EP3827200B1 - Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée - Google Patents

Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée Download PDF

Info

Publication number
EP3827200B1
EP3827200B1 EP19783975.6A EP19783975A EP3827200B1 EP 3827200 B1 EP3827200 B1 EP 3827200B1 EP 19783975 A EP19783975 A EP 19783975A EP 3827200 B1 EP3827200 B1 EP 3827200B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
flow
heater
heating surfaces
steam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19783975.6A
Other languages
German (de)
English (en)
Other versions
EP3827200A1 (fr
Inventor
Jan BRÜCKNER
Tobias Schulze
Frank Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3827200A1 publication Critical patent/EP3827200A1/fr
Application granted granted Critical
Publication of EP3827200B1 publication Critical patent/EP3827200B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • F22B35/12Control systems for steam boilers for steam boilers of forced-flow type of once-through type operating at critical or supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/067Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating at critical or supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • F22D5/26Automatic feed-control systems
    • F22D5/30Automatic feed-control systems responsive to both water level and amount of steam withdrawn or steam pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • F22D5/26Automatic feed-control systems
    • F22D5/34Applications of valves

Definitions

  • the invention relates to a method for operating a once-through steam generator designed as a heat recovery steam generator. It also relates to a once-through steam generator for carrying out the process.
  • the feedwater control concept for Benson evaporators is essentially based on the calculation of a pilot control signal for the feedwater mass flow using measured process variables.
  • a pre-control signal is typically calculated from known reference values or disturbance variables of the control loop or changes thereto and finally corrected multiplicatively with the output signal of the controller. It anticipates the reaction of the controller to a setpoint change or a disturbance variable and increases the dynamics of the controller so that the desired overheating at the evaporator outlet (setpoint) is set as well as possible in all conceivable phases of the process.
  • a feed water control for Benson heat recovery steam generators is for example in EP 2 212 618 B1 disclosed.
  • a sufficiently reliable predictive mass flow control that can also be used for steam generators switched as waste heat boilers should be largely adapted to the special features of the waste heat boiler.
  • the firing capacity is not a suitable parameter that allows a sufficiently reliable conclusion to be drawn about the heat flow balance on which it is based.
  • the EP 2 297 518 B1 further discloses that characteristic correction values are taken into account for the time derivative of the enthalpy at the inlet of one or more of the evaporator heating surfaces.
  • the DE 10 2010 040 210 A1 also a method in which a correction value characteristic of the time derivative of the enthalpy, the temperature or the density of the flow medium at the inlet of one or more of the heating surfaces is taken into account for the creation of the set value for the feedwater mass flow.
  • the U.S. 2014/034044 A1 claims not only a solar thermal steam generator itself, but also a method for operating this solar thermal steam generator, in which the setting of the feed water mass flow is controlled predictively.
  • a correction value is also used here, by means of which thermal storage effects of stored or withdrawn thermal energy are corrected.
  • DE 10 2011 004 263 A1 a method for operating a solar-heated heat recovery steam generator, in which a device for adjusting the feedwater mass flow is supplied with a target value for the feedwater mass flow, a characteristic correction value being taken into account, by means of which thermal storage effects of thermal energy stored or withdrawn in one or more of the heating surfaces are corrected .
  • the object of the invention is therefore to provide a method for operating a once-through steam generator designed as a waste-heat steam generator, in which improved feedwater control leads to stable operating behavior of the plant. Furthermore, a once-through steam generator that is particularly suitable for carrying out the method is to be specified.
  • the invention is defined by the features of claim 1 and solves the task of a method by providing that in a once-through steam generator designed as a heat recovery steam generator with a preheater, comprising a number of preheater heating surfaces, and with an evaporator, comprising a number of the Preheater heating surfaces downstream from the evaporator heating surfaces on the flow medium side, in which a setpoint value for the feedwater mass flow is fed to a device for adjusting a feedwater mass flow, with a waste heat flow transferred to a fluid in the evaporator heating surfaces being determined when the setpoint for the feedwater mass flow is generated as well as mass storage and energy storage in the fluid in the evaporator heating surfaces during transient system operation, a temporal behavior of the mass storage in the evaporator is coupled to a temporal behavior of a mass storage in the preheater, with scaling using a ratio of the density changes in the evaporator and in the preheater.
  • the storage terms for mass storage and energy storage are advantageously determined from current measured values. This enables a particularly reliable evaluation of the heat flow balance and thus the determination of a particularly precisely precalculated desired feed water value.
  • the current measured values are expediently pressures and temperatures at the preheater inlet, at the preheater outlet or evaporator inlet and at the evaporator outlet.
  • boiling enthalpy and saturation enthalpy are determined via at least one pressure measurement at the evaporator inlet or at the evaporator outlet.
  • the correction values for mass storage and energy storage for determining the setpoint for the feedwater mass flow are advantageously determined taking into account the time derivatives of the boiling and saturation enthalpies in the evaporator and a density of the flow medium in the preheater.
  • an average fluid density in the preheater can be defined and calculated in particular by suitable measurements of temperature and pressure at the inlet and outlet of the respective preheater, a linear density profile being expediently used as a basis. This can be used to compensate for mass memory effects that occur with transient processes. If, for example, the heat supply to the evaporator heating surfaces decreases due to a load change, fluid is temporarily stored there. If the flow rate of the feedwater pump were constant, the mass flow would drop when the heating surface exited. This can now be compensated for by temporarily increasing the feedwater mass flow.
  • these temporally variable processes or temporal derivatives are advantageously determined via a first and a second differentiating element, preferably DT1 elements, to which parameters such as temperature and pressure are fed at suitable measuring points on the input side.
  • the first differentiating element which describes the change in density over time in the preheater for estimating the mass storage
  • an amplification factor that corresponds to the total volume of the flow medium in the evaporator heating surfaces.
  • the correction signals generated with the invention for the feedwater mass flow can represent the effects of mass and energy storage in a particularly advantageous manner if suitable amplifications and time constants are selected for the respective DT-1 element.
  • the first differentiating element is subjected to a time constant corresponding essentially to half the flow time of the flow medium through the evaporator.
  • the second differentiating element for estimating the energy storage is subjected to a time constant of between 5 s and 40 s.
  • the stated object is achieved by a once-through steam generator according to claim 11 with a number of evaporator heating surfaces and a number of preheater heating surfaces connected upstream on the flow medium side and with a device for adjusting the feedwater mass flow, which can be guided using a target value for the feedwater mass flow, the target value being designed using the inventive method.
  • the correction of the pilot control signal by the controller can be noticeably reduced and the controller can be parameterized with a lower gain.
  • the problem described above of undesired residual process fluctuations of a significant magnitude can thus be eliminated.
  • the operating behavior of the system is not negatively influenced.
  • the figure 1 shows schematically the change in the algorithm resulting from the invention for calculating the desired value for the feedwater mass flow ⁇ FW .
  • the part of the algorithm relevant to the invention is shown within the dashed border and the prior art outside.
  • the setpoint for the feedwater mass flow ⁇ FW is therefore made up of the feedwater mass flow for the evaporator ⁇ Ev,in and the mass flow ⁇ S , E stored or withdrawn in the preheater, corrected with a factor f Ctrl .
  • the feedwater mass flow for the evaporator ⁇ Ev in results from the quotient of the heat flow Q ⁇ Ev , fl transferred from the exhaust gas to the fluid in the evaporator and the setpoint for the enthalpy change in the evaporator ⁇ h Ev, set.
  • the heat flow Q ⁇ Ev,fl transferred to the fluid in the evaporator results from the heat flow in the exhaust gas Q ⁇ EG minus the heat storage in the wall material of the heating surface tubes Q ⁇ S , W .
  • the term for the heat flow transferred to the fluid in the evaporator is supplemented and corrected by two further terms.
  • the first correction concerns the mass storage effect in the evaporator
  • the second correction concerns the energy storage effect in the evaporator.
  • the mass storage effect is in the heat flows figure 1 through the product dm possibly German (mass storage) and h Ev , out , set (enthalpy at the outlet of the evaporator). you possibly German stands for the energy storage effect.
  • these values are suitably approximated so that they can be determined from measured process variables.
  • figure 2 shows these measured variables or the measuring points in the once-through heat recovery steam generator and their processing.
  • the once-through heat recovery steam generator according to figure 2 includes a preheater 1, also known as an economizer, for as Feed water provided for the flow medium, with a number of preheater heating surfaces 2, and an evaporator 3 with a number of evaporator heating surfaces 4 downstream of the preheater heating surfaces 2 on the flow medium side.
  • the evaporator 3 is followed by a superheater 12 with corresponding superheater heating surfaces 13.
  • the heating surfaces are located in a gas flue, not shown in detail , Which is acted upon by the exhaust gas of an associated gas turbine system.
  • the once-through steam generator is designed for a controlled application of feed water.
  • a feedwater pump 31 is followed by a throttle valve 33 controlled by a servomotor 32, so that the feedwater quantity conveyed by the feedwater pump 31 in the direction of the preheater 1 or the feedwater mass flow can be adjusted by suitably controlling the throttle valve 33.
  • a measuring device 34 for determining the feedwater mass flow through the feedwater line 35 is connected downstream of the throttle valve 33 in order to determine a current characteristic value for the feedwater mass flow supplied.
  • the servomotor 32 is actuated via a control element 36 which is acted upon on the input side by a setpoint value for the feedwater mass flow ⁇ FW supplied via a data line 37 and by the current actual value of the feedwater mass flow determined by the measuring device 34 .
  • a correction requirement is transmitted to the controller 36 by forming the difference between these two signals, so that if the actual value deviates from the desired value, the throttle valve 33 is corrected accordingly via the activation of the motor 32 .
  • the data line 37 is connected on the input side to a feedwater flow control 38 designed to specify the setpoint for the feedwater mass flow ⁇ FW .
  • a feedwater flow control 38 designed to specify the setpoint for the feedwater mass flow ⁇ FW .
  • This is for it designed to determine the target value for the feedwater mass flow ⁇ FW based on a heat flow balance in the evaporator heating surfaces 4, the target value for the feedwater mass flow ⁇ FW being determined in that a waste heat flow transferred to a fluid in the evaporator heating surfaces 4 is determined and also mass storage and energy storage in the fluid in the evaporator heating surfaces 4 are taken into account.
  • the figure 2 in the feedwater flow control 38 only the elements that are relevant for the correction of the feedwater mass flow setpoint ⁇ FW according to the invention. The part known from the prior art is not shown.
  • the measured values for determining a setpoint for the feedwater mass flow ⁇ FW are pressure and temperature values and the measuring points are in the areas of preheater inlet 5, preheater outlet 6 or evaporator inlet 7 and evaporator outlet 8.
  • the measured values determined are processed in function elements 14, 15, 16, 17 and 18.
  • the density of the fluid at various locations on the heating surfaces of preheater 1 and evaporator 3 is determined from the measured values for pressure and temperature.
  • the fourth and fifth function elements 17 and 18 deliver the boiling and saturation enthalpy from measured pressure values.
  • the storage term for mass storage dm possibly German is approximated by first forming an average value from the densities determined at the preheater inlet 5 and at the preheater outlet 6 via a first adder element 19 and a first multiplier element 20, which is then further processed in the first differentiator element 9 with a correspondingly selected time constant and with a value corresponding to the total volume V Ev of the flow medium in the evaporator heating surfaces 4 corresponding Amplification factor in the second multiplier 21 is applied.
  • the storage term for energy storage you possibly German is approximated in that an average value is formed from the determined enthalpies using the second adder 26 and the fourth multiplier 27 . This average represents a good assumption for the specific enthalpy of the fluid in evaporator 3.
  • the storage term for energy storage you possibly German is now determined by the sum of two terms.
  • the first term is determined by further processing the specific enthalpy of the fluid in the evaporator 3 in the second differentiating element 10 with a correspondingly selected time constant and with a mean value of the fluid masses M Ev in the evaporator at maximum and minimum load in the fifth multiplier 28 is applied. For the sake of simplicity, this mean value is regarded as a value which is constant over time.
  • the second term is determined by comparing the specific enthalpy of the fluid in the evaporator 3 with the storage term for mass storage dm possibly German is multiplied. This takes place in the sixth multiplication element 29.
  • the corresponding algorithm is to be implemented in the function plans of the feedwater control and thus in the power plant automation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (11)

  1. Procédé de fonctionnement d'un générateur de vapeur à circulation forcée constitué en générateur de vapeur à récupération de la chaleur perdue ayant un préchauffeur (1), comprenant un certain nombre de surfaces (2) de chauffe de préchauffeur et ayant un évaporateur (3), comprenant un certain nombre de surfaces (4) de chauffe d'évaporateur monté en aval du côté du fluide en écoulement des surfaces (2) de chauffe du préchauffeur, dans lequel on envoie une valeur de consigne du courant massique d'eau d'alimentation à un dispositif de réglage d'un courant massique d'eau d'alimentation, dans lequel, pour l'établissement de la valeur de consigne du courant massique d'eau d'alimentation, on détermine un flux de chaleur perdue transmise à un fluide dans les surfaces (4) de chauffe de l'évaporateur ainsi qu'on détecte en outre une accumulation de masse et une accumulation d'énergie dans le fluide dans les surfaces (4) de chauffe de l'évaporateur, lors d'un fonctionnement non stationnaire de l'installation,
    caractérisé en ce que l'on couple un comportement dans le temps de l'accumulation de masse dans l'évaporateur (3) à un comportement dans le temps d'une accumulation de masse dans le préchauffeur (1), une mise à l'échelle s'effectuant avec un rapport des variations des densités dans l'évaporateur (3) et dans le préchauffeur (1).
  2. Procédé suivant la revendication 1, dans lequel on détermine des termes d'accumulateur pour l'accumulation de masse et l'accumulation d'énergie à partir de valeurs de mesure en cours.
  3. Procédé suivant la revendication 2, dans lequel les valeurs de mesure en cours sont des pressions et des températures à l'entrée (5) du préchauffeur, à la sortie (6) du préchauffeur, respectivement à l'entrée (7) de l'évaporateur et la sortie (8) de l'évaporateur.
  4. Procédé suivant l'une des revendications précédentes, dans lequel on obtient une approximation d'une enthalpie spécifique du fluide dans l'évaporateur (3), nécessaire pour l'estimation de l'accumulation d'énergie, par la valeur moyenne arithmétique de l'enthalpie d'ébullition et de l'enthalpie de saturation.
  5. Procédé suivant la revendication 4, dans lequel on détermine l'enthalpie d'évaporation et l'enthalpie de saturation par au moins une mesure de la pression, soit à l'entrée (7) de l'évaporateur, soit à la sortie (8) de l'évaporateur.
  6. Procédé suivant la revendication 5, dans lequel on exploite des dérivées en fonction du temps des enthalpies d'ébullition et de saturation dans l'évaporateur (3), ainsi qu'une densité du fluide en écoulement dans le préchauffeur (1).
  7. Procédé suivant la revendication 6, dans lequel on détermine des dérivées en fonction du temps par des premier et deuxième éléments (9, 10) différenciateurs.
  8. Procédé suivant la revendication 7, dans lequel on soumet le premier élément (9) différenciateur, décrivant, pour l'estimation de l'accumulation de masse, la courbe en fonction du temps de la variation de la densité dans le préchauffeur (1), à un facteur de renforcement correspondant au volume d'ensemble du fluide en écoulement dans les surfaces (4) de chauffe de l'évaporateur.
  9. Procédé suivant l'une des revendications 7 ou 8, dans lequel on soumet le premier élément (9) différenciateur à une constante de temps correspondant sensiblement à la moitié du temps de passage du fluide en écoulement dans l'évaporateur (3) .
  10. Procédé suivant la revendication 7, dans lequel on soumet le deuxième élément (10) différenciateur pour l'évaluation de l'accumulation en énergie à une constante de temps, qui est comprise entre 5s et 40s.
  11. Générateur (11) de vapeur à circulation forcée et à récupération de la chaleur perdue, comprenant un certain nombre de surfaces (4) de chauffe d'évaporateur et un certain nombre de surfaces (2) de chauffe de préchauffeur en amont du côté du fluide en écoulement, caractérisé en ce que le générateur de vapeur à circulation forcée et à récupération de la chaleur perdue comprend un dispositif de réglage d'un courant massique d'eau d'alimentation, qui peut être conduit à l'aide d'une valeur de consigne du courant massique d'eau d'alimentation, dans lequel la valeur de consigne est conçue à l'aide du procédé suivant l'une des revendications 1 à 10.
EP19783975.6A 2018-10-29 2019-09-19 Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée Active EP3827200B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18203107.0A EP3647657A1 (fr) 2018-10-29 2018-10-29 Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée
PCT/EP2019/075105 WO2020088838A1 (fr) 2018-10-29 2019-09-19 Régulation de l'eau d'alimentation pour générateur de vapeur à chaleur perdue à circulation forcée

Publications (2)

Publication Number Publication Date
EP3827200A1 EP3827200A1 (fr) 2021-06-02
EP3827200B1 true EP3827200B1 (fr) 2022-06-29

Family

ID=64082950

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18203107.0A Withdrawn EP3647657A1 (fr) 2018-10-29 2018-10-29 Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée
EP19783975.6A Active EP3827200B1 (fr) 2018-10-29 2019-09-19 Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18203107.0A Withdrawn EP3647657A1 (fr) 2018-10-29 2018-10-29 Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée

Country Status (8)

Country Link
US (1) US11530812B2 (fr)
EP (2) EP3647657A1 (fr)
JP (1) JP7114808B2 (fr)
KR (1) KR102558369B1 (fr)
CN (1) CN113056639B (fr)
CA (1) CA3117871C (fr)
ES (1) ES2927687T3 (fr)
WO (1) WO2020088838A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114636144B (zh) * 2022-02-25 2023-10-20 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种基于水煤比自寻优的超临界火电机组给水设定方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH599504A5 (fr) * 1975-09-26 1978-05-31 Sulzer Ag
JPS5341602A (en) * 1976-09-28 1978-04-15 Mitsubishi Electric Corp Controlling device for one-through boiler
DE4217626A1 (de) * 1992-05-27 1993-12-02 Siemens Ag Zwangdurchlaufdampferzeuger
JP2563099B2 (ja) * 1992-05-04 1996-12-11 シーメンス アクチエンゲゼルシヤフト 強制貫流蒸気発生器
DE19604416C2 (de) * 1996-02-07 2002-05-16 Siemens Ag Verfahren zur Entspannung eines Rauchgasstroms in einer Turbine sowie entsprechende Turbine
WO2003029619A1 (fr) * 2001-09-28 2003-04-10 Honda Giken Kogyo Kabushiki Kaisha Dispositif de commande thermique d'un evaporateur
EP1614962A1 (fr) * 2004-07-09 2006-01-11 Siemens Aktiengesellschaft Méthode pour l'opération d'une chaudière à vapeur à passage unique
US8118895B1 (en) * 2007-03-30 2012-02-21 Bechtel Power Corporation Method and apparatus for refueling existing natural gas combined cycle plant as a non-integrated gasification combined cycle plant
EP2065641A3 (fr) 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Procédé de fonctionnement d'un générateur de vapeur en flux continu, ainsi que générateur de vapeur en flux à sens unique
WO2009106563A2 (fr) * 2008-02-26 2009-09-03 Alstom Technology Ltd Procédé de régulation d'un générateur de vapeur et circuit de régulation pour générateur de vapeur
EP2194320A1 (fr) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Procédé de fonctionnement d'un générateur de vapeur à passage unique et générateur de vapeur à passage unique
EP2224164A1 (fr) * 2008-11-13 2010-09-01 Siemens Aktiengesellschaft Procédé destiné au fonctionnement d'un générateur de vapeur à récupération de chaleur
JP5341602B2 (ja) 2009-04-21 2013-11-13 株式会社岡村製作所 天板スライド式机
CN102753789B (zh) * 2009-12-08 2016-03-02 西门子公司 调节蒸汽动力设备中的蒸汽产生的方法和设备
DE102010040210A1 (de) * 2010-09-03 2012-03-08 Siemens Aktiengesellschaft Verfahren zum Betreiben eines solarbeheizten Durchlaufdampferzeugers sowie solarthermischer Durchlaufdampferzeuger
DE102010042458A1 (de) 2010-10-14 2012-04-19 Siemens Aktiengesellschaft Verfahren zum Betreiben einer kombinierten Gas- und Dampfturbinenanlage sowie zur Durchführung des Verfahrens hergerichtete Gas- und Dampfturbinenanlage und entsprechende Regelvorrichtung
DE102011004263A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Verfahren zum Betreiben eines solarbeheizten Abhitzedampferzeugers sowie solarthermischer Abhitzedampferzeuger
DE102011004277A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Verfahren zum Betrieb eines direkt beheizten, solarthermischen Dampferzeugers
DE102011076968A1 (de) * 2011-06-06 2012-12-06 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Umlauf-Abhitzedampferzeugers
AT511189B1 (de) * 2011-07-14 2012-10-15 Avl List Gmbh Verfahren zur regelung einer wärmenutzungsvorrichtung bei einer brennkraftmaschine
CN109563985B (zh) * 2016-08-05 2021-06-25 西门子股份公司 用于操作废热蒸汽发生器的方法
EP3495732B1 (fr) * 2017-12-08 2024-02-14 General Electric Technology GmbH Systèmes d'évaporateur à passage unique
EP3495731B1 (fr) * 2017-12-08 2022-02-16 General Electric Technology GmbH Systèmes d'évaporateur à passage unique

Also Published As

Publication number Publication date
CN113056639A (zh) 2021-06-29
US11530812B2 (en) 2022-12-20
KR20210083302A (ko) 2021-07-06
US20210341139A1 (en) 2021-11-04
JP2022514453A (ja) 2022-02-14
JP7114808B2 (ja) 2022-08-08
CA3117871A1 (fr) 2020-05-07
KR102558369B1 (ko) 2023-07-24
EP3647657A1 (fr) 2020-05-06
CA3117871C (fr) 2023-10-03
WO2020088838A1 (fr) 2020-05-07
ES2927687T3 (es) 2022-11-10
CN113056639B (zh) 2023-04-14
EP3827200A1 (fr) 2021-06-02

Similar Documents

Publication Publication Date Title
DE3126331C2 (fr)
EP2297518B1 (fr) Procédé de fonctionnement d'un générateur de vapeur à passage unique et générateur de vapeur à passage unique
WO2011069700A2 (fr) Procédé et dispositif pour réguler la production de vapeur dans une centrale à vapeur
EP0639253B1 (fr) Generateur de vapeur a circulation forcee
WO2006005708A1 (fr) Procede pour faire fonctionner un generateur de vapeur en continu
DE102011076968A1 (de) Verfahren zum Betreiben eines Umlauf-Abhitzedampferzeugers
EP2065641A2 (fr) Procédé de fonctionnement d'un générateur de vapeur en flux continu, ainsi que générateur de vapeur en flux à sens unique
EP2244011A1 (fr) Procédé et dispositif de réglage de la température de la vapeur pour une centrale à vapeur
EP3161378B1 (fr) Procédé de régulation du fonctionnement d'un générateur de vapeur à récupération de chaleur
EP3827200B1 (fr) Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée
DE102011004277A1 (de) Verfahren zum Betrieb eines direkt beheizten, solarthermischen Dampferzeugers
DE3784011T2 (de) Kesselregelsystem.
EP1426564B1 (fr) Procédé et dispositif pour la régulation de la puissance d' une centrale thermique à cycle combiné
DE102010025916A1 (de) Verfahren und Vorrichtung zur Ermittlung von Modellparametern zur Regelung eines Dampfkraftwerksblocks, Regeleinrichtung für einen Dampferzeuger und Computerprogrammprodukt
EP2780557B1 (fr) Procédé et dispositif de régulation d'une température de la vapeur dans une centrale à vapeur
EP1462901B1 (fr) Procédé pour la régulation ou la commande d'un processus de variation de charge thermique dans une piece non déformable et/ou à paroi épaisse traversée par un fluide dans une installation thermique
EP2638251B1 (fr) Procédé pour faire fonctionner une centrale à collecteurs cylindro-paraboliques héliothermique
EP2676072B1 (fr) Procédé pour faire fonctionner un générateur de vapeur à circulation ouverte
EP1365110B1 (fr) Procédé et dispositif pour l'exploitation d'une centrale à vapeur, en particulier en charge partielle
EP0308596B1 (fr) Procédé de réglage du débit d'eau d'alimentation d'une installation de production de vapeur
EP2669480B1 (fr) Procédé destiné à l'exploitation d'une installation solaire
DE3336596C2 (de) Verfahren zum Regeln eines in Kraft-/Wärmekopplung betriebenen Kraftwerkblockes
DE4217626A1 (de) Zwangdurchlaufdampferzeuger
EP2825736B1 (fr) Procédé et dispositif pour faire fonctionner une centrale héliothermique
DE1815969B2 (de) Ueberkritischer zwangsdurchlaufdampferzeuger

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220316

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1501573

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004832

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220929

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004832

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220919

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230926

Year of fee payment: 5

Ref country code: IT

Payment date: 20230920

Year of fee payment: 5

Ref country code: GB

Payment date: 20230926

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230926

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231017

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240926

Year of fee payment: 6