EP1614962A1 - Méthode pour l'opération d'une chaudière à vapeur à passage unique - Google Patents

Méthode pour l'opération d'une chaudière à vapeur à passage unique Download PDF

Info

Publication number
EP1614962A1
EP1614962A1 EP04016248A EP04016248A EP1614962A1 EP 1614962 A1 EP1614962 A1 EP 1614962A1 EP 04016248 A EP04016248 A EP 04016248A EP 04016248 A EP04016248 A EP 04016248A EP 1614962 A1 EP1614962 A1 EP 1614962A1
Authority
EP
European Patent Office
Prior art keywords
preheater
feedwater
density
flow
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04016248A
Other languages
German (de)
English (en)
Inventor
Axel Butterlin
Rudolf Kral
Frank Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP04016248A priority Critical patent/EP1614962A1/fr
Priority to TW094122553A priority patent/TWI318280B/zh
Priority to CN200580001775XA priority patent/CN1906441B/zh
Priority to CA002573015A priority patent/CA2573015A1/fr
Priority to BRPI0506706-5A priority patent/BRPI0506706A/pt
Priority to JP2007519796A priority patent/JP4704427B2/ja
Priority to DK05766740.4T priority patent/DK1766288T3/da
Priority to UAA200701111A priority patent/UA90683C2/ru
Priority to PL05766740T priority patent/PL1766288T3/pl
Priority to EP05766740A priority patent/EP1766288B1/fr
Priority to AU2005261689A priority patent/AU2005261689B2/en
Priority to ES05766740T priority patent/ES2399756T3/es
Priority to RU2007104929/06A priority patent/RU2372554C2/ru
Priority to US11/632,019 priority patent/US7624708B2/en
Priority to PCT/EP2005/053227 priority patent/WO2006005708A1/fr
Publication of EP1614962A1 publication Critical patent/EP1614962A1/fr
Priority to ZA2006/03906A priority patent/ZA200603906B/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type

Definitions

  • the invention relates to a method for operating a continuous steam generator with a Verdampferloom Structure and a Verdampferhas Structure flow medium side upstream preheater and a device for adjusting the feedwater mass flow ⁇ in the evaporator.
  • the heating of a number of steam generator tubes which together form the gas-tight surrounding wall of the combustion chamber, leads to complete evaporation of a flow medium in the steam generator tubes in one pass.
  • the flow medium usually water-is fed to a preheater upstream of the evaporator heating surface upstream of the evaporating medium, usually also referred to as an economizer, and preheated there.
  • the feedwater mass flow is regulated in the evaporator heating surface.
  • the evaporator flow and the heat input into the evaporator heating surface should be changed as synchronously as possible, otherwise an overshoot of the specific enthalpy of the flow medium at the outlet of the evaporator heating surface can not be reliably avoided.
  • Such an undesirable overshoot of the specific enthalpy makes it difficult to regulate the temperature of the live steam emerging from the steam generator and, moreover, leads to high material loads and thus to a reduced service life of the steam generator.
  • feedwater flow control In order to prevent an overshoot of the specific enthalpy and large temperature fluctuations in each operating state of the steam generator, is a feedwater flow control is provided, which provides the necessary feed water setpoints depending on the operating state even during load changes.
  • the measurement of the feedwater mass flow directly at the entrance of the evaporator heating surface proves to be technically complex and not reliably feasible in any operating condition.
  • the feedwater mass flow at the inlet of the preheater is alternatively measured and included in the calculations of the feedwater quantity, which however is not always equal to the feedwater mass flow at the inlet of the evaporator heating surface.
  • the size of the temperature fluctuations depends on the speed of the load change and a fast load change is particularly large. That's why it has been necessary make a limitation of the load cycle speed and thus take a lower efficiency of the steam generator in purchasing.
  • the fast and uncontrollable load changes that occur in the event of malfunctions reduce the life of the steam generator.
  • the invention is therefore based on the object of specifying a method for operating a steam generator of the type mentioned above, which allows a largely synchronous change of the feedwater mass flow through the evaporator and the heat input into the evaporator in any operating condition without great technical effort.
  • the device for adjusting the feedwater mass flow ⁇ is associated with a control device whose control variable is the feedwater mass flow ⁇ and their setpoint ⁇ s for the feedwater mass flow depending on one of the steam generator power associated setpoint L is performed, the control device as a the input values of the actual value ⁇ E of the feedwater density at the inlet of the preheater is supplied.
  • the invention is based on the consideration that for the synchronous change of feedwater mass flow through and heat input into the evaporator heating a réellestrombilanzleiter the evaporator heating should occur.
  • a measurement of the feedwater mass flow should indeed be provided at the inlet of the evaporator heating surface.
  • the direct measurement of the feedwater mass flow at the entrance of the evaporator heating surface has proven not to be reliably feasible, it is now provided at a location which is suitable upstream of the media, namely at the inlet of the preheater.
  • the possible mass injection and recovery effects in the preheater could distort the measured value, these effects should be appropriately compensated.
  • the additional detection of the density of the flow medium at the outlet of the preheater heating surface is advantageously provided.
  • the setpoint ⁇ s for the feedwater mass flow of the expression M ⁇ + ⁇ ⁇ ⁇ ⁇ V where ⁇ is the actual value of the feedwater mass flow at the inlet of the preheater, ⁇ ⁇ ⁇ the time change of the mean density of the flow medium in the preheater and V are the volume of the preheater.
  • the setpoint value ⁇ s instead of the average density can be used for the calculation ⁇ ⁇ approximately the density ⁇ E of the flow medium can be used at the inlet of the preheater.
  • the change with time of the density ⁇ E can be equal to the time change of the average density ⁇ ⁇ are set, so that an additional detection of the density ⁇ A of the flow medium at the outlet of the evaporator heating surface is not required.
  • the signal of the entry density change must be delayed according to the flow time of the system, if instead of the mean density ⁇ ⁇ approximately the density ⁇ E of the flow medium is used at the inlet of the preheater. Therefore, the actual value ⁇ E of the entry density is advantageously converted by a differentiating element with PT1 behavior customary in control technology into an entry density change delayed with the throughput time of the preheater as the time constant.
  • the calculation of the mean density is ⁇ ⁇ and their temporal change ⁇ ⁇ ⁇ not possible only by the approximate use of entry density. Since in the arithmetic mean ⁇ E and ⁇ A in the calculation of ⁇ ⁇ In each case, in the case of a transient heat input, but a constant entry density ⁇ E, half the change in the exit density ⁇ A can be used as a measure of the density change in the preheater.
  • the formation of the time derivative of the density signal is performed by a differentiator.
  • the density signal is advantageously PT1-delayed with a relatively small time constant of about one second.
  • a correction circuit is preferably provided which compensates for the reaction of the DT1 element, which differentiates and delays the density signal at the outlet of the preheater, in this case.
  • the inlet density signal to a deadtime element with a time constant of the cycle time of the preheater is switched on, according to a thermal time constant of the preheater PT1-delayed and the signal thus generated the outlet density signal is switched negative.
  • this correction circuit ensures correct consideration of the density changes: In the event of an abrupt change in the temperature of the inflowing medium, the change in the outlet density ⁇ A is not taken into account as described. However, if the entry density ⁇ E remains constant, but the heat input in the preheater changes and thus the outlet density ⁇ A , then no correction takes place at the outlet of the preheater and the effect of the change in the heat supply is completed when calculating the setpoint value ⁇ s for the feedwater mass flow considered.
  • both the dead time and the thermal time constant of the preheater is adjusted reciprocally to the load of the steam generator.
  • the feedwater flow control is switched on and off depending on the operating state of the steam generator.
  • the continuous steam generator has a designated as economizer preheater 2 for feed water, which is located in a throttle cable, not shown.
  • the preheater 2 is on the flow medium side, a feedwater pump 3 upstream and a Verdampferlik Structure 4 downstream.
  • a measuring device 5 for measuring the feedwater mass flow ⁇ is arranged through the feedwater line.
  • a drive motor on the feedwater pump 3 is assigned a controller 6, at the input of which the control deviation ⁇ of the feedwater mass flow ⁇ measured by the measuring device 5 is located as a controlled variable.
  • the controller 6 is associated with the device 1 for forming the set value ⁇ s for the feedwater mass flow .
  • This device is designed for a particularly needs-based determination of the setpoint ⁇ s . It is considered that the detection of the actual value of the feedwater mass flow M does not take place immediately before the evaporator 4, but already before the preheater 2. This could be due to unit of mass or -aus Grandeungs binen in the preheater 2 inaccuracies in the measured value determination for the feed-water mass flow ⁇ result. To compensate for this, a correction of this measured value is provided taking into account the density ⁇ E of the feedwater at the inlet of the preheater 2.
  • the device 1 has among other things as input variables, on the one hand, a desired value L output by the setpoint generator for the output of the continuous steam generator and, on the other hand, the actual value ⁇ E of the density of the feedwater at the inlet of the preheater 2 determined from the pressure and temperature measurement of a measuring device 9.
  • the setpoint value L for the output of the continuous steam generator which changes over time in operation and which is given in the (not shown) Brennungsregelnik directly to the fuel control, is also supplied to the input of a first delay element 13 of the device 1.
  • This delay element 13 outputs a first signal or a delayed first power value L1.
  • This first power value L1 is supplied to the inputs of function generator units 10 and 11 of the function generator of the feedwater flow control 1.
  • ⁇ (L1) for the feedwater mass flow
  • ⁇ h (L1) for the difference of the specific enthalpy h IA at the outlet of the evaporator 4 and the specific heat h IE on The entry of this evaporator heating surface 4.
  • the values ⁇ and ⁇ h as functions of L1 are determined from values for ⁇ and ⁇ h, which were measured during steady-state operation of the continuous steam generator, and stored in the function generator units 10 and 11 respectively.
  • the output quantities ⁇ (L1) and ⁇ h (L1) are multiplied together in a multiplication element 14 of the function generator of the device 1.
  • the recovered product value Q ⁇ (L1) corresponds the heat flow in the evaporator 4 at the power value L1 and, if necessary, after correction by a in a differentiator ?? From the entrance enthalpy determined, for injection or Aus shallns freee in the evaporator characteristic power factor, entered as a counter in a divider 15.
  • the difference between a desired value h SA (L2) of the specific enthalpy at the outlet of the evaporator heating surface 4 and the actual value h IE of the specific enthalpy at the inlet of the evaporator heating surface 4 formed by a summing element 19 is determined by means of the measuring device 9 is measured, entered.
  • the setpoint h SA (L2) is taken from a third function generator unit 12 of the function generator of the device 1.
  • the input value of the function generator unit 12 is produced at the output of a second delay element 16 whose input quantity is the first power value L1 at the output of the first delay element 13. Accordingly, the input value of the third function encoder unit 12 is a second power value L2 delayed from the first power value L1.
  • the values h SA (L2) as a function of L2 are determined from values for h SA , which were measured during stationary operation of the continuous steam generator, and stored in the third function generator unit 12.
  • a differentiating element 17 At the output of the second delay element 16 is the input of a differentiating element 17, the output of which is negatively connected to a summing element 18.
  • This summing element 18 corrects the value for the heat flow Q ⁇ (L1) into the evaporator heating surface 4 to the output signal of the differentiating member 17th
  • the measured by the measuring device 9 actual values of temperature and pressure of the feedwater at the inlet of the preheater 2 are converted in a differentiator 22 in an actual value ⁇ E of the feedwater density at the inlet of the preheater 2. This is given to the input of a differentiating element 22 and multiplied by the volume of the preheater.
  • FIG. 2 shows an alternative embodiment of the feedwater flow rate control, which, even in the case of a temporal change in the heat input within the preheater 2, enables the reliable consideration of mass injection and recovery effects in the regulation of the feedwater mass flow.
  • the feedwater flow control according to FIG. 1 is supplemented in the exemplary embodiment according to FIG. 2 by the consideration of the density ⁇ A of the flow medium at the outlet of the preheater 2.
  • a measuring device 21 for measuring the pressure and the temperature of the flow medium is provided at the outlet of the preheater 2.
  • the computing element 26 determines as an input signal for a downstream summing element 30 from the measurement of temperature and pressure, the actual value for the density ⁇ A of the flow medium at the outlet of the preheater 2.
  • the output of the summing 30 is fed to a differentiator 36, the time derivative multiplied by the volume of the preheater 2 as an output signal.
  • This output signal which represents the change over time of the feedwater mass flow ⁇ ⁇ A at the outlet of the preheater 2, is applied to a summing element 36, which has as a second input variable the change ⁇ ⁇ E of the feedwater mass flow at the inlet of the preheater 2.
  • the summing element 36 has as an output signal calculated from ⁇ M A and ⁇ M E mean change of the feed-water mass flow ⁇ ⁇ basis of unit of mass and -aus arrivedungs binen in the preheater 2.
  • the output of the Dividiergliedes 36 is at the summing element 24 to the output signal of the Dividiergliedes 15 for correcting the Setpoint of the feedwater mass flow switched.
  • the output signal of the computing element 26 In the case of a malfunction, which leads to an abrupt change in temperature of the incoming feedwater to the preheater 2, for example in the event of sudden failure of an upstream preheating section, the output signal of the computing element 26 must still be corrected by the effect of the changed input density. If this is not done, the effect of the density jump at the inlet of the preheater 2 is taken into account twice, namely in the detection of the density of the feedwater at the inlet and at the outlet of the preheater 2. To correct this, the output signal of the differentiator 20 is a deadtime member 28 with the flow time of the feedwater through the preheater 2 as a time constant switched.
  • the signal thus generated is negatively connected to the summing 30 via a delay element 32 with a thermal storage constant of the preheater 2.
  • a delay element 32 with a thermal storage constant of the preheater 2.
  • the feedwater flow control using the device 1 allows in any operating condition of the steam generator, a particularly simple determination of the setpoint ⁇ s for the feedwater mass flow through the evaporator 4.
  • a precise vote of this feedwater mass flow on the heat input in the evaporator heating can large fluctuations in the outlet temperature of the live steam and a Overshoot of the specific enthalpy at the outlet of the evaporator 4 are reliably prevented. High material loads due to temperature fluctuations, which lead to a reduced service life of the continuous steam generator, can thus be avoided.
  • the curve shown in FIG. 3a (curves I to III) of the three specific enthalpies in kJ / kg at the outlet of the evaporator heating surface 4 as a function of time t was determined for a continuous steam generator in full load operation in the event of failure of a preheating line preceding the preheater 2.
  • the curve I in FIG 3 is for the case that caused by the simulated malfunction density change of the feed water is not considered in the feed water flow control at the inlet of the preheater 2, so that S m the uncorrected output signal for the feed-water mass flow as a target value of the divider element 15 according to FIG 1 or 2 is used.
  • the curve II applies to the case that only as shown in FIG 1, the temporal change in the density ⁇ E at the inlet of the preheater 2 and thus only the Massenein- and -Est Itemss bine due to the temperature jump at the inlet of the preheater 2 is taken into account in the feedwater flow control. Massenein- and -Est standss bine due to a change in heating in the preheater 2 and thus a change in the heat input into the feed water stay unconsidered. This case corresponds to the feedwater flow control of FIG. 1.
  • the curve III finally shows the time course of the specific enthalpy with additional consideration of the mass injection and -aus arrivedns bine due to a change in heating in the preheater 2, which corresponds to the feedwater flow control of Figure 2.
  • the summing element 24 from FIG. 2 has, in addition to the output variable of the differentiating element 15, the mean change in the feedwater mass flow ⁇ berechn calculated from ⁇ ⁇ A and ⁇ ⁇ E as a second input variable.
  • the feedwater flow control therefore not only takes into account the density ⁇ E at the inlet of the preheater 2, but additionally the density ⁇ A at its outlet.
  • 3 b shows the course (curves I to III) of the three specific enthalpies in kJ / kg at the outlet of the evaporator heating surface 4 as a function of the time t for a continuous steam generator in partial load operation (50% of the maximum power) in the event of a failure of the preheater 2 upstream preheating.
  • the curve I in FIG. 3b applies, as in FIG. 3 a, for the case where the density change of the feedwater caused by the failure of the preheater 2 preceding the preheater 2 is not taken into account at the inlet of the preheater 2 in the feedwater flow control, ie as the setpoint value ⁇ s for the Feedwater mass flow the uncorrected output signal of the divider 15 is used according to FIG 1 or 2.
  • the curve II in FIG. 3b applies, as in FIG. 3 a, for the case in which only the temporal change of the density ⁇ E at the inlet of the preheater 2 in the feedwater flow control is taken into account, as shown in FIG. Mass injection and storage effects due to a change in heating in preheater 2 are not taken into account. This case corresponds to the feedwater flow control of FIG. 1.
  • the curve III in FIG. 3 b shows the time characteristic of the specific enthalpy with additional consideration of the mass injection and removal effects due to a changed heating in the preheater 2, which corresponds to the feedwater flow control of FIG.
  • FIG. 3c shows the course (curves I to III) of the three specific enthalpies in kJ / kg at the outlet of the evaporator heating surface 4 as a function of the time t for a continuous steam generator during a load change from full load to partial load operation (100% to 50% load).
  • the curve I in FIG. 3 c applies, as in FIG. 3 a, for the case in which the density change of the feedwater caused by the failure of the preheater 2 is not taken into account at the inlet of the preheater 2 in the feedwater flow control , ie the uncorrected setpoint value ⁇ s for the feedwater mass flow Output signal of the divider 15 is used according to FIG 1 or 2.
  • the curve II in FIG. 3 c applies, as in FIG. 3 a, for the case in which only the temporal change of the density ⁇ E at the inlet of the preheater 2 in the feedwater flow control is taken into account, as shown in FIG. Mass injection and storage effects due to a change in heating in preheater 2 are not taken into account. This case corresponds to the feedwater flow control of FIG. 1.
  • the curve III in FIG. 3c shows the time curve of the specific enthalpy with additional consideration of the mass injection and recovery effects due to a changed heating in the preheater 2, which corresponds to the feedwater flow control from FIG.
  • FIGS. 3 a, 3 b and 3 c show that the feedwater flow control 1 from FIG. 1 or 2 is particularly suitable for preventing an overshoot of the specific enthalpy at the outlet of the evaporator heating surface 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
EP04016248A 2004-07-09 2004-07-09 Méthode pour l'opération d'une chaudière à vapeur à passage unique Withdrawn EP1614962A1 (fr)

Priority Applications (16)

Application Number Priority Date Filing Date Title
EP04016248A EP1614962A1 (fr) 2004-07-09 2004-07-09 Méthode pour l'opération d'une chaudière à vapeur à passage unique
TW094122553A TWI318280B (en) 2004-07-09 2005-07-04 Method to operate a continuous-flow steam generator
UAA200701111A UA90683C2 (ru) 2004-07-09 2005-07-06 Способ эксплуатации прямоточного парогенератора
EP05766740A EP1766288B1 (fr) 2004-07-09 2005-07-06 Procede pour faire fonctionner un generateur de vapeur en continu
BRPI0506706-5A BRPI0506706A (pt) 2004-07-09 2005-07-06 método para operar um gerador de vapor contìnuo
JP2007519796A JP4704427B2 (ja) 2004-07-09 2005-07-06 貫流ボイラの運転のための方法
DK05766740.4T DK1766288T3 (da) 2004-07-09 2005-07-06 Fremgangsmåde til drift af en gennemløbsdampgenerator
CN200580001775XA CN1906441B (zh) 2004-07-09 2005-07-06 直流式锅炉的运行方法
PL05766740T PL1766288T3 (pl) 2004-07-09 2005-07-06 Sposób eksploatacji przepływowej wytwornicy pary
CA002573015A CA2573015A1 (fr) 2004-07-09 2005-07-06 Procede pour faire fonctionner un generateur de vapeur en continu
AU2005261689A AU2005261689B2 (en) 2004-07-09 2005-07-06 Process for operating a continuous steam generator
ES05766740T ES2399756T3 (es) 2004-07-09 2005-07-06 Método para el funcionamiento de un generador de vapor continuo
RU2007104929/06A RU2372554C2 (ru) 2004-07-09 2005-07-06 Способ эксплуатации прямоточного парогенератора
US11/632,019 US7624708B2 (en) 2004-07-09 2005-07-06 Process for operating a continuous steam generator
PCT/EP2005/053227 WO2006005708A1 (fr) 2004-07-09 2005-07-06 Procede pour faire fonctionner un generateur de vapeur en continu
ZA2006/03906A ZA200603906B (en) 2004-07-09 2006-05-16 Process for operating a continuous steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04016248A EP1614962A1 (fr) 2004-07-09 2004-07-09 Méthode pour l'opération d'une chaudière à vapeur à passage unique

Publications (1)

Publication Number Publication Date
EP1614962A1 true EP1614962A1 (fr) 2006-01-11

Family

ID=34925694

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04016248A Withdrawn EP1614962A1 (fr) 2004-07-09 2004-07-09 Méthode pour l'opération d'une chaudière à vapeur à passage unique
EP05766740A Active EP1766288B1 (fr) 2004-07-09 2005-07-06 Procede pour faire fonctionner un generateur de vapeur en continu

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP05766740A Active EP1766288B1 (fr) 2004-07-09 2005-07-06 Procede pour faire fonctionner un generateur de vapeur en continu

Country Status (15)

Country Link
US (1) US7624708B2 (fr)
EP (2) EP1614962A1 (fr)
JP (1) JP4704427B2 (fr)
CN (1) CN1906441B (fr)
AU (1) AU2005261689B2 (fr)
BR (1) BRPI0506706A (fr)
CA (1) CA2573015A1 (fr)
DK (1) DK1766288T3 (fr)
ES (1) ES2399756T3 (fr)
PL (1) PL1766288T3 (fr)
RU (1) RU2372554C2 (fr)
TW (1) TWI318280B (fr)
UA (1) UA90683C2 (fr)
WO (1) WO2006005708A1 (fr)
ZA (1) ZA200603906B (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2194320A1 (fr) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Procédé de fonctionnement d'un générateur de vapeur à passage unique et générateur de vapeur à passage unique
EP2065641A3 (fr) * 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Procédé de fonctionnement d'un générateur de vapeur en flux continu, ainsi que générateur de vapeur en flux à sens unique
EP2397755A1 (fr) 2009-03-05 2011-12-21 Artweger GmbH & Co. KG Générateur de vapeur à vapeur continue et doté d'une vidange sécurisée
WO2012028495A3 (fr) * 2010-09-03 2012-06-21 Siemens Aktiengesellschaft Procédé pour faire fonctionner un générateur de vapeur continu chauffé par énergie solaire et générateur de vapeur continu solaire thermique
DE102011004263A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Verfahren zum Betreiben eines solarbeheizten Abhitzedampferzeugers sowie solarthermischer Abhitzedampferzeuger
WO2012110344A1 (fr) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Procédé pour faire fonctionner une centrale à collecteurs cylindro-paraboliques héliothermique
DE102011076968A1 (de) * 2011-06-06 2012-12-06 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Umlauf-Abhitzedampferzeugers
DE102012206466A1 (de) * 2012-04-19 2013-10-24 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Betrieb eines solarthermischen Kraftwerks

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010042458A1 (de) * 2010-10-14 2012-04-19 Siemens Aktiengesellschaft Verfahren zum Betreiben einer kombinierten Gas- und Dampfturbinenanlage sowie zur Durchführung des Verfahrens hergerichtete Gas- und Dampfturbinenanlage und entsprechende Regelvorrichtung
DE102011004277A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Verfahren zum Betrieb eines direkt beheizten, solarthermischen Dampferzeugers
DE102014222682A1 (de) 2014-11-06 2016-05-12 Siemens Aktiengesellschaft Regelungsverfahren zum Betreiben eines Durchlaufdampferzeugers
EP3647657A1 (fr) * 2018-10-29 2020-05-06 Siemens Aktiengesellschaft Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2337851A (en) * 1940-01-05 1943-12-28 Bailey Meter Co Control system
US3196844A (en) * 1960-03-30 1965-07-27 Sulzer Ag Method and apparatus for controlling a forced flow steam generator
US3774396A (en) * 1971-04-14 1973-11-27 Siemens Ag Method and apparatus for controlling a heat exchanger
EP0639253A1 (fr) 1992-05-04 1995-02-22 Siemens Ag Generateur de vapeur a circulation forcee.

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US374396A (en) * 1887-12-06 Elevator-stop
CH552173A (de) * 1972-05-16 1974-07-31 Sulzer Ag Vorrichtung zum regeln der speisewasserzufuhr eines mit gleitdruck betriebenen zwanglaufdampferzeugers.
US3914795A (en) * 1973-02-23 1975-10-21 Westinghouse Electric Corp Fluid distribution network and steam generators and method for nuclear power plant training simulator
DE2620734C3 (de) * 1976-05-11 1979-12-13 Kraftwerk Union Ag, 4330 Muelheim Überwachungsanordnung für einen Durchlauf-Dampferreuger zur Ermittlung der Abweichungen zwischen der vom Speisewasser aufgenommenen und der von der Feuerung abgegebenen Wärmemenge
JPH0756459B2 (ja) * 1987-05-14 1995-06-14 横河電機株式会社 質量流量計
JP2574387B2 (ja) * 1988-04-28 1997-01-22 北海道電力株式会社 石炭焚ボイラ制御方法
DE4142376A1 (de) 1991-12-20 1993-06-24 Siemens Ag Fossil befeuerter durchlaufdampferzeuger
US5923571A (en) 1994-10-11 1999-07-13 Betzdearborn, Inc. Apparatus and method for automatic congruent control of multiple boilers sharing a common feedwater line and chemical feed point
DE19602680C2 (de) * 1996-01-25 1998-04-02 Siemens Ag Durchlaufdampferzeuger
AUPO876797A0 (en) 1997-08-25 1997-09-18 Technological Resources Pty Limited Heating with steam
DE19736885A1 (de) * 1997-08-25 1999-03-04 Siemens Ag Dampferzeuger, insbesondere Abhitzedampferzeuger und Verfahren zum Betrieb dieses Dampferzeugers
US6230480B1 (en) * 1998-08-31 2001-05-15 Rollins, Iii William Scott High power density combined cycle power plant
DK1117964T3 (da) 1998-09-22 2002-11-25 Axair Ag Dampgenerator med i det mindste delvis dobbeltvægget fordampningskar
US6039008A (en) 1999-02-01 2000-03-21 Combustion Engineering, Inc. Steam generator having an improved structural support system
JP3718631B2 (ja) 2000-11-30 2005-11-24 ニイガタ・メーソンネーラン株式会社 蒸気変換弁

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2337851A (en) * 1940-01-05 1943-12-28 Bailey Meter Co Control system
US3196844A (en) * 1960-03-30 1965-07-27 Sulzer Ag Method and apparatus for controlling a forced flow steam generator
US3774396A (en) * 1971-04-14 1973-11-27 Siemens Ag Method and apparatus for controlling a heat exchanger
EP0639253A1 (fr) 1992-05-04 1995-02-22 Siemens Ag Generateur de vapeur a circulation forcee.

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065641A3 (fr) * 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Procédé de fonctionnement d'un générateur de vapeur en flux continu, ainsi que générateur de vapeur en flux à sens unique
WO2009068446A3 (fr) * 2007-11-28 2010-07-15 Siemens Aktiengesellschaft Procédé d'utilisation d'un générateur de vapeur à circulation et générateur de vapeur à circulation forcée
US9482427B2 (en) 2007-11-28 2016-11-01 Siemens Aktiengesellschaft Method for operating a once-through steam generator and forced-flow steam generator
US9291345B2 (en) 2008-06-12 2016-03-22 Siemens Aktiengesellschaft Method for operating a continuous flow steam generator
WO2009150055A3 (fr) * 2008-06-12 2010-06-17 Siemens Aktiengesellschaft Procédé permettant de faire fonctionner un générateur de vapeur à circulation et générateur de vapeur à circulation forcée
EP2194320A1 (fr) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Procédé de fonctionnement d'un générateur de vapeur à passage unique et générateur de vapeur à passage unique
EP2397755A1 (fr) 2009-03-05 2011-12-21 Artweger GmbH & Co. KG Générateur de vapeur à vapeur continue et doté d'une vidange sécurisée
WO2012028495A3 (fr) * 2010-09-03 2012-06-21 Siemens Aktiengesellschaft Procédé pour faire fonctionner un générateur de vapeur continu chauffé par énergie solaire et générateur de vapeur continu solaire thermique
WO2012110344A1 (fr) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Procédé pour faire fonctionner une centrale à collecteurs cylindro-paraboliques héliothermique
DE102011004263A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Verfahren zum Betreiben eines solarbeheizten Abhitzedampferzeugers sowie solarthermischer Abhitzedampferzeuger
DE102011076968A1 (de) * 2011-06-06 2012-12-06 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Umlauf-Abhitzedampferzeugers
WO2012168074A3 (fr) * 2011-06-06 2014-03-13 Siemens Aktiengesellschaft Procédé permettant de faire fonctionner un générateur de vapeur à récupération de chaleur en circuit fermé
CN103797302A (zh) * 2011-06-06 2014-05-14 西门子公司 循环废热蒸汽生成器的运行方法
CN103797302B (zh) * 2011-06-06 2016-04-13 西门子公司 循环废热蒸汽生成器的运行方法
US9518481B2 (en) 2011-06-06 2016-12-13 Siemens Aktiengesellschaft Method for operating a recirculating waste heat steam generator
DE102012206466A1 (de) * 2012-04-19 2013-10-24 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Betrieb eines solarthermischen Kraftwerks

Also Published As

Publication number Publication date
RU2007104929A (ru) 2008-08-20
TWI318280B (en) 2009-12-11
ZA200603906B (en) 2008-04-30
AU2005261689A1 (en) 2006-01-19
EP1766288A1 (fr) 2007-03-28
BRPI0506706A (pt) 2007-05-02
CN1906441A (zh) 2007-01-31
PL1766288T3 (pl) 2013-06-28
UA90683C2 (ru) 2010-05-25
JP2008506087A (ja) 2008-02-28
CN1906441B (zh) 2010-06-16
AU2005261689B2 (en) 2010-02-04
DK1766288T3 (da) 2013-04-08
ES2399756T3 (es) 2013-04-03
RU2372554C2 (ru) 2009-11-10
CA2573015A1 (fr) 2006-01-19
TW200606373A (en) 2006-02-16
US7624708B2 (en) 2009-12-01
US20080066695A1 (en) 2008-03-20
WO2006005708A1 (fr) 2006-01-19
JP4704427B2 (ja) 2011-06-15
EP1766288B1 (fr) 2013-01-23

Similar Documents

Publication Publication Date Title
EP1766288B1 (fr) Procede pour faire fonctionner un generateur de vapeur en continu
EP2297518B1 (fr) Procédé de fonctionnement d'un générateur de vapeur à passage unique et générateur de vapeur à passage unique
EP0639253B1 (fr) Generateur de vapeur a circulation forcee
EP2212618B1 (fr) Procédé de fonctionnement d'un générateur de vapeurà passage unique, ainsi que générateur de vapeur à passage unique
DE102009001006B4 (de) Komplexkraftwerk und Kraftwerksteuerverfahren
EP2510198A2 (fr) Procédé et dispositif pour réguler la production de vapeur dans une centrale à vapeur
DE3304292C2 (fr)
DE102011076968A1 (de) Verfahren zum Betreiben eines Umlauf-Abhitzedampferzeugers
WO2010108904A2 (fr) Procédé et dispositif pour la régulation de la température de la vapeur dans une machine à vapeur
DE2800197A1 (de) Verfahren und anordnung zur regelung der walzgut-laengsspannung zwischen den walzgeruesten einer tandemwalzstrasse
EP2603332A1 (fr) Procédé de détermination de grandeurs de commande d'un train de laminoir comportant plusieurs cages pour laminer une bande de métal
EP3161378B1 (fr) Procédé de régulation du fonctionnement d'un générateur de vapeur à récupération de chaleur
EP1426564B1 (fr) Procédé et dispositif pour la régulation de la puissance d' une centrale thermique à cycle combiné
DE2025528A1 (de) Elektro-hydraulische Steuerung mit Druckkompensator
DE102010040210A1 (de) Verfahren zum Betreiben eines solarbeheizten Durchlaufdampferzeugers sowie solarthermischer Durchlaufdampferzeuger
DE2129082A1 (de) System zur Regelung der Werkstuck dicke in einer mehrgerustigen Verbund walzstraße
EP2638251B1 (fr) Procédé pour faire fonctionner une centrale à collecteurs cylindro-paraboliques héliothermique
EP3827200B1 (fr) Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée
EP2676072B1 (fr) Procédé pour faire fonctionner un générateur de vapeur à circulation ouverte
EP0308596B1 (fr) Procédé de réglage du débit d'eau d'alimentation d'une installation de production de vapeur
DE2427923A1 (de) Steuereinrichtung fuer eine dampfturbinenanordnung mit umgehungsleitung
EP0565853B1 (fr) Procédé et dispositif de régulation de la température aller d'un système de chauffage et dispositif de commande par la mise en oeuvre du procédé
DE3205589C2 (de) Vorrichtung zum Regeln der Walzgut-Spannung in einer Tandem-Warmwalzstraße
DE4217626A1 (de) Zwangdurchlaufdampferzeuger
EP2825736B1 (fr) Procédé et dispositif pour faire fonctionner une centrale héliothermique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060712

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566