EP0657010B1 - Steam generator - Google Patents

Steam generator Download PDF

Info

Publication number
EP0657010B1
EP0657010B1 EP93917528A EP93917528A EP0657010B1 EP 0657010 B1 EP0657010 B1 EP 0657010B1 EP 93917528 A EP93917528 A EP 93917528A EP 93917528 A EP93917528 A EP 93917528A EP 0657010 B1 EP0657010 B1 EP 0657010B1
Authority
EP
European Patent Office
Prior art keywords
tubes
steam generator
gas flue
section
generator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93917528A
Other languages
German (de)
French (fr)
Other versions
EP0657010A1 (en
EP0657010B2 (en
Inventor
Wolfgang Köhler
Rudolf Kral
Eberhard Wittchow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6465884&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0657010(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0657010A1 publication Critical patent/EP0657010A1/en
Publication of EP0657010B1 publication Critical patent/EP0657010B1/en
Application granted granted Critical
Publication of EP0657010B2 publication Critical patent/EP0657010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/12Forms of water tubes, e.g. of varying cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/14Supply mains, e.g. rising mains, down-comers, in connection with water tubes

Definitions

  • the invention relates to a fossil-fired steam generator with a gas flue, the peripheral wall of which is formed from tubes which are connected to one another in a gas-tight manner and which are arranged essentially vertically and through which the medium can flow parallel from bottom to top.
  • a steam generator is known for example from US-A-3 556 059.
  • the surrounding wall is often exposed to different levels of heating from heating surface element to heating surface element.
  • the heating is usually much stronger than in the upper part.
  • additional heat exchanger surfaces are often arranged in this upper part, which shield the peripheral wall against excessive heating, in particular by heat radiation.
  • the peripheral wall of the vertical throttle cable only serves as an evaporator heating surface in the lower part.
  • the steam - or the water-steam mixture at partial load - is then fed to a downstream convection evaporator.
  • the upper part of the surrounding wall is formed from pipes serving as superheater heating surfaces. Since only a part of the surrounding wall is used as an evaporator surface, there is only a relatively small temperature difference at the outlet of these tubes when there is more heating or above-average heating of individual tubes. An uneven distribution of the water-steam mixture on the tubes of the convection evaporator downstream of the evaporator heating surface can be controlled due to the low heating of this evaporator.
  • the invention is therefore based on the object of developing a steam generator of the type mentioned in such a way that, on the one hand, sufficient cooling of the pipes of the surrounding wall is ensured, and on the other hand, additional heating of individual pipes does not lead to impermissible temperature differences between the individual pipes. This should be achieved at low cost.
  • the first part of the throttle cable which is also referred to below as the first section of the surrounding wall, is characterized by very high heat flow densities and good internal heat transfer in the pipes and is e.g. in the burner area.
  • the overlying second part of the throttle cable which is also referred to below as the second section of the surrounding wall, is also characterized by high heat flow densities, but a deteriorated internal heat transfer in the pipes and is e.g. in the so-called gas jet chamber of the steam generator, which connects to the burner area.
  • the first section of the surrounding wall expediently comprises internally finned, vertically arranged tubes to improve the internal heat transfer. These are preferably dimensioned such that the average mass flow density in the tubes at full load is preferably less than 1000 kg / m 2 s.
  • the steam has an average steam content at the outlet of the first section, which is between 0.8 and 0.95 at a partial load of about 40%. With these conditions, the flow conditions are so favorable that an additional heating of individual pipes increases Throughput through these pipes leads so that only small temperature differences occur at the outlet of the pipes.
  • the mass flow density is preferably increased to more than 1000 kg / m 2 s. Therefore, the inside diameter of the pipes at the transition from the first to the second section is reduced while maintaining the same number of parallel pipes or pipe divisions. By reducing the inside diameter, safe pipe cooling is guaranteed even with a high heat flow density in the second section.
  • the tubes with a smaller inside diameter of the second section are advantageously connected directly to the tubes with a larger inside diameter of the first section, so that the tubes of the two sections merge directly into one another.
  • the tubes of the second section can also have internal ribbing at least in the part through which flow first.
  • a pressure drop occurs between the inlet and outlet, which is essentially generated by friction due to high steam velocities towards the outlet.
  • a high drop in friction pressure has the effect that the mass flow through more heated pipes is either reduced or increases less compared to heating. If you now arrange a pressure compensation vessel in an area in which the friction pressure drop increases sharply due to the formation of steam, the system in front of the pressure compensation vessel can adapt to the heating differences almost ideally, i.e. stronger heating results in an approximately equally stronger mass flow.
  • a pressure compensation pipe is connected to each pipe.
  • the pressure compensation tubes are expediently led to one or more pressure compensation containers provided outside the vertical gas flue.
  • the pressure equalization largely decouples the two sections on the flow side.
  • the relatively high friction pressure loss in the second section due to the comparatively large mass flow density therefore has no effect on the favorable flow conditions in the first section. This means that no temperature imbalances (temperature drop above the pipe cross-section) can occur due to additional heating at the outlet of the first section.
  • the direct transition of the pipes from the first section to the pipes from the second section reliably prevents water-steam segregation in the wet steam area.
  • the tubes have a larger inner diameter in a third upper part of the throttle cable than in the second part of the throttle cable underneath.
  • This third part of the throttle cable which is also referred to below as the third section of the surrounding wall, is characterized by a low heat flow density and a moderate internal heat transfer in the pipes and lies in the so-called convection cable of the steam generator.
  • the tubes can be designed without internal fins.
  • the heat flow density drops so far that in the third part of the gas cable, i.e. in the third section of the perimeter wall, half the number of pipes in the second part of the throttle cable, i.e. of the second section of the surrounding wall, is sufficient.
  • the number of tubes in the third section is halved in that two tubes each of the second part of the throttle cable open into a jointly assigned tube of the third part of the gas cable.
  • the vertical throttle cable of the steam generator 1 according to FIG. 1 with a rectangular cross section is formed by a surrounding wall 2 which merges into a funnel-shaped base 3 at the lower end of the gas cable.
  • the tubes 4 of the surrounding wall 2 are on their long sides - e.g. via fins 9 ( Figure 2) - gas-tightly connected to each other, e.g. welded.
  • the bottom 3 comprises a discharge opening 3a for ashes, not shown.
  • a lower or first part 5 of the throttle cable ie in a first section of the surrounding wall 2, for example four burners for a fossil fuel are each installed in an opening 6 in the surrounding wall 2.
  • tubes 4 of the surrounding wall 2 are curved; they run on the outside of the vertical throttle cable. Similar openings can also be formed, for example, for air nozzles or flue gas nozzles.
  • a second part 7 of the throttle cable i.e. a second section of the surrounding wall 2 over which a third or upper part 8 of the throttle cable, i.e. a third section of the surrounding wall 2 is provided.
  • the first section 5 in the burner area is distinguished by a very high heat flow density and good internal heat transfer in the tubes 4.
  • the second section 7 is located in the gas jet chamber and is also distinguished by a high heat flow density, but also by a lower, deteriorated internal heat transfer in the tubes 4.
  • the third section 8 is located in the convection train and is characterized by a low heat flow density and a moderate internal heat transfer in the tubes 4. This third section 8 is present, in particular, in the case of a steam generator in a pull-in construction.
  • the medium side i.e. of water or a water-steam mixture, through which tubes 4 of the surrounding wall 2 flow in parallel from bottom to top are connected at their inlet ends to an inlet header 11 and at their outlet ends to an outlet header 12.
  • the inlet header 11 and the outlet header 12 are located outside the throttle cable and are e.g. each formed by an annular tube.
  • the inlet header 11 is connected via a line 13 and a header 14 to the outlet of a high-pressure preheater or economizer 15.
  • the heating surface of the economizer 15 lies in the third section 8 of the surrounding wall 2 covered space.
  • the economizer 15 is connected on the input side to the water-steam circuit of a steam turbine via a collector 16 during the operation of the steam generator 1.
  • the outlet header 12 is connected to a high-pressure superheater 19 via a water-steam separation vessel 17 and a line 18.
  • the high-pressure superheater 19 is arranged in the region of the second section 7 of the surrounding wall 2. It is connected on the output side to a high-pressure part of the steam turbine via a collector 20 during operation. In the area of the second section 7 there is also an intermediate superheater 21, which is connected via collectors 22, 23 between the high pressure part and a medium pressure part of the steam turbine. Water accumulating in the water-steam separation vessel 17 is discharged via a line 24.
  • a pressure compensation vessel 26 is provided outside the throttle cable, which is formed by an annular tube.
  • each pipe 4 running in sections 5 and 7 is connected to the pressure compensation vessel 26 via a pressure compensation tube 27.
  • the inside width of the tubes 4 tapers.
  • the tubes 4 have a larger inner diameter d 1 in the lower part 5 of the throttle cable the pipes 4 in the overlying second part 7 of the throttle cable, the inside diameter of which is denoted by d 2 .
  • the tubes 4 with the smaller inner diameter d 2 are directly connected to the tubes 4 with the larger inner diameter d 1 , ie the tubes 4 merge into one another in the region 25.
  • the tubes 4 in section 5 have a thread-shaped in a manner not shown Internal ribbing on.
  • the tubes 4 are dimensioned in section 5 such that the mean mass flow density there is less than or equal to 1000 kg / m 2 s at full load. The average mass flow density in the tubes 4 is then greater than 1000 kg / m 2 s in the second or middle section 7.
  • the pipes 4 again have a larger inner diameter than in the section 7 below. While the pipes 4 in the second section 7 also preferably have a thread-like internal ribbing over their entire length, the pipes 4 are the third Section 8 is provided with a thread-like internal ribbing only over part of its length. However, it is expedient to dispense with internal ribbing.
  • the number of pipes 4 in the upper section 8 of the surrounding wall 2 is only half as large as in the second section 7. Therefore, two pipes 4 of the second section 7 open in a region 30 into a pipe 4 of the third section 8 that is assigned to them (FIG 1).
  • the outer diameter of the tubes 4 in sections 5 and 7 is different and adapted to the respective inner diameter d 1 , d 2 such that the wall thickness of the tubes 4 is approximately the same in all sections 5, 7, 8 is. But it can also be the outer diameter of the tubes 4 in all sections 5, 7, 8 of the same size, so that the wall thickness of the tubes 4 in the middle or second section 7 is greater than in the first section 5 and / or in the third section 8.
  • the tubes 4 are provided on their long sides with fins 9 which are used for the gas-tight connection of the tubes 4.
  • the dimensioning of the tubes 4 of the surrounding wall 2 is adapted to different heating of the throttle cable.
  • reliable cooling of the tubes 4 is ensured.
  • additional heating of individual tubes 4 does not lead to impermissible temperature differences between the outputs of the individual tubes 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Devices For Medical Bathing And Washing (AREA)

Abstract

A fossil-fired steam generator includes a gas flue having a surrounding wall being formed by tubes which are mutually joined gas-tightly and which are disposed substantially vertically and can conduct an upward flow through them on the medium side. The tubes in a first or lower part of the gas flue have a greater internal diameter than the tubes in a second part of the gas flue located above. On one hand, this ensures reliable cooling of the tubes. On the other hand, even additional or above-average heating of individual tubes does not lead to inadmissible temperature differences between outlets of the tubes.

Description

Die Erfindung bezieht sich auf einen fossil befeuerten Dampferzeuger mit einem Gaszug, dessen Umfassungswand aus miteinander gasdicht verbundenen Rohren gebildet ist, die im wesentlichen vertikal angeordnet und mediumseitig parallel von unten nach oben durchströmbar sind. Ein derartiger Dampferzeuger ist beispielsweise aus der US-A-3 556 059 bekannt.The invention relates to a fossil-fired steam generator with a gas flue, the peripheral wall of which is formed from tubes which are connected to one another in a gas-tight manner and which are arranged essentially vertically and through which the medium can flow parallel from bottom to top. Such a steam generator is known for example from US-A-3 556 059.

Die Umfassungswand ist häufig von Heizflächenelement zu Heizflächenelement einer unterschiedlich starken Beheizung ausgesetzt. So ist meist im unteren Teil, in dem eine Anzahl von Brennern für den fossilen Brennstoff angeordnet ist, die Beheizung wesentlich stärker als im oberen Teil. Der Grund hierfür liegt auch darin, daß in diesem oberen Teil häufig zusätzliche Wärmetauscherflächen angeordnet sind, welche die Umfassungswand gegen eine zu intensive Beheizung, insbesondere durch Wärmestrahlung, abschirmen.The surrounding wall is often exposed to different levels of heating from heating surface element to heating surface element. In the lower part, in which a number of burners for the fossil fuel is arranged, the heating is usually much stronger than in the upper part. The reason for this also lies in the fact that additional heat exchanger surfaces are often arranged in this upper part, which shield the peripheral wall against excessive heating, in particular by heat radiation.

Bei dem aus der Europäischen Patentschrift 0 054 601 bekannten Dampferzeuger dient die Umfassungswand des vertikalen Gaszugs nur im unteren Teil als Verdampferheizfläche. Der Dampf - oder bei Teillast das Wasser-Dampf-Gemisch - wird anschließend einem nachgeschalteten Konvektionsverdampfer zugeführt. Der obere Teil der Umfassungswand wird aus als Überhitzerheizfläche dienenden Rohren gebildet. Da nur ein Teil der Umfassungswand als Verdampferfläche genutzt wird, treten bei einer Mehrbeheizung oder überdurchschnittlichen Beheizung einzelner Rohre nur verhältnismäßig geringe Temperaturdifferenzen am Austritt dieser Rohre auf. Eine ungleichmäßige Verteilung des Wasser-Dampf-Gemisches auf die Rohre des der Verdampferheizfläche nachgeschalteten Konvektionsverdampfers ist wegen der geringen Beheizung dieses Verdampfers beherrschbar. Da allerdings die Kühlung des oberen Teils der Umfassungswand mit unter einem hohen Druck von etwa 280 bis 320 bar stehendem überhitzten Dampf erfolgt, wird in diesem oberen Teil der Umfassungswand hoch chromhaltiger Stahl eingesetzt, der bei der Fertigung eine komplizierte Wärmebehandlung erfordert. Außerdem ist diese bekannte Einrichtung aufgrund erforderlicher Verbindungsleitungen und Sammler zum und vom Konvektionsverdampfer sehr kostenaufwendig und benötigt einen erhöhten Regelungsaufwand im Konvektionszug, insbesondere durch den Einbau von rauchgasseitigen Regelzügen. Eine ähnliche Einrichtung ist auch in der Druckschrift VGB Kraftwerkstechnik, Heft 7, 1991, Seiten 637 bis 643, beschrieben.In the steam generator known from European patent specification 0 054 601, the peripheral wall of the vertical throttle cable only serves as an evaporator heating surface in the lower part. The steam - or the water-steam mixture at partial load - is then fed to a downstream convection evaporator. The upper part of the surrounding wall is formed from pipes serving as superheater heating surfaces. Since only a part of the surrounding wall is used as an evaporator surface, there is only a relatively small temperature difference at the outlet of these tubes when there is more heating or above-average heating of individual tubes. An uneven distribution of the water-steam mixture on the tubes of the convection evaporator downstream of the evaporator heating surface can be controlled due to the low heating of this evaporator. However, since the cooling of the upper part of the surrounding wall with superheated steam at a high pressure of about 280 to 320 bar, high chromium steel is used in this upper part of the surrounding wall, which requires complicated heat treatment during production. In addition, this known device is very costly owing to the necessary connecting lines and collectors to and from the convection evaporator and requires an increased control effort in the convection train, in particular due to the installation of flue gas-side control trains. A similar device is also described in the publication VGB Kraftwerkstechnik, issue 7, 1991, pages 637 to 643.

Bei einem Durchlaufdampferzeuger mit einer spiralförmigen Rohranordnung der Umfassungswand, bei der die Massenstromdichte in den Rohren üblicherweise etwa 2500 kg/m2s beträgt, kann die Auswirkung einer Mehrbeheizung auf Temperaturdifferenzen zwischen den Rohren durch Vergrößern der Rohrinnendurchmesser im oberen Teil des vertikalen Gaszugs reduziert werden. Bei Umfassungswänden mit vertikal angeordneten Rohren kann dieses Prinzip jedoch nicht angewendet werden, da die ohnehin vergleichsweise kleine Massenstromdichte, die ein Maß für die Strömungsgeschwindigkeit in den Rohren ist, dann so weit reduziert wird, daß bei Dampfdrücken in der Nähe des kritischen Punktes eine sichere Kühlung der Rohre nicht mehr gewährleistet ist. Außerdem kommt erschwerend hinzu, daß einerseits zur sicheren Kühlung der Rohre hohe Massenströme erforderlich sind, andererseits hohe Massenströme zu großen Temperaturdifferenzen zwischen einzelnen Rohren führen können. Weiterhin besteht bei Verwendung eines Zwischensammlers im Naßdampfbereich durch Entmischung die Gefahr einer Ungleichverteilung von Wasser und Dampf, so daß in einem diesem Zwischensammler nachgeschalteten Rohrsystem große Temperaturunterschiede auftreten können.In the case of a continuous steam generator with a spiral pipe arrangement of the surrounding wall, in which the mass flow density in the pipes is usually around 2500 kg / m 2 s, the effect of additional heating on temperature differences between the pipes can be reduced by increasing the pipe inside diameter in the upper part of the vertical gas flue. However, this principle cannot be applied to surrounding walls with vertically arranged pipes, since the already comparatively small mass flow density, which is a measure of the flow velocity in the pipes, is then reduced to such an extent that reliable cooling is achieved at steam pressures in the vicinity of the critical point the pipes are no longer guaranteed. Another complicating factor is that, on the one hand, high mass flows are required for reliable cooling of the pipes, and on the other hand, high mass flows can lead to large temperature differences between individual pipes. Furthermore, when using an intermediate collector in the wet steam area due to segregation, there is a risk of an uneven distribution of water and steam, so that large temperature differences can occur in a pipe system connected downstream of this intermediate collector.

Der Erfindung liegt daher die Aufgabe zugrunde, einen Dampferzeuger der eingangs genannten Art derart weiterzubilden, daß einerseits eine ausreichende Kühlung der Rohre der Umfassungswand sichergestellt ist, und daß andererseits auch eine Mehrbeheizung einzelner Rohre nicht zu unzulässigen Temperaturdifferenzen zwischen den einzelnen Rohren führt. Dies soll mit geringem Kostenaufwand erreicht werden.The invention is therefore based on the object of developing a steam generator of the type mentioned in such a way that, on the one hand, sufficient cooling of the pipes of the surrounding wall is ensured, and on the other hand, additional heating of individual pipes does not lead to impermissible temperature differences between the individual pipes. This should be achieved at low cost.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Rohre in einem unten gelegenen ersten Teil des Gaszugs einen größeren Innendurchmesser aufweisen als die Rohre in einem darüberliegenden zweiten Teil des Gaszugs.This object is achieved in that the tubes in a lower part of the throttle cable have a larger inner diameter than the tubes in an overlying second part of the gas cable.

Der unten gelegene erste Teil des Gaszugs, der im folgenden auch als erster Abschnitt der Umfassungswand bezeichnet wird, zeichnet sich durch sehr hohe Wärmestromdichten und einen guten inneren Wärmeübergang in den Rohren aus und liegt z.B. im Brennerbereich. Der darüberliegende zweite Teil des Gaszugs, der im folgenden auch als zweiter Abschnitt der Umfassungswand bezeichnet wird, zeichnet sich ebenfalls durch hohe Wärmestromdichten, aber einen verschlechterten inneren Wärmeübergang in den Rohren aus und liegt z.B. im im sogenannten Gasstrahlraum des Dampferzeugers, der sich an den Brennerbereich anschließt.The first part of the throttle cable, which is also referred to below as the first section of the surrounding wall, is characterized by very high heat flow densities and good internal heat transfer in the pipes and is e.g. in the burner area. The overlying second part of the throttle cable, which is also referred to below as the second section of the surrounding wall, is also characterized by high heat flow densities, but a deteriorated internal heat transfer in the pipes and is e.g. in the so-called gas jet chamber of the steam generator, which connects to the burner area.

Der erste Abschnitt der Umfassungswand umfaßt zweckmäßigerweise zur Verbesserung des inneren Wärmeübergangs innenberippte vertikal angeordnete Rohre. Diese sind bevorzugt derart dimensioniert, daß die mittlere Massenstromdichte in den Rohren bei Vollast vorzugsweise kl iner als 1000 kg/m2s ist. Der Dampf hat am Austritt des ersten Abschnitts einen mittleren Dampfgehalt, der bei einer Teillast von etwa 40% zwischen 0,8 und 0,95 liegt. Bei diesen Voraussetzungen stellen sich so günstige Strömungsverhältnisse ein, daß eine Mehrbeheizung einzelner Rohre zu einem erhöhten Durchsatz durch diese Rohre führt, so daß sich nur geringe Temperaturdifferenzen am Austritt der Rohre einstellen.The first section of the surrounding wall expediently comprises internally finned, vertically arranged tubes to improve the internal heat transfer. These are preferably dimensioned such that the average mass flow density in the tubes at full load is preferably less than 1000 kg / m 2 s. The steam has an average steam content at the outlet of the first section, which is between 0.8 and 0.95 at a partial load of about 40%. With these conditions, the flow conditions are so favorable that an additional heating of individual pipes increases Throughput through these pipes leads so that only small temperature differences occur at the outlet of the pipes.

Im zweiten Abschnitt der Umfassungswand kann abhängig vom Betriebszustand eine Wärmeübergangskrise, d.h. ein sogenanntes "Dry out", auftreten. Um unzulässig hohe Rohrwandtemperaturen bei diesem verschlechterten inneren Wärmeübergang zu vermeiden, wird die Massenstromdichte bevorzugt auf über als 1000 kg/m2s erhöht. Daher ist der Innendurchmesser der Rohre am Übergang vom ersten auf den zweiten Abschnitt unter Beibehaltung der gleichen Parallelrohranzahl oder Rohrteilungen verringert. Durch Reduzierung der Innendurchmesser ist auch bei einer hohen Wärmestromdichte im zweiten Abschnitt eine sichere Rohrkühlung gewährleistet.Depending on the operating state, a heat transfer crisis, ie a so-called "dry out", can occur in the second section of the surrounding wall. In order to avoid impermissibly high pipe wall temperatures in the case of this deteriorated internal heat transfer, the mass flow density is preferably increased to more than 1000 kg / m 2 s. Therefore, the inside diameter of the pipes at the transition from the first to the second section is reduced while maintaining the same number of parallel pipes or pipe divisions. By reducing the inside diameter, safe pipe cooling is guaranteed even with a high heat flow density in the second section.

Die Rohre mit kleinerem Innendurchmesser des zweiten Abschnitts sind vorteilhafterweise direkt an die Rohre größeren Innendurchmessers des ersten Abschnitts angeschlossen, so daß die Rohre der beiden Abschnitte direkt ineinander übergehen. Die Rohre des zweiten Abschnitts können mindestens im zuerst durchströmten Teil ebenfalls eine Innenberippung aufweisen.The tubes with a smaller inside diameter of the second section are advantageously connected directly to the tubes with a larger inside diameter of the first section, so that the tubes of the two sections merge directly into one another. The tubes of the second section can also have internal ribbing at least in the part through which flow first.

In einem beheizten Verdampfer-Parallelrohrsystem tritt zwischen Ein- und Austritt ein Druckabfall auf, der zum Austritt hin im wesentlichen durch Reibung aufgrund hoher Dampfgeschwindigkeiten erzeugt wird. Ein hoher Reibungsdruckabfall bewirkt, daß der Massenstrom durch stärker beheizte Rohre entweder reduziert wird, oder aber im Vergleich zur Beheizung weniger stark ansteigt. Ordnet man nun ein Druckausgleichsgefäß in einem Bereich an, in dem durch Dampfbildung der Reibungsdruckabfall stark ansteigt, so kann sich das vor dem Druckausgleichsgefäß liegende System den Beheizungsunterschieden nahezu ideal anpassen, d.h. stärkere Beheizung ergibt einen annähernd gleichermaßen stärkeren Massenstrom.In a heated evaporator parallel pipe system, a pressure drop occurs between the inlet and outlet, which is essentially generated by friction due to high steam velocities towards the outlet. A high drop in friction pressure has the effect that the mass flow through more heated pipes is either reduced or increases less compared to heating. If you now arrange a pressure compensation vessel in an area in which the friction pressure drop increases sharply due to the formation of steam, the system in front of the pressure compensation vessel can adapt to the heating differences almost ideally, i.e. stronger heating results in an approximately equally stronger mass flow.

Daher ist in zweckmäßiger Ausgestaltung in der oberen Hälfte des ersten Teils des Gaszugs, z.B. in der Nähe des Übergangs vom ersten auf den zweiten Abschnitt, an jedes Rohr ein Druckausgleichsrohr angeschlossen. Die Druckausgleichsrohre sind zweckmäßigerweise zu einem oder mehreren außerhalb des vertikalen Gaszugs vorgesehenen Druckausgleichsbehältern geführt. Durch den Druckausgleich werden die beiden Abschnitte strömungsseitig weitgehend entkoppelt. Der aufgrund der vergleichsweise großen Massenstromdichte relativ hohe Reibungsdruckverlust im zweiten Abschnitt hat daher keine Auswirkungen auf die günstigen Strömungsverhältnisse im ersten Abschnitt. Somit können keine Temperaturschieflagen (Temperaturgefällt über dem Rohrquerschnitt) aufgrund von Mehrbeheizungen am Austritt des ersten Abschnitts auftreten. Durch den direkten Übergang der Rohre vom ersten Abschnitt auf die Rohre vom zweiten Abschnitt wird eine Wasser-Dampf-Entmischung im Naßdampfgebiet sicher vermieden.Therefore, in an expedient configuration, in the upper half of the first part of the throttle cable, e.g. near the transition from the first to the second section, a pressure compensation pipe is connected to each pipe. The pressure compensation tubes are expediently led to one or more pressure compensation containers provided outside the vertical gas flue. The pressure equalization largely decouples the two sections on the flow side. The relatively high friction pressure loss in the second section due to the comparatively large mass flow density therefore has no effect on the favorable flow conditions in the first section. This means that no temperature imbalances (temperature drop above the pipe cross-section) can occur due to additional heating at the outlet of the first section. The direct transition of the pipes from the first section to the pipes from the second section reliably prevents water-steam segregation in the wet steam area.

Bei einem Dampferzeuger mit einem hohen Gaszug, z.B. einem Dampferzeuger in Einzugbauweise, weisen die Rohre ir einem dritten oberen Teil des Gaszugs einen größeren Innendurchmesser auf als in dem zweiten darunterliegenden Teil des Gaszugs. Dieser dritte Teil des Gaszugs, der im folgenden auch als dritter Abschnitt der Umfassungswand bezeichnet wird, zeichnet sich durch eine niedrige Wärmestromdichte und einen mäßigen inneren Wärmeübergang in den Rohren aus und liegt im sogenannten Konvektionszug des Dampferzeugers.In the case of a steam generator with a high throttle cable, e.g. a steam generator in a retractable design, the tubes have a larger inner diameter in a third upper part of the throttle cable than in the second part of the throttle cable underneath. This third part of the throttle cable, which is also referred to below as the third section of the surrounding wall, is characterized by a low heat flow density and a moderate internal heat transfer in the pipes and lies in the so-called convection cable of the steam generator.

Am Übergang vom zweiten auf den dritten Abschnitt der Umfassungswand sinkt die Massenstromdichte wegen der dort herrschenden niedrigen Wärmestromdichte gegenüber der im zweiten Abschnitt wieder ab, um den Reibungsdruckverlust in den Rohren niedrig zu halten. Im dritten Abschnitt können die Rohre ohne Innenberippung ausgebildet sein.At the transition from the second to the third section of the surrounding wall, the mass flow density drops again due to the low heat flow density there compared to that in the second section in order to keep the frictional pressure loss in the pipes low. In the third section, the tubes can be designed without internal fins.

Im weiteren Verlauf des vertikalen Gaszugs sinkt die Wärmestromdichte so weit ab, daß im dritten Teil des Gaszugs, d.h. im dritten Abschnitt der Umfassungswand, die halbe Anzahl der Rohre des zweiten Teils des Gaszugs, d.h. des zweiten Abschnitts der Umfassungswand, ausreicht. Die Halbierung der Anzahl der Rohre im dritten Abschnitt wird dadurch erreicht, daß je zwei Rohre des zweiten Teils des Gaszugs in ein ihnen gemeinsam zugeordnetes Rohr des dritten Teils des Gaszugs münden.In the further course of the vertical throttle cable, the heat flow density drops so far that in the third part of the gas cable, i.e. in the third section of the perimeter wall, half the number of pipes in the second part of the throttle cable, i.e. of the second section of the surrounding wall, is sufficient. The number of tubes in the third section is halved in that two tubes each of the second part of the throttle cable open into a jointly assigned tube of the third part of the gas cable.

Ausführungsbeispiele der Erfindung werden anhand einer Zeichnung näher erläutert; darin zeigen:

  • Figur 1 einen Dampferzeuger mit einem in drei Abschnitte unterteilten Gaszug, und
  • Figur 2 einen Ausschnitt II aus Figur 1 in größerem Maßstab mit Rohren mit unterschiedlichem Innendurchmesser in verschiedenen Abschnitten.
Embodiments of the invention are explained in more detail with reference to a drawing; show in it:
  • 1 shows a steam generator with a throttle cable divided into three sections, and
  • Figure 2 shows a section II of Figure 1 on a larger scale with tubes with different inner diameters in different sections.

Einander entsprechende Teile sind in beiden Figuren mit den gleichen Bezugszeichen versehen.Corresponding parts are provided with the same reference symbols in both figures.

Der vertikale Gaszug des Dampferzeugers 1 gemäß Figur 1 mit rechteckigem Querschnitt ist durch eine Umfassungswand 2 gebildet, die am Unterende des Gaszugs in einen trichterförmigen Boden 3 übergeht. Die Rohre 4 der Umfassungswand 2 sind an ihren Längsseiten - z.B. über Flossen 9 (Figur 2) - gasdicht miteinander verbunden, z.B. verschweißt. Der Boden 3 umfaßt eine nicht näher dargestellte Austragsöffnung 3a für Asche.The vertical throttle cable of the steam generator 1 according to FIG. 1 with a rectangular cross section is formed by a surrounding wall 2 which merges into a funnel-shaped base 3 at the lower end of the gas cable. The tubes 4 of the surrounding wall 2 are on their long sides - e.g. via fins 9 (Figure 2) - gas-tightly connected to each other, e.g. welded. The bottom 3 comprises a discharge opening 3a for ashes, not shown.

In einem unteren oder ersten Teil 5 des Gaszugs, d.h. in einem ersten Abschnitt der Umfassungswand 2, sind z.B. vier Brenner für einen fossilen Brennstoff in jeweils einer Öffnung 6 in der Umfassungswand 2 angebracht. An einer derartigen Öffnung 6 sind Rohre 4 der Umfassungswand 2 gekrümmt; sie verlaufen auf der Außenseite des vertikalen Gaszugs. Ähnliche Öffnungen können auch z.B. für Luftdüsen oder Rauchgasdüsen gebildet sein.In a lower or first part 5 of the throttle cable, ie in a first section of the surrounding wall 2, for example four burners for a fossil fuel are each installed in an opening 6 in the surrounding wall 2. On such Opening 6, tubes 4 of the surrounding wall 2 are curved; they run on the outside of the vertical throttle cable. Similar openings can also be formed, for example, for air nozzles or flue gas nozzles.

Über dem ersten unteren Teil 5 des Gaszugs befindet sich ein zweiter Teil 7 des Gaszugs, d.h. ein zweiter Abschnitt der Umfassungswand 2, über dem ein dritter oder oberer Teil 8 des Gaszugs, d.h. ein dritter Abschnitt der Umfassungswand 2, vorgesehen ist.Above the first lower part 5 of the throttle cable is a second part 7 of the throttle cable, i.e. a second section of the surrounding wall 2, over which a third or upper part 8 of the throttle cable, i.e. a third section of the surrounding wall 2 is provided.

Der erste Abschnitt 5 im Brennerbereich zeichnet sich durch eine sehr hohe Wärmestromdichte und einen guten inneren Wärmeübergang in den Rohren 4 aus. Der zweite Abschnitt 7 ist im Gasstrahlraum gelegen und zeichnet sich ebenfalls durch eine hohe Wärmestromdichte, aber auch durch einen geringeren, verschlechterten inneren Wärmeübergang in den Rohren 4 aus. Der dritte Abschnitt 8 ist im Konvektionszug gelegen und zeichnet sich durch eine niedrige Wärmestromdichte und einen mäßigen inneren Wärmeübergang in den Rohren 4 aus. Dieser dritte Abschnitt 8 ist insbesondere bei einem Dampferzeuger in Einzugbauweise vorhanden.The first section 5 in the burner area is distinguished by a very high heat flow density and good internal heat transfer in the tubes 4. The second section 7 is located in the gas jet chamber and is also distinguished by a high heat flow density, but also by a lower, deteriorated internal heat transfer in the tubes 4. The third section 8 is located in the convection train and is characterized by a low heat flow density and a moderate internal heat transfer in the tubes 4. This third section 8 is present, in particular, in the case of a steam generator in a pull-in construction.

Die mediumseitig, d.h. von Wasser oder einem Wasser-Dampf-Gemisch, von unten nach oben parallel durchströmten Rohre 4 der Umfassungswand 2 sind mit ihren Eintrittsenden an einen Eintrittssammler 11 und mit ihren Austrittsenden an einen Austrittssammler 12 angeschlossen. Der Eintrittssammler 11 und der Austrittssammler 12 befinden sich außerhalb des Gaszugs und sind z.B. jeweils durch ein ringförmiges Rohr gebildet.The medium side, i.e. of water or a water-steam mixture, through which tubes 4 of the surrounding wall 2 flow in parallel from bottom to top are connected at their inlet ends to an inlet header 11 and at their outlet ends to an outlet header 12. The inlet header 11 and the outlet header 12 are located outside the throttle cable and are e.g. each formed by an annular tube.

Der Eintrittssammler 11 ist über eine Leitung 13 und einen Sammler 14 mit dem Ausgang eines Hochdruck-Vorwärmers oder Economizers 15 verbunden. Die Heizfläche des Economizers 15 liegt im vom dritten Abschnitt 8 der Umfassungswand 2 umfaßten Raum. Der Economizer 15 ist während des Betriebs des Dampferzeugers 1 eingangsseitig über einen Sammler 16 mit dem Wasser-Dampf-Kreislauf einer Dampfturbine verbunden.The inlet header 11 is connected via a line 13 and a header 14 to the outlet of a high-pressure preheater or economizer 15. The heating surface of the economizer 15 lies in the third section 8 of the surrounding wall 2 covered space. The economizer 15 is connected on the input side to the water-steam circuit of a steam turbine via a collector 16 during the operation of the steam generator 1.

Der Austrittssammler 12 ist über ein Wasser-Dampf-Trenngefäß 17 und eine Leitung 18 mit einem Hochdruck-Überhitzer 19 verbunden. Der Hochdruck-Überhitzer 19 ist im Bereich des zweiten Abschnitts 7 der Umfassungswand 2 angeordnet. Er ist während des Betriebs ausgangsseitig über einen Sammler 20 mit einem Hochdruckteil der Dampfturbine verbunden. Im Bereich des zweiten Abschnitts 7 liegt außerdem ein Zwischenüberhitzer 21, der über Sammler 22, 23 zwischen den Hochdruckteil und einen Mitteldruckteil der Dampfturbine geschaltet ist. Im Wasser-Dampf-Trenngefäß 17 anfallendes Wasser wird über eine Leitung 24 abgeführt.The outlet header 12 is connected to a high-pressure superheater 19 via a water-steam separation vessel 17 and a line 18. The high-pressure superheater 19 is arranged in the region of the second section 7 of the surrounding wall 2. It is connected on the output side to a high-pressure part of the steam turbine via a collector 20 during operation. In the area of the second section 7 there is also an intermediate superheater 21, which is connected via collectors 22, 23 between the high pressure part and a medium pressure part of the steam turbine. Water accumulating in the water-steam separation vessel 17 is discharged via a line 24.

In einem Bereich 25 des Übergangs vom ersten Abschnitt 5 zum zweiten Abschnitt 7 der Umfassungswand 2 ist außerhalb des Gaszugs ein Druckausgleichsgefäß 26 vorgesehen, das durch ein ringförmiges Rohr gebildet ist.In a region 25 of the transition from the first section 5 to the second section 7 of the surrounding wall 2, a pressure compensation vessel 26 is provided outside the throttle cable, which is formed by an annular tube.

Wie aus Figur 2 ersichtlich, ist jedes in den Abschnitten 5 und 7 verlaufende Rohr 4 über ein Druckausgleichsrohr 27 mit dem Druckausgleichsgefäß 26 verbunden.As can be seen from FIG. 2, each pipe 4 running in sections 5 and 7 is connected to the pressure compensation vessel 26 via a pressure compensation tube 27.

Im Bereich 25, in dem die Rohre 4 vom ersten Abschnitt 5 in den zweiten Abschnitt 7 übergehen, verjüngt sich die lichte Weite der Rohre 4. Mit anderen Worten: Die Rohre 4 weisen im unteren Teil 5 des Gaszugs einen größeren Innendurchmesser d1 auf als die Rohre 4 in dem darüberliegenden zweiten Teil 7 des Gaszugs, deren Innendurchmesser mit d2 bezeichnet ist. Dabei sind die Rohre 4 mit dem kleineren Innendurchmesser d2 direkt an die Rohre 4 mit dem größeren Innendurchmesser d1 angeschlossen, d.h. die Rohre 4 gehen im Bereich 25 ineinander über. Die Rohre 4 im Abschnitt 5 weisen in nicht näher dargestellter Weise eine gewindeförmige Innenberippung auf. Die Rohre 4 sind im Abschnitt 5 derart dimensioniert, daß die mittlere Massenstromdichte dort bei Vollast kleiner oder gleich 1000 kg/ m2s ist. Die mittlere Massenstromdichte in den Rohren 4 ist im zweiten oder mittleren Abschnitt 7 dann größer als 1000 kg/m2s.In the area 25, in which the tubes 4 pass from the first portion 5 to the second portion 7, the inside width of the tubes 4 tapers. In other words: the tubes 4 have a larger inner diameter d 1 in the lower part 5 of the throttle cable the pipes 4 in the overlying second part 7 of the throttle cable, the inside diameter of which is denoted by d 2 . The tubes 4 with the smaller inner diameter d 2 are directly connected to the tubes 4 with the larger inner diameter d 1 , ie the tubes 4 merge into one another in the region 25. The tubes 4 in section 5 have a thread-shaped in a manner not shown Internal ribbing on. The tubes 4 are dimensioned in section 5 such that the mean mass flow density there is less than or equal to 1000 kg / m 2 s at full load. The average mass flow density in the tubes 4 is then greater than 1000 kg / m 2 s in the second or middle section 7.

Im dritten oder oberen Abschnitt 8 der Umfassungswand 2 weisen die Rohre 4 wieder einen größeren Innendurchmesser auf als in dem darunterliegenden Abschnitt 7. Während die Rohre 4 auch im zweiten Abschnitt 7 vorzugsweise über ihre gesamte Länge eine gewindeförmige Innenberippung aufweisen, sind die Rohre 4 des dritten Abschnitts 8 nur über einen Teil ihrer Länge mit einer gewindeförmigen Innenberippung versehen. Zweckmäßigerweise wird aber auf eine Innenberippung verzichtet.In the third or upper section 8 of the surrounding wall 2, the pipes 4 again have a larger inner diameter than in the section 7 below. While the pipes 4 in the second section 7 also preferably have a thread-like internal ribbing over their entire length, the pipes 4 are the third Section 8 is provided with a thread-like internal ribbing only over part of its length. However, it is expedient to dispense with internal ribbing.

Die Anzahl der Rohre 4 im oberen Abschnitt 8 der Umfassungswand 2 ist nur halb so groß wie im zweiten Abschnitt 7. Daher münden je zwei Rohre 4 des zweiten Abschnitts 7 in einem Bereich 30 in ein ihnen gemeinsam zugeordnetes Rohr 4 des dritten Abschnitts 8 (Figur 1).The number of pipes 4 in the upper section 8 of the surrounding wall 2 is only half as large as in the second section 7. Therefore, two pipes 4 of the second section 7 open in a region 30 into a pipe 4 of the third section 8 that is assigned to them (FIG 1).

Wie in Figur 2 dargestellt, ist auch der Außendurchmesser der Rohre 4 in den Abschnitten 5 und 7 unterschiedlich und an den jeweiligen Innendurchmesser d1, d2 derart angepaßt, daß die Wanddicke der Rohre 4 in allen Abschnitten 5, 7, 8 etwa gleich groß ist. Es kann aber auch der Außendurchmesser der Rohre 4 in allen Abschnitten 5, 7, 8 gleich groß sein, so daß die Wanddicke der Rohre 4 im mittleren oder zweiten Abschnitt 7 größer ist als im ersten Abschnitt 5 und/oder im dritten Abschnitt 8. Wie bereits erwähnt, sind die Rohre 4 an ihren Längsseiten mit Flossen 9 versehen, die zur gasdichten Verbindung der Rohre 4 dienen.As shown in Figure 2, the outer diameter of the tubes 4 in sections 5 and 7 is different and adapted to the respective inner diameter d 1 , d 2 such that the wall thickness of the tubes 4 is approximately the same in all sections 5, 7, 8 is. But it can also be the outer diameter of the tubes 4 in all sections 5, 7, 8 of the same size, so that the wall thickness of the tubes 4 in the middle or second section 7 is greater than in the first section 5 and / or in the third section 8. How already mentioned, the tubes 4 are provided on their long sides with fins 9 which are used for the gas-tight connection of the tubes 4.

Dadurch, daß die Rohre 4 der Umfassungswand 2 über ihre Länge in verschiedenen Abschnitten 5, 7, 8 oder Bereichen des Dampferzeugers 1 einen unterschiedlichen Innendurchmesser d1, d2 aufweisen, ist die Dimensionierung der Rohre 4 der Umfassungswand 2 auf eine unterschiedliche Beheizung des Gaszugs abgestimmt. Dabei ist einerseits eine sichere Kühlung der Rohre 4 gewährleistet. Andererseits führt auch eine Mehrbeheizung einzelner Rohre 4 nicht zu unzulässigen Temperaturdifferenzen zwischen den Ausgängen der einzelnen Rohre 4.Characterized in that the tubes 4 of the surrounding wall 2 over its length in different sections 5, 7, 8 or areas of the steam generator 1 have a different inside diameter d 1 , d 2 , the dimensioning of the tubes 4 of the surrounding wall 2 is adapted to different heating of the throttle cable. On the one hand, reliable cooling of the tubes 4 is ensured. On the other hand, additional heating of individual tubes 4 does not lead to impermissible temperature differences between the outputs of the individual tubes 4.

Claims (10)

  1. Fossil-fired steam generator with a gas flue, the surrounding wall (2) of which is formed from tubes (4) connected to each other in a gastight manner, which tubes are arranged substantially vertically and can conduct an upward flow of a medium, characterized in that the tubes (4) in a lower first part (5) of the gas flue have a larger inner diameter (d1) than the tubes (4) in a second part (7) of the gas flue which is above the first part.
  2. Steam generator according to claim 1,
    characterized in that the tubes (4) with the smaller inner diameter (d2) are connected directly to the tubes (4) with the larger inner diameter (d1) or merge into them.
  3. Steam generator according to claim 1 or 2,
    characterized in that each tube (4) is connected by way of a pressure balance tube (27) to a pressure balance vessel (26) provided outside the gas flue.
  4. Steam generator according to claim 3,
    characterized in that each pressure balance tube (27) lies in the upper half of the first part (5), preferably in the upper third of the first part (5), for example in the area (25) of the transition from the first part (5) to the second part (7) of the gas flue.
  5. Steam generator according to one of claims 1 to 4, characterized in that the tubes (4) in the first part (5) of the gas flue have a thread-like internal finning.
  6. Steam generator according to one of claims 1 to 5, characterized in that the tubes (4) in the second part (7) of the gas flue have a thread-like inner finning at least over a part of their length.
  7. Steam generator according to one of claims 1 to 6, characterized in that the mean mass flow density in the tubes (4) of the first part (5) of the gas flue is less than or equal to 1000 kg/m2s with full load.
  8. Steam generator according to claim 1,
    characterized in that the tubes (4) in an upper third part (8) of the gas flue have a larger inner diameter than in the second part (7) of the gas flue which lies below the third part.
  9. Steam generator according to claim 8,
    characterized in that the tubes (4) of the third part (8) with the larger inner diameter are directly connected to the tubes (4) of the second part (7) with the smaller inner diameter (d2), or merge into them.
  10. Steam generator according to claim 8 or 9,
    characterized in that the number of tubes (4) in the third part (8) of the gas flue is only half that in the second part (7) of the gas flue, whereby in each case two tubes (4) of the second part (7) open into a tube (4), associated with both of them, of the third part (8).
EP93917528A 1992-08-19 1993-08-06 Steam generator Expired - Lifetime EP0657010B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4227457A DE4227457A1 (en) 1992-08-19 1992-08-19 Steam generator
DE4227457 1992-08-19
PCT/DE1993/000698 WO1994004870A1 (en) 1992-08-19 1993-08-06 Steam generator

Publications (3)

Publication Number Publication Date
EP0657010A1 EP0657010A1 (en) 1995-06-14
EP0657010B1 true EP0657010B1 (en) 1996-12-04
EP0657010B2 EP0657010B2 (en) 1999-08-25

Family

ID=6465884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93917528A Expired - Lifetime EP0657010B2 (en) 1992-08-19 1993-08-06 Steam generator

Country Status (17)

Country Link
US (1) US5701850A (en)
EP (1) EP0657010B2 (en)
JP (1) JP3188270B2 (en)
KR (1) KR100209115B1 (en)
CN (1) CN1043680C (en)
AT (1) ATE145980T1 (en)
CA (1) CA2142840A1 (en)
CZ (1) CZ287735B6 (en)
DE (2) DE4227457A1 (en)
DK (1) DK0657010T4 (en)
ES (1) ES2095660T5 (en)
GR (1) GR3022186T3 (en)
RU (1) RU2109209C1 (en)
SK (1) SK22295A3 (en)
TW (1) TW228565B (en)
UA (1) UA27923C2 (en)
WO (1) WO1994004870A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426692C1 (en) * 1994-07-28 1995-09-14 Daimler Benz Ag Vaporiser for transporting load of reactant mass flow
DE19548806C2 (en) * 1995-02-14 1998-03-26 Evt Energie & Verfahrenstech Process and plant for generating steam with supercritical steam parameters in a continuous steam generator
US5901669A (en) * 1995-04-05 1999-05-11 The Babcock & Wilcox Company Variable pressure once-through steam generator upper furnace having non-split flow circuitry
DE19644763A1 (en) * 1996-10-28 1998-04-30 Siemens Ag Steam generator pipe
DE19651678A1 (en) 1996-12-12 1998-06-25 Siemens Ag Steam generator
US6092490A (en) * 1998-04-03 2000-07-25 Combustion Engineering, Inc. Heat recovery steam generator
DK1086339T3 (en) 1998-06-10 2002-04-15 Siemens Ag Fossil fired through steam generator
DE19825800A1 (en) * 1998-06-10 1999-12-16 Siemens Ag Fossil-fuel steam generator
IL134035A0 (en) * 2000-01-13 2001-04-30 Ronen Daniel A device, system and method for remote push-publishing of content onto display screens of mobile devices including a screen saver application
US6619041B2 (en) * 2001-06-29 2003-09-16 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Steam generation apparatus and methods
EP1533565A1 (en) * 2003-11-19 2005-05-25 Siemens Aktiengesellschaft Once-through steam generator
JP4787284B2 (en) * 2007-03-27 2011-10-05 ダイキン工業株式会社 Heat pump type water heater
US7594401B1 (en) * 2008-04-10 2009-09-29 General Electric Company Combustor seal having multiple cooling fluid pathways
JP5193007B2 (en) * 2008-12-03 2013-05-08 三菱重工業株式会社 Boiler structure
DE102009040250B4 (en) * 2009-09-04 2015-05-21 Alstom Technology Ltd. Forced-circulation steam generator for the use of steam temperatures of more than 650 degrees C
GB201010038D0 (en) * 2010-06-16 2010-07-21 Doosan Power Systems Ltd Steam generator
DE102010038883C5 (en) * 2010-08-04 2021-05-20 Siemens Energy Global GmbH & Co. KG Forced once-through steam generator
DE102010061186B4 (en) * 2010-12-13 2014-07-03 Alstom Technology Ltd. Forced circulation steam generator with wall heating surface and method for its operation
JP2012220043A (en) * 2011-04-04 2012-11-12 Mitsubishi Heavy Ind Ltd Steam generator
CN102798114B (en) * 2012-08-30 2014-09-03 上海锅炉厂有限公司 Method for arranging water-cooled wall of vertical pipe panel of internal thread pipe with non-uniform caliber

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US475479A (en) * 1892-05-24 Low-pressure steam-boiler
DE739376C (en) * 1940-01-17 1943-09-23 Rheinmetall Borsig Ag Water tube steam generator
GB574810A (en) * 1942-06-23 1946-01-22 Bbc Brown Boveri & Cie Heat exchanger for heating gases and vapours to a high temperature
US3221713A (en) * 1963-08-20 1965-12-07 Babcock & Wilcox Co Forced flow vapor generator
US3556059A (en) * 1969-01-28 1971-01-19 Foster Wheeler Corp Two-pass furnace circuit arrangement for once-through vapor generator
DE2557427A1 (en) * 1975-12-19 1977-06-30 Kraftwerk Union Ag CIRCUIT OF A FIRE ROOM LUG IN A FLOW-THROUGH BOILER WITH GAS-TIGHT WELDED WALLS IN TWO CONSTRUCTION
US4191133A (en) * 1977-11-07 1980-03-04 Foster Wheeler Energy Corporation Vapor generating system utilizing integral separators and angularly arranged furnace boundary wall fluid flow tubes having rifled bores
US4178881A (en) * 1977-12-16 1979-12-18 Foster Wheeler Energy Corporation Vapor generating system utilizing angularly arranged bifurcated furnace boundary wall fluid flow tubes
PL204072A1 (en) * 1978-01-17 1979-09-24 Katowice Metalurgiczny Huta RECOVERY BOILER, ESPECIALLY FOR THE STEEL CONVERTER
EP0352488B1 (en) * 1988-07-26 1993-10-06 Siemens Aktiengesellschaft Once-through steam generator
DE4232880A1 (en) * 1992-09-30 1994-03-31 Siemens Ag Fossil-fuelled steam-generator - has tubes forming flue walls joined together gas-tight at bottom and leaving intervening gaps further up
US5390631A (en) * 1994-05-25 1995-02-21 The Babcock & Wilcox Company Use of single-lead and multi-lead ribbed tubing for sliding pressure once-through boilers

Also Published As

Publication number Publication date
JP3188270B2 (en) 2001-07-16
KR100209115B1 (en) 1999-07-15
DK0657010T3 (en) 1997-06-02
TW228565B (en) 1994-08-21
UA27923C2 (en) 2000-10-16
RU95106598A (en) 1996-12-27
US5701850A (en) 1997-12-30
DE59304695D1 (en) 1997-01-16
SK22295A3 (en) 1995-07-11
DE4227457A1 (en) 1994-02-24
CN1083573A (en) 1994-03-09
WO1994004870A1 (en) 1994-03-03
RU2109209C1 (en) 1998-04-20
ES2095660T3 (en) 1997-02-16
CZ287735B6 (en) 2001-01-17
DK0657010T4 (en) 1999-12-13
ATE145980T1 (en) 1996-12-15
CZ37595A3 (en) 1995-08-16
EP0657010A1 (en) 1995-06-14
CA2142840A1 (en) 1994-03-03
KR950703135A (en) 1995-08-23
ES2095660T5 (en) 1999-11-16
GR3022186T3 (en) 1997-03-31
CN1043680C (en) 1999-06-16
JPH08500426A (en) 1996-01-16
EP0657010B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
EP0657010B1 (en) Steam generator
EP0617778B1 (en) Fossil-fuelled continuous steam generator
EP0349834B1 (en) Once-through steam generator
EP0581760B2 (en) Continuous flow steam generator with a vertical gas flue of substantially vertically fitted pipes
EP0720714B1 (en) Steam boiler of once-through type and process for operating the same
EP0778932A1 (en) Continuous steam generator
EP0937218B1 (en) Method applicable to a continuous steam generator, and the steam generator needed for applying same
DE4232880A1 (en) Fossil-fuelled steam-generator - has tubes forming flue walls joined together gas-tight at bottom and leaving intervening gaps further up
EP0233998B1 (en) Preset flue gas temperature-adjusting device
EP0873489B1 (en) Continuous-flow steam generator with spiral evaporation tubes
EP0812407B1 (en) Process and system for starting a continuous steam generator
EP0349767B1 (en) Once-through forced-flow steam generator
EP2564117B1 (en) Steam generator
CH666532A5 (en) Brennkammer-rohranordnung in zwangdurchlauf-dampferzeugern.
WO2005050089A1 (en) Continuous steam generator
DE4236835A1 (en) Steam generator
DE3921076C1 (en)
WO1998019107A1 (en) Steam generator tube
DE2528133B2 (en) CONTACTING THE FIRE FUNNEL OF A CONTINUOUS STEAM GENERATOR
DE3630159A1 (en) Fluidised-bed (vortex) furnace having at least one platen heating surface
DE4106868A1 (en) Gas turbine exhaust boiler - has peripheral cooling pipes connected at right angles to distributor and collector pipes
DD260314A1 (en) TRAINING OF THE FIRST TRAIN OF A NATURAL RUN WITH HIGHER PRESSURE LEVEL WORKING, SWIVELED SWIVEL BOILER
DE9102579U1 (en) Natural circulation waste heat boiler behind gas turbine with additional firing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940620

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960514

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

REF Corresponds to:

Ref document number: 145980

Country of ref document: AT

Date of ref document: 19961215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 59304695

Country of ref document: DE

Date of ref document: 19970116

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2095660

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3022186

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970213

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: ASEA BROWN BOVERI AG

Effective date: 19970903

Opponent name: EVT ENERGIE- UND VERFAHRENSTECHNIK GMBH

Effective date: 19970826

NLR1 Nl: opposition has been filed with the epo

Opponent name: ASEA BROWN BOVERI AG

Opponent name: EVT ENERGIE- UND VERFAHRENSTECHNIK GMBH

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19980831

Year of fee payment: 6

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALSTOM ENERGY SYSTEMS GMBH * 970903 ASEA BROWN BOV

Effective date: 19970826

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

NLR1 Nl: opposition has been filed with the epo

Opponent name: ASEA BROWN BOVERI AG

Opponent name: ALSTOM ENERGY SYSTEMS GMBH

R26 Opposition filed (corrected)

Opponent name: ALSTOM ENERGY SYSTEMS GMBH * 970903 ASEA BROWN BOV

Effective date: 19970826

NLR1 Nl: opposition has been filed with the epo

Opponent name: ASEA BROWN BOVERI AG

Opponent name: ALSTOM ENERGY SYSTEMS GMBH

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19990825

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

ET3 Fr: translation filed ** decision concerning opposition
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19991013

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000823

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010814

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010820

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010823

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010829

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011112

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020717

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020807

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20020831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030806

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110822

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120809

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120823

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121019

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59304695

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59304695

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130805