EP0617778B1 - Generateur de vapeur en continu alimente par matiere fossile - Google Patents

Generateur de vapeur en continu alimente par matiere fossile Download PDF

Info

Publication number
EP0617778B1
EP0617778B1 EP92924576A EP92924576A EP0617778B1 EP 0617778 B1 EP0617778 B1 EP 0617778B1 EP 92924576 A EP92924576 A EP 92924576A EP 92924576 A EP92924576 A EP 92924576A EP 0617778 B1 EP0617778 B1 EP 0617778B1
Authority
EP
European Patent Office
Prior art keywords
tubes
tube
heating
pressure equalisation
steam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92924576A
Other languages
German (de)
English (en)
Other versions
EP0617778A1 (fr
Inventor
Wolfgang Kastner
Wolfgang Köhler
Eberhard Wittchow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6447758&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0617778(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0617778A1 publication Critical patent/EP0617778A1/fr
Application granted granted Critical
Publication of EP0617778B1 publication Critical patent/EP0617778B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes

Definitions

  • the invention relates to a once-through steam generator with burners for fossil fuels with a vertical gas flue from essentially vertically arranged pipes which are connected with their inlet ends to an inlet collector and with their outlet ends to an outlet collector.
  • a steam generator is known from document US-A-3 308 792.
  • the invention also relates to continuous flow steam generators of this type which have a funnel arranged at their lower end, which has at least four walls made of pipes welded to one another in a gastight manner and inlet and outlet collectors for these pipes.
  • the tubes at the outlet of the combustion chamber walls often have large temperature differences, since different amounts of heat are transferred to the individual tubes of the parallel tube system.
  • the causes of the different amounts of heat transferred are due to the different heat flow density profile - e.g. less heat is transferred in the corners of the combustion chamber than in the vicinity of the burners - and in the differences in the heated pipe lengths, especially in the funnel area, for continuous steam generators designed for coal firing.
  • the pressure compensation collector is arranged in the wet steam area - i.e. at a point where all pipes are still at the same temperature but have wet steam of different steam contents - at the point where an average steam content of 80% is reached at 35% of the boiler load.
  • the entire evaporator mass flow is passed through pressure compensation collectors, so that a mixture of the wet steam emerging from the individual tubes of the parallel tube system is forced.
  • the incoming wet steam can therefore be segregated in such a way that individual outgoing pipes preferably receive water and others preferably steam.
  • the result is that, even with uniform heating of the tube walls above the pressure compensation collector, a strongly different heating of the steam and thus different tube wall temperatures and the resulting thermal stresses occur, which can lead to tube tears.
  • the invention has for its object to design the pipe walls of the vertical throttle cable so that despite the unavoidable different heating of individual pipes, the steam temperatures at the outlet of all pipes are almost the same and that malfunctions, such as may occur due to clogging of throttle orifices at the pipe inlet, are avoided .
  • this object is achieved for continuous-flow steam generators of the type mentioned at the outset in that a pressure compensation vessel is arranged on the outside of the combustion chamber walls at an altitude which ensures that a multi-heated tube has a greater throughput than a parallel tube with medium heating.
  • a pressure compensation vessel is arranged on the outside of the combustion chamber walls at an altitude which ensures that a multi-heated tube has a greater throughput than a parallel tube with medium heating.
  • the friction pressure drop ( ⁇ P R ) is according to Q. Zheng, W. Köhler, W. Kastner and K. Riedle, "Pressure loss in smooth and internally finned evaporator tubes, heat and mass transfer 26", pp. 323 - 330, Springer Verlag 1991 to determine, while the geodetic pressure drop ( ⁇ P G ) according to Z. Rouhani "Modified correlation for void-fraction and two-phase pressure drop", AE-RTV-841, 1969 is to be determined. In contrast, the acceleration pressure drop ( ⁇ P B ) is of minor importance and can be neglected in this calculation.
  • the mass flow in a tube with multiple heating should not remain constant, but should increase ( ⁇ > 0). This is the case in a parallel pipe system if equation (1) is fulfilled. This applies to the multi-heated pipe ⁇ M ⁇ ⁇ Q ⁇ > 0 Equation (2) says nothing about the extent of the mass flow increase. An increase would be desirable that just completely compensates for the additional heating. In this case, the same heating span, ie the same enthalpy increase, would also be present in the pipe with stronger heating as in the pipes with medium heating, which would lead to a very strong reduction in the described temperature difference to zero. The condition for this is:
  • the index Ref refers to a reference pipe that has the mean throughput ⁇ and the mean heat absorption Q ⁇ .
  • the height of the pressure compensation vessel i.e. the connection of the pressure compensation vessel into the parallel pipe system of the vertically arranged pipes with at least part of their length internally finned, is therefore selected so that one of the following conditions applies: ⁇ M ⁇ ⁇ Q ⁇ > 0
  • a continuous steam generator according to Figure 1 with a vertical throttle cable 1 consists of tube walls, which are gas-tightly welded together in the lower part from tubes 2 arranged vertically and next to one another, and which consist of tubes 3 arranged vertically and next to one another in the upper part, which are also gas-tightly welded to one another .
  • the vertical throttle cable 1 has a funnel 10 at its lower end for receiving ash, the surrounding walls of which are also formed by the tube walls. In the lower part of the vertical throttle cable 1, main burners 11 for fossil fuel are attached.
  • the tubes 2 are connected with their inlet ends to an inlet header 9 and at a height H, measured from the central axis of the inlet header 9, go directly into the inlet ends of the tubes 3 with their outlet ends.
  • the tubes 3 are connected with their outlet ends to an outlet header 12.
  • the outlet headers 12 are connected by connecting lines 13 to a separator 14 to which an outlet line 15 and a connecting line 16 are connected.
  • the connecting line 16 leads to an inlet header 17 of a superheater heating surface 18, the pipe outlet ends of which are connected to a superheater outlet header 19.
  • an intermediate superheater heating surface 21 with an inlet header 20 and an outlet header 22 and an economizer heating surface 6 with an inlet header 5 and an outlet header 7 are arranged within the vertical throttle cable 1.
  • the outlet header 7 is connected to the inlet header 9 by a connecting line 8.
  • FIG. 2 shows a single tube 2, which at point H, at which a pressure compensation tube 25 branches off, merges with its outlet end directly into the inlet end of tube 3.
  • the pressure compensation tube 25 is connected to a pressure compensation vessel 4, which is located outside the vertical throttle cable 1.
  • a pressure compensation tube 25 branches off from each tube 2 of the tube walls.
  • a feed pump conveys water into the inlet collector 5 and from there into the economizer heating surface 6, in which the water is preheated.
  • the water then flows through the connecting line 8 and the inlet header 9 into the tubes 2 of the tube walls of the vertical gas flue 1, in which it largely evaporates.
  • the remaining evaporation and the first part of the overheating takes place in the tubes 3 of the tube walls of the vertical throttle cable 1.
  • the separator 14 is only in operation during the start-up process, that is, as long as not all water evaporates in the pipe walls due to insufficient heat input.
  • the entering water-steam mixture is then separated in the separator 14.
  • the separated water is led through the drain line 15, for example, to an expansion device (not shown), the separated steam flows through the connecting line 16 to the superheater heating surface 18.
  • the steam expanded in the high-pressure part of the steam turbine is reheated in the reheater heating surface 21.
  • the mass flow density in the vertically arranged pipes 2 and 3 is chosen so that the geodetic pressure drop in the pipes is substantially greater than the friction pressure drop.
  • the result of this is that a pipe receives a higher throughput in the case of multiple heating and the effect of the multiple heating with regard to the outlet temperature is largely compensated for.
  • very long vertical evaporator tubes e.g. used in continuous steam generators in single-pass design, despite a low mass flow density of 1000 kg / m2s and less, based on 100% load
  • the frictional pressure drop in the pipes of the upper part of the vertical throttle cable, i.e. in pipes 3 increases due to the large steam volumes strong.
  • the drop in frictional pressure in relation to the geodetic drop in pressure can be so great that the throughput decreases due to a multi-heated pipe compared to the parallel pipes and this leads to undesirably high steam temperatures at the pipe end.
  • the arrangement of the pressure compensation vessel 4 now causes the pipes 2 to be uncoupled from the pipes 3 with regard to the pressure drop.
  • All tubes 2, which flow from bottom to top and are connected in parallel in terms of flow, have the same pressure drop between the inlet header 9 and the pressure compensation vessel 4.
  • the proportion of the geodetic pressure drop is a multiple of the proportion of the friction pressure drop, so that the advantage of Increasing the throughput when heating individual pipes is very effective. This is particularly important in the lower part of the vertical throttle cable 1, in which the different heating in the area of the funnel and the main burner is particularly pronounced.
  • both the heating and their irregularities are less than in the lower part of the gas cable 1.
  • the pressure compensation vessel 4 now causes a partial flow of through a part of the pressure compensation tubes 25 the tubes 2 flows to the pressure compensation vessel 4 and a partial stream flows from the pressure compensation vessel 4 to the tubes 3 through another part of the pressure compensation tubes 25.
  • the cooling of the pipes 2 and 3 is improved and thus the pipe wall temperature is reduced if the pipes have a multi-thread ribs on their inside. This is particularly true in the areas of high heat radiation, e.g. in the area of the burner 11, required.
  • the ribs forming the multi-start thread expediently extend over more than 50% of the length of the tubes 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

Dans des générateurs de vapeur en continu comprenant un brûleur (11) pour combustibles fossiles avec une cheminée verticale composée essentiellement de tuyaux (2, 3) disposés verticalement, les extrémités d'entrée de ces tuyaux sont reliées à un collecteur d'entrée (5) et leurs extrémités de sortie à un collecteur de sortie. Selon l'invention, un tuyau de compensation de pression (25) part de chaque tuyau (2) à la même hauteur H. Ce tuyau de compensation de pression (25) est relié à un réservoir de compensation de pression (4). La hauteur H est choisie de sorte qu'en cas de surchauffe d'un tuyau isolé (2), entre le collecteur d'entrée (9) et l'embranchement du tuyau de compensation de pression (25) par rapport à la valeur moyenne du chauffage de tous les tuyaux (2), le débit massique augmente à l'intérieur de ce tuyau isolé (2).

Claims (6)

  1. Générateur de vapeur en continu comportant des brûleurs (11) pour des combustibles fossiles, une cheminée à gaz (1) verticale constituée de tubes (2,3) disposés essentiellement verticalement et dont les extrémités d'entrée sont raccordées à un collecteur d'entrée (9) et les extrémités de sortie à un collecteur de sortie (12), caractérisé par le fait
    - qu'à partir de chaque tube s'étend en dérivation, au-dessus du brûleur (11) et à un même niveau H, un tube de compensation de pression (25), qui communique avec un récipient de compensation de pression (4), de telle sorte qu'un courant partiel passe des tubes (2) au récipient de compensation de pression (4) en passant par une partie des tubes de compensation de pression (25) et qu'un courant partiel passe du récipient de compensation de pression (4) aux tubes (3) en empruntant une autre partie des tubes de compensation de pression (25), et que le niveau H est choisi de sorte que dans le cas d'une surchauffe d'un tube (2) entre le collecteur d'entrée (9) et la dérivation du tube de compensation de pression (25) par rapport à la valeur moyenne du chauffage de tous les tubes, le débit massique sous charge nominale dans ce tube augmente.
  2. Générateur de vapeur en continu suivant la revendication 1, caractérisé par le fait que les tubes (2) portent sur leur face intérieure, sur plus de 50 % de leur longueur, des nervures constituant un filetage à filets multiples.
  3. Générateur de vapeur en continu suivant la revendication 1 ou 2, caractérisé par le fait que les tubes (2,3) de la cheminée à gaz (1) sont soudés entre eux d'une manière étanche aux gaz.
  4. Générateur de vapeur en continu suivant l'une des revendications 1 à 3, caractérisé par le fait que le niveau H est choisie de sorte que, pour la charge nominale et dans le cas d'une surchauffe de a % d'un tube entre le collecteur d'entrée (9) et la dérivation du tube de compensation de pression (25) par rapport à la valeur moyenne correspondant à 100 % du chauffage de tous les tubes (2), le débit massique, déterminé par calcul, dans ce tube (2), augmente d'au moins 0,25.a %.
  5. Générateur de vapeur en continu suivant l'une des revendications 1 à 3, caractérisé par le fait que le niveau H est choisi de sorte que, pour la charge nominale et dans le cas d'une surchauffe de a % d'un tube entre le collecteur d'entrée (9) et la dérivation du tube de compensation de pression (25) par rapport à la valeur moyenne correspondant à 100 % du chauffage de tous les tubes (2), le débit massique, déterminé par calcul, dans ce tube (2) augmente d'au moins 0,50.a %.
  6. Générateur de vapeur en continu suivant l'une des revendications 1 à 3, caractérisé par le fait que le niveau H est choisi de sorte que, pour la charge nominale et dans le cas d'une surchauffe de a % d'un tube entre le collecteur d'entrée (9) et la dérivation du tube de compensation de pression (25) par rapport à la valeur moyenne correspondant à 100 % du chauffage de tous les tubes (2), le débit massique déterminé par calcul, dans ce tube (2) augmente d'au moins 0,75.a %.
EP92924576A 1991-12-20 1992-12-16 Generateur de vapeur en continu alimente par matiere fossile Expired - Lifetime EP0617778B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4142376 1991-12-20
DE4142376A DE4142376A1 (de) 1991-12-20 1991-12-20 Fossil befeuerter durchlaufdampferzeuger
PCT/DE1992/001054 WO1993013356A1 (fr) 1991-12-20 1992-12-16 Generateur de vapeur en continu alimente par matiere fossile

Publications (2)

Publication Number Publication Date
EP0617778A1 EP0617778A1 (fr) 1994-10-05
EP0617778B1 true EP0617778B1 (fr) 1995-09-13

Family

ID=6447758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92924576A Expired - Lifetime EP0617778B1 (fr) 1991-12-20 1992-12-16 Generateur de vapeur en continu alimente par matiere fossile

Country Status (10)

Country Link
US (1) US5735236A (fr)
EP (1) EP0617778B1 (fr)
JP (1) JP3241382B2 (fr)
KR (1) KR100260468B1 (fr)
CN (1) CN1040146C (fr)
CA (1) CA2126230A1 (fr)
DE (2) DE4142376A1 (fr)
ES (1) ES2077442T3 (fr)
RU (1) RU2091664C1 (fr)
WO (1) WO1993013356A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5901669A (en) * 1995-04-05 1999-05-11 The Babcock & Wilcox Company Variable pressure once-through steam generator upper furnace having non-split flow circuitry
DE19600004C2 (de) * 1996-01-02 1998-11-19 Siemens Ag Durchlaufdampferzeuger mit spiralförmig angeordneten Verdampferrohren
DE19651678A1 (de) 1996-12-12 1998-06-25 Siemens Ag Dampferzeuger
CA2294710C (fr) * 1997-06-30 2007-05-22 Siemens Aktiengesellschaft Generateur de vapeur par recuperation de chaleur perdue
US6092490A (en) * 1998-04-03 2000-07-25 Combustion Engineering, Inc. Heat recovery steam generator
US5924389A (en) * 1998-04-03 1999-07-20 Combustion Engineering, Inc. Heat recovery steam generator
US6675747B1 (en) * 2002-08-22 2004-01-13 Foster Wheeler Energy Corporation System for and method of generating steam for use in oil recovery processes
EP1512905A1 (fr) * 2003-09-03 2005-03-09 Siemens Aktiengesellschaft Générateur de vapeur à passage unique et méthode pour faire fonctionner ledit générateur de vapeur à passage unique
US7021106B2 (en) * 2004-04-15 2006-04-04 Mitsui Babcock (Us) Llc Apparatus and method for forming internally ribbed or rifled tubes
EP1614962A1 (fr) * 2004-07-09 2006-01-11 Siemens Aktiengesellschaft Méthode pour l'opération d'une chaudière à vapeur à passage unique
US7878157B2 (en) * 2004-09-23 2011-02-01 Siemens Aktiengesellschaft Fossil-fuel heated continuous steam generator
EP1701091A1 (fr) * 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Générateur de vapeur à passage unique
US20080156236A1 (en) * 2006-12-20 2008-07-03 Osamu Ito Pulverized coal combustion boiler
EP2065641A3 (fr) * 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Procédé de fonctionnement d'un générateur de vapeur en flux continu, ainsi que générateur de vapeur en flux à sens unique
DE102009036064B4 (de) * 2009-08-04 2012-02-23 Alstom Technology Ltd. rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
WO2011091882A2 (fr) * 2010-02-01 2011-08-04 Siemens Aktiengesellschaft Suppression d'instabilités dynamiques dans des générateurs de vapeur à circulation forcée de centrales thermiques solaires par l'utilisation de lignes de compensation de pression
DE102010040204A1 (de) * 2010-09-03 2012-03-08 Siemens Aktiengesellschaft Solarthermischer Durchlaufverdampfer
DE102010061186B4 (de) 2010-12-13 2014-07-03 Alstom Technology Ltd. Zwangdurchlaufdampferzeuger mit Wandheizfläche und Verfahren zu dessen Betrieb
DE102011004279A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Dampferzeuger für solarthermisches Kraftwerk
WO2015024092A1 (fr) 2013-08-21 2015-02-26 Vista Acquisitions Inc. Systèmes audio de génération de son sur un scooter des mers et sur d'autres véhicules de plaisance
EP2871336B1 (fr) * 2013-11-06 2018-08-08 General Electric Technology GmbH Procédé de l'arrêt d'une chaudière
CN105240814B (zh) * 2015-11-14 2017-09-19 沈阳思达机械设备有限公司 一种高温高压蒸汽发生装置
KR20200093282A (ko) 2019-01-28 2020-08-05 이태연 조립형 교통안전 칼라콘
JP7451343B2 (ja) 2020-08-04 2024-03-18 キヤノン株式会社 画像形成装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308792A (en) * 1965-08-26 1967-03-14 Combustion Eng Fluid heater support
US3280799A (en) * 1965-08-26 1966-10-25 Combustion Eng Fluid heater support arrangement
EP0308728B1 (fr) * 1987-09-21 1991-06-05 Siemens Aktiengesellschaft Méthode d'exploitation d'un générateur de vapeur à passage unique
DE58909259D1 (de) * 1989-10-30 1995-06-29 Siemens Ag Durchlaufdampferzeuger.
JPH0448105A (ja) * 1990-06-18 1992-02-18 Mitsubishi Heavy Ind Ltd 変圧貫流ボイラ火炉蒸発管
AT394627B (de) * 1990-08-27 1992-05-25 Sgp Va Energie Umwelt Verfahren zum anfahren eines waermetauschersystems zur dampferzeugung sowie waermetauschersystem zur dampferzeugung

Also Published As

Publication number Publication date
ES2077442T3 (es) 1995-11-16
WO1993013356A1 (fr) 1993-07-08
CA2126230A1 (fr) 1993-07-08
JPH07502333A (ja) 1995-03-09
DE59203702D1 (de) 1995-10-19
KR940703983A (ko) 1994-12-12
US5735236A (en) 1998-04-07
CN1075789A (zh) 1993-09-01
JP3241382B2 (ja) 2001-12-25
KR100260468B1 (ko) 2000-07-01
EP0617778A1 (fr) 1994-10-05
RU2091664C1 (ru) 1997-09-27
CN1040146C (zh) 1998-10-07
DE4142376A1 (de) 1993-06-24

Similar Documents

Publication Publication Date Title
EP0617778B1 (fr) Generateur de vapeur en continu alimente par matiere fossile
EP0944801B1 (fr) Chaudiere a vapeur
EP0657010B2 (fr) Generateur de vapeur
EP1588095B1 (fr) Generateur de vapeur
EP0581760B1 (fr) Generateur de vapeur en continu avec cheminee a gaz constituee de conduits assembles pratiquement verticalement
DE10127830A1 (de) Dampferzeuger
DE19510033C2 (de) Zwangsdurchlauf-Dampferzeuger, insbesondere für einen Gleitdruckbetrieb
DE69733812T2 (de) Heizkessel
EP0937218B1 (fr) Procede applicable avec un generateur de vapeur en continu, et le generateur de vapeur necessaire a l'application de ce procede
DE19914761C1 (de) Fossilbeheizter Durchlaufdampferzeuger
EP1144910B1 (fr) Generateur de vapeur chauffe avec un combustible fossile
EP1166015B1 (fr) Generateur de vapeur en continu a chauffage par matiere fossile
EP1141625A1 (fr) Generateur de vapeur continu chauffe par combustible fossile
EP1144911B1 (fr) Generateur de vapeur chauffe avec un combustible fossile
CH653758A5 (de) Zwangsdurchlaufkessel.
WO2004025176A1 (fr) Procede pour exploiter un generateur de vapeur de conception horizontale et generateur de vapeur permettant de mettre en oeuvre ce procede
DE19600004C2 (de) Durchlaufdampferzeuger mit spiralförmig angeordneten Verdampferrohren
EP0812407B1 (fr) Procede et systeme de demarrage d'un generateur de vapeur a fonctionnement continu
DE4236835A1 (de) Dampferzeuger
DE3511877A1 (de) Durchlaufdampferzeuger
EP2564117B1 (fr) Générateur de vapeur
WO2005050089A1 (fr) Generateur de vapeur en continu
WO1994005950A1 (fr) Generateur de vapeur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB LI SE

17Q First examination report despatched

Effective date: 19950223

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB LI SE

REF Corresponds to:

Ref document number: 59203702

Country of ref document: DE

Date of ref document: 19951019

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077442

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951129

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: EVT ENERGIE UND VERFAHRENSTECHNIK GMBH

Effective date: 19960613

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

R26 Opposition filed (corrected)

Opponent name: ALSTOM ENERGY SYSTEMS GMBH

Effective date: 19960613

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19991109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011204

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20011213

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20011219

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020311

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021217

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021217

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101209

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120220

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59203702

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59203702

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20121215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121215