EP0657010B2 - Steam generator - Google Patents

Steam generator Download PDF

Info

Publication number
EP0657010B2
EP0657010B2 EP93917528A EP93917528A EP0657010B2 EP 0657010 B2 EP0657010 B2 EP 0657010B2 EP 93917528 A EP93917528 A EP 93917528A EP 93917528 A EP93917528 A EP 93917528A EP 0657010 B2 EP0657010 B2 EP 0657010B2
Authority
EP
European Patent Office
Prior art keywords
tubes
steam generator
gas flue
section
generator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93917528A
Other languages
German (de)
French (fr)
Other versions
EP0657010A1 (en
EP0657010B1 (en
Inventor
Wolfgang Köhler
Rudolf Kral
Eberhard Wittchow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6465884&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0657010(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0657010A1 publication Critical patent/EP0657010A1/en
Publication of EP0657010B1 publication Critical patent/EP0657010B1/en
Application granted granted Critical
Publication of EP0657010B2 publication Critical patent/EP0657010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/12Forms of water tubes, e.g. of varying cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/14Supply mains, e.g. rising mains, down-comers, in connection with water tubes

Definitions

  • the invention relates to a fossil-fired once-through steam generator with a throttle cable, the surrounding wall of interconnected gas-tight tubes is formed, which in arranged essentially vertically and parallel on the medium side can flow from bottom to top.
  • the surrounding wall is often from heating surface element to heating surface element exposed to different levels of heating. So is usually in the lower part, in which a number of Burners for the fossil fuel are arranged, the heating much stronger than in the upper part. The reason this is also due to the fact that in this upper part often additional heat exchanger surfaces are arranged, which the Surrounding wall against excessive heating, in particular shield by heat radiation.
  • the invention is therefore based on the object Steam generator of the type mentioned above to further develop that, on the one hand, adequate cooling the pipes of the surrounding wall are ensured, and that, on the other hand, more individual heating Pipes not too impermissible temperature differences leads between the individual pipes. This is said to be with little Costs can be achieved.
  • this object is achieved by that the pipes in a downstairs first Part of the throttle cable has a larger inner diameter have than the pipes in an overlying second part of the throttle cable.
  • the first part of the throttle cable below which is in the following as the first section of the perimeter wall is characterized by very high Heat flow densities and good internal heat transfer in the pipes and lies e.g. in the burner area.
  • the second part of the throttle cable in the following also as a second section of the surrounding wall is also noted due to high heat flow densities, but a worsened one internal heat transfer in the pipes and lies e.g. in the so-called gas jet room of the steam generator, which is located at the burner area connects.
  • the first section of the surrounding wall expediently comprises internally finned, vertically arranged tubes to improve the internal heat transfer. These are preferably dimensioned such that the average mass flow density in the tubes at full load is preferably less than 1000 kg / m 2 s.
  • the steam has an average steam content at the outlet of the first section, which is between 0.8 and 0.95 at a partial load of about 40%. Under these conditions, the flow conditions are so favorable that additional heating of individual tubes leads to increased throughput through these tubes, so that only small temperature differences occur at the outlet of the tubes.
  • the mass flow density is preferably increased to more than 1000 kg / m 2 s. Therefore, the inside diameter of the pipes at the transition from the first to the second section is reduced while maintaining the same number of parallel pipes or pipe divisions. By reducing the inside diameter, safe pipe cooling is guaranteed even with a high heat flow density in the second section.
  • the tubes with the smaller inside diameter of the second section are advantageously directly to the Larger inner diameter tubes of the first section connected so that the pipes of the two Merge sections directly into one another.
  • the pipes of the second section can flow at least in the first Part also have internal ribbing.
  • a pressure compensation pipe is connected to each pipe.
  • the pressure compensation tubes are expedient to one or more outside the vertical Accelerator cable provided pressure compensation tanks guided.
  • a steam generator with a high throttle cable e.g. a draw-in type steam generator
  • This third part of the throttle cable which is also referred to as the third Section of the surrounding wall is drawn is characterized by a low heat flow density and a moderate internal heat transfer in the pipes and lies in the so-called convection train of the Steam generator.
  • the surrounding wall reduces the mass flow density the low heat flux density prevailing there opposite to that in the second section to keep the friction pressure loss in the pipes low.
  • the pipes can be made without internal fins be trained.
  • the vertical throttle cable of the steam generator 1 according to Figure 1 with a rectangular cross-section is through a Surrounding wall 2 formed at the lower end of the Throttle cable passes into a funnel-shaped base 3.
  • the tubes 4 of the surrounding wall 2 are on their Long sides - e.g. over fins 9 ( Figure 2) - gastight interconnected, e.g. welded.
  • the floor 3 includes a discharge opening, not shown 3a for ashes.
  • a lower or first part 5 of the throttle cable i.e. in a first section of the surrounding wall 2
  • tubes 4 the surrounding wall 2 curved; they run on the Outside of the vertical throttle cable. Similar openings can also e.g. for air nozzles or flue gas nozzles be educated.
  • a second part 7 of the throttle cable i.e. a second Section of the surrounding wall 2 over which a third or upper part 8 of the throttle cable, i.e. a third section the surrounding wall 2 is provided.
  • the first section 5 draws in the burner area is characterized by a very high heat flow density and a good internal heat transfer in the tubes 4.
  • the second section 7 is located in the gas jet chamber and is also characterized by a high heat flow density, but also by a smaller, worse one internal heat transfer in the pipes 4 out.
  • the third section 8 is located in the convection train and is characterized by a low heat flow density and a moderate internal heat transfer in the tubes 4. This third section 8 is especially with a steam generator in a pull-in construction available.
  • the medium side, i.e. of water or one Water-steam mixture, parallel from bottom to top flowed through tubes 4 of the surrounding wall 2 are with their entry ends to an entry collector 11 and with their outlet ends to an outlet collector 12 connected.
  • the entry collector 11 and the exit collector 12 are outside the throttle cable and are e.g. each formed by an annular tube.
  • the inlet header 11 is via a line 13 and a collector 14 with the output of a high pressure preheater or economizers 15 connected.
  • the heating surface the economizer 15 is in the third section 8 of the surrounding wall 2 included space.
  • Of the Economizer 15 is during the operation of the steam generator 1 on the input side via a collector 16 connected to the water-steam cycle of a steam turbine.
  • the outlet header 12 is via a water-steam separation vessel 17 and a line 18 with a High pressure superheater 19 connected.
  • the high pressure superheater 19 is in the area of the second section 7 the surrounding wall 2 arranged. He is during the Operation on the output side via a collector 20 with a High pressure part of the steam turbine connected.
  • a collector 20 with a High pressure part of the steam turbine connected.
  • the collector 22, 23 between the high pressure part and a medium pressure part of the steam turbine is switched.
  • water-steam separation vessel 17 water is discharged via a line 24.
  • a pressure compensation vessel outside the throttle cable 26 provided, which is formed by an annular tube is.
  • each is in the sections 5 and 7 extending pipe 4 via a pressure compensation pipe 27 with the pressure compensation vessel 26 connected.
  • the inside width of the tubes 4 tapers.
  • the tubes 4 have a larger inner diameter d 1 in the lower part 5 of the throttle cable the pipes 4 in the overlying second part 7 of the throttle cable, the inside diameter of which is denoted by d 2 .
  • the tubes 4 with the smaller inner diameter d 2 are directly connected to the tubes 4 with the larger inner diameter d 1 , ie the tubes 4 merge into one another in the region 25.
  • the tubes 4 in section 5 have a thread-like internal ribbing in a manner not shown.
  • the tubes 4 are dimensioned in section 5 such that the mean mass flow density there is less than or equal to 1000 kg / m 2 s at full load. The average mass flow density in the tubes 4 is then greater than 1000 kg / m 2 s in the second or middle section 7.
  • the tubes 4 again have a larger inner diameter on than in the section below 7. While the tubes 4 also in the second section 7 preferably one over its entire length have thread-shaped inner ribs, are Pipes 4 of the third section 8 only over part of it Provide length with a thread-like internal ribbing. However, it is expedient to use internal ribbing waived.
  • the number of tubes 4 in the upper section 8 of the Boundary wall 2 is only half the size of the second Section 7. Therefore, two pipes 4 of the second open Section 7 in an area 30 in a common to them assigned tube 4 of the third section 8 (FIG 1).
  • the outer diameter of the tubes 4 in sections 5 and 7 is different and adapted to the respective inner diameter d 1 , d 2 such that the wall thickness of the tubes 4 is approximately the same in all sections 5, 7, 8 is. But it can also be the outer diameter of the tubes 4 in all sections 5, 7, 8 of the same size, so that the wall thickness of the tubes 4 in the middle or second section 7 is greater than in the first section 5 and / or in the third section 8.
  • the tubes 4 are provided on their long sides with fins 9 which are used for the gas-tight connection of the tubes 4.
  • the tubes 4 of the surrounding wall 2 along its length in different sections 5, 7, 8 or regions of the steam generator 1 has a different inner diameter d 1, d have 2, the dimensioning of the tubes 4 of the surrounding wall 2 on a different heating of the gas flue Voted.
  • reliable cooling of the tubes 4 is ensured.
  • additional heating of individual tubes 4 does not lead to impermissible temperature differences between the outputs of the individual tubes 4.

Abstract

A fossil-fired steam generator includes a gas flue having a surrounding wall being formed by tubes which are mutually joined gas-tightly and which are disposed substantially vertically and can conduct an upward flow through them on the medium side. The tubes in a first or lower part of the gas flue have a greater internal diameter than the tubes in a second part of the gas flue located above. On one hand, this ensures reliable cooling of the tubes. On the other hand, even additional or above-average heating of individual tubes does not lead to inadmissible temperature differences between outlets of the tubes.

Description

Die Erfindung bezieht sich auf einen fossil befeuerten Durchlaufdampferzeuger mit einem Gaszug, dessen Umfassungswand aus miteinander gasdicht verbundenen Rohren gebildet ist, die im wesentlichen vertikal angeordnet und mediumseitig parallel von unten nach oben durchströmbar sind.The invention relates to a fossil-fired once-through steam generator with a throttle cable, the surrounding wall of interconnected gas-tight tubes is formed, which in arranged essentially vertically and parallel on the medium side can flow from bottom to top.

Die Umfassungswand ist häufig von Heizflächenelement zu Heizflächenelement einer unterschiedlich starken Beheizung ausgesetzt. So ist meist im unteren Teil, in dem eine Anzahl von Brennern für den fossilen Brennstoff angeordnet ist, die Beheizung wesentlich stärker als im oberen Teil. Der Grund hierfür liegt auch darin, daß in diesem oberen Teil häufig zusätzliche Wärmetauscherflächen angeordnet sind, welche die Umfassungswand gegen eine zu intensive Beheizung, insbesondere durch Wärmestrahlung, abschirmen.The surrounding wall is often from heating surface element to heating surface element exposed to different levels of heating. So is usually in the lower part, in which a number of Burners for the fossil fuel are arranged, the heating much stronger than in the upper part. The reason this is also due to the fact that in this upper part often additional heat exchanger surfaces are arranged, which the Surrounding wall against excessive heating, in particular shield by heat radiation.

Bei dem aus der Europäischen Patentschrift 0 054 601 bekannten Dampferzeuger dient die Umfassungswand des vertikalen Gaszugs nur im unteren Teil als Verdampferheizfläche. Der Dampf - oder bei Teillast das Wasser-Dampf-Gemisch - wird anschließend einem nachgeschalteten Konvektionsverdampfer zugeführt. Der obere Teil der Umfassungswand wird aus als Überhitzerheizfläche dienenden Rohren gebildet. Da nur ein Teil der Umfassungswand als Verdampferheizfläche genutzt wird, treten bei einer Mehrbeheizung oder überdurchschnittlichen Beheizung einzelner Rohre nur verhältnismäßig geringe Temperaturdifferenzen am Austritt dieser Rohre auf. Eine ungleichmäßige Verteilung des Wasser-Dampf-Gemisches auf die Rohre des der Verdampferheizfläche nachgeschalteten Konvektionsverdampfers ist wegen der geringen Beheizung dieses Verdampfers beherrschbar. Da allerdings die Kühlung des oberen Teils der Umfassungswand mit unter einem hohen Druck von etwa 280 bis 320 bar stehendem überhitzten Dampf erfolgt, wird in diesem oberen Teil der Umfassungswand hoch chromhaltiger Stahl eingesetzt, der bei der Fertigung eine komplizierte Wärmebehandlung erfordert. Außerdem ist diese bekannte Einrichtung aufgrund erforderlicher Verbindungsleitungen und Sammler zum und vom Konvektionsverdampfer sehr kostenaufwendig und benötigt einen erhöhten Regelungsaufwand im Konvektionszug, insbesondere durch den Einbau von rauchgasseitigen Regelzügen. Eine ähnliche Einrichtung ist auch in der Druckschrift VGB Kraftwerkstechnik, Heft 7, 1991, Seiten 637 bis 643, beschrieben.In the known from European Patent 0 054 601 Steam generator serves the perimeter wall of the vertical Throttle cable only in the lower part as an evaporator heating surface. Of the Steam - or the water-steam mixture at partial load - is then added fed to a downstream convection evaporator. The upper part of the surrounding wall is made as a superheater heating surface serving pipes formed. Because only a part the surrounding wall is used as an evaporator heating surface, occur with an overheating or above average Heating of individual pipes only relatively small temperature differences at the outlet of these pipes. An uneven one Distribution of the water-steam mixture over the pipes of the convection evaporator downstream of the evaporator heating surface is because of the low heating of this evaporator manageable. However, since the cooling of the upper part of the surrounding wall with under a high Pressure from about 280 to 320 bar standing superheated Steam takes place in this upper part of the Surrounding wall of high chrome steel used, a complicated heat treatment during manufacture required. In addition, this well-known facility due to required connecting lines and Very collector to and from the convection vaporizer costly and requires increased regulatory effort in convection, especially through the installation of flue gas-side control trains. A similar facility is also in the publication VGB Kraftwerkstechnik, issue 7, 1991, pages 637 to 643.

Bei einem Durchlaufdampferzeuger mit einer spiralförmigen Rohranordnung der Umfassungswand, bei der die Massenstromdichte in den Rohren üblicherweise etwa 2500 kg/m2s beträgt, kann die Auswirkung einer Mehrbeheizung auf Temperaturdifferenzen zwischen den Rohren durch Vergrößem der Rohrinnendurchmesser im oberen Teil des vertikalen Gaszugs reduziert werden. Bei Umfassungswänden mit vertikal angeordneten Rohren kann dieses Prinzip jedoch nicht angewendet werden, da die ohnehin vergleichsweise kleine Massenstromdichte, die ein Maß für die Strömungsgeschwindigkeit in den Rohren ist, dann so weit reduziert wird, daß bei Dampfdrücken in der Nähe des kritischen Punktes eine sichere Kühlung der Rohre nicht mehr gewährleistet ist. Außerdem kommt erschwerend hinzu, daß einerseits zur sicheren Kühlung der Rohre hohe Massenströme erforderlich sind, andererseits hohe Massenströme zu großen Temperaturdifferenzen zwischen einzelnen Rohren führen können. Weiterhin besteht bei Verwendung eines Zwischensammlers im Naßdampfbereich durch Entmischung die Gefahr einer Ungleichverteilung von Wasser und Dampf, so daß in einem diesem Zwischensammler nachgeschalteten Rohrsystem große Temperaturunterschiede auftreten können.In the case of a continuous steam generator with a spiral pipe arrangement of the surrounding wall, in which the mass flow density in the pipes is usually around 2500 kg / m 2 s, the effect of additional heating on temperature differences between the pipes can be reduced by increasing the pipe inside diameter in the upper part of the vertical gas flue. However, this principle cannot be applied to surrounding walls with vertically arranged pipes, since the already comparatively small mass flow density, which is a measure of the flow velocity in the pipes, is then reduced to such an extent that reliable cooling is achieved at steam pressures in the vicinity of the critical point the pipes are no longer guaranteed. Another complicating factor is that, on the one hand, high mass flows are required for reliable cooling of the pipes, and on the other hand, high mass flows can lead to large temperature differences between individual pipes. Furthermore, when using an intermediate collector in the wet steam area due to segregation, there is a risk of an uneven distribution of water and steam, so that large temperature differences can occur in a pipe system connected downstream of this intermediate collector.

Der Erfindung liegt daher die Aufgabe zugrunde, einen Dampferzeuger der eingangs genannten Art derart weiterzubilden, daß einerseits eine ausreichende Kühlung der Rohre der Umfassungswand sichergestellt ist, und daß andererseits auch eine Mehrbeheizung einzelner Rohre nicht zu unzulässigen Temperaturdifferenzen zwischen den einzelnen Rohren führt. Dies soll mit geringem Kostenaufwand erreicht werden.The invention is therefore based on the object Steam generator of the type mentioned above to further develop that, on the one hand, adequate cooling the pipes of the surrounding wall are ensured, and that, on the other hand, more individual heating Pipes not too impermissible temperature differences leads between the individual pipes. This is said to be with little Costs can be achieved.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Rohre in einem unten gelegenen ersten Teil des Gaszugs einen größeren Innendurchmesser aufweisen als die Rohre in einem darüberliegenden zweiten Teil des Gaszugs.According to the invention, this object is achieved by that the pipes in a downstairs first Part of the throttle cable has a larger inner diameter have than the pipes in an overlying second part of the throttle cable.

Der unten gelegene erste Teil des Gaszugs, der im folgenden auch als erster Abschnitt der Umfassungswand bezeichnet wird, zeichnet sich durch sehr hohe Wärmestromdichten und einen guten inneren Wärmeübergang in den Rohren aus und liegt z.B. im Brennerbereich. Der darüberliegende zweite Teil des Gaszugs, der im folgenden auch als zweiter Abschnitt der Umfassungswand bezeichnet wird, zeichnet sich ebenfalls durch hohe Wärmestromdichten, aber einen verschlechterten inneren Wärmeübergang in den Rohren aus und liegt z.B. im im sogenannten Gasstrahlraum des Dampferzeugers, der sich an den Brennerbereich anschließt.The first part of the throttle cable below, which is in the following as the first section of the perimeter wall is characterized by very high Heat flow densities and good internal heat transfer in the pipes and lies e.g. in the burner area. The second part of the throttle cable, in the following also as a second section of the surrounding wall is also noted due to high heat flow densities, but a worsened one internal heat transfer in the pipes and lies e.g. in the so-called gas jet room of the steam generator, which is located at the burner area connects.

Der erste Abschnitt der Umfassungswand umfaßt zweckmäßigerweise zur Verbesserung des inneren Wärmeübergangs innenberippte vertikal angeordnete Rohre. Diese sind bevorzugt derart dimensioniert, daß die mittlere Massenstromdichte in den Rohren bei Vollast vorzugsweise kl iner als 1000 kg/m2s ist. Der Dampf hat am Austritt des ersten Abschnitts einen mittleren Dampfgehalt, der bei einer Teillast von etwa 40% zwischen 0,8 und 0,95 liegt. Bei diesen Voraussetzungen stellen sich so günstige Strömungsverhältnisse ein, daß eine Mehrbeheizung einzelner Rohre zu einem erhöhten Durchsatz durch diese Rohre führt, so daß sich nur geringe Temperaturdifferenzen am Austritt der Rohre einstellen.The first section of the surrounding wall expediently comprises internally finned, vertically arranged tubes to improve the internal heat transfer. These are preferably dimensioned such that the average mass flow density in the tubes at full load is preferably less than 1000 kg / m 2 s. The steam has an average steam content at the outlet of the first section, which is between 0.8 and 0.95 at a partial load of about 40%. Under these conditions, the flow conditions are so favorable that additional heating of individual tubes leads to increased throughput through these tubes, so that only small temperature differences occur at the outlet of the tubes.

Im zweiten Abschnitt der Umfassungswand kann abhängig vom Betriebszustand eine Wärmeübergangskrise, d.h. ein sogenanntes "Dry out", auftreten. Um unzulässig hohe Rohrwandtemperaturen bei diesem verschlechterten inneren Wärmeübergang zu vermeiden, wird die Massenstromdichte bevorzugt auf über als 1000 kg/m2s erhöht. Daher ist der Innendurchmesser der Rohre am Übergang vom ersten auf den zweiten Abschnitt unter Beibehaltung der gleichen Parallelrohranzahl oder Rohrteilungen verringert. Durch Reduzierung der Innendurchmesser ist auch bei einer hohen Wärmestromdichte im zweiten Abschnitt eine sichere Rohrkühlung gewährleistet.Depending on the operating state, a heat transfer crisis, ie a so-called "dry out", can occur in the second section of the surrounding wall. In order to avoid impermissibly high pipe wall temperatures in the case of this deteriorated internal heat transfer, the mass flow density is preferably increased to more than 1000 kg / m 2 s. Therefore, the inside diameter of the pipes at the transition from the first to the second section is reduced while maintaining the same number of parallel pipes or pipe divisions. By reducing the inside diameter, safe pipe cooling is guaranteed even with a high heat flow density in the second section.

Die Rohre mit kleinerem Innendurchmesser des zweiten Abschnitts sind vorteilhafterweise direkt an die Rohre größeren Innendurchmessers des ersten Abschnitts angeschlossen, so daß die Rohre der beiden Abschnitte direkt ineinander übergehen. Die Rohre des zweiten Abschnitts können mindestens im zuerst durchströmten Teil ebenfalls eine Innenberippung aufweisen.The tubes with the smaller inside diameter of the second section are advantageously directly to the Larger inner diameter tubes of the first section connected so that the pipes of the two Merge sections directly into one another. The pipes of the second section can flow at least in the first Part also have internal ribbing.

In einem beheizten Verdampfer-Parallelrohrsystem tritt zwischen Ein- und Austritt ein Druckabfall auf, der zum Austritt hin im wesentlichen durch Reibung aufgrund hoher Dampfgeschwindigkeiten erzeugt wird. Ein hoher Reibungsdruckabfall bewirkt, daß der Massenstrom durch stärker beheizte Rohre entweder reduziert wird, oder aber im Vergleich zur Beheizung weniger stark ansteigt. Ordnet man nun ein Druckausgleichsgefäß in einem Bereich an, in dem durch Dampfbildung der Reibungsdruckabfall stark ansteigt, so kann sich das vor dem Druckausgleichsgefäß liegende System den Beheizungsunterschieden nahezu ideal anpassen, d.h. stärkere Beheizung ergibt einen annähernd gleichermaßen stärkeren Massenstrom.In a heated evaporator parallel pipe system there is a pressure drop between the inlet and outlet, which to the exit essentially due to friction high steam speeds is generated. A high friction pressure drop causes the mass flow either reduced by more heated pipes becomes, or less in comparison to heating rises sharply. If you now arrange a pressure compensation vessel in an area where steam builds up the drop in friction pressure increases sharply, so the system in front of the pressure compensation vessel adapt the heating differences almost ideally, i.e. stronger heating gives you approximately the same stronger mass flow.

Daher ist in zweckmäßiger Ausgestaltung in der oberen Hälfte des ersten Teils des Gaszugs, z.B. in der Nähe des Übergangs vom ersten auf den zweiten Abschnitt, an jedes Rohr ein Druckausgleichsrohr angeschlossen. Die Druckausgleichsrohre sind zweckmäßigerweise zu einem oder mehreren außerhalb des vertikalen Gaszugs vorgesehenen Druckausgleichsbehältern geführt. Durch den Druckausgleich werden die beiden Abschnitte strömungsseitig weitgehend entkoppelt. Der aufgrund der vergleichsweise großen Massenstromdichte relativ hohe Reibungsdruckverlust im zweiten Abschnitt hat daher keine Auswirkungen auf die günstigen Strömungsverhältnisse im ersten Abschnitt. Somit können keine Temperaturschieflagen (Temperaturgefällt über dem Rohrquerschnitt) aufgrund von Mehrbeheizungen am Austritt des ersten Abschnitts auftreten. Durch den direkten Übergang der Rohre vom ersten Abschnitt auf die Rohre vom zweiten Abschnitt wird eine Wasser-Dampf-Entmischung im Naßdampfgebiet sicher vermieden.Therefore, in an appropriate embodiment in the upper half of the first part of the throttle cable, e.g. in the Near the transition from the first to the second section, a pressure compensation pipe is connected to each pipe. The pressure compensation tubes are expedient to one or more outside the vertical Accelerator cable provided pressure compensation tanks guided. By pressure equalization, the two Sections largely decoupled on the flow side. The due to the comparatively large mass flow density relatively high loss of friction pressure in the second The section therefore has no effect on the favorable flow conditions in the first section. Thus, no temperature imbalances (temperature drop over the pipe cross section) due to Additional heating at the outlet of the first section occur. By the direct transition of the pipes from first section on the pipes from the second section becomes a water-steam separation in the wet steam area safely avoided.

Bei einem Dampferzeuger mit einem hohen Gaszug, z.B. einem Dampferzeuger in Einzugbauweise, weisen die Rohre ir einem dritten oberen Teil des Gaszugs einen größeren Innendurchmesser auf als in dem zweiten darunterliegenden Teil des Gaszugs. Dieser dritte Teil des Gaszugs, der im folgenden auch als dritter Abschnitt der Umfassungswand bezeichnet wird, zeichnet sich durch eine niedrige Wärmestromdichte und einen mäßigen inneren Wärmeübergang in den Rohren aus und liegt im sogenannten Konvektionszug des Dampferzeugers.For a steam generator with a high throttle cable, e.g. a draw-in type steam generator, point the pipes in a third upper part of the throttle cable a larger inner diameter than in that second part of the throttle cable below. This third part of the throttle cable, which is also referred to as the third Section of the surrounding wall is drawn is characterized by a low heat flow density and a moderate internal heat transfer in the pipes and lies in the so-called convection train of the Steam generator.

Am Übergang vom zweiten auf den dritten Abschnitt der Umfassungswand sinkt die Massenstromdichte wegen der dort herrschenden niedrigen Wärmestromdichte gegenüber der im zweiten Abschnitt wieder ab, um den Reibungsdruckverlust in den Rohren niedrig zu halten. Im dritten Abschnitt können die Rohre ohne Innenberippung ausgebildet sein.At the transition from the second to the third section the surrounding wall reduces the mass flow density the low heat flux density prevailing there opposite to that in the second section to keep the friction pressure loss in the pipes low. In the third section, the pipes can be made without internal fins be trained.

Im weiteren Verlauf des vertikalen Gaszugs sinkt die Wärmestromdichte so weit ab, daß im dritten Teil des Gaszugs, d.h. im dritten Abschnitt der Umfassungswand, die halbe Anzahl der Rohre des zweiten Teils des Gaszugs, d.h. des zweiten Abschnitts der Umfassungswand, ausreicht. Die Halbierung der Anzahl der Rohre im dritten Abschnitt wird dadurch erreicht, daß je zwei Rohre des zweiten Teils des Gaszugs in ein ihnen gemeinsam zugeordnetes Rohr des dritten Teils des Gaszugs münden.As the vertical throttle cable progresses, it drops the heat flow density so far that in the third part of the Throttle cable, i.e. in the third section of the perimeter wall, half the number of tubes of the second part of the Throttle cable, i.e. the second section of the perimeter wall, is sufficient. Halving the number of pipes in the third section it is achieved that two Pipes of the second part of the throttle cable in a common them assigned pipe of the third part of the throttle cable flow out.

Ausführungsbeispiele der Erfindung werden anhand einer Zeichnung näher erläutert; darin zeigen:

  • Figur 1 einen Dampferzeuger mit einem in drei Abschnitte unterteilten Gaszug, und
  • Figur 2 einen Ausschnitt II aus Figur 1 in größerem Maßstab mit Rohren mit unterschiedlichem Innendurchmesser in verschiedenen Abschnitten.
  • Embodiments of the invention are explained in more detail with reference to a drawing; show in it:
  • 1 shows a steam generator with a throttle cable divided into three sections, and
  • Figure 2 shows a section II of Figure 1 on a larger scale with tubes with different inner diameters in different sections.
  • Einander entsprechende Teile sind in beiden Figuren mit den gleichen Bezugszeichen versehen.Corresponding parts are in both figures provided with the same reference numerals.

    Der vertikale Gaszug des Dampferzeugers 1 gemäß Figur 1 mit rechteckigem Querschnitt ist durch eine Umfassungswand 2 gebildet, die am Unterende des Gaszugs in einen trichterförmigen Boden 3 übergeht. Die Rohre 4 der Umfassungswand 2 sind an ihren Längsseiten - z.B. über Flossen 9 (Figur 2) - gasdicht miteinander verbunden, z.B. verschweißt. Der Boden 3 umfaßt eine nicht näher dargestellte Austragsöffnung 3a für Asche.The vertical throttle cable of the steam generator 1 according to Figure 1 with a rectangular cross-section is through a Surrounding wall 2 formed at the lower end of the Throttle cable passes into a funnel-shaped base 3. The tubes 4 of the surrounding wall 2 are on their Long sides - e.g. over fins 9 (Figure 2) - gastight interconnected, e.g. welded. The floor 3 includes a discharge opening, not shown 3a for ashes.

    In einem unteren oder ersten Teil 5 des Gaszugs, d.h. in einem ersten Abschnitt der Umfassungswand 2, sind z.B. vier Brenner für einen fossilen Brennstoff in jeweils einer Öffnung 6 in der Umfassungswand 2 angebracht. An einer derartigen Öffnung 6 sind Rohre 4 der Umfassungswand 2 gekrümmt; sie verlaufen auf der Außenseite des vertikalen Gaszugs. Ähnliche Öffnungen können auch z.B. für Luftdüsen oder Rauchgasdüsen gebildet sein.In a lower or first part 5 of the throttle cable, i.e. in a first section of the surrounding wall 2, are e.g. four burners for a fossil fuel in each have an opening 6 in the surrounding wall 2. At such an opening 6 there are tubes 4 the surrounding wall 2 curved; they run on the Outside of the vertical throttle cable. Similar openings can also e.g. for air nozzles or flue gas nozzles be educated.

    Über dem ersten unteren Teil 5 des Gaszugs befindet sich ein zweiter Teil 7 des Gaszugs, d.h. ein zweiter Abschnitt der Umfassungswand 2, über dem ein dritter oder oberer Teil 8 des Gaszugs, d.h. ein dritter Abschnitt der Umfassungswand 2, vorgesehen ist.Is located above the first lower part 5 of the throttle cable a second part 7 of the throttle cable, i.e. a second Section of the surrounding wall 2, over which a third or upper part 8 of the throttle cable, i.e. a third section the surrounding wall 2 is provided.

    Der erste Abschnitt 5 im Brennerbereich zeichnet sich durch eine sehr hohe Wärmestromdichte und einen guten inneren Wärmeübergang in den Rohren 4 aus. Der zweite Abschnitt 7 ist im Gasstrahlraum gelegen und zeichnet sich ebenfalls durch eine hohe Wärmestromdichte, aber auch durch einen geringeren, verschlechterten inneren Wärmeübergang in den Rohren 4 aus. Der dritte Abschnitt 8 ist im Konvektionszug gelegen und zeichnet sich durch eine niedrige Wärmestromdichte und einen mäßigen inneren Wärmeübergang in den Rohren 4 aus. Dieser dritte Abschnitt 8 ist insbesondere bei einem Dampferzeuger in Einzugbauweise vorhanden.The first section 5 draws in the burner area is characterized by a very high heat flow density and a good internal heat transfer in the tubes 4. The second section 7 is located in the gas jet chamber and is also characterized by a high heat flow density, but also by a smaller, worse one internal heat transfer in the pipes 4 out. The third section 8 is located in the convection train and is characterized by a low heat flow density and a moderate internal heat transfer in the tubes 4. This third section 8 is especially with a steam generator in a pull-in construction available.

    Die mediumseitig, d.h. von Wasser oder einem Wasser-Dampf-Gemisch, von unten nach oben parallel durchströmten Rohre 4 der Umfassungswand 2 sind mit ihren Eintrittsenden an einen Eintrittssammler 11 und mit ihren Austrittsenden an einen Austrittssammler 12 angeschlossen. Der Eintrittssammler 11 und der Austrittssammler 12 befinden sich außerhalb des Gaszugs und sind z.B. jeweils durch ein ringförmiges Rohr gebildet.The medium side, i.e. of water or one Water-steam mixture, parallel from bottom to top flowed through tubes 4 of the surrounding wall 2 are with their entry ends to an entry collector 11 and with their outlet ends to an outlet collector 12 connected. The entry collector 11 and the exit collector 12 are outside the throttle cable and are e.g. each formed by an annular tube.

    Der Eintrittssammler 11 ist über eine Leitung 13 und einen Sammler 14 mit dem Ausgang eines Hochdruck-Vorwärmers oder Economizers 15 verbunden. Die Heizfläche des Economizers 15 liegt im vom dritten Abschnitt 8 der Umfassungswand 2 umfaßten Raum. Der Economizer 15 ist während des Betriebs des Dampferzeugers 1 eingangsseitig über einen Sammler 16 mit dem Wasser-Dampf-Kreislauf einer Dampfturbine verbunden.The inlet header 11 is via a line 13 and a collector 14 with the output of a high pressure preheater or economizers 15 connected. The heating surface the economizer 15 is in the third section 8 of the surrounding wall 2 included space. Of the Economizer 15 is during the operation of the steam generator 1 on the input side via a collector 16 connected to the water-steam cycle of a steam turbine.

    Der Austrittssammler 12 ist über ein Wasser-Dampf-Trenngefäß 17 und eine Leitung 18 mit einem Hochdruck-Überhitzer 19 verbunden. Der Hochdruck-Überhitzer 19 ist im Bereich des zweiten Abschnitts 7 der Umfassungswand 2 angeordnet. Er ist während des Betriebs ausgangsseitig über einen Sammler 20 mit einem Hochdruckteil der Dampfturbine verbunden. Im Bereich des zweiten Abschnitts 7 liegt außerdem ein Zwischenüberhitzer 21, der über Sammler 22, 23 zwischen den Hochdruckteil und einen Mitteldruckteil der Dampfturbine geschaltet ist. Im Wasser-Dampf-Trenngefäß 17 anfallendes Wasser wird über eine Leitung 24 abgeführt.The outlet header 12 is via a water-steam separation vessel 17 and a line 18 with a High pressure superheater 19 connected. The high pressure superheater 19 is in the area of the second section 7 the surrounding wall 2 arranged. He is during the Operation on the output side via a collector 20 with a High pressure part of the steam turbine connected. In the area of the second section 7 there is also a reheater 21, the collector 22, 23 between the high pressure part and a medium pressure part of the steam turbine is switched. In the water-steam separation vessel 17 water is discharged via a line 24.

    In einem Bereich 25 des Übergangs vom ersten Abschnitt 5 zum zweiten Abschnitt 7 der Umfassungswand 2 ist außerhalb des Gaszugs ein Druckausgleichsgefäß 26 vorgesehen, das durch ein ringförmiges Rohr gebildet ist.In an area 25 of the transition from the first section 5 to the second section 7 of the surrounding wall 2 is a pressure compensation vessel outside the throttle cable 26 provided, which is formed by an annular tube is.

    Wie aus Figur 2 ersichtlich, ist jedes in den Abschnitten 5 und 7 verlaufende Rohr 4 über ein Druckausgleichsrohr 27 mit dem Druckausgleichsgefäß 26 verbunden.As can be seen from Figure 2, each is in the sections 5 and 7 extending pipe 4 via a pressure compensation pipe 27 with the pressure compensation vessel 26 connected.

    Im Bereich 25, in dem die Rohre 4 vom ersten Abschnitt 5 in den zweiten Abschnitt 7 übergehen, verjüngt sich die lichte Weite der Rohre 4. Mit anderen Worten: Die Rohre 4 weisen im unteren Teil 5 des Gaszugs einen größeren Innendurchmesser d1 auf als die Rohre 4 in dem darüberliegenden zweiten Teil 7 des Gaszugs, deren Innendurchmesser mit d2 bezeichnet ist. Dabei sind die Rohre 4 mit dem kleineren Innendurchmesser d2 direkt an die Rohre 4 mit dem größeren Innendurchmesser d1 angeschlossen, d.h. die Rohre 4 gehen im Bereich 25 ineinander über. Die Rohre 4 im Abschnitt 5 weisen in nicht näher dargestellter Weise eine gewindeförmige Innenberippung auf. Die Rohre 4 sind im Abschnitt 5 derart dimensioniert, daß die mittlere Massenstromdichte dort bei Vollast kleiner oder gleich 1000 kg/m2s ist. Die mittlere Massenstromdichte in den Rohren 4 ist im zweiten oder mittleren Abschnitt 7 dann größer als 1000 kg/m2s.In the area 25, in which the tubes 4 pass from the first portion 5 to the second portion 7, the inside width of the tubes 4 tapers. In other words: the tubes 4 have a larger inner diameter d 1 in the lower part 5 of the throttle cable the pipes 4 in the overlying second part 7 of the throttle cable, the inside diameter of which is denoted by d 2 . The tubes 4 with the smaller inner diameter d 2 are directly connected to the tubes 4 with the larger inner diameter d 1 , ie the tubes 4 merge into one another in the region 25. The tubes 4 in section 5 have a thread-like internal ribbing in a manner not shown. The tubes 4 are dimensioned in section 5 such that the mean mass flow density there is less than or equal to 1000 kg / m 2 s at full load. The average mass flow density in the tubes 4 is then greater than 1000 kg / m 2 s in the second or middle section 7.

    Im dritten oder oberen Abschnitt 8 der Umfassungswand 2 weisen die Rohre 4 wieder einen größeren Innendurchmesser auf als in dem darunterliegenden Abschnitt 7. Während die Rohre 4 auch im zweiten Abschnitt 7 vorzugsweise über ihre gesamte Länge eine gewindeförmige Innenberippung aufweisen, sind die Rohre 4 des dritten Abschnitts 8 nur über einen Teil ihrer Länge mit einer gewindeförmigen Innenberippung versehen. Zweckmäßigerweise wird aber auf eine Innenberippung verzichtet.In the third or upper section 8 of the surrounding wall 2, the tubes 4 again have a larger inner diameter on than in the section below 7. While the tubes 4 also in the second section 7 preferably one over its entire length have thread-shaped inner ribs, are Pipes 4 of the third section 8 only over part of it Provide length with a thread-like internal ribbing. However, it is expedient to use internal ribbing waived.

    Die Anzahl der Rohre 4 im oberen Abschnitt 8 der Umfassungswand 2 ist nur halb so groß wie im zweiten Abschnitt 7. Daher münden je zwei Rohre 4 des zweiten Abschnitts 7 in einem Bereich 30 in ein ihnen gemeinsam zugeordnetes Rohr 4 des dritten Abschnitts 8 (Figur 1).The number of tubes 4 in the upper section 8 of the Boundary wall 2 is only half the size of the second Section 7. Therefore, two pipes 4 of the second open Section 7 in an area 30 in a common to them assigned tube 4 of the third section 8 (FIG 1).

    Wie in Figur 2 dargestellt, ist auch der Außendurchmesser der Rohre 4 in den Abschnitten 5 und 7 unterschiedlich und an den jeweiligen Innendurchmesser d1, d2 derart angepaßt, daß die Wanddicke der Rohre 4 in allen Abschnitten 5, 7, 8 etwa gleich groß ist. Es kann aber auch der Außendurchmesser der Rohre 4 in allen Abschnitten 5, 7, 8 gleich groß sein, so daß die Wanddicke der Rohre 4 im mittleren oder zweiten Abschnitt 7 größer ist als im ersten Abschnitt 5 und/oder im dritten Abschnitt 8. Wie bereits erwähnt, sind die Rohre 4 an ihren Längsseiten mit Flossen 9 versehen, die zur gasdichten Verbindung der Rohre 4 dienen.As shown in Figure 2, the outer diameter of the tubes 4 in sections 5 and 7 is different and adapted to the respective inner diameter d 1 , d 2 such that the wall thickness of the tubes 4 is approximately the same in all sections 5, 7, 8 is. But it can also be the outer diameter of the tubes 4 in all sections 5, 7, 8 of the same size, so that the wall thickness of the tubes 4 in the middle or second section 7 is greater than in the first section 5 and / or in the third section 8. How already mentioned, the tubes 4 are provided on their long sides with fins 9 which are used for the gas-tight connection of the tubes 4.

    Dadurch, daß die Rohre 4 der Umfassungswand 2 über ihre Länge in verschiedenen Abschnitten 5, 7, 8 oder Bereichen des Dampferzeugers 1 einen unterschiedlichen Innendurchmesser d1, d2 aufweisen, ist die Dimensionierung der Rohre 4 der Umfassungswand 2 auf eine unterschiedliche Beheizung des Gaszugs abgestimmt. Dabei ist einerseits eine sichere Kühlung der Rohre 4 gewährleistet. Andererseits führt auch eine Mehrbeheizung einzelner Rohre 4 nicht zu unzulässigen Temperaturdifferenzen zwischen den Ausgängen der einzelnen Rohre 4.Characterized in that the tubes 4 of the surrounding wall 2 along its length in different sections 5, 7, 8 or regions of the steam generator 1 has a different inner diameter d 1, d have 2, the dimensioning of the tubes 4 of the surrounding wall 2 on a different heating of the gas flue Voted. On the one hand, reliable cooling of the tubes 4 is ensured. On the other hand, additional heating of individual tubes 4 does not lead to impermissible temperature differences between the outputs of the individual tubes 4.

    Claims (10)

    1. Fossil-fired continuous-flow steam generator with a gas flue, the surrounding wall (2) of which is formed from tubes (4) connected to each other in a gastight manner, which tubes are arranged substantially vertically and can conduct an upward flow of a medium,
      characterized in that the tubes (4) in a lower first part (5) of the gas flue have a larger inner diameter (d1) than the tubes (4) in a second part (7) of the gas flue which is above the first part.
    2. Steam generator according to claim 1,
      characterized in that the tubes (4) with the smaller inner diameter (d2) are connected directly to the tubes (4) with the larger inner diameter (d1) or merge into them.
    3. Steam generator according to claim 1 or 2,
      characterized in that each tube (4) is connected by way of a pressure balance tube (27) to a pressure balance vessel (26) provided outside the gas flue.
    4. Steam generator according to claim 3,
      characterized in that each pressure balance tube (27) lies in the upper half of the first part (5), preferably in the upper third of the first part (5), for example in the area (25) of the transition from the first part (5) to the second part (7) of the gas flue.
    5. Steam generator according to one of claims 1 to 4, characterized in that the tubes (4) in the first part (5) of the gas flue have a thread-like internal finning.
    6. Steam generator according to one of claims 1 to 5, characterized in that the tubes (4) in the second part (7) of the gas flue have a thread-like inner finning at least over a part of their length.
    7. Steam generator according to one of claims 1 to 6, characterized in that the mean mass flow density in the tubes (4) of the first part (5) of the gas flue is less than or equal to 1000 kg/m2s with full load.
    8. Steam generator according to claim 1,
      characterized in that the tubes (4) in an upper third part (8) of the gas flue have a larger inner diameter than in the second part (7) of the gas flue which lies below the third part.
    9. Steam generator according to claim 8,
      characterized in that the tubes (4) of the third part (8) with the larger inner diameter are directly connected to the tubes (4) of the second part (7) with the smaller inner diameter (d2), or merge into them.
    10. Steam generator according to claim 8 or 9,
      characterized in that the number of tubes (4) in the third part (8) of the gas flue is only half that in the second part (7) of the gas flue, whereby in each case two tubes (4) of the second part (7) open into a tube (4), associated with both of them, of the third part (8).
    EP93917528A 1992-08-19 1993-08-06 Steam generator Expired - Lifetime EP0657010B2 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4227457 1992-08-19
    DE4227457A DE4227457A1 (en) 1992-08-19 1992-08-19 Steam generator
    PCT/DE1993/000698 WO1994004870A1 (en) 1992-08-19 1993-08-06 Steam generator

    Publications (3)

    Publication Number Publication Date
    EP0657010A1 EP0657010A1 (en) 1995-06-14
    EP0657010B1 EP0657010B1 (en) 1996-12-04
    EP0657010B2 true EP0657010B2 (en) 1999-08-25

    Family

    ID=6465884

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP93917528A Expired - Lifetime EP0657010B2 (en) 1992-08-19 1993-08-06 Steam generator

    Country Status (17)

    Country Link
    US (1) US5701850A (en)
    EP (1) EP0657010B2 (en)
    JP (1) JP3188270B2 (en)
    KR (1) KR100209115B1 (en)
    CN (1) CN1043680C (en)
    AT (1) ATE145980T1 (en)
    CA (1) CA2142840A1 (en)
    CZ (1) CZ287735B6 (en)
    DE (2) DE4227457A1 (en)
    DK (1) DK0657010T4 (en)
    ES (1) ES2095660T5 (en)
    GR (1) GR3022186T3 (en)
    RU (1) RU2109209C1 (en)
    SK (1) SK22295A3 (en)
    TW (1) TW228565B (en)
    UA (1) UA27923C2 (en)
    WO (1) WO1994004870A1 (en)

    Families Citing this family (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4426692C1 (en) * 1994-07-28 1995-09-14 Daimler Benz Ag Vaporiser for transporting load of reactant mass flow
    DE19548806C2 (en) * 1995-02-14 1998-03-26 Evt Energie & Verfahrenstech Process and plant for generating steam with supercritical steam parameters in a continuous steam generator
    US5901669A (en) * 1995-04-05 1999-05-11 The Babcock & Wilcox Company Variable pressure once-through steam generator upper furnace having non-split flow circuitry
    DE19644763A1 (en) * 1996-10-28 1998-04-30 Siemens Ag Steam generator pipe
    DE19651678A1 (en) 1996-12-12 1998-06-25 Siemens Ag Steam generator
    US6092490A (en) * 1998-04-03 2000-07-25 Combustion Engineering, Inc. Heat recovery steam generator
    DE19825800A1 (en) * 1998-06-10 1999-12-16 Siemens Ag Fossil-fuel steam generator
    RU2208739C2 (en) 1998-06-10 2003-07-20 Сименс Акциенгезелльшафт Direct-flow steam generator operating on fossil fuel
    IL134035A0 (en) * 2000-01-13 2001-04-30 Ronen Daniel A device, system and method for remote push-publishing of content onto display screens of mobile devices including a screen saver application
    US6619041B2 (en) * 2001-06-29 2003-09-16 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Steam generation apparatus and methods
    EP1533565A1 (en) * 2003-11-19 2005-05-25 Siemens Aktiengesellschaft Once-through steam generator
    JP4787284B2 (en) * 2007-03-27 2011-10-05 ダイキン工業株式会社 Heat pump type water heater
    US7594401B1 (en) * 2008-04-10 2009-09-29 General Electric Company Combustor seal having multiple cooling fluid pathways
    JP5193007B2 (en) * 2008-12-03 2013-05-08 三菱重工業株式会社 Boiler structure
    DE102009040250B4 (en) * 2009-09-04 2015-05-21 Alstom Technology Ltd. Forced-circulation steam generator for the use of steam temperatures of more than 650 degrees C
    GB201010038D0 (en) 2010-06-16 2010-07-21 Doosan Power Systems Ltd Steam generator
    DE102010038883C5 (en) * 2010-08-04 2021-05-20 Siemens Energy Global GmbH & Co. KG Forced once-through steam generator
    DE102010061186B4 (en) 2010-12-13 2014-07-03 Alstom Technology Ltd. Forced circulation steam generator with wall heating surface and method for its operation
    JP2012220043A (en) * 2011-04-04 2012-11-12 Mitsubishi Heavy Ind Ltd Steam generator
    CN102798114B (en) * 2012-08-30 2014-09-03 上海锅炉厂有限公司 Method for arranging water-cooled wall of vertical pipe panel of internal thread pipe with non-uniform caliber

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US475479A (en) * 1892-05-24 Low-pressure steam-boiler
    DE739376C (en) * 1940-01-17 1943-09-23 Rheinmetall Borsig Ag Water tube steam generator
    GB574810A (en) * 1942-06-23 1946-01-22 Bbc Brown Boveri & Cie Heat exchanger for heating gases and vapours to a high temperature
    US3221713A (en) * 1963-08-20 1965-12-07 Babcock & Wilcox Co Forced flow vapor generator
    US3556059A (en) * 1969-01-28 1971-01-19 Foster Wheeler Corp Two-pass furnace circuit arrangement for once-through vapor generator
    DE2557427A1 (en) * 1975-12-19 1977-06-30 Kraftwerk Union Ag CIRCUIT OF A FIRE ROOM LUG IN A FLOW-THROUGH BOILER WITH GAS-TIGHT WELDED WALLS IN TWO CONSTRUCTION
    US4191133A (en) * 1977-11-07 1980-03-04 Foster Wheeler Energy Corporation Vapor generating system utilizing integral separators and angularly arranged furnace boundary wall fluid flow tubes having rifled bores
    US4178881A (en) * 1977-12-16 1979-12-18 Foster Wheeler Energy Corporation Vapor generating system utilizing angularly arranged bifurcated furnace boundary wall fluid flow tubes
    PL204072A1 (en) * 1978-01-17 1979-09-24 Katowice Metalurgiczny Huta RECOVERY BOILER, ESPECIALLY FOR THE STEEL CONVERTER
    DE58905817D1 (en) * 1988-07-26 1993-11-11 Siemens Ag Continuous steam generator.
    DE4232880A1 (en) * 1992-09-30 1994-03-31 Siemens Ag Fossil-fuelled steam-generator - has tubes forming flue walls joined together gas-tight at bottom and leaving intervening gaps further up
    US5390631A (en) * 1994-05-25 1995-02-21 The Babcock & Wilcox Company Use of single-lead and multi-lead ribbed tubing for sliding pressure once-through boilers

    Also Published As

    Publication number Publication date
    JP3188270B2 (en) 2001-07-16
    KR950703135A (en) 1995-08-23
    CN1083573A (en) 1994-03-09
    ES2095660T5 (en) 1999-11-16
    SK22295A3 (en) 1995-07-11
    US5701850A (en) 1997-12-30
    CZ287735B6 (en) 2001-01-17
    TW228565B (en) 1994-08-21
    DK0657010T3 (en) 1997-06-02
    ATE145980T1 (en) 1996-12-15
    DK0657010T4 (en) 1999-12-13
    CZ37595A3 (en) 1995-08-16
    EP0657010A1 (en) 1995-06-14
    JPH08500426A (en) 1996-01-16
    GR3022186T3 (en) 1997-03-31
    EP0657010B1 (en) 1996-12-04
    WO1994004870A1 (en) 1994-03-03
    DE4227457A1 (en) 1994-02-24
    RU2109209C1 (en) 1998-04-20
    RU95106598A (en) 1996-12-27
    UA27923C2 (en) 2000-10-16
    ES2095660T3 (en) 1997-02-16
    CA2142840A1 (en) 1994-03-03
    KR100209115B1 (en) 1999-07-15
    CN1043680C (en) 1999-06-16
    DE59304695D1 (en) 1997-01-16

    Similar Documents

    Publication Publication Date Title
    EP0657010B2 (en) Steam generator
    EP0617778B1 (en) Fossil-fuelled continuous steam generator
    EP0349834B1 (en) Once-through steam generator
    EP0581760B2 (en) Continuous flow steam generator with a vertical gas flue of substantially vertically fitted pipes
    DE2102024C3 (en) Steam generator
    EP0720714A1 (en) Steam boiler of once-through type and process for operating the same
    EP0937218B1 (en) Method applicable to a continuous steam generator, and the steam generator needed for applying same
    DE19600004C2 (en) Continuous steam generator with spirally arranged evaporator tubes
    EP0352488B1 (en) Once-through steam generator
    EP0812407B1 (en) Process and system for starting a continuous steam generator
    EP1533565A1 (en) Once-through steam generator
    DE4236835A1 (en) Steam generator
    EP2564117B1 (en) Steam generator
    DE3544504A1 (en) Combustion chamber/pipe arrangement in forced-through steam generators
    EP0349767B1 (en) Once-through forced-flow steam generator
    EP0405087B1 (en) Low nox fossil-fuel-fired steam generator
    DE1751364C (en) Radiant superheater for a steam generator
    WO1998019107A1 (en) Steam generator tube
    WO1994005950A1 (en) Steam generator
    DE19507335A1 (en) Steam generator with increased safety and service life
    DD260314A1 (en) TRAINING OF THE FIRST TRAIN OF A NATURAL RUN WITH HIGHER PRESSURE LEVEL WORKING, SWIVELED SWIVEL BOILER
    DE3630159A1 (en) Fluidised-bed (vortex) furnace having at least one platen heating surface
    DE1459141U (en)
    WO1998048218A1 (en) Continuous-flow steam generator

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19940620

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19960514

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

    REF Corresponds to:

    Ref document number: 145980

    Country of ref document: AT

    Date of ref document: 19961215

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    REF Corresponds to:

    Ref document number: 59304695

    Country of ref document: DE

    Date of ref document: 19970116

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2095660

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    ITF It: translation for a ep patent filed

    Owner name: STUDIO JAUMANN

    REG Reference to a national code

    Ref country code: GR

    Ref legal event code: FG4A

    Free format text: 3022186

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19970213

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    26 Opposition filed

    Opponent name: ASEA BROWN BOVERI AG

    Effective date: 19970903

    Opponent name: EVT ENERGIE- UND VERFAHRENSTECHNIK GMBH

    Effective date: 19970826

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: ASEA BROWN BOVERI AG

    Opponent name: EVT ENERGIE- UND VERFAHRENSTECHNIK GMBH

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 19980831

    Year of fee payment: 6

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    R26 Opposition filed (corrected)

    Opponent name: ALSTOM ENERGY SYSTEMS GMBH * 970903 ASEA BROWN BOV

    Effective date: 19970826

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PLAW Interlocutory decision in opposition

    Free format text: ORIGINAL CODE: EPIDOS IDOP

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: ASEA BROWN BOVERI AG

    Opponent name: ALSTOM ENERGY SYSTEMS GMBH

    R26 Opposition filed (corrected)

    Opponent name: ALSTOM ENERGY SYSTEMS GMBH * 970903 ASEA BROWN BOV

    Effective date: 19970826

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: ASEA BROWN BOVERI AG

    Opponent name: ALSTOM ENERGY SYSTEMS GMBH

    PLAW Interlocutory decision in opposition

    Free format text: ORIGINAL CODE: EPIDOS IDOP

    PUAH Patent maintained in amended form

    Free format text: ORIGINAL CODE: 0009272

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT MAINTAINED AS AMENDED

    27A Patent maintained in amended form

    Effective date: 19990825

    AK Designated contracting states

    Kind code of ref document: B2

    Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990831

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: AEN

    Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

    ET3 Fr: translation filed ** decision concerning opposition
    ITF It: translation for a ep patent filed

    Owner name: STUDIO JAUMANN P. & C. S.N.C.

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: DC2A

    Kind code of ref document: T5

    Effective date: 19991013

    GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T4

    NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20000823

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20010814

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20010820

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20010823

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20010829

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20011112

    Year of fee payment: 9

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20020717

    Year of fee payment: 10

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020807

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020807

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020831

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020831

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020831

    BERE Be: lapsed

    Owner name: *SIEMENS A.G.

    Effective date: 20020831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030301

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030430

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20030301

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030806

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20030912

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20110822

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20120809

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20120823

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20121019

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59304695

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59304695

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EUP

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20130805

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20130807

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20130805