenses as sulfuric acid on the surface of the heat transfer tubes, leading to corrosion of the heat transfer tubes.

このような問題に対し、例えば、特許文献1には、熱交換器の硫酸露点腐食防止方法が記載されている。特許文献1に記載された硫酸露点腐食防止方法では、無水硫酸を含有する排ガスダクトに熱交換器を設けて、高温側ガスの熱を低温側ガスに移送するに当たり、熱交換器内の高温側ガス部内に、該高温側ガス部の上流側と下流側とを熱的に連絡できるように、上流側と下流側にそれぞれ熱交パネル(ヒートパイプ)を内設して、下流側の排ガスの温度を調節するとしている。これにより、上流側の排ガスの熱を利用して、下流側の排ガスの温度を上昇させ、硫酸の結露(凝縮)を防止できるとしている。 In response to such problems, for example, Patent Document 1 describes a method for preventing sulfuric acid dew point corrosion of a heat exchanger. In the sulfuric acid dew point corrosion prevention method described in Patent Document 1, a heat exchanger is provided in an exhaust gas duct containing sulfuric anhydride, and when the heat of the high temperature side gas is transferred to the low temperature side gas, the high temperature side in the heat exchanger is In order to thermally communicate the upstream and downstream sides of the high-temperature gas section, heat exchange panels (heat pipes) are installed inside the gas section on the upstream and downstream sides, respectively. It is said to regulate the temperature. This allows the heat of the upstream exhaust gas to be used to raise the temperature of the downstream exhaust gas, thereby preventing condensation of sulfuric acid.

また、他の酸露点腐食防止対策として、低温流体を、熱交換器に流入する手前で別の熱源を用いて予熱し、低温流体の流入温度を上昇させ、熱交換器の伝熱チューブの表面温度を高めて酸露点凝縮を回避する方法が提案されている。例えば、特許文献2には、SOx含有燃焼排ガスの熱交換方法が記載されている。特許文献2に記載された技術は、例えばスクラバーの減温減湿部からの排水を熱源として、予熱用の熱交換器に供給する燃焼空気を昇温し、熱交換器からの燃焼排ガスの出口ガス温度を、燃焼空気の昇温を行わない場合よりも低下させるようにした熱交換方法である。これにより、熱交換器中の燃焼排ガスが硫酸露点温度以下となることを回避しつつ、燃費を改善できるとしている。燃焼空気を昇温しない場合には、燃焼ガスの出口ガス温度を300℃程度までしか降下させることができないが、燃焼空気を昇温する場合は、270℃またはその前後まで降下させても、伝熱チュ―ブ内で硫酸露点以下の温度となる箇所が生じることはない、としている。 Another measure to prevent acid dew point corrosion is to preheat the cryogenic fluid using a separate heat source before it enters the heat exchanger, increasing the inlet temperature of the cryogenic fluid and increasing the temperature at the surface of the heat exchanger tubes. Methods have been proposed to increase the temperature to avoid acid dew point condensation. For example, Patent Document 2 describes a heat exchange method for SOx-containing combustion exhaust gas. The technology described in Patent Document 2 uses, for example, waste water from a temperature reduction and dehumidification section of a scrubber as a heat source to raise the temperature of combustion air supplied to a heat exchanger for preheating, and cools combustion air at the outlet of the combustion exhaust gas from the heat exchanger. This is a heat exchange method in which the gas temperature is lowered than when the temperature of combustion air is not raised. This makes it possible to improve fuel efficiency while preventing the combustion exhaust gas in the heat exchanger from dropping below the sulfuric acid dew point temperature. If the temperature of the combustion air is not raised, the outlet gas temperature of the combustion gas can only be lowered to about 300℃, but if the temperature of the combustion air is raised, even if the temperature is lowered to 270℃ or around 270℃, there will be no power transmission. It is stated that there will be no point in the thermal tube where the temperature will be below the sulfuric acid dew point.

特開昭61-217699号公報Japanese Patent Application Laid-Open No. 61-217699 特開2011-220545号公報Japanese Patent Application Publication No. 2011-220545

しかしながら、特許文献1に記載された技術では、熱交換器の高温側ガス部内に熱交パネルを設置する必要があり、また、特許文献2に記載された技術では、燃焼用空気の予熱のための熱交換器の前段に昇温装置を設置する必要があり、設備が大型化し、また運転も複雑になるという問題があった。 However, in the technique described in Patent Document 1, it is necessary to install a heat exchanger panel in the high temperature side gas section of the heat exchanger, and in the technique described in Patent Document 2, it is necessary to It is necessary to install a temperature raising device before the heat exchanger, which increases the size of the equipment and complicates operation.

本発明は、上記した従来技術の問題を解決し、熱交換器における伝熱チューブの腐食を防止でき、かつ熱効率の低下を防止できる、SOx含有のボイラ燃焼排ガスを熱源とした、ボイラ燃料の予熱装置および予熱方法を提供することを目的とする。 The present invention solves the problems of the prior art as described above, prevents corrosion of heat transfer tubes in a heat exchanger, and prevents a decrease in thermal efficiency. The purpose is to provide an apparatus and a preheating method.

本発明者は、上記した目的を達成するため、ボイラ燃料の予熱装置における向流型熱交換器内の高温流体(ボイラ燃焼排ガス)の温度に影響する各種要因について鋭意検討した。その結果、高温流体であるボイラ燃焼排ガスの流路となる熱交換室(シェル)を、高温領域および低温領域からなる2つの独立した領域(熱交換室)に分割することに思い至った。そして、分割した高温領域には、高温流体であるボイラ燃焼排ガスを供給し、分割した他の領域である低温領域には、高温領域から、高温流体の一部(以下、分岐高温流体ともいう)を分岐、流入させることに想到した。これにより、2つの独立した領域からなる熱交換室のいずれにおいても、高温流体の出口温度を、SOxが含有ボイラ燃焼排ガスである当該高温流体の硫酸露点超えの温度となるように、容易に調整することができ、低温流体を流す熱交換伝導チューブ表面への硫酸の結露(凝縮)を防止することができることを知見した。 In order to achieve the above-mentioned object, the present inventor has intensively studied various factors that affect the temperature of high-temperature fluid (boiler combustion exhaust gas) in a countercurrent heat exchanger in a boiler fuel preheating device. As a result, we came up with the idea of dividing the heat exchange chamber (shell), which serves as a flow path for boiler combustion exhaust gas, which is a high-temperature fluid, into two independent regions (heat exchange chambers) consisting of a high temperature region and a low temperature region. Boiler combustion exhaust gas, which is a high-temperature fluid, is supplied to the divided high-temperature region, and a portion of the high-temperature fluid (hereinafter also referred to as branched high-temperature fluid) is supplied from the high-temperature region to the other divided low-temperature region. We came up with the idea of branching and inflowing. This makes it easy to adjust the outlet temperature of the high-temperature fluid in either of the two independent heat exchange chambers to a temperature that exceeds the sulfuric acid dew point of the high-temperature fluid, which is SOx-containing boiler combustion exhaust gas. It has been found that it is possible to prevent sulfuric acid from condensing on the surface of a heat exchange conduction tube through which low-temperature fluid flows.

本発明は、上記した知見に基づき、さらに検討を加えて完成したものである。すなわち、本発明の要旨は次のとおりである。
[1]高温流体であるSOx含有ボイラ燃焼排ガスと低温流体であるボイラ燃料とを熱交換室内で向流させて前記ボイラ燃料の加温を行うボイラ燃料の予熱装置であって、前記高温流体の流路となる前記熱交換室を高温領域と低温領域とからなる2つの独立した領域に分割し、前記低温流体が流れる熱交換伝熱チューブを、前記熱交換室内で前記低温流体が前記高温流体と向流となるように配設するとともに、前記高温領域の上流側に前記高温流体を供給し、前記高温領域に供給された前記高温流体の一部を、該高温領域壁面の所定の位置に開口した分岐口を介して抜き出し、前記低温領域の上流側に流入させる分岐配管を配設してなることを特徴とするボイラ燃料の予熱装置。
[2]前記分岐配管には、前記分岐口の出口側に流量調整弁を配設することを特徴とする[1]に記載のボイラ燃料の予熱装置。
[3]前記分岐配管は、前記高温領域壁面の複数の位置から分岐されてなることを特徴とする[2]に記載のボイラ燃料の予熱装置。
[4]前記2つの独立した領域のうち少なくとも前記低温領域の出口には、前記高温流体の出口温度を計測する温度計が配設され、前記温度計には、前記流量調整弁を作動させる流量調整手段が接続されてなることを特徴とする[2]に記載のボイラ燃料の予熱装置。
[5][1]ないし[4]のいずれかに記載のボイラ燃料の予熱装置を用いたボイラ燃料の予熱方法であって、高温流体であるSOx含有ボイラ燃焼排ガスと低温流体であるボイラ燃料とを熱交換室内で向流させて前記ボイラ燃料の加温を行うに当たり、前記熱交換室を高温領域と低温領域からなる2つの独立した領域に分割し、前記高温流体を前記高温領域に供給し、前記低温流体を、前記低温流体が前記高温流体と向流となるように配設された熱交換伝熱チューブに供給するとともに、前記高温領域から、供給された前記高温流体の一部を分岐し、前記低温領域に流入させることを特徴とするボイラ燃料の予熱方法。
[6]前記高温領域および前記低温領域の出口側における前記高温流体の温度が、当該高温流体の酸露点超えとなるように、前記低温領域に流入させる前記高温流体の一部の流量を調整することを特徴とする[5]に記載のボイラ燃料の予熱方法。
The present invention was completed based on the above-mentioned findings and further studies. That is, the gist of the present invention is as follows.
[1] A boiler fuel preheating device that heats the boiler fuel by causing SOx-containing boiler combustion exhaust gas, which is a high-temperature fluid, and boiler fuel, which is a low-temperature fluid, to flow countercurrently in a heat exchange chamber, The heat exchange chamber serving as a flow path is divided into two independent regions consisting of a high temperature region and a low temperature region, and a heat exchange heat transfer tube through which the low temperature fluid flows is divided into two independent regions, and the low temperature fluid is connected to the high temperature fluid in the heat exchange chamber. and supplying the high-temperature fluid to the upstream side of the high-temperature region, and directing a part of the high-temperature fluid supplied to the high-temperature region to a predetermined position on the wall surface of the high-temperature region. A preheating device for boiler fuel, characterized in that a branch pipe is provided for drawing out the fuel through an open branch port and flowing the fuel into the upstream side of the low temperature region.
[2] The boiler fuel preheating device according to [1], wherein the branch pipe is provided with a flow rate regulating valve on the outlet side of the branch port.
[3] The boiler fuel preheating device according to [2], wherein the branch pipe is branched from a plurality of positions on the wall surface of the high temperature region.
[4] A thermometer for measuring the outlet temperature of the high-temperature fluid is disposed at least at the outlet of the low-temperature region of the two independent regions, and the thermometer is configured to measure the flow rate that operates the flow rate regulating valve. The boiler fuel preheating device according to [2], characterized in that an adjustment means is connected.
[5] A method for preheating boiler fuel using the boiler fuel preheating device according to any one of [1] to [4], comprising: SOx-containing boiler combustion exhaust gas which is a high temperature fluid; and boiler fuel which is a low temperature fluid. In heating the boiler fuel by countercurrently flowing the fluid in the heat exchange chamber, the heat exchange chamber is divided into two independent regions consisting of a high temperature region and a low temperature region, and the high temperature fluid is supplied to the high temperature region. , supplying the low temperature fluid to a heat exchange heat transfer tube arranged so that the low temperature fluid flows countercurrently to the high temperature fluid, and branching a part of the supplied high temperature fluid from the high temperature region. A method for preheating boiler fuel, characterized in that the boiler fuel is caused to flow into the low temperature region.
[6] Adjusting the flow rate of a portion of the high temperature fluid flowing into the low temperature region so that the temperature of the high temperature fluid at the outlet sides of the high temperature region and the low temperature region exceeds the acid dew point of the high temperature fluid. The method for preheating boiler fuel according to [5], characterized in that:

本発明によれば、ボイラ燃料の予熱装置として使用する熱交換器において、高温流体の出口温度を、SOx含有燃焼排ガスである当該高温流体の硫酸露点超えの温度に容易に調整することができ、低温流体を流す熱交換伝熱チューブ表面への硫酸凝縮を防止できるとともに、熱交換伝熱チューブ表面へ析出物が付着しないことから、熱交換効率の低下を抑制でき、産業上格段の効果を奏する。また、本発明によれば、一部の熱交換室を経由させて、適正温度に調整した高温流体を低温領域に流入させるため、低温領域における熱交換の効率が向上するという効果もある。 According to the present invention, in a heat exchanger used as a boiler fuel preheating device, the outlet temperature of the high-temperature fluid can be easily adjusted to a temperature exceeding the sulfuric acid dew point of the high-temperature fluid that is SOx-containing combustion exhaust gas, It is possible to prevent sulfuric acid from condensing on the surface of the heat exchange heat transfer tube through which low-temperature fluid flows, and since no precipitates are attached to the surface of the heat exchange heat transfer tube, it is possible to suppress the decrease in heat exchange efficiency, which has a significant industrial effect. . Further, according to the present invention, since the high temperature fluid adjusted to an appropriate temperature flows into the low temperature region via some of the heat exchange chambers, there is also an effect that the efficiency of heat exchange in the low temperature region is improved.

本発明予熱装置の概略を模式的に示す説明図である。FIG. 1 is an explanatory diagram schematically showing the outline of the preheating device of the present invention. 本発明予熱装置の他の一例の概略を模式的に示す説明図である。It is an explanatory view showing the outline of other examples of the preheating device of the present invention typically. 製鉄所発電プラントにおけるボイラ周辺の機器配置の一例を模式的に示す説明図である。FIG. 2 is an explanatory diagram schematically showing an example of equipment arrangement around a boiler in a steelworks power plant.

本発明ボイラ燃料の予熱装置では、SOx含有燃焼排ガスを高温流体とし、燃料を低温流体として、向流型熱交換器を利用して、高温流体である燃焼排ガスの顕熱を回収し、低温流体である燃料(ボイラ燃料)を加温する。 In the boiler fuel preheating device of the present invention, the SOx-containing combustion exhaust gas is used as a high-temperature fluid, the fuel is used as a low-temperature fluid, and the sensible heat of the combustion exhaust gas, which is a high-temperature fluid, is recovered using a countercurrent heat exchanger, and the sensible heat is recovered from the combustion exhaust gas, which is a high-temperature fluid. (boiler fuel).

燃料としては、製鉄所の副生ガスが利用でき、高炉ガス(Bガス)、コークス炉ガス(Cガス)、転炉ガス(LDガス)等を利用することが好ましい。本発明の燃料予熱方法を全ての燃料ガスに適用する必要はないが、とくに高炉ガスは発熱量が小さいため、本発明を適用することが好ましい。これら燃料をボイラで燃焼したのちの燃焼排ガス(ボイラ燃焼排ガス)は、硫黄分(SOx)を含有する。なお、ボイラ燃焼排ガスの温度は300~700℃の範囲の温度であるが、図3に示すように燃焼排ガスを燃焼空気の予熱に使用した後に本発明の燃料予熱を行う場合は、300~500℃程度である。一方、ボイラ燃料の入側温度は外気温と同じ程度である。 As the fuel, by-product gas from a steel mill can be used, and it is preferable to use blast furnace gas (B gas), coke oven gas (C gas), converter gas (LD gas), or the like. Although it is not necessary to apply the fuel preheating method of the present invention to all fuel gases, it is particularly preferable to apply the present invention to blast furnace gas because its calorific value is small. Combustion exhaust gas (boiler combustion exhaust gas) after these fuels are burned in a boiler contains sulfur (SOx). Note that the temperature of the boiler combustion exhaust gas is in the range of 300 to 700°C, but when the fuel preheating of the present invention is performed after the combustion exhaust gas is used to preheat the combustion air as shown in Figure 3, the temperature is 300 to 500°C. It is about ℃. On the other hand, the temperature at the inlet side of the boiler fuel is about the same as the outside temperature.

なお、本発明ボイラ燃料の予熱装置で利用する向流型熱交換器としては、常用のシェル・アンド・チューブ型の熱交換器とすることが好ましい。常用のシェル・アンド・チューブ型の熱交換器では、低温流体を流す熱交換伝導チューブは複数本、低温流体が高温流体の流路である熱交換室に対し向流方向となるように配設する。 The countercurrent heat exchanger used in the boiler fuel preheating device of the present invention is preferably a commonly used shell-and-tube heat exchanger. In a conventional shell-and-tube heat exchanger, there are multiple heat exchange conduction tubes through which low-temperature fluid flows, and the low-temperature fluid is arranged in a countercurrent direction to the heat exchange chamber, which is the flow path for high-temperature fluid. do.

本発明ボイラ燃料の予熱装置10では、図1に示すように、高温流体1の流路(ダクト)である熱交換室2を、2つの独立した領域21、22に分割する。2つの独立した領域の一方を高温領域21と称し、他を低温領域22と称する。そして、高温領域21の上流側に、上記した高温流体1を供給する。なお、高温領域21と低温領域22との境界は、耐熱パッキンでシールして、各領域を密封する。 In the boiler fuel preheating device 10 of the present invention, as shown in FIG. 1, the heat exchange chamber 2, which is a flow path (duct) for the high temperature fluid 1, is divided into two independent regions 21 and 22. One of the two independent regions is called a high temperature region 21 and the other is called a low temperature region 22. Then, the above-described high-temperature fluid 1 is supplied to the upstream side of the high-temperature region 21. Note that the boundary between the high temperature region 21 and the low temperature region 22 is sealed with heat-resistant packing to seal each region.

そして、本発明ボイラ燃料の予熱装置10では、高温領域21と低温領域22との間に分岐配管3を配設する。上記した高温領域21の壁面の所定の位置に、分岐口(例えば、分岐口31、32)を設ける。そして、これら分岐口それぞれから、高温流体1の一部を抜き出し(分岐し)、分岐配管3を介して、低温領域22の上流側に、高温流体の一部12として、流入する。高温領域21から抜き出した分岐高温流体(高温流体の一部)12の温度は、当該高温流体の酸露点に比べて高い温度を有しており、分岐高温流体12が流入された低温領域22では、流入させた分岐高温流体12を熱源として、流れる流体(燃焼排ガス)の温度を、酸露点以下に低下しないように調整することが可能になる。 In the boiler fuel preheating device 10 of the present invention, a branch pipe 3 is disposed between the high temperature region 21 and the low temperature region 22. Branch ports (for example, branch ports 31 and 32) are provided at predetermined positions on the wall surface of the high temperature region 21 described above. Then, a portion of the high temperature fluid 1 is extracted (branched) from each of these branch ports, and flows into the upstream side of the low temperature region 22 as a portion 12 of the high temperature fluid via the branch pipe 3 . The temperature of the branched high-temperature fluid (part of the high-temperature fluid) 12 extracted from the high-temperature region 21 is higher than the acid dew point of the high-temperature fluid. By using the inflowing branched high-temperature fluid 12 as a heat source, it becomes possible to adjust the temperature of the flowing fluid (combustion exhaust gas) so as not to drop below the acid dew point.

低温領域22に流入させる分岐高温流体12としては、高温領域21に供給するボイラ燃焼排ガスと同じものを直接流入させてもよいが、その場合は、低温流体に比べて流体温度が高すぎ、熱交換の効率が低下する。そこで、本発明では、熱交換室の高温領域21で熱交換を行って、流体温度が適正な温度に低下した高温流体を抜き出し、分岐高温流体12として低温領域22に流入させる。 As the branched high temperature fluid 12 to flow into the low temperature region 22, the same boiler combustion exhaust gas supplied to the high temperature region 21 may be directly flowed in, but in that case, the fluid temperature is too high compared to the low temperature fluid, and the heat Exchange efficiency decreases. Therefore, in the present invention, heat is exchanged in the high temperature region 21 of the heat exchange chamber, and the high temperature fluid whose fluid temperature has decreased to an appropriate temperature is extracted and made to flow into the low temperature region 22 as the branched high temperature fluid 12.

本発明では、ボイラの負荷を監視し、ボイラ燃料とボイラ燃焼排ガスの量に応じて、2つの独立した領域に分割された熱交換室に流入させる高温流体(ボイラ燃焼排ガス)量を適切に配分する。これにより、熱交換器の全領域にわたって、高温流体(ボイラ燃焼排ガス)温度を酸露点温度超えの温度に保持できるようになる。 In the present invention, the load of the boiler is monitored and the amount of high-temperature fluid (boiler combustion exhaust gas) flowing into a heat exchange chamber divided into two independent areas is appropriately distributed according to the amount of boiler fuel and boiler combustion exhaust gas. do. This makes it possible to maintain the hot fluid (boiler combustion exhaust gas) temperature at a temperature above the acid dew point temperature over the entire region of the heat exchanger.

なお、分岐口は、高温流体1の流路に沿って、高温領域21の壁面の、少なくとも1箇所に設ける。図1では、2箇所(分岐口31、32)に設けた例を示しているが、これに限定されないことは言うまでもない。分岐口を、高温領域21の流路に沿った複数箇所に設けることにより、流体温度が種々異なる高温流体1を抜き出すことができ、低温領域に流入する高温流体の一部12の温度調整が容易となる。なお、高温領域21から抜き出した高温流体の一部12は、200~300℃程度の流体温度を有することが好ましい。 Note that the branch port is provided at at least one location on the wall surface of the high temperature region 21 along the flow path of the high temperature fluid 1. Although FIG. 1 shows an example in which they are provided at two locations (branch ports 31 and 32), it goes without saying that the present invention is not limited to this. By providing branch ports at multiple locations along the flow path of the high-temperature region 21, high-temperature fluids 1 with various fluid temperatures can be extracted, and the temperature of the portion 12 of the high-temperature fluid flowing into the low-temperature region can be easily adjusted. becomes. Note that it is preferable that the portion 12 of the high-temperature fluid extracted from the high-temperature region 21 has a fluid temperature of about 200 to 300°C.

また、本発明ボイラ燃料の予熱装置10では、高温領域21、低温領域22のそれぞれの出口に、流体(燃焼排ガス)の出側温度を測定する温度計211、221を配設することが好ましい。本発明では、温度計211、221で測定された流体(ボイラ燃焼排ガス)の出側温度に基づき、高温流体(ボイラ燃焼排ガス)の温度が、当該ボイラ燃焼排ガスの酸露点以下に低下しないように、高温領域21から低温領域22に流入させる高温流体の一部12の流量を調整することが好ましい。 Furthermore, in the boiler fuel preheating device 10 of the present invention, it is preferable to arrange thermometers 211 and 221 at the respective exits of the high temperature region 21 and the low temperature region 22 to measure the temperature on the exit side of the fluid (combustion exhaust gas). In the present invention, based on the outlet temperature of the fluid (boiler combustion exhaust gas) measured by the thermometers 211 and 221, the temperature of the high-temperature fluid (boiler combustion exhaust gas) is prevented from falling below the acid dew point of the boiler combustion exhaust gas. , it is preferable to adjust the flow rate of the portion 12 of the high temperature fluid flowing from the high temperature region 21 to the low temperature region 22.

そのため、分岐口31、32それぞれに対応して、流量調整弁311、321を配設し、温度計211、221で測定された流体(ボイラ燃焼排ガス)の出側温度に対応して、調整手段33を介して流入量を調整することが好ましい。 Therefore, flow rate regulating valves 311 and 321 are provided corresponding to the branch ports 31 and 32, respectively, and the regulating means Preferably, the inflow rate is adjusted via 33.

また、高温領域21、低温領域22のそれぞれの出口(出側)には、排出された高温流体(ボイラ燃焼排ガス)中の無水硫酸が(SOx)濃度を測定するセンサー(濃度計)212、222を配設することが、当該ボイラ燃焼排ガスの酸露点を把握するうえで、好ましい。 Furthermore, at the respective outlets (outlet sides) of the high temperature region 21 and the low temperature region 22, sensors (density meters) 212 and 222 are installed to measure the concentration of sulfuric anhydride (SOx) in the discharged high temperature fluid (boiler combustion exhaust gas). It is preferable to provide the following in order to grasp the acid dew point of the boiler combustion exhaust gas.

またさらに、本発明ボイラ燃料の予熱装置10では、熱交換室2を流路とする高温流体1と向流となるように、低温流体4を流す熱交換伝熱チューブ5を配設する。図1に示すように、低温流体4が、熱交換室2の低温領域22から高温領域21へとこの順に通過するように、配設する。なお、模式的に示した図1では、熱交換伝熱チューブ5を1本のみに省略して示しているが、実際には低温流体4の流路として、熱交換器の容量に応じて多数本の熱交換伝熱チューブ5を用いることは言うまでもない。 Furthermore, in the boiler fuel preheating device 10 of the present invention, a heat exchange heat transfer tube 5 through which the low temperature fluid 4 flows is arranged so as to flow countercurrently to the high temperature fluid 1 having the heat exchange chamber 2 as a flow path. As shown in FIG. 1, the arrangement is such that the low temperature fluid 4 passes from the low temperature region 22 to the high temperature region 21 of the heat exchange chamber 2 in this order. In the schematic diagram of FIG. 1, only one heat exchange tube 5 is shown, but in reality, a number of tubes are used as a flow path for the low temperature fluid 4 depending on the capacity of the heat exchanger. It goes without saying that the actual heat exchange heat transfer tube 5 is used.

また、本発明予熱装置で使用される熱交換伝熱チューブ5は、JIS G 3461に規定されるボイラ、熱交換器用炭素鋼鋼管(STB340等)、JIS G 3461に規定されるボイラ、熱交換器用合金鋼鋼管(STBA12等)など、常用のチューブがいずれも適用できる。 In addition, the heat exchange tube 5 used in the preheating device of the present invention is a carbon steel tube for boilers and heat exchangers (STB340, etc.) specified in JIS G 3461, and for boilers and heat exchangers specified in JIS G 3461. Any commonly used tubes such as alloy steel pipes (STBA12, etc.) can be used.

また、熱交換伝熱チューブ5の表面での硫酸結露(凝縮)を監視するうえでは、高温領域21の出口近傍の熱交換伝熱チューブ5の表面温度を測定する温度計213、および低温領域22の出口近傍の熱交換伝熱チューブ5の表面温度を測定する温度計223、をそれぞれ設けることが好ましい。 In order to monitor sulfuric acid condensation (condensation) on the surface of the heat exchange tube 5, a thermometer 213 that measures the surface temperature of the heat exchange tube 5 near the outlet of the high temperature region 21 and a thermometer 213 that measures the surface temperature of the heat exchange tube 5 near the outlet of the high temperature region 21 are used. It is preferable to provide a thermometer 223 for measuring the surface temperature of the heat exchange tube 5 near the outlet of the tube.

なお、本発明では、熱交換室2の分割は、上記した2つの独立した領域、高温領域21および低温領域22のみに限定されない。燃焼排ガスの温度と量に応じて、低温流体である燃料の温度を所望の予熱温度まで加温することが許容されれば、熱交換室(シェル)を、高温領域21および低温領域22に加えて、例えば図2に示すように、中温領域23を設けて、3つの独立した領域に分割してもよい。この場合、高温領域21の分岐口31、32から分岐し(抜き出し)た分岐高温流体12、13を、分岐配管3を介して、低温領域22および中温領域23に流入させることが好ましい。 Note that, in the present invention, the division of the heat exchange chamber 2 is not limited to the two independent regions described above, the high temperature region 21 and the low temperature region 22. If it is permissible to heat the temperature of the fuel, which is a low-temperature fluid, to a desired preheating temperature according to the temperature and amount of the combustion exhaust gas, a heat exchange chamber (shell) is added to the high-temperature region 21 and the low-temperature region 22. For example, as shown in FIG. 2, a medium temperature region 23 may be provided and divided into three independent regions. In this case, it is preferable that the branched high-temperature fluids 12 and 13 branched (extracted) from the branch ports 31 and 32 of the high-temperature region 21 flow into the low-temperature region 22 and the medium-temperature region 23 via the branch pipe 3.

また、本発明は、上記した構成のボイラ燃料の予熱装置10を利用して、高温流体1であるSOx含有ボイラ燃焼排ガスと低温流体4であるボイラ燃料とを熱交換室内で向流させて、ボイラ燃料を加温するボイラ燃料の予熱方法である。 Further, the present invention utilizes the boiler fuel preheating device 10 having the above-described configuration to cause the SOx-containing boiler combustion exhaust gas, which is the high-temperature fluid 1, and the boiler fuel, which is the low-temperature fluid 4, to flow countercurrently in the heat exchange chamber, This is a boiler fuel preheating method for heating boiler fuel.

本発明のボイラ燃料の予熱方法では、高温流体1であるSOx含有ボイラ燃焼排ガスを熱交換室の高温領域21に供給するとともに、低温領域22に、高温領域21から分岐高温流体12を分岐、流入させる。これにより、低温領域の高温流体の温度が、当該高温流体の酸露点以下の温度とならないように、調整することができる。なお、本発明では、熱交換室の各領域の出口に配設した温度計211、221により、各領域における高温流体の出側温度を測定し、得られた出側温度に応じて、当該高温流体の酸露点超えとなるように、低温領域22に流入させる分岐高温流体12の流量を調整する。流量の調整は、得られた出側温度を調整手段33に入力し、分岐口31、32の出側に配設した流量調整弁311、321を作動させて、調整することが好ましい。 In the boiler fuel preheating method of the present invention, SOx-containing boiler combustion exhaust gas, which is the high-temperature fluid 1, is supplied to the high-temperature region 21 of the heat exchange chamber, and the high-temperature fluid 12 is branched from the high-temperature region 21 and flows into the low-temperature region 22. let Thereby, the temperature of the high-temperature fluid in the low-temperature region can be adjusted so as not to fall below the acid dew point of the high-temperature fluid. In addition, in the present invention, the outlet temperature of the high temperature fluid in each area is measured by the thermometers 211 and 221 disposed at the outlet of each area of the heat exchange chamber, and the high temperature fluid is adjusted according to the obtained outlet temperature. The flow rate of the branched high temperature fluid 12 flowing into the low temperature region 22 is adjusted so that the acid dew point of the fluid is exceeded. It is preferable to adjust the flow rate by inputting the obtained outlet temperature into the adjusting means 33 and operating the flow rate regulating valves 311 and 321 disposed on the outlet sides of the branch ports 31 and 32.

なお、抜き出す分岐高温流体(ボイラ燃焼排ガス)12の量を、流量調整弁で調整することに代えて、高温流体の抜き出し位置を、分岐口31から、例えば分岐口32に代えることにより、抜き出す高温流体の温度を変化でき、同等の効果を得ることもできる。 In addition, instead of adjusting the amount of the branched high-temperature fluid (boiler combustion exhaust gas) 12 to be extracted with the flow rate adjustment valve, by changing the extraction position of the high-temperature fluid from the branch port 31 to the branch port 32, for example, the high-temperature fluid to be extracted can be adjusted. It is also possible to change the temperature of the fluid and obtain the same effect.

なお、高温流体の酸露点は、主として、硫黄分含有量に応じて変化するため、高温流体の硫黄分含有量を常時測定して、当該高温流体の酸露点を把握することが好ましい。ボイラ燃焼排ガスでは通常、含有する硫黄分はSO2で0.00001~0.001ppm程度であり、酸露点は90~130℃の範囲である。このため、低温流体が流れる熱交換伝熱チューブ表面の硫酸結露を防止する観点からは、熱交換室の各領域における高温流体の温度を酸露点超えの180℃以上の温度に調整することが好ましい。 Note that the acid dew point of the high-temperature fluid changes mainly depending on the sulfur content, so it is preferable to constantly measure the sulfur content of the high-temperature fluid to understand the acid dew point of the high-temperature fluid. Boiler combustion exhaust gas usually contains SO 2 sulfur of about 0.00001 to 0.001 ppm, and the acid dew point is in the range of 90 to 130°C. Therefore, from the viewpoint of preventing sulfuric acid condensation on the surface of the heat exchange tube through which the low temperature fluid flows, it is preferable to adjust the temperature of the high temperature fluid in each region of the heat exchange chamber to a temperature of 180°C or higher, which is higher than the acid dew point. .

図1に示す本発明ボイラ燃料の予熱装置10を利用して、ボイラ燃料の予熱を行った。低温流体(ボイラ燃料)4として、温度40℃の高炉ガス(Bガス;流量:34万Nm3/h)を熱交換伝熱チューブ5に供給した。なお、熱交換伝熱チューブ5の材質はSTB350であった。高温流体(ボイラ燃焼排ガス)1として、温度350℃のボイラ燃焼排ガス(流量:82万kg/h)を高温領域21に供給した。高温領域21の流路に沿った壁面の所定の位置に配設された分岐口31から、高温流体の一部を抜き出し、分岐配管3を介して低温領域22の上流側に流入させた。なお、分岐口31から抜き出した分岐高温流体12の温度は、300℃であった。操業中、低温領域22の出口側に設置した温度計221で測定した高温流体(ボイラ燃焼排ガス)の出側温度が180℃以上となるように流量調整弁311を作動させて抜き出す分岐高温流体12の流量を調整した。 Boiler fuel was preheated using the boiler fuel preheating device 10 of the present invention shown in FIG. As the low temperature fluid (boiler fuel) 4, blast furnace gas (B gas; flow rate: 340,000 Nm 3 /h) at a temperature of 40° C. was supplied to the heat exchange tube 5 . In addition, the material of the heat exchange heat transfer tube 5 was STB350. As high temperature fluid (boiler combustion exhaust gas) 1, boiler combustion exhaust gas (flow rate: 820,000 kg/h) with a temperature of 350° C. was supplied to the high temperature region 21. A portion of the high-temperature fluid was extracted from a branch port 31 disposed at a predetermined position on a wall along the flow path of the high-temperature region 21 and flowed into the upstream side of the low-temperature region 22 via the branch pipe 3. Note that the temperature of the branched high-temperature fluid 12 extracted from the branch port 31 was 300°C. During operation, the branch high-temperature fluid 12 is extracted by operating the flow rate adjustment valve 311 so that the outlet temperature of the high-temperature fluid (boiler combustion exhaust gas) as measured by the thermometer 221 installed on the outlet side of the low-temperature region 22 is 180°C or higher. The flow rate was adjusted.

このような条件で熱交換を行った結果、低温流体(ボイラ燃料)は270℃に加温された。また、上記した高温流体の一部を流入させた低温領域22の高温流体(ボイラ燃焼排ガス)の出側温度は、当該ボイラ燃焼排ガスの酸露点超えの200℃であった。 As a result of heat exchange under these conditions, the low temperature fluid (boiler fuel) was heated to 270°C. Further, the outlet temperature of the high temperature fluid (boiler combustion exhaust gas) of the low temperature region 22 into which a part of the above-described high temperature fluid was introduced was 200° C., which was higher than the acid dew point of the boiler combustion exhaust gas.

また、このような条件でボイラの運転を1年間実施したのち、熱交換器の点検を行ったところ、熱交換伝熱チューブの酸腐食は見られなかった。 Further, when the heat exchanger was inspected after operating the boiler under these conditions for one year, no acid corrosion was found in the heat exchange tube.

1 高温流体
2 熱交換室
3 分岐配管
4 低温流体
5 熱交換伝熱チューブ
10 ボイラ燃料の予熱装置
12、13 分岐高温流体(高温流体の一部)
21 高温領域
22 低温流域
23 中温領域
31、32 分岐口
33 調整手段
211、221、231 温度計(燃焼排ガス温度計)
212、222 SOx濃度計(センサー)
213、223 熱交換伝熱チューブ表面温度計
311、321、331 流量調整弁
1 High temperature fluid 2 Heat exchange chamber 3 Branch pipe 4 Low temperature fluid 5 Heat exchange heat transfer tube 10 Boiler fuel preheating device 12, 13 Branch high temperature fluid (part of high temperature fluid)
21 High temperature region 22 Low temperature region 23 Medium temperature region 31, 32 Branch port 33 Adjustment means
211, 221, 231 Thermometer (combustion exhaust gas thermometer)
212, 222 SOx concentration meter (sensor)
213, 223 Heat exchange heat transfer tube surface thermometer
311, 321, 331 Flow control valve

Claims (6)

高温流体であるSOx含有ボイラ燃焼排ガスと低温流体であるボイラ燃料とを熱交換室内で向流させて前記ボイラ燃料の加温を行うボイラ燃料の予熱装置であって、
前記高温流体の流路となる前記熱交換室を、高温領域と低温領域とからなる2つの独立した領域に分割し、
前記低温流体が流れる熱交換伝熱チューブを、前記熱交換室内で前記低温流体が前記高温流体と向流となるように配設するとともに、
前記高温領域の上流側に前記高温流体を供給し、
前記高温領域に供給された前記高温流体の一部を、該高温領域壁面の所定の位置に開口した分岐口を介して抜き出し、前記低温領域の上流側に流入させる分岐配管を配設してなることを特徴とするボイラ燃料の予熱装置。
A boiler fuel preheating device that heats the boiler fuel by causing SOx-containing boiler combustion exhaust gas, which is a high-temperature fluid, and boiler fuel, which is a low-temperature fluid, to flow countercurrently in a heat exchange chamber, comprising:
The heat exchange chamber, which serves as a flow path for the high-temperature fluid, is divided into two independent regions consisting of a high-temperature region and a low-temperature region,
A heat exchange heat transfer tube through which the low-temperature fluid flows is disposed in the heat exchange chamber so that the low-temperature fluid flows countercurrently to the high-temperature fluid, and
supplying the high temperature fluid to the upstream side of the high temperature region;
A branch pipe is provided for extracting a part of the high temperature fluid supplied to the high temperature region through a branch port opened at a predetermined position on a wall surface of the high temperature region and flowing into the upstream side of the low temperature region. A boiler fuel preheating device characterized by:
前記分岐配管には、前記分岐口の出口側に流量調整弁を配設することを特徴とする請求項1に記載のボイラ燃料の予熱装置。 2. The boiler fuel preheating device according to claim 1, wherein the branch pipe is provided with a flow rate regulating valve on the outlet side of the branch port. 前記分岐配管は、前記高温領域壁面の複数の位置から分岐されてなることを特徴とする請求項2に記載のボイラ燃料の予熱装置。 The boiler fuel preheating device according to claim 2, wherein the branch pipe is branched from a plurality of positions on the wall surface of the high temperature region. 前記2つの独立した領域のうち少なくとも前記低温領域の出口には、前記高温流体の出口温度を計測する温度計が配設され、
前記温度計には、前記流量調整弁を作動させる流量調整手段が接続されてなることを特徴とする請求項2に記載のボイラ燃料の予熱装置。
A thermometer for measuring the outlet temperature of the high-temperature fluid is disposed at least at the outlet of the low-temperature region of the two independent regions;
3. The boiler fuel preheating device according to claim 2, wherein the thermometer is connected to a flow rate adjustment means for operating the flow rate adjustment valve.
請求項1ないし4のいずれかに記載のボイラ燃料の予熱装置を用いたボイラ燃料の予熱方法であって、
高温流体であるSOx含有ボイラ燃焼排ガスと低温流体であるボイラ燃料とを熱交換室内で向流させて前記ボイラ燃料の加温を行うに当たり、
前記熱交換室を高温領域と低温領域からなる2つの独立した領域に分割し、
前記高温流体を前記高温領域に供給し、前記低温流体を、前記低温流体が前記高温流体と向流となるように配設された熱交換伝熱チューブに供給するとともに、
前記高温領域から、供給された前記高温流体の一部を分岐し、前記低温領域に流入させることを特徴とするボイラ燃料の予熱方法。
A boiler fuel preheating method using the boiler fuel preheating device according to any one of claims 1 to 4,
In heating the boiler fuel by causing SOx-containing boiler combustion exhaust gas, which is a high-temperature fluid, and boiler fuel, which is a low-temperature fluid, to flow countercurrently in a heat exchange chamber,
dividing the heat exchange chamber into two independent regions consisting of a high temperature region and a low temperature region;
supplying the high-temperature fluid to the high-temperature region and supplying the low-temperature fluid to a heat exchange heat transfer tube disposed such that the low-temperature fluid flows countercurrently to the high-temperature fluid;
A method for preheating boiler fuel, characterized in that a part of the high temperature fluid supplied is branched from the high temperature region and flows into the low temperature region.
前記高温領域および前記低温領域の出口側における前記高温流体の温度が、当該高温流体の酸露点超えとなるように、前記低温領域に流入させる前記高温流体の一部の流量を調整することを特徴とする請求項5に記載のボイラ燃料の予熱方法。 The flow rate of a portion of the high temperature fluid flowing into the low temperature region is adjusted so that the temperature of the high temperature fluid at the outlet sides of the high temperature region and the low temperature region exceeds the acid dew point of the high temperature fluid. The boiler fuel preheating method according to claim 5.
JP2021097134A 2021-06-10 2021-06-10 Boiler fuel preheating device and preheating method Active JP7392687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021097134A JP7392687B2 (en) 2021-06-10 2021-06-10 Boiler fuel preheating device and preheating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021097134A JP7392687B2 (en) 2021-06-10 2021-06-10 Boiler fuel preheating device and preheating method

Publications (2)

Publication Number Publication Date
JP2022188875A JP2022188875A (en) 2022-12-22
JP7392687B2 true JP7392687B2 (en) 2023-12-06

Family

ID=84532863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021097134A Active JP7392687B2 (en) 2021-06-10 2021-06-10 Boiler fuel preheating device and preheating method

Country Status (1)

Country Link
JP (1) JP7392687B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106832A (en) 2000-09-27 2002-04-10 Nkk Corp Regenerative burner furnace and its operation method
JP2012083095A (en) 2010-10-12 2012-04-26 Martin Gmbh Fuer Umwelt- & Energietechnik Device including heat exchanger, and method of operating heat exchanger of steam generator
JP2020153628A (en) 2019-03-22 2020-09-24 荏原環境プラント株式会社 Waste heat recovery boiler and temperature control method of heat transfer pipe of the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217699A (en) * 1985-03-22 1986-09-27 Babcock Hitachi Kk Method of preventing dew point corrosion by sulfuric acid in heat exchanger
JPS63163783A (en) * 1986-12-26 1988-07-07 Mitsubishi Heavy Ind Ltd Heater for fuel gas
JPH02100089U (en) * 1989-01-27 1990-08-09
JPH06212909A (en) * 1993-01-21 1994-08-02 Mitsubishi Heavy Ind Ltd Compound electric power plant
JPH06212910A (en) * 1993-01-21 1994-08-02 Mitsubishi Heavy Ind Ltd Electric power generating plant
JPH11148603A (en) * 1997-11-14 1999-06-02 Toshiba Corp Controller for coal/residual oil gassifying combined power generation plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106832A (en) 2000-09-27 2002-04-10 Nkk Corp Regenerative burner furnace and its operation method
JP2012083095A (en) 2010-10-12 2012-04-26 Martin Gmbh Fuer Umwelt- & Energietechnik Device including heat exchanger, and method of operating heat exchanger of steam generator
JP2020153628A (en) 2019-03-22 2020-09-24 荏原環境プラント株式会社 Waste heat recovery boiler and temperature control method of heat transfer pipe of the same

Also Published As

Publication number Publication date
JP2022188875A (en) 2022-12-22

Similar Documents

Publication Publication Date Title
Pachaiyappan et al. Improving the boiler efficiency by optimizing the combustion air
JP3230530U (en) High temperature heat receiving surface Metal wall temperature control system
CN108489290A (en) A kind of high-temperature flue gas residual neat recovering system
RU2610634C2 (en) Gasification reactor
US9540518B2 (en) Apparatus and process for airheater without quench in carbon black production
CA2912555C (en) Corrosion resistant air preheater with lined tubes
JP7392687B2 (en) Boiler fuel preheating device and preheating method
CN208779478U (en) A kind of blast furnace gas boiler fume afterheat deep exploitation device
JP6504525B2 (en) Overheater
US4244421A (en) Process and an apparatus for cooling of waste gas bends
US5605118A (en) Method and system for reheat temperature control
RU2738154C2 (en) Method for preliminary heating of fluid medium upstream of furnace
RU2015140806A (en) METHOD FOR COMBUSING LOW-SPORT FUEL
CN109297312A (en) A kind of separated phase transition smoke heat exchanging system
CN217131232U (en) Novel reheater dry-heating-preventing steam cooling system and dry-heating-preventing steam system
JP2005533994A (en) Waste heat boiler for Claus plant
CN206832094U (en) With the coal gas of high temperature heat exchanger of medium temperature coal gas shunt valve regulation output gas temperature
Lukin et al. Simulation of the Thermal Performance of Regenerative Heat Exchanger for Recovering the Heat of Combustion of Converter Gas
JP4404259B2 (en) Exhaust heat recovery boiler with auxiliary burner and its operation method
CN208898929U (en) A kind of blast-furnace hot-air kiln gas/coal gas/air double-preheating device
CN102012039A (en) Forced circulation air preheat system
JP2020180719A (en) Heat pipe type exhaust heat recovery facility and hot stove facility equipped therewith
CN103148502B (en) Method for alleviating corrosion of boiler preheater
CN202853432U (en) Effective preheating device for coke oven gas
US2565857A (en) Method of and apparatus for preventing slagging in tubular element gas heating furnaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231106

R150 Certificate of patent or registration of utility model

Ref document number: 7392687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150