EP0617778B1 - Fossil-fuelled continuous steam generator - Google Patents

Fossil-fuelled continuous steam generator Download PDF

Info

Publication number
EP0617778B1
EP0617778B1 EP92924576A EP92924576A EP0617778B1 EP 0617778 B1 EP0617778 B1 EP 0617778B1 EP 92924576 A EP92924576 A EP 92924576A EP 92924576 A EP92924576 A EP 92924576A EP 0617778 B1 EP0617778 B1 EP 0617778B1
Authority
EP
European Patent Office
Prior art keywords
tubes
tube
heating
pressure equalisation
steam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92924576A
Other languages
German (de)
French (fr)
Other versions
EP0617778A1 (en
Inventor
Wolfgang Kastner
Wolfgang Köhler
Eberhard Wittchow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6447758&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0617778(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0617778A1 publication Critical patent/EP0617778A1/en
Application granted granted Critical
Publication of EP0617778B1 publication Critical patent/EP0617778B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes

Definitions

  • the invention relates to a once-through steam generator with burners for fossil fuels with a vertical gas flue from essentially vertically arranged pipes which are connected with their inlet ends to an inlet collector and with their outlet ends to an outlet collector.
  • a steam generator is known from document US-A-3 308 792.
  • the invention also relates to continuous flow steam generators of this type which have a funnel arranged at their lower end, which has at least four walls made of pipes welded to one another in a gastight manner and inlet and outlet collectors for these pipes.
  • the tubes at the outlet of the combustion chamber walls often have large temperature differences, since different amounts of heat are transferred to the individual tubes of the parallel tube system.
  • the causes of the different amounts of heat transferred are due to the different heat flow density profile - e.g. less heat is transferred in the corners of the combustion chamber than in the vicinity of the burners - and in the differences in the heated pipe lengths, especially in the funnel area, for continuous steam generators designed for coal firing.
  • the pressure compensation collector is arranged in the wet steam area - i.e. at a point where all pipes are still at the same temperature but have wet steam of different steam contents - at the point where an average steam content of 80% is reached at 35% of the boiler load.
  • the entire evaporator mass flow is passed through pressure compensation collectors, so that a mixture of the wet steam emerging from the individual tubes of the parallel tube system is forced.
  • the incoming wet steam can therefore be segregated in such a way that individual outgoing pipes preferably receive water and others preferably steam.
  • the result is that, even with uniform heating of the tube walls above the pressure compensation collector, a strongly different heating of the steam and thus different tube wall temperatures and the resulting thermal stresses occur, which can lead to tube tears.
  • the invention has for its object to design the pipe walls of the vertical throttle cable so that despite the unavoidable different heating of individual pipes, the steam temperatures at the outlet of all pipes are almost the same and that malfunctions, such as may occur due to clogging of throttle orifices at the pipe inlet, are avoided .
  • this object is achieved for continuous-flow steam generators of the type mentioned at the outset in that a pressure compensation vessel is arranged on the outside of the combustion chamber walls at an altitude which ensures that a multi-heated tube has a greater throughput than a parallel tube with medium heating.
  • a pressure compensation vessel is arranged on the outside of the combustion chamber walls at an altitude which ensures that a multi-heated tube has a greater throughput than a parallel tube with medium heating.
  • the friction pressure drop ( ⁇ P R ) is according to Q. Zheng, W. Köhler, W. Kastner and K. Riedle, "Pressure loss in smooth and internally finned evaporator tubes, heat and mass transfer 26", pp. 323 - 330, Springer Verlag 1991 to determine, while the geodetic pressure drop ( ⁇ P G ) according to Z. Rouhani "Modified correlation for void-fraction and two-phase pressure drop", AE-RTV-841, 1969 is to be determined. In contrast, the acceleration pressure drop ( ⁇ P B ) is of minor importance and can be neglected in this calculation.
  • the mass flow in a tube with multiple heating should not remain constant, but should increase ( ⁇ > 0). This is the case in a parallel pipe system if equation (1) is fulfilled. This applies to the multi-heated pipe ⁇ M ⁇ ⁇ Q ⁇ > 0 Equation (2) says nothing about the extent of the mass flow increase. An increase would be desirable that just completely compensates for the additional heating. In this case, the same heating span, ie the same enthalpy increase, would also be present in the pipe with stronger heating as in the pipes with medium heating, which would lead to a very strong reduction in the described temperature difference to zero. The condition for this is:
  • the index Ref refers to a reference pipe that has the mean throughput ⁇ and the mean heat absorption Q ⁇ .
  • the height of the pressure compensation vessel i.e. the connection of the pressure compensation vessel into the parallel pipe system of the vertically arranged pipes with at least part of their length internally finned, is therefore selected so that one of the following conditions applies: ⁇ M ⁇ ⁇ Q ⁇ > 0
  • a continuous steam generator according to Figure 1 with a vertical throttle cable 1 consists of tube walls, which are gas-tightly welded together in the lower part from tubes 2 arranged vertically and next to one another, and which consist of tubes 3 arranged vertically and next to one another in the upper part, which are also gas-tightly welded to one another .
  • the vertical throttle cable 1 has a funnel 10 at its lower end for receiving ash, the surrounding walls of which are also formed by the tube walls. In the lower part of the vertical throttle cable 1, main burners 11 for fossil fuel are attached.
  • the tubes 2 are connected with their inlet ends to an inlet header 9 and at a height H, measured from the central axis of the inlet header 9, go directly into the inlet ends of the tubes 3 with their outlet ends.
  • the tubes 3 are connected with their outlet ends to an outlet header 12.
  • the outlet headers 12 are connected by connecting lines 13 to a separator 14 to which an outlet line 15 and a connecting line 16 are connected.
  • the connecting line 16 leads to an inlet header 17 of a superheater heating surface 18, the pipe outlet ends of which are connected to a superheater outlet header 19.
  • an intermediate superheater heating surface 21 with an inlet header 20 and an outlet header 22 and an economizer heating surface 6 with an inlet header 5 and an outlet header 7 are arranged within the vertical throttle cable 1.
  • the outlet header 7 is connected to the inlet header 9 by a connecting line 8.
  • FIG. 2 shows a single tube 2, which at point H, at which a pressure compensation tube 25 branches off, merges with its outlet end directly into the inlet end of tube 3.
  • the pressure compensation tube 25 is connected to a pressure compensation vessel 4, which is located outside the vertical throttle cable 1.
  • a pressure compensation tube 25 branches off from each tube 2 of the tube walls.
  • a feed pump conveys water into the inlet collector 5 and from there into the economizer heating surface 6, in which the water is preheated.
  • the water then flows through the connecting line 8 and the inlet header 9 into the tubes 2 of the tube walls of the vertical gas flue 1, in which it largely evaporates.
  • the remaining evaporation and the first part of the overheating takes place in the tubes 3 of the tube walls of the vertical throttle cable 1.
  • the separator 14 is only in operation during the start-up process, that is, as long as not all water evaporates in the pipe walls due to insufficient heat input.
  • the entering water-steam mixture is then separated in the separator 14.
  • the separated water is led through the drain line 15, for example, to an expansion device (not shown), the separated steam flows through the connecting line 16 to the superheater heating surface 18.
  • the steam expanded in the high-pressure part of the steam turbine is reheated in the reheater heating surface 21.
  • the mass flow density in the vertically arranged pipes 2 and 3 is chosen so that the geodetic pressure drop in the pipes is substantially greater than the friction pressure drop.
  • the result of this is that a pipe receives a higher throughput in the case of multiple heating and the effect of the multiple heating with regard to the outlet temperature is largely compensated for.
  • very long vertical evaporator tubes e.g. used in continuous steam generators in single-pass design, despite a low mass flow density of 1000 kg / m2s and less, based on 100% load
  • the frictional pressure drop in the pipes of the upper part of the vertical throttle cable, i.e. in pipes 3 increases due to the large steam volumes strong.
  • the drop in frictional pressure in relation to the geodetic drop in pressure can be so great that the throughput decreases due to a multi-heated pipe compared to the parallel pipes and this leads to undesirably high steam temperatures at the pipe end.
  • the arrangement of the pressure compensation vessel 4 now causes the pipes 2 to be uncoupled from the pipes 3 with regard to the pressure drop.
  • All tubes 2, which flow from bottom to top and are connected in parallel in terms of flow, have the same pressure drop between the inlet header 9 and the pressure compensation vessel 4.
  • the proportion of the geodetic pressure drop is a multiple of the proportion of the friction pressure drop, so that the advantage of Increasing the throughput when heating individual pipes is very effective. This is particularly important in the lower part of the vertical throttle cable 1, in which the different heating in the area of the funnel and the main burner is particularly pronounced.
  • both the heating and their irregularities are less than in the lower part of the gas cable 1.
  • the pressure compensation vessel 4 now causes a partial flow of through a part of the pressure compensation tubes 25 the tubes 2 flows to the pressure compensation vessel 4 and a partial stream flows from the pressure compensation vessel 4 to the tubes 3 through another part of the pressure compensation tubes 25.
  • the cooling of the pipes 2 and 3 is improved and thus the pipe wall temperature is reduced if the pipes have a multi-thread ribs on their inside. This is particularly true in the areas of high heat radiation, e.g. in the area of the burner 11, required.
  • the ribs forming the multi-start thread expediently extend over more than 50% of the length of the tubes 2.

Abstract

In continuous steam generators with a fossil-fuel burner (11) with a vertical flue (1) of substantially vertical pipes (2, 3), their inlet ends are connected to an inlet manifold (9) and their outlet ends to an outlet manifold (12). According to the invention, a pressure equalising pipe (25) branches off from each pipe (2) at the same height H which is connected to a pressure equalising vessel (4) and the height H is such that, on overheating of the single pipe (2), between this inlet manifold (9) and the branch of the pressure equalising pipe (25) in relation to the average heating of all the pipes (2), the mass flow through this single pipe (2) increases.

Description

Die Erfindung betrifft einen Durchlaufdampferzeuger mit Brennern für fossile Brennstoffe mit einem vertikalen Gaszug aus im wesentlichen vertikal angeordneten Rohren, die mit ihren Eintrittsenden an einen Eintrittssammler und mit ihren Austrittsenden an einen Austrittssammler angeschlossen sind. Ein Solcher Dampferzeuger ist aus Dokument US-A-3 308 792 bekannt.The invention relates to a once-through steam generator with burners for fossil fuels with a vertical gas flue from essentially vertically arranged pipes which are connected with their inlet ends to an inlet collector and with their outlet ends to an outlet collector. Such a steam generator is known from document US-A-3 308 792.

Die Erfindung betrifft auch derartige Durchlaufdampferzeuger, die einen an ihrem Unterende angeordneten Trichter aufweisen, der mindestens vier Wände aus gasdicht miteinander verschweißten Rohren und Eintritts- und Austrittssammler für diese Rohre aufweist.The invention also relates to continuous flow steam generators of this type which have a funnel arranged at their lower end, which has at least four walls made of pipes welded to one another in a gastight manner and inlet and outlet collectors for these pipes.

Bei mit fossilen Brennstoffen befeuerten Durchlaufdampferzeugern mit senkrecht berohrten Brennkammerwänden weisen die Rohre am Austritt der Brennkammerwände häufig große Temperaturunterschiede auf, da an die einzelnen Rohre des Parallelrohrsystems unterschiedlich viel Wärme übertragen wird. Die Ursachen der unterschiedlich großen übertragenen Wärmemengen liegen an dem unterschiedlichen Wärmestromdichteprofil - so wird z.B. in den Brennkammerecken weniger Wärme übertragen als in der Nähe der Brenner - und in den Differenzen der beheizten Rohrlängen, insbesondere im Trichterbereich, bei für Kohlefeuerung dimensionierten Durchlaufdampferzeugern.In the case of once-through steam generators fired with fossil fuels with vertically tube-shaped combustion chamber walls, the tubes at the outlet of the combustion chamber walls often have large temperature differences, since different amounts of heat are transferred to the individual tubes of the parallel tube system. The causes of the different amounts of heat transferred are due to the different heat flow density profile - e.g. less heat is transferred in the corners of the combustion chamber than in the vicinity of the burners - and in the differences in the heated pipe lengths, especially in the funnel area, for continuous steam generators designed for coal firing.

Zur Minderung dieser Temperaturunterschiede an den Rohrenden ist aus einer Veröffentlichung in der VGB Kraftwerkstechnik 64, Heft 4, Seiten 298 und 299 eine Lösung mit Drosselblenden und einem Druckausgleichssammler bekannt. Hiernach erhalten die einzelnen Rohre Drosselblenden am Eintritt, um den Wasser/ Dampfdurchsatz einzelner Rohre den Beheizungs- und Längenunterschieden anzupassen. Nachteile dieser Lösung sind, daß die Drosselblenden am Rohreintritt nur für einen einzigen Betriebsfall ausgelegt werden können und daß wechselnde Verschmutzungen der Brennkammerwände jedoch eine überproportionale Temperaturabweichung einzelner Rohre zur Folge haben können.To reduce these temperature differences at the pipe ends, a solution with throttle orifices and a pressure compensation collector is known from a publication in VGB Kraftwerkstechnik 64, number 4, pages 298 and 299. After this, the individual pipes are provided with throttling orifices at the inlet in order to adapt the water / steam throughput of individual pipes to the heating and length differences. Disadvantages of this solution are that the orifice plates at the pipe entry can only be designed for a single operating case and that changing soiling of the combustion chamber walls can, however, result in a disproportionate temperature deviation of individual pipes.

Es hat sich auch gezeigt, daß die Drosselblenden verstopfen können, so daß den hierdurch betroffenen Rohren zu wenig Wasser zugeführt wird.It has also been shown that the throttle diaphragms can become blocked, so that too little water is supplied to the pipes affected thereby.

Der Druckausgleichssammler wird hierbei im Naßdampfgebiet - also an einer Stelle, wo alle Rohre noch die gleiche Temperatur haben, aber Naßdampf unterschiedlichen Dampfgehaltes führen - an der Stelle angeordnet, an der bei 35% der Kessellast ein mittlerer Dampfgehalt von 80 % erreicht ist. Durch Druckausgleichssammler wird der gesamte Verdampfermassenstrom durchgesetzt, so daß eine Mischung des aus den Einzelrohren des Parallelrohrsystems austretenden Naßdampfes erzwungen wird.The pressure compensation collector is arranged in the wet steam area - i.e. at a point where all pipes are still at the same temperature but have wet steam of different steam contents - at the point where an average steam content of 80% is reached at 35% of the boiler load. The entire evaporator mass flow is passed through pressure compensation collectors, so that a mixture of the wet steam emerging from the individual tubes of the parallel tube system is forced.

Bei diesem bekannten Durckausgleichssammler kann daher eine Entmischung des eintretenden Naßdampfes derart erfolgen, daß einzelne abgehende Rohre bevorzugt Wasser und andere wiederum bevorzugt Dampf erhalten. Die Folge ist, daß dann auch bei gleichmäßiger Beheizung der Rohrwände oberhalb des Druckausgleichssammlers eine stark unterschiedliche Erwärmung des Dampfes und damit unterschiedliche Rohrwandtemperaturen sowie daraus resultierende Wärmespannungen auftreten, die zu Rohrreißern führen können.In this known pressure equalization collector, the incoming wet steam can therefore be segregated in such a way that individual outgoing pipes preferably receive water and others preferably steam. The result is that, even with uniform heating of the tube walls above the pressure compensation collector, a strongly different heating of the steam and thus different tube wall temperatures and the resulting thermal stresses occur, which can lead to tube tears.

Der Erfindung liegt die Aufgabe zugrunde, die Rohrwände des vertikalen Gaszuges so zu gestalten, daß trotz der unvermeidbaren unterschiedlichen Beheizung einzelner Rohre die Dampftemperaturen am Austritt aller Rohre nahezu gleich sind und daß Betriebsstörungen, wie sie durch Verstopfen von Drosselblenden am Rohreintritt auftreten können, vermieden werden.The invention has for its object to design the pipe walls of the vertical throttle cable so that despite the unavoidable different heating of individual pipes, the steam temperatures at the outlet of all pipes are almost the same and that malfunctions, such as may occur due to clogging of throttle orifices at the pipe inlet, are avoided .

Erfindungsgemäß wird diese Aufgabe für Durchlaufdampferzeuger der eingangs genannten Art dadurch gelöst, daß ein Druckausgleichsgefäß an der Außenseite der Brennkammerwände in einer Höhenlage angeordnet ist, bei der sichergestellt ist, daß ein mehrbeheiztes Rohr einen größeren Durchsatz gegenüber einem Parallelrohr mit mittlerer Beheizung aufweist. Dies ist im allgemeinen dann der Fall, wenn der geodätische Druckabfall eines Rohres mit mittlerer Beheizung ein Mehrfaches seines Reibungsdruckabfalls beträgt. Die genannten Druckabfälle beziehen sich auf den Teil der Verdampferrohre, der sich zwischen dem am Eintritt in den Verdampfer liegenden Sammler und dem genannten stromabwärts liegenden Abzweig zum Druckausgleichsgefäß befindet. Die Bedingung für einen Massenstromanstieg in einem stärker beheizten Rohr lautet:

Figure imgb0001

das heißt, daß der gesamte Druckabfall (ΔpGes) des betrachteten Rohrabschnittes bei einer Mehrbeheizung (ΔQ̇) abnehmen muß, wenn man den Durchsatz (Ṁ) konstant hält.According to the invention, this object is achieved for continuous-flow steam generators of the type mentioned at the outset in that a pressure compensation vessel is arranged on the outside of the combustion chamber walls at an altitude which ensures that a multi-heated tube has a greater throughput than a parallel tube with medium heating. This is generally the case when the geodetic pressure drop of a pipe with medium heating is a multiple of its friction pressure drop. The pressure drops mentioned relate to the part of the evaporator tubes which is located between the collector located at the inlet to the evaporator and the branch located downstream to the pressure compensation vessel. The condition for a mass flow increase in a more heated pipe is:
Figure imgb0001

this means that the total pressure drop (Δp Ges ) of the pipe section in question must decrease in the case of multiple heating (ΔQ̇) if the throughput (Ṁ) is kept constant.

Für innen berippte Rohre ist dabei der Reibungsdruckabfall (ΔPR) gemäß Q. Zheng, W. Köhler, W. Kastner und K. Riedle, "Druckverlust in glatten und innenberippten Verdampferrohren, Wärme- und Stoffübertragung 26", S. 323 - 330, Springer Verlag 1991 zu bestimmen, während der geodätische Druckabfall (ΔPG) gemäß Z. Rouhani "Modified correlation for void-fraction and two-phase pressure drop", AE-RTV-841, 1969 zu bestimmen ist. Der Beschleunigungsdruckabfall (ΔPB) ist demgegenüber von untergeordneter Bedeutung und kann bei dieser Berechnung vernachlässigt werden.For internally finned tubes, the friction pressure drop (ΔP R ) is according to Q. Zheng, W. Köhler, W. Kastner and K. Riedle, "Pressure loss in smooth and internally finned evaporator tubes, heat and mass transfer 26", pp. 323 - 330, Springer Verlag 1991 to determine, while the geodetic pressure drop (ΔP G ) according to Z. Rouhani "Modified correlation for void-fraction and two-phase pressure drop", AE-RTV-841, 1969 is to be determined. In contrast, the acceleration pressure drop (ΔP B ) is of minor importance and can be neglected in this calculation.

Erfindungsgemäß soll jedoch der Massenstrom in einem Rohr mit Mehrbeheizung nicht konstant bleiben, sondern ansteigen (ΔṀ > 0). Dies ist in einem Parallelrohrsystem dann der Fall, wenn Gleichung (1) erfüllt ist. Somit gilt für das mehrbeheizte Rohr Δ M ̇ Δ Q ̇ > 0

Figure imgb0002

Gleichung (2) sagt noch nichts über das Ausmaß des Massenstromanstiegs aus. Erwünscht wäre ein Anstieg, der die Mehrbeheizung gerade vollständig kompensiert. In diesem Fall würde auch im Rohr mit stärkerer Beheizung die gleiche Aufheizspanne, d.h. die gleiche Enthalpie-Erhöhung wie in den Rohren mit mittlerer Beheizung vorliegen, was zu einer sehr starken Verminderung der beschriebenen Temperaturdifferenz bis auf Null führen würde. Die Bedingung hierfür lautet:
Figure imgb0003
According to the invention, however, the mass flow in a tube with multiple heating should not remain constant, but should increase (ΔṀ> 0). This is the case in a parallel pipe system if equation (1) is fulfilled. This applies to the multi-heated pipe Δ M ̇ Δ Q ̇ > 0
Figure imgb0002

Equation (2) says nothing about the extent of the mass flow increase. An increase would be desirable that just completely compensates for the additional heating. In this case, the same heating span, ie the same enthalpy increase, would also be present in the pipe with stronger heating as in the pipes with medium heating, which would lead to a very strong reduction in the described temperature difference to zero. The condition for this is:
Figure imgb0003

Der Index Ref bezieht sich hierbei auf ein Referenzrohr, das den mittleren Durchsatz Ṁ und die mittlere Wärmeaufnahme Q̇ aufweist.The index Ref refers to a reference pipe that has the mean throughput Ṁ and the mean heat absorption Q̇.

In der Praxis wird es nicht immer möglich sein, die in Gleichung (3) aufgeführte Bedingung zu erfüllen. Die Höhenlage des Druckausgleichsgefäßes, also die Einschaltung des Druckausgleichsgefäßes in das Parallelrohrsystem der senkrecht angeordneten, mindestens auf einem Teil ihrer Länge innenberippten Rohre, wird deshalb so gewählt, daß eine der folgenden Bedingungen zutrifft: Δ M ̇ Δ Q ̇ > 0

Figure imgb0004
Figure imgb0005
Figure imgb0006
Figure imgb0007
In practice, it will not always be possible to meet the condition listed in equation (3). The height of the pressure compensation vessel, i.e. the connection of the pressure compensation vessel into the parallel pipe system of the vertically arranged pipes with at least part of their length internally finned, is therefore selected so that one of the following conditions applies: Δ M ̇ Δ Q ̇ > 0
Figure imgb0004
Figure imgb0005
Figure imgb0006
Figure imgb0007

Da bei dieser strömungstechnischen Auslegung alle Parallelrohre bei unterschiedlicher Beheizung zwar unterschiedliche Durchsätze, jedoch annähernd gleiche Dampfgehalte (bei Naßdampf) bzw. Temperaturen (bei überhitztem Dampf) aufweisen, ist ein Durchsatz des gesamten Massenstromes durch den Druckausgleichssammler nicht erforderlich. Ein Durchsatz des gesamten Massenstromes durch den Druckausgleichssamm ler wäre sogar nachteilig, weil dabei wieder die Gefahr der Entmischung des Wasser-Dampf-Gemisches bestünde. Es ist deshalb nur ein Druckausgleichsgefäß vorgesehen, das lediglich von einem Teil des gesamten Naßdampfstromes durchströmt wird. Dieser sich einstellende Teilstrom bewirkt nicht nur eine Vergleichmäßigung der Strömungsverteilung und eine dem Beheizungsprofil angepaßte Strömungsverteilung in den Parallelrohren zwischen dem Eintrittssammler und den abgehenden Druckausgleichsrohren zum Druckausgleichsgefäß, sondern er führt durch die Druckausgleichsrohre minderdurchströmten Rohren einen zusätzlichen Massenstrom zu, so daß in den Rohren zwischen den Druckausgleichsrohren und dem stromabwärts liegenden Austrittssammler eine nahezu gleichmäßige Strömungsverteilung herrscht. Die Gefahr der Entmischung des Naßdampfes in Wasser und Dampf besteht nicht, so daß alle Rohre am oberen Ende der Rohrwände annähernd gleiche Temperatur besitzen und Schäden wegen Wärmespannungen nicht auftreten können.Since in this fluidic design all parallel pipes have different throughputs with different heating, but have approximately the same steam content (with wet steam) or temperatures (with superheated steam), a throughput of the entire mass flow through the pressure compensation collector is not necessary. A throughput of the entire mass flow through the pressure compensation collector would even be disadvantageous because there would again be a risk of segregation of the water-steam mixture. Therefore, only one pressure compensation vessel is provided, through which only part of the total wet steam flow flows. This resulting partial flow not only brings about an equalization of the flow distribution and a flow distribution adapted to the heating profile in the parallel pipes between the inlet header and the outgoing pressure compensation pipes to the pressure compensation vessel, but it also leads to an additional mass flow through the pressure compensation pipes, so that in the pipes between the Pressure equalization pipes and the downstream outlet collector have an almost even flow distribution. There is no risk of the wet steam separating into water and steam, so that all pipes at the upper end of the pipe walls have approximately the same temperature and damage due to thermal stresses cannot occur.

Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Dabei zeigt

  • Figur 1 einen Längsschnitt eines Durchlaufdampferzeugers in vereinfachter Darstellung und
  • Figur 2 ein einzelnes Rohr aus einem vertikal berohrten Teil des Durchlaufdampferzeugers mit einem Anschluß dieses Rohres an ein Druckausgleichsgefäß.
An embodiment of the invention is explained in more detail with reference to a drawing. It shows
  • 1 shows a longitudinal section of a once-through steam generator in a simplified representation and
  • Figure 2 shows a single tube from a vertically tube-sectioned part of the continuous steam generator with a connection of this tube to a pressure compensation vessel.

Ein Durchlaufdampferzeuger gemäß Figur 1 mit einem vertikalen Gaszug 1 besteht aus Rohrwänden, die im unteren Teil aus vertikal und nebeneinander angeordneten Rohren 2 gasdicht miteinander verschweißt sind, und die im oberen Teil aus vertikal und nebeneinander angeordneten Rohren 3 bestehen, die ebenfalls miteinander gasdicht verschweißt sind. Die miteinander gasdicht verschweißten Rohre bilden beispielsweise in einer Rohr-Steg-Rohrkonstruktion oder in einer Flossenrohr-Konstruktion eine gasdichte Rohrwand.A continuous steam generator according to Figure 1 with a vertical throttle cable 1 consists of tube walls, which are gas-tightly welded together in the lower part from tubes 2 arranged vertically and next to one another, and which consist of tubes 3 arranged vertically and next to one another in the upper part, which are also gas-tightly welded to one another . The tubes, which are welded to one another in a gastight manner, form a gas-tight tube wall, for example in a tube-web-tube construction or in a fin tube construction.

Der vertikale Gaszug 1 weist an seinem Unterende zur Aufnahme von Asche einen Trichter 10 auf, dessen Umfassungswände ebenfalls von den Rohrwänden gebildet werden. Im unteren Teil des vertikalen Gaszugs 1 sind Hauptbrenner 11 für fossilen Brennstoff angebracht.The vertical throttle cable 1 has a funnel 10 at its lower end for receiving ash, the surrounding walls of which are also formed by the tube walls. In the lower part of the vertical throttle cable 1, main burners 11 for fossil fuel are attached.

Die Rohre 2 sind mit ihren Eintrittsenden an einen Eintrittssammler 9 angeschlossen und gehen in einer Höhe H, gemessen von der Mittelachse der Eintrittssammler 9, mit ihren Austrittsenden direkt in die Eintrittsenden der Rohre 3 über. Die Rohre 3 sind mit ihren Austrittsenden an einen Austrittssammler 12 angeschlossen.The tubes 2 are connected with their inlet ends to an inlet header 9 and at a height H, measured from the central axis of the inlet header 9, go directly into the inlet ends of the tubes 3 with their outlet ends. The tubes 3 are connected with their outlet ends to an outlet header 12.

Die Austrittssammler 12 sind durch Verbindungsleitungen 13 mit einem Abscheider 14 verbunden, an den eine Ablaufleitung 15 und eine Verbindungsleitung 16 angeschlossen sind.The outlet headers 12 are connected by connecting lines 13 to a separator 14 to which an outlet line 15 and a connecting line 16 are connected.

Die Verbindungsleitung 16 führt zu einem Eintrittssammler 17 einer Überhitzerheizfläche 18, deren Rohraustrittsenden an einen Überhitzeraustrittssammler 19 angeschlossen sind. Außerdem sind innerhalb des vertikalen Gaszuges 1 eine Zwischenüberhitzerheizfläche 21 mit einem Eintrittssammler 20 und einem Austrittssammler 22 sowie eine Economizerheizfläche 6 mit einem Eintrittssammler 5 und einem Austrittssammler 7 angeordnet. Der Austrittssammler 7 ist durch eine Verbindungsleitung 8 mit dem Eintrittssammler 9 verbunden.The connecting line 16 leads to an inlet header 17 of a superheater heating surface 18, the pipe outlet ends of which are connected to a superheater outlet header 19. In addition, an intermediate superheater heating surface 21 with an inlet header 20 and an outlet header 22 and an economizer heating surface 6 with an inlet header 5 and an outlet header 7 are arranged within the vertical throttle cable 1. The outlet header 7 is connected to the inlet header 9 by a connecting line 8.

Figur 2 zeigt ein einzelnes Rohr 2, das an der Stelle H, an der ein Druckausgleichsrohr 25 abzweigt, mit seinem Austrittsende direkt in das Eintrittsende des Rohres 3 übergeht. Das Druckausgleichsrohr 25 ist an ein Druckausgleichsgefäß 4 angeschlossen, das sich außerhalb des vertikalen Gaszuges 1 befindet. Von jedem Rohr 2 der Rohrwände zweigt jeweils ein Druckausgleichsrohr 25 ab.FIG. 2 shows a single tube 2, which at point H, at which a pressure compensation tube 25 branches off, merges with its outlet end directly into the inlet end of tube 3. The pressure compensation tube 25 is connected to a pressure compensation vessel 4, which is located outside the vertical throttle cable 1. A pressure compensation tube 25 branches off from each tube 2 of the tube walls.

Eine nicht dargestellte Speisepumpe fördert Wasser in den Eintrittssammler 5 und von dort aus in die Economizerheizfläche 6, in der das Wasser vorgewärmt wird. Anschließend strömt das Wasser durch die Verbindungsleitung 8 und den Eintrittssammler 9 in die Rohre 2 der Rohrwände des vertikalen Gaszuges 1, in denen es zum größten Teil verdampft. Die restliche Verdampfung und der erste Teil der Überhitzung findet in den Rohren 3 der Rohrwände des vertikalen Gaszuges 1 statt.A feed pump, not shown, conveys water into the inlet collector 5 and from there into the economizer heating surface 6, in which the water is preheated. The water then flows through the connecting line 8 and the inlet header 9 into the tubes 2 of the tube walls of the vertical gas flue 1, in which it largely evaporates. The remaining evaporation and the first part of the overheating takes place in the tubes 3 of the tube walls of the vertical throttle cable 1.

Der Abscheider 14 ist nur während des Anfahrvorganges in Funktion, das heißt so lange, wie in den Rohrwänden aufgrund zu geringer Wärmezufuhr nicht alles Wasser verdampft.The separator 14 is only in operation during the start-up process, that is, as long as not all water evaporates in the pipe walls due to insufficient heat input.

In dem Abscheider 14 wird dann das eintretende Wasser-Dampf-Gemisch getrennt. Das abgeschiedene Wasser wird durch die Ablaufleitung 15 beispielsweise zu einem nicht dargestellten Entspanner geführt, der abgeschiedene Dampf strömt durch die Verbindungsleitung 16 zur Überhitzerheizfläche 18.The entering water-steam mixture is then separated in the separator 14. The separated water is led through the drain line 15, for example, to an expansion device (not shown), the separated steam flows through the connecting line 16 to the superheater heating surface 18.

In der Zwischenüberhitzerheizfläche 21 wird der in dem Hochdruckteil der Dampfturbine entspannte Dampf wieder erhitzt.The steam expanded in the high-pressure part of the steam turbine is reheated in the reheater heating surface 21.

Die Massenstromdichte in den senkrecht angeordneten Rohren 2 und 3 ist so gewählt, daß der geodätische Druckabfall in den Rohren wesentlich größer ist als der Reibungsdruckabfall. Dies bewirkt, daß ein Rohr bei einer Mehrbeheizung einen höheren Durchsatz erhält und somit die Auswirkung der Mehrbeheizung im Hinblick auf die Austrittstemperatur zum größten Teil kompensiert wird. Bei sehr langen senkrechten Verdampferrohren, wie sie z.B. bei Durchlaufdampferzeugern in Einzug-Bauart verwendet werden, steigt trotz einer niedrigen Massenstromdichte von 1000 kg/m²s und weniger, bezogen auf 100% Last, der Reibungsdruckabfall in den Rohren des oberen Teils des vertikalen Gaszugs, also in den Rohren 3, aufgrund der großen Dampfvolumina stark an. Dabei kann der Reibungsdruckabfall im Verhältnis zum geodätischen Druckabfall so groß werden, daß der Durchsatz durch ein mehrbeheiztes Rohr gegenüber den Parallelrohren zurückgeht und dadurch unerwünscht hohe Dampftemperaturen am Rohrende entstehen.The mass flow density in the vertically arranged pipes 2 and 3 is chosen so that the geodetic pressure drop in the pipes is substantially greater than the friction pressure drop. The result of this is that a pipe receives a higher throughput in the case of multiple heating and the effect of the multiple heating with regard to the outlet temperature is largely compensated for. With very long vertical evaporator tubes, e.g. used in continuous steam generators in single-pass design, despite a low mass flow density of 1000 kg / m²s and less, based on 100% load, the frictional pressure drop in the pipes of the upper part of the vertical throttle cable, i.e. in pipes 3, increases due to the large steam volumes strong. The drop in frictional pressure in relation to the geodetic drop in pressure can be so great that the throughput decreases due to a multi-heated pipe compared to the parallel pipes and this leads to undesirably high steam temperatures at the pipe end.

Die Anordnung des Druckausgleichsgefäßes 4 bewirkt nun, daß hinsichtlich des Druckabfalls die Rohre 2 von den Rohren 3 abgekoppelt werden. Alle Rohre 2, die von unten nach oben durchströmt und strömungsmäßig parallel geschaltet sind, haben den gleichen Druckabfall zwischen dem Eintrittssammler 9 und dem Druckausgleichsgefäß 4. Bei diesem Druckabfall beträgt der Anteil des geodätischen Druckabfalls ein Mehrfaches des Anteils des Reibungsdruckabfalls, so daß der Vorteil der Durchsatzerhöhung bei Mehrbeheizung einzelner Rohre sehr wirksam ist. Dies ist gerade in dem unteren Teil des vertikalen Gaszuges 1 wichtig, in dem die unterschiedliche Beheizung im Bereich des Trichters und der Hauptbrenner besonders ausgeprägt ist.The arrangement of the pressure compensation vessel 4 now causes the pipes 2 to be uncoupled from the pipes 3 with regard to the pressure drop. All tubes 2, which flow from bottom to top and are connected in parallel in terms of flow, have the same pressure drop between the inlet header 9 and the pressure compensation vessel 4. At this pressure drop, the proportion of the geodetic pressure drop is a multiple of the proportion of the friction pressure drop, so that the advantage of Increasing the throughput when heating individual pipes is very effective. This is particularly important in the lower part of the vertical throttle cable 1, in which the different heating in the area of the funnel and the main burner is particularly pronounced.

In dem oberen Teil des vertikalen Gaszuges 1, in dem sich die Rohre 3 befinden, sind sowohl die Beheizung als auch deren Ungleichmäßigkeiten geringer als im unteren Teil des Gaszuges 1. Das Druckausgleichsgefäß 4 bewirkt nun, daß durch einen Teil der Druckausgleichsrohre 25 ein Teilstrom von den Rohren 2 zum Druckausgleichsgefäß 4 strömt und durch einen anderen Teil der Druckausgleichsrohre 25 ein Teilstrom vom Druckausgleichsgefäß 4 zu den Rohren 3 strömt. Dadurch wird trotz ungleicher Durchströmung der Rohre 2 auch bei sehr unterschiedlicher Beheizung derselben eine gleichmäßige Durchströmung der Rohre 3 erzielt.In the upper part of the vertical throttle cable 1, in which the pipes 3 are located, both the heating and their irregularities are less than in the lower part of the gas cable 1. The pressure compensation vessel 4 now causes a partial flow of through a part of the pressure compensation tubes 25 the tubes 2 flows to the pressure compensation vessel 4 and a partial stream flows from the pressure compensation vessel 4 to the tubes 3 through another part of the pressure compensation tubes 25. As a result, despite the uneven flow through the tubes 2, even flow through the tubes 3 is achieved with very different heating.

Diese Wirkung tritt erfindungsgemäß besonders deutlich auf, wenn das Druckausgleichsgefäß in einer solchen Höhe an das Parallelrohrsystem eingeschaltet wird, daß bei 100% Last und einer Mehrbeheizung von a% in einem einzelnen Rohr der Massenstrom durch dieses einzelne Rohr je nach den übrigen Randbedingungen entweder um mindestens 0,25 . a% oder 0,50 . a% oder 0,75 . a% ansteigt.This effect occurs particularly clearly according to the invention if the pressure compensation vessel is switched on to the parallel pipe system at such a height that, with 100% load and a heating of a% in a single pipe, the mass flow through this single pipe either by at least depending on the other boundary conditions 0.25. a% or 0.50. a% or 0.75. a% increases.

Die Kühlung der Rohre 2 und 3 ist verbessert und damit die Rohrwandtemperatur reduziert, wenn die Rohre auf ihrer Innenseite ein mehrgängiges Gewinde bildende Rippen tragen. Dies ist besonders in den Bereichen hoher Wärmeeinstrahlung, z.B. im Bereich der Brenner 11, erforderlich. Die das mehrgängige Gewinde bildenden Rippen erstrecken sich zweckmäßig über mehr als 50% der Länge der Rohre 2.The cooling of the pipes 2 and 3 is improved and thus the pipe wall temperature is reduced if the pipes have a multi-thread ribs on their inside. This is particularly true in the areas of high heat radiation, e.g. in the area of the burner 11, required. The ribs forming the multi-start thread expediently extend over more than 50% of the length of the tubes 2.

Gegenüber Anordnungen mit bekannten Druckausgleichssammlern besteht die Möglichkeit, daß die Massenstromdichte bei der erfindungsgemäßen Lösung mit einem Druckausgleichsgefäß und mit innen berippten Rohren im Bereich des Flammenraumes aufgrund der guten Wärmeübertragungseigenschaften innen berippter Rohre bei Vollast weniger als 1000 kg/m²s beträgt.Compared to arrangements with known pressure equalization collectors, there is the possibility that the mass flow density in the solution according to the invention with a pressure equalization vessel and with internally finned tubes in the area of the flame space is less than 1000 kg / m²s at full load due to the good heat transfer properties of internally finned tubes.

Claims (6)

  1. Once-through flow steam generator comprising burners (11) for fossil fuels, having a vertical gas flue (1) comprising essentially vertically arranged tubes (2, 3) whose inlet ends are connected to an inlet header (9) and whose outlet ends are connected to an outlet header (12),
    characterised in that
    - from each tube, above the burners (11) and at the same height H, a pressure equalisation tube (25) branches off which is connected to a pressure equalisation vessel (4) and, as a result, through part of the pressure equalisation tubes (25), a branch stream flows from the tubes (2) to the pressure equalisation vessel (4), and through another part of the pressure equalisation tubes (25) a branch stream flows from the pressure equalisation vessel 4 to the tubes (3), and in that
    - the height H is selected such that in the event of an individual tube (2) receiving additional heating between the inlet header (9) and the branching-off point of the pressure equalisation tube (25), compared to the mean value of the heating of all the tubes (2), the mass flow through this individual tube increases.
  2. Once-through flow steam generator according to Claim 1,
    characterised in that the tubes (2), over more than 50% of their length, internally have ribs which form a multiple thread.
  3. Once-through flow steam generator according to Claim 1 or 2,
    characterised in that the tubes (2, 3) of the gas flue (1) are welded to one another in a gastight manner.
  4. Once-through flow steam generator according to one of Claims 1 to 3, characterised in that the height H is selected such that at a nominal load and with an individual tube receiving a% of additional heating between the inlet header (9) and the branching-off point of the pressure equalisation tube (25), compared to the mean value of the heating of all the tubes (2) which corresponds to 100%, the calculated mass flow through this individual tube (2) increases by at least 0.25 · a%.
  5. Once-through flow steam generator according to one of Claims 1 to 3, characterised in that the height H is selected such that at a nominal load and with an individual tube (2) receiving a% of additional heating between the inlet header (9) and the branching-off point of the pressure equalisation tube (25), compared to the mean value of the heating of all the tubes (2) which corresponds to 100%, the calculated mass flow through this individual tube (2) increases by at least 0.50 · a%.
  6. Once-through flow steam generator according to one of Claims 1 to 3, characterised in that the height H is selected such that at a nominal load and with an individual tube (2) receiving a% of additional heating between the inlet header (9) and the branching-off point of the pressure equalisation tube (25), compared to the mean value of the heating of all the tubes (2) which correspond to 100%, the calculated mass flow through this individual tube (2) increases by at least 0.75 · a%.
EP92924576A 1991-12-20 1992-12-16 Fossil-fuelled continuous steam generator Expired - Lifetime EP0617778B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4142376 1991-12-20
DE4142376A DE4142376A1 (en) 1991-12-20 1991-12-20 FOSSIL FIRED CONTINUOUS STEAM GENERATOR
PCT/DE1992/001054 WO1993013356A1 (en) 1991-12-20 1992-12-16 Fossil-fuelled continuous steam generator

Publications (2)

Publication Number Publication Date
EP0617778A1 EP0617778A1 (en) 1994-10-05
EP0617778B1 true EP0617778B1 (en) 1995-09-13

Family

ID=6447758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92924576A Expired - Lifetime EP0617778B1 (en) 1991-12-20 1992-12-16 Fossil-fuelled continuous steam generator

Country Status (10)

Country Link
US (1) US5735236A (en)
EP (1) EP0617778B1 (en)
JP (1) JP3241382B2 (en)
KR (1) KR100260468B1 (en)
CN (1) CN1040146C (en)
CA (1) CA2126230A1 (en)
DE (2) DE4142376A1 (en)
ES (1) ES2077442T3 (en)
RU (1) RU2091664C1 (en)
WO (1) WO1993013356A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5901669A (en) * 1995-04-05 1999-05-11 The Babcock & Wilcox Company Variable pressure once-through steam generator upper furnace having non-split flow circuitry
DE19600004C2 (en) * 1996-01-02 1998-11-19 Siemens Ag Continuous steam generator with spirally arranged evaporator tubes
DE19651678A1 (en) 1996-12-12 1998-06-25 Siemens Ag Steam generator
RU2193726C2 (en) * 1997-06-30 2002-11-27 Сименс Акциенгезелльшафт Waste heat-powered steam generator
US6092490A (en) * 1998-04-03 2000-07-25 Combustion Engineering, Inc. Heat recovery steam generator
US5924389A (en) * 1998-04-03 1999-07-20 Combustion Engineering, Inc. Heat recovery steam generator
US6675747B1 (en) * 2002-08-22 2004-01-13 Foster Wheeler Energy Corporation System for and method of generating steam for use in oil recovery processes
EP1512905A1 (en) * 2003-09-03 2005-03-09 Siemens Aktiengesellschaft Once-through steam generator and method of operating said once-through steam generator
US7021106B2 (en) * 2004-04-15 2006-04-04 Mitsui Babcock (Us) Llc Apparatus and method for forming internally ribbed or rifled tubes
EP1614962A1 (en) * 2004-07-09 2006-01-11 Siemens Aktiengesellschaft Method for operating of an once-through steam generator
WO2006032556A1 (en) * 2004-09-23 2006-03-30 Siemens Aktiengesellschaft Fossil-energy heated continuous steam generator
EP1701091A1 (en) * 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Once-through steam generator
US20080156236A1 (en) * 2006-12-20 2008-07-03 Osamu Ito Pulverized coal combustion boiler
EP2065641A3 (en) * 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Method for operating a continuous flow steam generator and once-through steam generator
DE102009036064B4 (en) * 2009-08-04 2012-02-23 Alstom Technology Ltd. in order to operate a forced-circulation steam generator operating at a steam temperature of more than 650 ° C, as well as forced circulation steam generators
WO2011091882A2 (en) * 2010-02-01 2011-08-04 Siemens Aktiengesellschaft Suppression of dynamic instabilities in forced flow steam generators in solar thermal stations by using pressure compensation lines
DE102010040204A1 (en) * 2010-09-03 2012-03-08 Siemens Aktiengesellschaft Solar thermal continuous evaporator
DE102010061186B4 (en) 2010-12-13 2014-07-03 Alstom Technology Ltd. Forced circulation steam generator with wall heating surface and method for its operation
DE102011004279A1 (en) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Steam generator for solar thermal power plant, has several air duct arranged evaporator tubes which are traversed by flow medium that is partially vaporized by heat transfer medium at several points of evaporator tubes
CA2919408C (en) 2013-08-21 2019-04-02 Vista Acquisitions Inc. Audio systems for generating sound on personal watercraft and other recreational vehicles
PL2871336T3 (en) * 2013-11-06 2018-11-30 General Electric Technology Gmbh Method for managing a shut down of a boiler
CN105240814B (en) * 2015-11-14 2017-09-19 沈阳思达机械设备有限公司 A kind of high temperature and high pressure steam generating means
KR20200093282A (en) 2019-01-28 2020-08-05 이태연 Build-up type Traffic Safety Color Cone
JP7451343B2 (en) 2020-08-04 2024-03-18 キヤノン株式会社 Image forming device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308792A (en) * 1965-08-26 1967-03-14 Combustion Eng Fluid heater support
US3280799A (en) * 1965-08-26 1966-10-25 Combustion Eng Fluid heater support arrangement
EP0308728B1 (en) * 1987-09-21 1991-06-05 Siemens Aktiengesellschaft Method of operating a once-through steam generator
EP0425717B1 (en) * 1989-10-30 1995-05-24 Siemens Aktiengesellschaft Once-through steam generator
JPH0448105A (en) * 1990-06-18 1992-02-18 Mitsubishi Heavy Ind Ltd Variable pressure once-through boiler furnace vaporizing tube
AT394627B (en) * 1990-08-27 1992-05-25 Sgp Va Energie Umwelt METHOD FOR STARTING A HEAT EXCHANGER SYSTEM FOR STEAM GENERATION AND A HEAT EXCHANGER SYSTEM FOR STEAM GENERATION

Also Published As

Publication number Publication date
CN1075789A (en) 1993-09-01
JP3241382B2 (en) 2001-12-25
WO1993013356A1 (en) 1993-07-08
JPH07502333A (en) 1995-03-09
US5735236A (en) 1998-04-07
KR100260468B1 (en) 2000-07-01
CA2126230A1 (en) 1993-07-08
EP0617778A1 (en) 1994-10-05
CN1040146C (en) 1998-10-07
KR940703983A (en) 1994-12-12
DE59203702D1 (en) 1995-10-19
ES2077442T3 (en) 1995-11-16
DE4142376A1 (en) 1993-06-24
RU2091664C1 (en) 1997-09-27

Similar Documents

Publication Publication Date Title
EP0617778B1 (en) Fossil-fuelled continuous steam generator
EP0944801B1 (en) Steam generator
EP0657010B2 (en) Steam generator
DE10127830B4 (en) steam generator
EP1588095B1 (en) Steam generator
EP0581760B1 (en) Continuous flow steam generator with a vertical gas flue of substantially vertically fitted pipes
DE69733812T2 (en) BOILER
DE19510033A1 (en) Use of a single-start and multi-start finned piping for sliding pressure forced flow boilers
EP1166014B1 (en) Fossil-fuel fired continuous steam generator
EP1144910B1 (en) Fossil fuel fired steam generator
EP0937218B1 (en) Method applicable to a continuous steam generator, and the steam generator needed for applying same
EP1166015B1 (en) Fossil-fuel fired continuous-flow steam generator
EP1660812B1 (en) Once-through steam generator and method of operating said once-through steam generator
EP1141625A1 (en) Fossil fuel fired continuos-flow steam generator
EP1144911B1 (en) Fossil fuel fired steam generator
CH653758A5 (en) Once-through boiler.
EP1554522A1 (en) Operating method for a horizontal steam generator and a steam generator for carrying out said method
DE19600004C2 (en) Continuous steam generator with spirally arranged evaporator tubes
EP0812407B1 (en) Process and system for starting a continuous steam generator
DE4236835A1 (en) Steam generator
DE3511877A1 (en) CONTINUOUS STEAM GENERATOR
EP1695007A1 (en) Continuous steam generator
WO1994005950A1 (en) Steam generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB LI SE

17Q First examination report despatched

Effective date: 19950223

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB LI SE

REF Corresponds to:

Ref document number: 59203702

Country of ref document: DE

Date of ref document: 19951019

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077442

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951129

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: EVT ENERGIE UND VERFAHRENSTECHNIK GMBH

Effective date: 19960613

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

R26 Opposition filed (corrected)

Opponent name: ALSTOM ENERGY SYSTEMS GMBH

Effective date: 19960613

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19991109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011204

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20011213

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20011219

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020311

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021217

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021217

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101209

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120220

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59203702

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59203702

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20121215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121215