EP0425717B1 - Once-through steam generator - Google Patents

Once-through steam generator Download PDF

Info

Publication number
EP0425717B1
EP0425717B1 EP89120140A EP89120140A EP0425717B1 EP 0425717 B1 EP0425717 B1 EP 0425717B1 EP 89120140 A EP89120140 A EP 89120140A EP 89120140 A EP89120140 A EP 89120140A EP 0425717 B1 EP0425717 B1 EP 0425717B1
Authority
EP
European Patent Office
Prior art keywords
heating surface
section
pipe section
steam generator
evaporator heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89120140A
Other languages
German (de)
French (fr)
Other versions
EP0425717A1 (en
Inventor
Joachim Dr. Dipl.-Phys. Franke
Volker Dr. Dipl.-Ing. Kefer
Eberhard Dipl.-Ing. Wittchow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE58909259T priority Critical patent/DE58909259D1/en
Priority to EP89120140A priority patent/EP0425717B1/en
Priority to CA002028796A priority patent/CA2028796A1/en
Priority to JP2295175A priority patent/JP2865851B2/en
Publication of EP0425717A1 publication Critical patent/EP0425717A1/en
Priority to US07/782,869 priority patent/US5159897A/en
Application granted granted Critical
Publication of EP0425717B1 publication Critical patent/EP0425717B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines

Definitions

  • the invention relates to a once-through steam generator according to the preamble of patent claim 1.
  • a high-temperature nuclear reactor is connected to the lower end of the gas train, which emits hot gas so that this hot gas flows through the gas train from bottom to top.
  • the inlet header of the evaporator heating surface arranged in the gas train is located at its upper end and the outlet header between the upper and lower ends of the evaporator heating surface.
  • the pipes of the lower section end of the upper pipe section of this evaporator heating surface pass into the lower section section of the lower pipe section without an intermediate collector. In this evaporator heating surface, not only evaporation takes place, but also preheating of the water and overheating of the generated steam.
  • the tubes of the evaporator heating surface are flowed through only in the upper tube section, starting from the inlet header to the outlet header, in cross-counterflow to the vertically upward hot gas stream in the gas flue, whereas the lower tube section, in which vaporization primarily takes place, is flowed through in cross-direct current to the hot gas stream. Therefore, the temperature difference between the water vapor in the upper section of the lower pipe section and the upward hot gas flow is only relatively small, so that the heating surface required for a sufficient preheating of the water vapor for the lower pipe section must be very large.
  • a device emitting hot gas for example a gas turbine
  • a gas turbine is set to approximately normal zero, it can be cheaper to connect the outlet channel for the hot gas of this device not at the upper end of the vertical gas train of the continuous steam generator, but at the lower end, so that the hot gas flows through the vertical gas train from bottom to top.
  • the invention is based, to design the continuous steam generator optimally for this case, the task.
  • a continuous steam generator according to the invention has the features of the characterizing part of patent claim 1.
  • the continuous steam generator according to FIG 1 has a vertical throttle cable 2 with a rectangular cross-section with a gas-tight wall made of sheet steel. At the lower end of this gas train 2, an outlet duct 3 for hot gas of a gas turbine is connected, so that this hot gas flows through the vertical gas train 2 in the direction of arrow 32 from the bottom up.
  • An evaporator heating surface 4 is arranged within the vertical throttle cable 2, which has an inlet header 5 and an outlet header 6 outside the throttle cable 2.
  • the inlet header 5 is at a locally higher level than the outlet header 6, that is to say it is arranged above the outlet header 6.
  • the tubes of the evaporator heating surface 4 form three tube sections I, II and III.
  • the pipe section II is located above the pipe section III and the pipe section I above the pipe section II.
  • the pipe section I has an upper section end 7 which is connected to the inlet header 5 in terms of flow.
  • this pipe section I has a lower section end 8 which merges on the outside of the throttle cable 2 into a lower section end 9 which the pipe section II has.
  • a section upper end 10 of the pipe section II merges on the outside of the throttle cable 2 into a section upper end 11 which the pipe section III has.
  • the lower section end 12 of the pipe section III is connected in terms of flow to the outlet header 6.
  • the pipe section I is flowed through in cross / counterflow to the hot gas, the direction of which the arrow 32 indicates.
  • the water is preheated in this pipe section I, and evaporation can also begin.
  • water flows through this pipe section I in the direction of gravity but the difference between the temperature of the hot gas and the water / steam in the pipe section I is also relatively large, so that the heating surface in the pipe section I can be relatively small. Furthermore, only relatively little steam is formed in the pipe section I, so that flow disturbances practically do not occur.
  • the pipe section II is flowed through by evaporating water in the direction of arrow 32 of the hot gas, that is to say in cross / direct current, and thus counter to gravity, so that flow disturbances in this pipe section II are avoided.
  • the pipe section III is finally flowed through again in the direction of the arrow 32 of the hot gas in cross / countercurrent, so that the difference between the temperature of the hot gas and the water / steam in the pipe section III is again relatively large, so that the heating surface size in the pipe section III again can be relatively small.
  • pipe section III not only evaporation, but also overheating of the steam flowing through can take place.
  • the pipes of the evaporator heating surface 4 can have different inner diameters and thus lead to different mass flow densities, on the one hand to ensure the entrainment of vapor bubbles in the case of cross / counterflow to the hot gas and on the other hand only a relatively low one in the case of cross / direct flow to the hot gas To generate friction pressure loss.
  • an evaporator heating surface 4 is arranged similarly as in FIG. 1, but the tubes of which only form two tube sections IV and V.
  • the pipe section IV located above the pipe section V has a section upper end 13 and a section lower end 14, the pipe section V a section upper end 15 and a section lower end 16.
  • the section upper end 13 of the pipe section IV merges on the outside of the throttle cable 2 into the upper section end 15 of the pipe section V, the lower section end 16 of which is connected in terms of flow to the outlet header 6 on the outside of the gas cable 2.
  • the lower section end 14 of the pipe section IV is connected in terms of flow to the inlet header 5 of the evaporator heating surface 4, which is also located outside the gas flue 2 and is arranged there at a locally higher level than the outlet header 6.
  • the inlet header 5 is connected by a water line 17 to an outlet header 18 of an economizer heating surface 19, which is arranged in the gas flue 2 at its upper end above the evaporator heating surface 4 and also has an inlet header 20 on the outside of the gas flue 2.
  • a pressure booster pump 21 in the water line 17 which pumps water in the direction of the inlet header 5 of the evaporator heating surface 4 and which is followed by a valve 22 located in front of the inlet header 5 as a control valve.
  • a steam line 23 leads from the outlet header 6, which leads to an inlet header 24 of a superheater heating surface 25 arranged in the gas flue 2 at its lower end below the evaporator heating surface 4.
  • This superheater heating surface 25 has an outlet manifold 26 on the outside of the gas flue at a locally lower level than the outlet manifold 6.
  • a water-steam separating device (not shown) can also be installed in the steam line 23, which facilitates the start-up of the continuous steam generator.
  • the outlet header 18 of the economiser heating surface 19 advantageously forms a water-steam separating device, from which a steam line 27 also branches off and leads to the steam line 23 leaving the outlet header 6.
  • each pipe of the evaporator heating surface 4 advantageously has its own connecting pipe 29.
  • This connecting pipe 29 is guided to a pressure compensation vessel 30, which is located outside the vertical throttle cable 2.
  • helically arranged ribs 104 are provided on the inside of the tubes of the evaporator heating surface 4 in the upper tube section IV, as a result of which an improved heat transfer from these tubes to the evaporating element in them Water is achieved.
  • the evaporation of feed water flowing into the economizer heating surface 19 from the inlet header 20 of the continuous steam generator according to FIG. 2 can already start in the tubes of the economizer heating surface 19.
  • the evaporation in the tubes of the economiser heating surface 19 can take place at low pressure and therefore also at a low evaporation temperature, since the economiser heating surface 19 is connected in terms of flow in front of the booster pump 21. Therefore, the difference between the temperature of the hot gas in the gas train 2 and the evaporation temperature in the tubes of the economizer heating surface 19 is relatively large, so that the economizer heating surface 19 can be made relatively small.
  • pressure loss within the tubes of the evaporator heating surface 4 can be compensated or overcompensated.
  • Vapor already formed in the economiser heating surface 19 can be separated from the water in the outlet collector 18 of this economiser heating surface 19 forming a water-steam separating device and via the steam line 27 to the steam line 23 between the Outlet collector 6 of the evaporator heating surface 4 and the inlet collector 24 of the superheater heating surface 25 are guided.
  • the pressure booster pump 21 therefore only needs to convey a relatively small water flow.
  • the supply to the evaporator heating surface 4 can always be controlled so that the steam is already overheated in the evaporator heating surface 4. Furthermore, the evaporation end in the tubes of the evaporator heating surface 4 can be varied with the control valve 22, as a result of which a desired steam temperature in the outlet header 26 of the superheater heating surface 25 can always be set depending on the load on the continuous steam generator.

Description

Die Erfindung betrifft einen Durchlaufdampferzeuger nach dem Oberbegriff des Patentanspruches 1.The invention relates to a once-through steam generator according to the preamble of patent claim 1.

Ein derartiger Durchlaufdampferzeuger ist aus der deutschen Auslegeschrift 1 122 082 bekannt.Such a once-through steam generator is known from German Patent Specification 1 122 082.

Bei diesem bekannten Durchlaufdampferzeuger ist am Unterende des Gaszuges ein Hochtemperaturkernreaktor angeschlossen, der Heißgas abgibt, so daß dieses Heißgas den Gaszug von unten nach oben durchströmt.In this known continuous steam generator, a high-temperature nuclear reactor is connected to the lower end of the gas train, which emits hot gas so that this hot gas flows through the gas train from bottom to top.

Der Eintrittssammler der im Gaszug angeordneten Verdampferheizfläche befindet sich an deren Oberende und der Austrittssammler zwischen dem Ober- und dem Unterende der Verdampferheizfläche. Die Rohre des Abschnittsunterendes des oberen Rohrabschnittes dieser Verdampferheizfläche gehen ohne zwischengeschalteten Sammler in das Abschnittsunterende des unteren Rohrabschnittes über. In dieser Verdampferheizfläche findet nicht nur Verdampfung, sondern auch Vorwärmung des Wassers und Überhitzung des erzeugten Dampfes statt. Die Rohre der Verdampferheizfläche werden nur im oberen Rohrabschnitt ausgehend vom Eintrittssammler zum Austrittssammler im Kreuz-Gegenstrom zum vertikal nach oben gerichteten Heißgasstrom im Gaszug durchströmt, der untere Rohrabschnitt, in dem in erster Linie Verdampfung stattfindet, wird dagegen im Kreuz-Gleichstrom zum Heißgasstrom durchströmt. Deshalb ist die Temperaturdifferenz zwischen dem Wasserdampf im Abschnittsoberende des unteren Rohrabschnittes und dem nach oben gerichteten Heißgasstrom nur verhältnismäßig gering, so daß der Heizflächenaufwand zu einer ausreichenden Vorüberhitzung des Wasserdampfes für den unteren Rohrabschnitt sehr groß sein muß.The inlet header of the evaporator heating surface arranged in the gas train is located at its upper end and the outlet header between the upper and lower ends of the evaporator heating surface. The pipes of the lower section end of the upper pipe section of this evaporator heating surface pass into the lower section section of the lower pipe section without an intermediate collector. In this evaporator heating surface, not only evaporation takes place, but also preheating of the water and overheating of the generated steam. The tubes of the evaporator heating surface are flowed through only in the upper tube section, starting from the inlet header to the outlet header, in cross-counterflow to the vertically upward hot gas stream in the gas flue, whereas the lower tube section, in which vaporization primarily takes place, is flowed through in cross-direct current to the hot gas stream. Therefore, the temperature difference between the water vapor in the upper section of the lower pipe section and the upward hot gas flow is only relatively small, so that the heating surface required for a sufficient preheating of the water vapor for the lower pipe section must be very large.

Wird eine Heißgas abgebende Vorrichtung, also z.B. eine Gasturbine, auf etwa Normal-Null aufgestellt, so kann es durchaus kostengünstiger sein, den Austrittskanal für das Heißgas dieser Vorrichtung nicht am Oberende des vertikalen Gaszuges des Durchlaufdampferzeugers, sondern am Unterende anzuschließen, so daß das Heißgas den vertikalen Gaszug von unten nach oben durchströmt.If a device emitting hot gas, for example a gas turbine, is set to approximately normal zero, it can be cheaper to connect the outlet channel for the hot gas of this device not at the upper end of the vertical gas train of the continuous steam generator, but at the lower end, so that the hot gas flows through the vertical gas train from bottom to top.

Der Erfindung liegt die Aufgabe zugrunde, den Durchlaufdampferzeuger auch für diesen Fall optimal zu gestalten.The invention is based, to design the continuous steam generator optimally for this case, the task.

Zur Lösung dieser Aufgabe hat ein Durchlaufdampferzeuger erfindungsgemäß die Merkmale des kennzeichnenden Teiles des Patentanspruches 1.To achieve this object, a continuous steam generator according to the invention has the features of the characterizing part of patent claim 1.

Die Verdampferheizfläche eines solchen Durchlaufdampferzeugers, in der nicht nur Verdampfung, sondern auch Vorwärmung des Wassers und Überhitzung des erzeugten Wasserdampfes stattfinden kann, wird im unteren Rohrabschitt mit fortgeschrittener Verdampfung im Kreuzgegenstrom zum im Gaszug von unten nach oben durchströmenden Heißgas durchströmt, so daß die Temperaturdifferenz zwischen Heißgas und Wasser/Dampf im unteren Rohrabschnitt in der Verdampferheizfläche verhältnismäßig groß und damit die Größe der Verdampferheizfläche verhältnismäßig niedrig gehalten werden können. Die Verdampferheizfläche wird im oberen Rohrabschnitt aber auch vom Wasser/Dampf im Kreuz-/Gleichstrom zum Heißgas in Richtung entgegen der Schwerkraft durchströmt, so daß Durchflußstörungen weitgehend vermieden werden, die insbesondere Wasser mit einsetzender Verdampfung verursacht, das in einem Rohr in Richtung der Schwerkraft strömen muß.The evaporator heating surface of such a continuous steam generator, in which not only evaporation, but also preheating of the water and overheating of the generated water vapor can take place, is flowed through in the lower pipe section with advanced evaporation in cross-counterflow to the hot gas flowing in the gas train from bottom to top, so that the temperature difference between Hot gas and water / steam in the lower pipe section in the evaporator heating surface are relatively large and thus the size of the evaporator heating surface can be kept relatively low. In the upper tube section, however, the evaporator heating surface is also traversed by water / steam in cross / direct current to the hot gas in the direction counter to gravity, so that flow disturbances are largely avoided, which in particular causes water with the onset of evaporation, which flow in a tube in the direction of gravity got to.

Die Unteransprüche sind auf vorteilhafte Weiterbildungen des Durchlaufdampferzeugers nach dem Patentanspruch 1 gerichtet.The subclaims are directed to advantageous developments of the once-through steam generator according to claim 1.

Aus "Fossil beheizte Dampfkraftwerke", Technischer Verlag Resch, Verlag TÜV Rheinland, Köln, 1986, Seite 250, ist zwar ein Dampferzeuger mit einem vertikalen Gaszug bekannt, an dessen Unterende der Austrittskanal einer Gasturbine angeschlossen ist, so daß der Gaszug vom Heißgas von unten nach oben durchströmt wird. Es handelt sich jedoch nicht um einen Durchlaufdampferzeuger, sondern um einen Zwangumlaufdampferzeuger mit einer Verdampferheizfläche im Gaszug, deren Eintrittssammler ein örtlich niedrigeres Niveu als der Austrittssammler hat. Sowohl der Eintritts- als auch der Austrittssammler sind an einer Trommel angeschlossen, aus der Wasser in den Eintrittssammler der Verdampferheizfläche und durchweg im Kreuz-/Gleichstrom zum Heißgas von unten nach oben durch die Verdampferheizfläche gepumpt wird.From "Fossil Heated Steam Power Plants", Technical Publishing House Resch, Publishing House TÜV Rheinland, Cologne, 1986, page 250, a steam generator with a vertical throttle cable is known, to the lower end of which the outlet duct of a gas turbine is connected, so that the gas train from the hot gas from below is flowed upwards. However, it is not a once-through steam generator, but rather a forced-circulation steam generator with an evaporator heating surface in the gas train, the inlet manifold of which has a locally lower level than the outlet manifold. Both the inlet and the outlet header are connected to a drum from which water is pumped into the inlet header of the evaporator heating surface and consistently in cross / direct flow to the hot gas from bottom to top through the evaporator heating surface.

Die Erfindung und ihre Vorteile seien anhand der Zeichnung an Ausführungsbeispielen näher erläutert:

  • FIG 1 zeigt schematisch und im Längsschnitt einen erfindungsgemäßen Durchlaufdampferzeuger.
  • FIG 2 zeigt ebenfalls im Längsschnitt und schematisch eine andere Ausführungsform eines erfindungsgemäßen Durchlaufdampferzeugers.
  • FIG 3 zeigt im Längsschnittschnitt ein Rohr einer Verdampferheizfläche.
The invention and its advantages are explained in more detail with reference to the drawing using exemplary embodiments:
  • 1 shows schematically and in longitudinal section a once-through steam generator according to the invention.
  • 2 also shows in longitudinal section and schematically another embodiment of a once-through steam generator according to the invention.
  • 3 shows in longitudinal section a tube of an evaporator heating surface.

Der Durchlaufdampferzeuger nach FIG 1 weist einen vertikalen Gaszug 2 mit rechteckigem Querschnitt auf mit einer aus Stahlblech bestehenden gasdichten Wand. Am Unterende dieses Gaszuges 2 ist ein Austrittskanal 3 für Heißgas einer Gasturbine angeschlossen, so daß dieses Heißgas den vertikalen Gaszug 2 in Richtung des Pfeiles 32 von unten nach oben durchströmt.The continuous steam generator according to FIG 1 has a vertical throttle cable 2 with a rectangular cross-section with a gas-tight wall made of sheet steel. At the lower end of this gas train 2, an outlet duct 3 for hot gas of a gas turbine is connected, so that this hot gas flows through the vertical gas train 2 in the direction of arrow 32 from the bottom up.

Innerhalb des vertikalen Gaszuges 2 ist eine Verdampferheizfläche 4 angeordnet, die einen Eintrittssammler 5 und einen Austrittssammler 6 außerhalb des Gaszuges 2 hat. Der Eintrittssammler 5 befindet sich auf einem örtlich höheren Niveau als der Austrittssammler 6, ist also oberhalb des Austrittssammler 6 angeordnet.An evaporator heating surface 4 is arranged within the vertical throttle cable 2, which has an inlet header 5 and an outlet header 6 outside the throttle cable 2. The inlet header 5 is at a locally higher level than the outlet header 6, that is to say it is arranged above the outlet header 6.

In FIG 1 ist nur ein einziges mäanderartig geführtes Rohr der Verdampferheizfläche 4 dargestellt. Tatsächlich sind eine Vielzahl solcher gleich ausgebildeter Rohre rechtwinklig zur Zeichenebene, d.h. quer im Gaszug 2 nebeneinander angeordnet und sowohl am Eintrittssammler 5 als auch am Austrittssammler 6 angeschlossen. An Rohrbögen 31 können die Rohre der Verdampferheizfläche 4 auch durch Wand des Gaszuges 2 hindurch nach außen geführt sein, so daß sich diese Rohrbögen 31 außerhalb des Gaszuges 2 befinden.1 shows only a single meandering tube of the evaporator heating surface 4. In fact, a large number of such tubes of the same design are perpendicular to the drawing plane, i.e. arranged transversely in the throttle cable 2 next to each other and connected to both the inlet header 5 and the outlet header 6. On pipe elbows 31, the tubes of the evaporator heating surface 4 can also be guided outwards through the wall of the gas flue 2, so that these pipe elbows 31 are located outside the gas flue 2.

Die Rohre der Verdampferheizfläche 4 bilden drei Rohrabschnitte I, II und III. Der Rohrabschnitt II befindet sich über dem Rohrabschnitt III und der Rohrabschnitt I über dem Rohrabschnitt II. Der Rohrabschnitt I hat ein Abschnittsoberende 7, das am Eintrittssammler 5 durchflußmäßig angeschlossen ist. Ferner hat dieser Rohrabschnitt I ein Abschnittsunterende 8, das auf der Außenseite des Gaszuges 2 in ein Abschnittsunterende 9 übergeht, das der Rohrabschnitt II hat. Ein Abschnittsoberende 10 des Rohrabschnittes II geht auf der Außenseite des Gaszuges 2 in ein Abschnittsoberende 11 über, das der Rohrabschnitt III hat. Das Abschnittsunterende 12 des Rohrabschnittes III ist durchflußmäßig am Austrittssammler 6 angeschlossen.The tubes of the evaporator heating surface 4 form three tube sections I, II and III. The pipe section II is located above the pipe section III and the pipe section I above the pipe section II. The pipe section I has an upper section end 7 which is connected to the inlet header 5 in terms of flow. Furthermore, this pipe section I has a lower section end 8 which merges on the outside of the throttle cable 2 into a lower section end 9 which the pipe section II has. A section upper end 10 of the pipe section II merges on the outside of the throttle cable 2 into a section upper end 11 which the pipe section III has. The lower section end 12 of the pipe section III is connected in terms of flow to the outlet header 6.

Strömt Speisewasser aus dem Eintrittssammler 5 in die Verdampferheizfläche 4, so wird der Rohrabschnitt I im Kreuz-/Gegenstrom zum Heißgas durchströmt, dessen Richtung der Pfeil 32 angibt. In diesem Rohrabschnitt I wird das Wasser vorgewärmt, auch kann schon Verdampfung einsetzen. Zwar wird dieser Rohrabschnitt I vom Wasser in Richtung der Schwerkraft durchströmt, dafür ist aber auch die Differenz zwischen der Temperatur des Heißgases und des Wassers/Dampfes in dem Rohrabschnitt I verhältnismäßig groß, so daß die Heizfläche im Rohrabschnitt I verhältnismäßig klein sein kann. Ferner wird im Rohrabschnitt I nur verhältnismäßig wenig Dampf gebildet, so daß Durchflußstörungen praktisch nicht auftreten.If feed water flows from the inlet manifold 5 into the evaporator heating surface 4, the pipe section I is flowed through in cross / counterflow to the hot gas, the direction of which the arrow 32 indicates. The water is preheated in this pipe section I, and evaporation can also begin. Although water flows through this pipe section I in the direction of gravity, but the difference between the temperature of the hot gas and the water / steam in the pipe section I is also relatively large, so that the heating surface in the pipe section I can be relatively small. Furthermore, only relatively little steam is formed in the pipe section I, so that flow disturbances practically do not occur.

Der Rohrabschnitt II wird von verdampfendem Wasser in Richtung des Pfeiles 32 des Heißgases, also im Kreuz-/Gleichstrom, und damit entgegen der Schwerkraft durchströmt, so daß in diesem Rohrabschnitt II Durchflußstörungen vermieden werden.The pipe section II is flowed through by evaporating water in the direction of arrow 32 of the hot gas, that is to say in cross / direct current, and thus counter to gravity, so that flow disturbances in this pipe section II are avoided.

Der Rohrabschnitt III wird schließlich wieder gegen die Richtung des Pfeiles 32 des Heißgases im Kreuz-/Gegenstrom durchströmt, so daß die Differenz zwischen der Temperatur des Heißgases und des Wassers/Dampfes im Rohrabschnitt III wieder verhältnismäßig groß ist, so daß die Heizflächengröße im Rohrabschnitt III wieder verhältnismäßig klein sein kann. Im Rohrabschnitt III kann nicht nur Verdampfung, sondern auch schon Überhitzung des durchströmenden Dampfes erfolgen. In den Rohrabschnitten I, II und III können die Rohre der Verdampferheizfläche 4 unterschiedliche Innendurchmesser haben und damit unterschiedliche Massenstromdichten führen, um einerseits beim Kreuz-/Gegenstrom zum Heißgas das Mitreißen von Dampfblasen sicherzustellen und andererseits bei Kreuz-/Gleichstrom zum Heißgas nur einen verhältnismäßig niedrigen Reibungsdruckverlust zu erzeugen.The pipe section III is finally flowed through again in the direction of the arrow 32 of the hot gas in cross / countercurrent, so that the difference between the temperature of the hot gas and the water / steam in the pipe section III is again relatively large, so that the heating surface size in the pipe section III again can be relatively small. In pipe section III, not only evaporation, but also overheating of the steam flowing through can take place. In the pipe sections I, II and III, the pipes of the evaporator heating surface 4 can have different inner diameters and thus lead to different mass flow densities, on the one hand to ensure the entrainment of vapor bubbles in the case of cross / counterflow to the hot gas and on the other hand only a relatively low one in the case of cross / direct flow to the hot gas To generate friction pressure loss.

In FIG 2 sind gleiche Teile mit gleichen Bezugszeichen wie in FIG 1 versehen. Im vertikalen Gaszug 2 ist ähnlich wie in FIG 1 eine Verdampferheizfläche 4 angeordnet, deren Rohre jedoch nur zwei Rohrabschnitte IV und V bilden. Der über dem Rohrabschnitt V befindliche Rohrabschnitt IV hat ein Abschnittsoberende 13 und ein Abschnittsunterende 14, der Rohrabschnitt V ein Abschnittsoberende 15 und ein Abschnittsunterende 16. Das Abschnittsoberende 13 des Rohrabschnittes IV geht auf der Außenseite des Gaszuges 2 in das Abschnittsoberende 15 des Rohrabschnittes V über, dessen Abschnittsunterende 16 durchflußmäßig am Austrittssammler 6 auf der Außenseite des Gaszuges 2 angeschlossen ist. Das Abschnittsunterende 14 des Rohrabschnittes IV ist durchflußmäßig an dem Eintrittssammler 5 der Verdampferheizfläche 4 angeschlossen, der sich ebenfalls außerhalb des Gaszuges 2 befindet und dort auf einem örtlich höheren Niveau als der Austrittssammler 6 angeordnet ist.In FIG. 2, the same parts are provided with the same reference symbols as in FIG. 1. In the vertical throttle cable 2, an evaporator heating surface 4 is arranged similarly as in FIG. 1, but the tubes of which only form two tube sections IV and V. The pipe section IV located above the pipe section V has a section upper end 13 and a section lower end 14, the pipe section V a section upper end 15 and a section lower end 16. The section upper end 13 of the pipe section IV merges on the outside of the throttle cable 2 into the upper section end 15 of the pipe section V, the lower section end 16 of which is connected in terms of flow to the outlet header 6 on the outside of the gas cable 2. The lower section end 14 of the pipe section IV is connected in terms of flow to the inlet header 5 of the evaporator heating surface 4, which is also located outside the gas flue 2 and is arranged there at a locally higher level than the outlet header 6.

Der Eintrittssammler 5 ist durch eine Wasserleitung 17 mit einem Austrittssammler 18 einer Economiserheizfläche 19 verbunden, die im Gaszug 2 an dessen Oberende oberhalb der Verdampferheizfläche 4 angeordnet ist und einen Eintrittssammler 20 ebenfalls auf der Außenseite des Gaszuges 2 aufweist.The inlet header 5 is connected by a water line 17 to an outlet header 18 of an economizer heating surface 19, which is arranged in the gas flue 2 at its upper end above the evaporator heating surface 4 and also has an inlet header 20 on the outside of the gas flue 2.

Günstigerweise befindet sich in der Wasserleitung 17 eine Druckerhöhungspumpe 21, die Wasser in Richtung des Eintrittssammlers 5 der Verdampferheizfläche 4 pumpt und der ein vor dem Eintrittssammler 5 befindliches Ventil 22 als Regelarmatur nachgeschaltet ist.Conveniently, there is a pressure booster pump 21 in the water line 17 which pumps water in the direction of the inlet header 5 of the evaporator heating surface 4 and which is followed by a valve 22 located in front of the inlet header 5 as a control valve.

Vom Austrittssammler 6 geht eine Dampfleitung 23 ab, die zu einem Eintrittssammler 24 einer im Gaszug 2 an dessen Unterende unterhalb der Verdampferheizfläche 4 angeordneten Überhitzerheizfläche 25 führt. Diese Überhitzerheizfläche 25 hat außen am Gaszug einen Austrittssammler 26 auf örtlich niedrigerem Niveau als der Austrittssammler 6. In die Dampfleitung 23 kann vorteilhafterweise auch eine nicht dargestellte Wasser-Dampf-Trennvorrichtung eingebaut sein, die das Anfahren des Durchlaufdampferzeugers erleichtert.A steam line 23 leads from the outlet header 6, which leads to an inlet header 24 of a superheater heating surface 25 arranged in the gas flue 2 at its lower end below the evaporator heating surface 4. This superheater heating surface 25 has an outlet manifold 26 on the outside of the gas flue at a locally lower level than the outlet manifold 6. Advantageously, a water-steam separating device (not shown) can also be installed in the steam line 23, which facilitates the start-up of the continuous steam generator.

Der Austrittssammler 18 der Economiserheizfläche 19 bildet günstigerweise eine Wasser-Dampf-Trennvorrichtung, von der auch noch eine Dampfleitung 27 abgeht und zu der vom Austrittssammler 6 abgehenden Dampfleitung 23 führt.The outlet header 18 of the economiser heating surface 19 advantageously forms a water-steam separating device, from which a steam line 27 also branches off and leads to the steam line 23 leaving the outlet header 6.

Im unteren Rohrabschnitt V der Verdampferheizfläche 4 geht an einer Stelle 28 zwischen Abschnittsoberende 15 und Abschnittsunterende 16 von jedem Rohr der Verdampferheizfläche 4 günstigerweise ein eigenes Verbindungsrohr 29 ab. Dieses Verbindungsrohr 29 ist zu einem Druckausgleichsgefäß 30 geführt, welches sich außerhalb des vertikalen Gaszuges 2 befindet.In the lower tube section V of the evaporator heating surface 4, at a point 28 between the upper section end 15 and the lower section end 16, each pipe of the evaporator heating surface 4 advantageously has its own connecting pipe 29. This connecting pipe 29 is guided to a pressure compensation vessel 30, which is located outside the vertical throttle cable 2.

Wie der Längsschnitt nach FIG 3 durch ein Rohr der Verdampferheizfläche 4 im oberen Rohrabschnitt IV zeigt, sind an den Rohren der Verdampferheizfläche 4 im oberen Rohrabschnitt IV an der Innenseite schraubenförmig angeordnete Rippen 104 vorgesehen, wodurch ein verbesserter Wärmeübergang von diesen Rohren an das in ihnen verdampfende Wasser erzielt wird.As the longitudinal section according to FIG. 3 shows through a tube of the evaporator heating surface 4 in the upper tube section IV, helically arranged ribs 104 are provided on the inside of the tubes of the evaporator heating surface 4 in the upper tube section IV, as a result of which an improved heat transfer from these tubes to the evaporating element in them Water is achieved.

Die Verdampfung von aus dem Eintrittssammler 20 des Durchlaufdampferzeugers nach FIG 2 in die Economiserheizfläche 19 einströmendem Speisewasser kann bereits in den Rohren der Economiserheizfläche 19 einsetzen. Die Verdampfung in den Rohren der Economiserheizfläche 19 kann bei niedrigem Druck und deshalb auch bei einer niedrigen Verdampfungstemperatur erfolgen, da die Economiserheizfläche 19 durchflußmäßig vor die Druckerhöhungspumpe 21 geschaltet ist. Deshalb ist die Differenz zwischen der Temperatur des Heißgases im Gaszug 2 und der Verdampfungstemperatur in den Rohren der Economiserheizfläche 19 verhältnismäßig groß, so daß die Economiserheizfläche 19 verhältnismäßig klein ausgeführt sein kann.The evaporation of feed water flowing into the economizer heating surface 19 from the inlet header 20 of the continuous steam generator according to FIG. 2 can already start in the tubes of the economizer heating surface 19. The evaporation in the tubes of the economiser heating surface 19 can take place at low pressure and therefore also at a low evaporation temperature, since the economiser heating surface 19 is connected in terms of flow in front of the booster pump 21. Therefore, the difference between the temperature of the hot gas in the gas train 2 and the evaporation temperature in the tubes of the economizer heating surface 19 is relatively large, so that the economizer heating surface 19 can be made relatively small.

Mit Hilfe der Druckerhöhungspumpe 21 kann Druckverlust innerhalb der Rohre der Verdampferheizfläche 4 kompensiert oder überkompensiert werden.With the help of the pressure booster pump 21, pressure loss within the tubes of the evaporator heating surface 4 can be compensated or overcompensated.

Bereits in der Economiserheizfläche 19 entstandener Dampf kann in dem eine Wasser-Dampf-Trennvorrichtung bildenden Austrittssammler 18 dieser Economiserheizfläche 19 vom Wasser getrennt und über die Dampfleitung 27 zur Dampfleitung 23 zwischen dem Austrittssammler 6 der Verdampferheizfläche 4 und dem Eintrittssammler 24 der Überhitzerheizfläche 25 geführt werden. Die Druckerhöhungspumpe 21 braucht daher nur einen verhältnismäßig kleinen Wasserstrom zu fördern.Vapor already formed in the economiser heating surface 19 can be separated from the water in the outlet collector 18 of this economiser heating surface 19 forming a water-steam separating device and via the steam line 27 to the steam line 23 between the Outlet collector 6 of the evaporator heating surface 4 and the inlet collector 24 of the superheater heating surface 25 are guided. The pressure booster pump 21 therefore only needs to convey a relatively small water flow.

Mit Hilfe des Regelventils 22 kann die Zufuhr in die Verdampferheizfläche 4 stets so geregelt werden, daß der Dampf bereits in der Verdampferheizfläche 4 überhitzt wird. Ferner kann das Verdampfungsende in den Rohren der Verdampferheizfläche 4 mit dem Regelventil 22 variiert werden, wodurch stets ein gewünschte Dampftemperatur im Austrittssammler 26 der Überhitzerheizfläche 25 je nach der Last am Durchlaufdampferzeuger eingestellt werden kann.With the help of the control valve 22, the supply to the evaporator heating surface 4 can always be controlled so that the steam is already overheated in the evaporator heating surface 4. Furthermore, the evaporation end in the tubes of the evaporator heating surface 4 can be varied with the control valve 22, as a result of which a desired steam temperature in the outlet header 26 of the superheater heating surface 25 can always be set depending on the load on the continuous steam generator.

Mit Hilfe des Druckausgleichgefäßes 30 erfolgt ein Druckausgleich zwischen den durchflußmäßig parallel geschalteten Rohren der Verdampferheizfläche 4, wodurch Durchflußunterschiede in den einzelnen Rohren dieser Verdampferheizfläche 4 reduziert werden können, die durch unterschiedliche Beheizung der einzelnen Rohre dieser Verdampferheizfläche 4 infolge örtlicher Temperaturunterschiede im Heißgas entstehen.With the help of the pressure compensation vessel 30, a pressure equalization takes place between the tubes of the evaporator heating surface 4 connected in parallel in terms of flow, whereby flow differences in the individual tubes of this evaporator heating surface 4 can be reduced which result from different heating of the individual tubes of this evaporator heating surface 4 as a result of local temperature differences in the hot gas.

Aus der Uberhitzerheizfläche 25 tritt schließlich überhitzter Dampf in den Austrittssammler 26 über.Superheated steam finally exits from the superheater heating surface 25 into the outlet collector 26.

Dem Eintrittssammler 20 der Economiserheizfläche 19 des Durchlaufdampferzeugers nach FIG 2 kann ein Regelventil zum Beeinflussen der Speisewasserzufuhr durchflußmäßig vorgeschaltet sein. Eine diesem Regelventil zugeordnete Regeleinrichtung kann als Regelgröße den Brennstoffstrom in die Gasturbine mit dem Austrittskanal 3, die mit dieser Gasturbine an einem elektrischen Generator erzeugte Leistung und/oder die Temperatur der Luft haben, die ein zur Gasturbine gehörender Verdichter ansaugt.A control valve for influencing the feed water supply can be connected upstream of the inlet collector 20 of the economiser heating surface 19 of the continuous steam generator according to FIG. A control device assigned to this control valve can, as a control variable, have the fuel flow into the gas turbine with the outlet duct 3, the power generated by this gas turbine on an electric generator and / or the temperature of the air which is sucked in by a compressor belonging to the gas turbine.

Je größer der Brennstoff oder die Leistung des elektrischen Generators bzw. je kleiner die Temperatur der vom Verdichter angesaugten Luft ist, umso weiter wird mit Hilfe der Regeleinrichtung das Regelventil zum Beeinflussen der Speisewasserzufuhr geöffnet.The greater the fuel or the power of the electric generator or the lower the temperature of the air drawn in by the compressor, the further the control valve is opened with the aid of the control device to influence the feed water supply.

Auf diese Weise kann das Verhältnis zwischen dem vom Heißgas an das Wasser bzw. an den Dampf im Durchlaufdampferzeuger abgegebenen Wärmestrom und dem zugeführten Speisewasserstrom stets auf einem vorgegebenen Wert gehalten werden.In this way, the ratio between the heat flow emitted by the hot gas to the water or to the steam in the once-through steam generator and the feed water flow supplied can always be kept at a predetermined value.

Claims (8)

  1. Continuous steam generator having a vertical gas flue (2) for connection to an outlet channel of a device, in particular a gas turbine, which produces hot gas, having an evaporator heating surface (4) in the vertical gas flue (2), which heating surface comprises an inlet header (5) and an outlet header (6) connected upstream of a superheater and whose pipes form a top pipe section (II; IV) with a section top end (10; 13) and a section bottom end (9; 14) and a bottom pipe section (III; V) likewise with a section top end (11; 15) and a section bottom end (12; 16),
    characterized in that
    the section top end (10; 13) of the top pipe section (II; IV) of said pipes verges into the section top end (11; 15) of the bottom pipe section (III; V).
  2. Continuous steam generator according to claim 1,
    characterized in that
    the pipes of the evaporator heating surface (4) in the vertical gas flue (2) above the top pipe section (II) form an additional pipe section (I) with a section top end (7) and a section bottom end (8) and
    that the section bottom end (8) of the additional pipe section (I) of said pipes verges into the section bottom end (9) of the top pipe section (II).
  3. Continuous steam generator according to claim 1,
    characterized in that
    the section bottom end (14) of the top pipe section (IV) of the pipes of the evaporator heating surface (4) is flow-connected to the inlet header (5) of said evaporator heating surface (4) and that said inlet header (5) is flow-connected by a water line (17) to an outlet header (18) of an economizer heating surface (19) disposed in the gas flue (2).
  4. Continuous steam generator according to claim 3,
    characterized in that
    a booster pump (21) with a downstream regulating fitting (22) is situated in the water line (17).
  5. Continuous steam generator according to claim 3,
    characterized in that
    the outlet header (18) of the economizer heating surface (19) forms a water/steam separating device.
  6. Continuous steam generator according to claim 5,
    characterized in that
    the section bottom end (16) of the bottom pipe section (V) of the pipes of the evaporator heating surface (4) is flow-connected to the outlet header (6) of said evaporator heating surface (4) and that a steam line (27) leads from the outlet header (18) of the economizer heating surface (19) to a steam line (23) between the outlet header (6) of the evaporator heating surface (4) and an inlet header (24) of a superheater heating surface (25), which is disposed in the gas flue (2).
  7. Continuous steam generator according to claim 1 or 2,
    characterized in that
    in at least one pipe section of the evaporator heating surface (4) a connection pipe (29) emanating from a point (28) of each of the pipes between section top end and section bottom end of said pipe section leads to a pressure-equalizing vessel (30), which is situated outside of the vertical gas flue (2).
  8. Continuous steam generator according to claim 1 or 2,
    characterized in that
    the pipes of the evaporator heating surface (4) in one pipe section have on their inside helically disposed ribs (104).
EP89120140A 1989-10-30 1989-10-30 Once-through steam generator Expired - Lifetime EP0425717B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE58909259T DE58909259D1 (en) 1989-10-30 1989-10-30 Continuous steam generator.
EP89120140A EP0425717B1 (en) 1989-10-30 1989-10-30 Once-through steam generator
CA002028796A CA2028796A1 (en) 1989-10-30 1990-10-29 Continuous-flow steam generator
JP2295175A JP2865851B2 (en) 1989-10-30 1990-10-30 Once-through steam generator
US07/782,869 US5159897A (en) 1989-10-30 1991-10-15 Continuous-flow steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP89120140A EP0425717B1 (en) 1989-10-30 1989-10-30 Once-through steam generator

Publications (2)

Publication Number Publication Date
EP0425717A1 EP0425717A1 (en) 1991-05-08
EP0425717B1 true EP0425717B1 (en) 1995-05-24

Family

ID=8202076

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89120140A Expired - Lifetime EP0425717B1 (en) 1989-10-30 1989-10-30 Once-through steam generator

Country Status (5)

Country Link
US (1) US5159897A (en)
EP (1) EP0425717B1 (en)
JP (1) JP2865851B2 (en)
CA (1) CA2028796A1 (en)
DE (1) DE58909259D1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004318A1 (en) * 1991-08-12 1993-03-04 Siemens Aktiengesellschaft Gas-heated waste-heat steam genertor
DE19651936A1 (en) * 1996-12-14 1998-07-02 Nem Bv Continuous steam generator with a throttle cable for connection to a device emitting hot gas
DE10127830A1 (en) * 2001-06-08 2002-12-12 Siemens Ag Steam generator of parallel medium-flowed tubes fits one or all tubes with vertically flowed downcomer piece and associated riser piece downstream in same heating surface.
DE102014226837A1 (en) * 2014-09-22 2015-11-12 Enolcon Gmbh Variable heat exchanger system and method of operating a heat exchanger system

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4142376A1 (en) * 1991-12-20 1993-06-24 Siemens Ag FOSSIL FIRED CONTINUOUS STEAM GENERATOR
ES2122842B1 (en) * 1995-01-19 1999-06-16 Stork Ketels Bv INSTALLATION FOR STEAM GENERATION.
DE29510720U1 (en) * 1995-07-01 1995-09-07 Balcke Duerr Ag Heat exchanger
DE19544226B4 (en) * 1995-11-28 2007-03-29 Alstom Combined plant with multi-pressure boiler
DE19700350A1 (en) * 1997-01-08 1998-07-16 Steinmueller Gmbh L & C Continuous steam generator with gas flue and condenser heating surfaces
CA2294710C (en) * 1997-06-30 2007-05-22 Siemens Aktiengesellschaft Waste heat steam generator
US5924389A (en) * 1998-04-03 1999-07-20 Combustion Engineering, Inc. Heat recovery steam generator
US6092490A (en) * 1998-04-03 2000-07-25 Combustion Engineering, Inc. Heat recovery steam generator
US6557500B1 (en) * 2001-12-05 2003-05-06 Nooter/Eriksen, Inc. Evaporator and evaporative process for generating saturated steam
EP1512905A1 (en) * 2003-09-03 2005-03-09 Siemens Aktiengesellschaft Once-through steam generator and method of operating said once-through steam generator
EP1512907A1 (en) * 2003-09-03 2005-03-09 Siemens Aktiengesellschaft Method for starting a once-through steam generator and the once-through steam generator for carrying out said method
EP1512906A1 (en) * 2003-09-03 2005-03-09 Siemens Aktiengesellschaft Once-through steam generator of horizontal construction and method of operating said once-through steam generator
DE102005023082B4 (en) * 2005-05-13 2014-05-28 Alstom Technology Ltd. Through steam generator
CN101310146B (en) * 2005-07-19 2010-08-18 塞拉米克燃料电池有限公司 Steam generator
AU2006272450B2 (en) * 2005-07-19 2010-09-02 Chaozhou Three-Circle (Group) Co., Ltd. Steam generator
EA016385B1 (en) * 2007-03-22 2012-04-30 Нутер/Эриксен, Инк. High efficiency feedwater heater
WO2009106563A2 (en) * 2008-02-26 2009-09-03 Alstom Technology Ltd Method for regulating a boiler and control circuit for a boiler
DE102009024587A1 (en) * 2009-06-10 2010-12-16 Siemens Aktiengesellschaft Flow evaporator
IT1395108B1 (en) 2009-07-28 2012-09-05 Itea Spa BOILER
WO2011094663A2 (en) * 2010-02-01 2011-08-04 Nooter/Eriksen, Inc. Process and apparatus for heating feedwater in a heat recovery steam generator
WO2011091883A2 (en) * 2010-02-01 2011-08-04 Siemens Aktiengesellschaft Suppression of static instabilities in forced flow steam generators by combined same and counter flow circuits
DE102010040199A1 (en) * 2010-09-03 2012-03-08 Siemens Aktiengesellschaft Solar thermal evaporation evaporator
DE102011004276A1 (en) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Continuous evaporator for steam generator of solar tower power plant, has steam generator pipes arranged upstream of inlet header and comprising constricted local cross-sections at inlet
DE102011004271A1 (en) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Solar-thermal continuous steam generator for use in solar tower-power plant utilized to generate electricity, has steam generator pipe whose flow cross-section and passage area are varied in flow direction of medium to be evaporated
DE102011004279A1 (en) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Steam generator for solar thermal power plant, has several air duct arranged evaporator tubes which are traversed by flow medium that is partially vaporized by heat transfer medium at several points of evaporator tubes
DE102011004267A1 (en) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Solar thermal steam generator
GB2497541B (en) * 2011-12-13 2014-05-14 Rolls Royce Plc Method and apparatus for the treatment of part of a component using a fluidised bed of powder, the apparatus including a powder screen
US20140123914A1 (en) * 2012-11-08 2014-05-08 Vogt Power International Inc. Once-through steam generator
EP2944873B1 (en) 2013-01-10 2017-12-20 Panasonic Intellectual Property Management Co., Ltd. Rankine cycle device and cogeneration system
JP2014152948A (en) * 2013-02-05 2014-08-25 Mitsubishi Heavy Ind Ltd Heat transfer tube and waste heat recovery boiler
US20160102926A1 (en) * 2014-10-09 2016-04-14 Vladimir S. Polonsky Vertical multiple passage drainable heated surfaces with headers-equalizers and forced circulation
EP3048366A1 (en) 2015-01-23 2016-07-27 Siemens Aktiengesellschaft Waste heat steam generator
CN107448923A (en) * 2017-08-11 2017-12-08 重庆博帝节能设备有限公司 A kind of energy-saving steam fire gut

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2167299A (en) * 1935-10-19 1939-07-25 Firm Schmidt Sche Heissdampf G Method and apparatus for preventing excess pressure increase in steam generators with low water content
DE1122082B (en) * 1957-12-13 1962-01-18 Ver Kesselwerke Ag Forced once-through steam generator
US3177659A (en) * 1962-08-02 1965-04-13 Westinghouse Electric Corp Heat exchange apparatus
CH401092A (en) * 1963-04-02 1965-10-31 Sulzer Ag Arrangement for cooling parts of a steam generator with feed water
CH621187A5 (en) * 1977-06-16 1981-01-15 Bbc Brown Boveri & Cie
CH632331A5 (en) * 1978-10-03 1982-09-30 Sulzer Ag METHOD FOR STARTING A FORCED STEAM GENERATOR.
CH635184A5 (en) * 1978-12-22 1983-03-15 Sulzer Ag STEAM GENERATOR SYSTEM.
US4248179A (en) * 1979-07-13 1981-02-03 Foster Wheeler Energy Corporation Internally grooved heat transfer conduit
US4489679A (en) * 1983-12-12 1984-12-25 Combustion Engineering, Inc. Control system for economic operation of a steam generator
US4552099A (en) * 1984-10-25 1985-11-12 Westinghouse Electric Corp. Anticipatory boiler feedpump suction head controller system
AT394100B (en) * 1988-09-14 1992-01-27 Sgp Va Energie Umwelt HEAT STEAM GENERATOR

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004318A1 (en) * 1991-08-12 1993-03-04 Siemens Aktiengesellschaft Gas-heated waste-heat steam genertor
DE19651936A1 (en) * 1996-12-14 1998-07-02 Nem Bv Continuous steam generator with a throttle cable for connection to a device emitting hot gas
DE19651936C2 (en) * 1996-12-14 2000-08-31 Nem Bv Continuous steam generator with a throttle cable for connection to a device emitting hot gas
DE10127830A1 (en) * 2001-06-08 2002-12-12 Siemens Ag Steam generator of parallel medium-flowed tubes fits one or all tubes with vertically flowed downcomer piece and associated riser piece downstream in same heating surface.
DE10127830B4 (en) * 2001-06-08 2007-01-11 Siemens Ag steam generator
DE102014226837A1 (en) * 2014-09-22 2015-11-12 Enolcon Gmbh Variable heat exchanger system and method of operating a heat exchanger system

Also Published As

Publication number Publication date
JP2865851B2 (en) 1999-03-08
US5159897A (en) 1992-11-03
EP0425717A1 (en) 1991-05-08
CA2028796A1 (en) 1991-05-01
DE58909259D1 (en) 1995-06-29
JPH03170701A (en) 1991-07-24

Similar Documents

Publication Publication Date Title
EP0425717B1 (en) Once-through steam generator
EP0944801B1 (en) Steam generator
DE10127830B4 (en) steam generator
EP1588095B1 (en) Steam generator
WO2006106079A2 (en) Steam generator
EP0617778A1 (en) Fossil-fuelled continuous steam generator.
EP1701091A1 (en) Once-through steam generator
EP1794495B1 (en) Fossil-energy heated continuous steam generator
EP2204611A1 (en) Heat recovery steam generator
DE1932721C3 (en) Steam generator
EP1554522B1 (en) Operating method for a horizontal steam generator
DE102010040211A1 (en) Solar thermal continuous steam generator for direct evaporation, in particular in a solar tower power plant
DE2256633C3 (en) Steam generator
DE2621340A1 (en) HEAT STEAM GENERATOR
DE662912C (en) Radiant steam generator
EP0812407B1 (en) Process and system for starting a continuous steam generator
DE1275072B (en) Supercritical forced circulation steam generator with superimposed forced circulation
WO1994010501A1 (en) Steam generator
DE42698C (en) Coiled tube boiler
AT210442B (en) Steam boilers for coal, oil or gas firing
DE2515623A1 (en) STEAM GENERATOR WITH U-SHAPED CURVED PIPES
AT391541B (en) STEAM GENERATOR WITH PARALLEL SWITCHED EVAPORATOR TUBES
AT147706B (en) Tubular steam generator.
EP3224541A1 (en) Waste-heat steam generator
AT117162B (en) High pressure steam generator.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB LI

17Q First examination report despatched

Effective date: 19920403

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI

REF Corresponds to:

Ref document number: 58909259

Country of ref document: DE

Date of ref document: 19950629

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950712

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SIEMENS AKTIENGESELLSCHAFT

Free format text: SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#D-80333 MUENCHEN (DE) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#D-80333 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090114

Year of fee payment: 20

Ref country code: GB

Payment date: 20081020

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20091029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20091029